Renate Schmidt
Georg Struth (eds.)

Relations and Kleene Algebra
in Computer Science

PhD Programme at RelMiCS/AKA 2006

Manchester, UK
August 28 - September 2, 2006

Proceedings

Research Report CS-06-09, Department of Computer Science, University of Sheffield

Preface

This volume contains the tutorials and the contributed extended abstracts of
the PhD Programme at the 9th International Conference on Relational Methods
in Computer Science (RelMiCS-9) and the 4th International Workshop on Ap-
plications of Kleene Algebra (AKA’06). The Programme has been organised for
the first time in association with RelMiCS/AKA. It was hosted by the School
of Computer Science at the University of Manchester, UK, from August 29 to
September 2, 2006 and included invited tutorials, a student session and atten-
dance at the conference. Ten students have been selected for the programme by
the organisers due to the relevance and quality of their submissions.

The tutorials—Foundations of Relation Algebra and Kleene Algebra by Peter
Jipsen (Chapman University, USA) and Relational Methods for Program Refine-
ment by John Derrick (University of Sheffield, UK)—introduced the theory of
relational methods and presented an important application.

The student session allowed the participants to present and discuss their own
work. The extended abstracts of their talks nicely reflect the diverse applications
of relations and Kleene algebras in computing.

The RelMiCS/AKA conference series is the main forum for the relational
calculus as a conceptual and methodological tool and for topics related to Kleene
algebras. The programme of RelMiCS/AKA 2006 featured 25 contributed talks
and three invited lectures: Weak Kleene Algebra and Computation Trees by Ernie
Cohen (Microsoft, USA), Finite Symmetric Integral Relation algebras with no 3-
Cycles by Roger Maddux (Towa State University, USA), and Computations and
Relational Bundles by Jeff Sanders (Oxford, UK). The proceedings are published
as volume 4136 of the Springer LNCS series.

The organisers would warmly like to thank all those who contributed to the
success of the programme: the tutorial and keynote speakers for accepting our in-
vitation, the students for their interest in the programme and the local organisers
at the University of Manchester for their dedicated help; the staff in the ACSO
office, especially Bryony Quick, the conference secretary, Helen Spragg, and Tain
Hart; the staff of the finance office; the technical staff and the building manage-
ment team; as well as Zhen Li, David Robinson and Juan Navarro-Perez. We are
very grateful to the UK Engineering and Physical Sciences Research Council for
funding the entire PhD programme (grant EP/D079926/1) and we are pleased
to acknowledge support of ReIMICS/AKA 2006 by the London Mathematical
Society, the British Logic Colloquium and the University of Manchester.

Manchester and Sheffield, August 2006 Renate Schmidt
Georg Struth

Table of Contents

Tutorials

Foundations of Relations and Kleene Algebras 1
Peter Jipsen

Relational Methods for Program Refinement 23
John Derrick

Contributed Extended Abstracts

Relations for Specifying the Invariant Behavior of Object Collaborations . 45
Stephanie Balzer

RelAPS: A Proof System for Relational Categories 50
Joel Glanfield and Michael Winter

f-Generated Kleene Algebra. i i 55
Peter Hofner

Nomadic Time. 60
Andrew Hughes

Combining Relational Methods and Evolutionary Algorithms 65
Britta Kehden

A topographical analysis of event structures 70
José Juan Palacios Pérez

Relational Kleene Algebras and their compilation to modular
applicative transducers 75
Benoit Razet

Resolution Based Natural Deduction For Modal Logic 79
David Robinson

Some Notes on Duality in Refinement Algebra 84
Kim Solin

Foundations of Relations and Kleene Algebras

Peter Jipsen

Department of Mathematics and Computer Science, Chapman University, USA.
jipsen@chapman.edu

/v 9002 ‘vz N8Ny eiqeS|e sudsy pue seiqeSje uonePy

(Kussomun uewdeys) uasdir s2199

seiqaS|e auaa|y| pue seigaS|e uoniejas Jenoinied ul
‘sesqaS|e 4o sadA} Jay10 |BI9NSS INOGE SUOIISIND JB|ILUIS JBPISUOD ||IM AN

seiqaS|e asayy jo K10y [euoirenba ayj noqe suoilsanb aue asay |
jseagas|e 19siomod [|e ul spjoy Ayijuspi Jenoilied e Ji 9pidep am ued)
iPIOY 3BY] SDIIUSPI || JO 13S BY] BCLIDSIP M UED MOH

(Md > AXIBINXNA=ANX B2 s911Up! Auew saysieg

X \ N = _x uonejusws|dwod
‘U uoi129sia1ul ‘N uolun suoijesado yum eigasie ue st (N)d

N jo 1esiamod ay1 {nN S x : X} = (N)d pue 18s e aq 1) 197

uoinjesado 319s jo saipadoid dreuqal|y

v8/¢ 900 ‘vz 3sn8ny ®igaSBje aualy pue seigedje uonepPy

(Kussomu uewdey?) uasdir s2199

uMO INoA Uuo anuijuod 0} aney Aew ‘Loys Ajiey si saInuIW 0 ©
"(pexiy 9q ued Asya moy sdeysad pue) ssjey sie yoiym
(panoidwi 5q ued) anJ1 ale SJUSWSILIS YDIYM SpIdRJ e
SjusWalE]S JO S30| ‘suoiniuyap asidaud aAIS sopI|S e
jeLioing e sisiy] e
©q93[e |ESISAIUN JO YIOMBWEL) BYT UIYIM
seiqaS|e auda|)| pPuUB SUOIIE[2 INOGE SDISE] BY] JSA0D WY e

uo13oNpoIU|

v8/¢ 9002 ‘vz N8Ny eiqeS|e auds|y pue seiqeSje uonePy

(Kussonun uewdey>) uasdir s2199

sjuelsuod Jafaiul annneSsuuou U ‘u‘w e

aAeSauuou Ajlensn ‘sajqelien Ja8aqul Ty MY e

sjueisuod " ‘Te‘o‘ge e

sa|qelien uoipouny Yy 3y e

(payruenb Ajjesisniun Ajpdidw) ssjqenen 19s T Ix 7 A X @
(panynuenb Ajjessaniun Ajdndwi) sejqeren - ‘Ix‘z ‘A ‘x e
UOI1BI0U 1DBJISCE PUE 9191DUOD USIMIS] UOIIDUIISIP SZIWIUI e

:SUOIULAUOD)

aA1109dsiad D/eigasje ue axe) s910u 9say | e
(uonelou uonouny "$'9) yrew 919.0sIp diseg e
2180] J9pJ0-1S41) DISE] BWOS @

uoljeluaWa|dwod ‘uoildasIIUl ‘UotuN ‘s19s Jo dSpa|mouy| e

sausinbasaig

/1 9002 ‘vz N8Ny eiqas|e auaaly pue seigasie uoneRy

(Kussonun uewdeys) uasdir s2194

9002 ‘¥¢ 1sndny

Aysioniun uewdeyd

uasdif 4913

eIqaS|\y 2U93|}| pUE SUOIJe[dY JO SUOIIBPUNO

v8/8 900 ‘T snSny. rigaS|e auaa|y pue seiqadje uonepRy

(Kussomun uewdeys) uasdir s2199

~HH DN jeor st
1S Yy H [euoiduny s

18 =Y S =YY M dmmsuedy s

~E =Y MY DY dHswwAs s

d

o

<]

Np=_YUY M oupwwAsizue si y
<]

o & N] 1 onixajgaiil sl Y

m

450 i aaxeyal s

(x14 pue) snoudsip Jo (pusixe pue) anoid

w0} |euoilejas ul sarpadoly

v8/9 9002 ‘vz 3sn8ny. ®igaSBje aualy pue seigedje uonepPy

(Kussomu uewdey?) uasdir s2199

(=
Y D =N N Y =Y S! Y JO 2INS0> SAIIISUEL] BAIX3|J2Y

<u
By D = Ly SI Y $0 24nsop> dAnsuel|
0 < U0 Y 1Y = iy PUR M = oy BulyeQ
1 X) 0 195qns e sl 1) 19s e Lo uolleas Aleulq
{n > n:(n‘n)} = Ny uonejas Auzuspy

{y2(a‘n):(n‘A)} = Y I o Jo as19AU0)

{ngx pue xyn xg : (A‘n)} =
{p#ryuyn:(a‘n)} =gty suonepl jo uonisodwo)

suoneas Aieuiq uo suonessdQ

v8/ L 9002 ‘vg Isnsny

eigaBje auoaly pue seiqasie uoneRy (Kussonun uewdey>) uasdir s2199

(/e11ed 3s1mIBY10)) S X ||B IO} () # X JI [E10 SI
z = A saldwi zyx pue Ayx y1 1usjeaiun si

Zyx saldwi zyA pue Ayx j1 aaizisues] s|

yiuenb Appidwi) xyA seidwi Ayx j1 dLzswwAs S|

o

o

o

A = x sandwi xyA pue Ayx ji dLswwAsiiue sty
o

N1 3 X ||B 10} XYX §1 dAIXRDLI SI Y

w.

1 D X ||B 10} XYX JI 9AIX[J3. S

) uo uones Ateuiq e aq y 197

suoilejas Aieuiq jo saipadoid

¥8/6 9002 ‘vg Isnsny ®iqaSje audajy pue seigedje uonepy

(Kussonun uewdeys) uasdir s2194

{ayn :n} = ny pue {ayn : A} = yn suysQq
AYN BIUM BSIMIBYIO 'y D (A ‘M) J1 AYN SIIAN

A X [] J019s5qns e sI A 01 /) Wody Y uoiejas Aieuiq

{Adanan:(an)}=Ax%xn

Sl A ‘N SIS 0 3onpoud 19211p Y|

A=napuex=np(£x)=(a‘n)

Ausdoud Sutuyep ayi sey ‘(4 ‘n) usnaum Yied passpio uy

suollejas Aleulg

v8 /e 9002 ‘vT 1sNSny eiqaBje auda)y pue seiqasje uonepPy (Aussemun dey)) uasdir 19394 8/ 11 9002 ‘v IsnSny eiqas|e auda)y pue seiqasje uonepPy (Kussonun vewdeyd) uasdir 19394

O \ﬁ, %ﬂ \M Q X Z .@/ %u > < H ’ 195 paJapio Ajjered e si (TS ‘) uayy aomejiwss e si (+°n) 4| <

JLISWWASIIUE SI Y 1eYL YINs (3 ‘) 19so0b e si 195 passpio Ajjerried y

SuBWRP ¥ > Yim s3asod pazdsuuod diydiowosiuol
q > e J1 g 01 aul| Suidojs piemdn ue yiIm paIdsuUUOd S| e SAIIEINWIWOD S| + 18yl yons (+°)) pueq e si 9233e)iwss

‘wesSelp assepy e melp ued am 39sod 11Ul B 9ZI|ENSIA O]

‘oAIlISueI] SI TS J1 9AIIID0SSE S| +
G > X > e 1ey] Yons X ou sl iy} pue g > e ji
(g = e uenum) g Aq pasanoo si e 1eyy Aes am /) S q ‘e o4 ‘oulswwAsiue st =y sAlzeInWWOod s +

oAIXoffd s T yy1 quszodwspr s +
spio eiied 3ou3s e s1 N\ > = > uayz ‘19sod e st (S>°N) 4

39s0d e si () N> ‘) uayl ‘) uo Jspio jeised 1013s € si > J| (x1y pue) snoudsip 1o (pusaxa pue) snoid

(x1y pue) anoidsip Jo (pusixa pue) anoid A= fix A+Sx A9 o +5 suipq
UOI1E[34 BAIHISUBI} BAIXB|JR.II UE SI 13pJo [e1ed 1o1i3S

1oys oy 1950d e paj|ed sl 195 paJapio Ajjeitied y suolie|aJ yilm uoldsuuod u_u—_uwam 2]

v8 /01 9002 ‘pz 1snSny. eigaSje auoa)y pue seigaSje uoneEy (Ausiomun uewdey>) uasdir so10g v8/6 9002 ‘vz 1snSny eigaSje auoa)y pue seigaSje uoneEy (Ausiomuq uewdeyd) uasdir so39q

19s0b e si (Ty ‘n) usyr pueq e si (+°n) 4 <

UBJ] DAIXR|J2) B Y}M 335 € S| (1950b) J05 paopio-isenb v/ A= x sadw z + £ = z 4 x y1 anl3ejj2oueD 351 S|

Jus0dwispy 51 + 3ey3 yons (+) dnosSiwss e s pueq v A =xsadwi £+ z = x + z J1 aA11€]20UED 3] SI

uoiresado AJeuiq SAI3eIDOSSE UB Y3M 39S € SI dnosSiwes A=A+ x 10 x = A+ Xl oA1peAI2SUOD S

(z4+ A) +x = z+ (A + x) y1 2ane10055€ I

‘aA13IsueI] S| Ty usyl aA1zeIosse si + Jf .
X+ A = A+ x y1 aannenwiwo s

“ougBWWASIIUE SI Ty Uyl sAIzeINWIWIOD SI + J[

+
+
+
+
+
+

(payruenb Ajpidw jje) X = X 4 X J1 quszodwapi S|

"dAIXalyod SI Ty uayl jusjodwapr si + Jf
A+ x se (AX)+ 21
(xij pue) sroudsip Jo (pueaxe pue) snoid) 01) X /) Wouiy uolpuNy e SI) uo + uoijessdo Aieuiq y

N DzawosuoyA=z+x JjI ATyx Aq n uo Ty sulsq

SUOI1B|2J Y1IM UOI1D2UU0D) sa1uadoud pue suonjesado Aieurg

v8 /o1 9002 ‘7T ISnBny

eiqaBje audaly pue seiqasie uoneRy (Kussomun uewdeys) uasdir s2199

s|a4 p!

71N

s|a4 AInba S|4 PIqNs syasod

1< spuee
anisues) =1
JUPWWAS = s 1S sjasob je 5] ae
SAIX3RI = 4
SuPWwWAsnue = e
1 s 1 e
spai ||e

suolje|as AJeulq Jo Sasse|d awog

v8 /T 900 ‘v IsnSny

3 ©) ©O°) OO
° © ©

135 JUBWRJ-E € JO suoljiled

eiqaBje audaly| pue seiqasie uoneRy

(Kussomu uewdey?) uasdir s2199

"d=Aq uani8 (d);—4 yam ‘N 4o suoryried 4o 3s 8y 01) uo
suol1e[al 92usjeAInba Jo 19s ay1 woly uoidafig e st y/n = (y)4 dew ay |

(x14 pue) anoudsip Jo (pusixe pue) anoid

d D X Pwos 4oy X D Ax) A d= x Aq uollejps e suysp 4 uoiiipied e o4

({d 2 x dwos o} X 3 x: x} =4[2idym)
dIAXIRINY=AUXIOA=XPUE ‘d30 'N=d

1eY1 yons ()d, 40 4 19sqns e si) jo uoriied

suolued

v8 /61 9002 ‘pT 33Ny

SIUBWI3 ¢ UO $3950b pa3dsuu0d d1ydiowosiuoN

eigaBje auoaly pue seiqasie uoneRy

(Kussonun uewdey>) uasdir s2199

'$24Nn30N41s Mau Sulleasd pue Suipueisispun jo Aem [njiemod
e S| suolle|a adusjeAinbs areudoidde Aq seinionils |esiewsyiew Sulioloe

‘p9s0d e s1 (S ‘=/[) pue pauiap [jam sI > uoliejad ay |
(x14 pue) anoudsip Jo (pusixe pue) anoid

[A] > [x] saudwi [A] = [A] > [x] = [x] 3t pouiyap jjom 2 o3 pres st >
AT x 1 [4] > [x] Ag =/n uo > auyap moN
x T A pue £ 3 x)1 £ = x Aq 1) uo uoneps e suyep ‘(F ‘) 19s0b e uo4

Japio-isenb e Aq paonpul 19sod ay |

¥8 /€T 900 ‘v IsnSny

NAYAVAVAY,

195 JUSWIAJ3-E B UO Suolle|as adudjeAinby

eigaSje aualy pue seiqasie uoneRy

(Kussonun uewdeys) uasdir s2194

{n>n:[n]} =y/n s Y jo sesse;d aousjeninba jje jo 195 ay]
[n] o anze1U8s24d04 B p3jled sI n :[n] Aldwis Jo ¥[n] usiium Ajjensn
Y Jo ssejd eousjeinba ue pajjed si {xyn : x} = yn usy|

/] N pue ‘f) 19S e UO UOI1E|a4 dDUB[BAINDS Ue 3] ¥ 197

Y M=y DN i N uo uoizefps asusjeainbs ue si y
(x1y pue) anoidsip Jo (pusixa pue) anoid

UOIIB[9J DAILISUBIY DLIJDWIWAS SAIX3|J2. B SI UOIIE[2. 9oUB[eAINnba Uy

SuOI1e[3J ddUd|eAInb]

v8/02 900 ‘vz IsnSny

O%J\J/\HXZ\?% AV

SIUBWSP $ > Yam s3asod pajoauuod diydiowosiuop

isaoiae|iwas-utof a1e SUIMO||0 3Y1 JO YDIYAA

eiqaBje audaly pue seiqasie uoneRy (Kussomun uewdeys) uasdir s2199

A+ x punoq Jaddn j1ses] B 9nBY A ‘X SJUSWISE OM] Aue <=

zS Apuez>Sx&zS A+ xpue esod e st (S y) i
mMSzemS Apuem S X)MA < z= A+ x pue 1sod e s (S ‘y) I
aomepwas-uiof e si (> '+)

(x13 pue) anoidsip Jo (pusixa pue) anoid

A=A+ x< A x pue 2om1e)iwss e s (+‘y)
1 901338 1wes-usof e st (S +‘y)

dnou8iwes Jusjodwap! SAIIBINWWOD B S| 82/11€//LWSS \f

Sa0131B[1WSS-Ulof

v8 /8T 9002 ‘vz IsnSny

eiqaBje audaly| pue seiqasie uoneRy

(Kussomu uewdey?) uasdir s2199

Pa13IWo uaYo si) Jdudsiedns ay |
u Ayue sey 4 1eya seiduwi (Ux ¢ “Ix) 4 sjoquiAs Jo SulIlS SY3 UOIIUSAUOD)
seiqal|e oy ‘g ‘y asn () = *3 y1 esgaje (jessanlun) e sin
sjoquifs Jueisuod pa||ed e sjoquiAs uoiessado Ae-(
Y pue y [oquiks Jo uoneraidiajul YL 3R (v, 1 D Y PUB)+ (). nd
joquis yoes jo A1ue ayy seniS { -z 10} «— *L N L L adA1 sy
(£ wouy quiofsip) sjoquiAs uoizejas jo 19s e sl “3f e
pue sjoquiAs uoijesodo Jo 19s € Sl “f @
195 Suifjispun syisi) e
("2 (qy) L3 (n4) ‘N) = N °dn e st 2un1ons (1epio-3sily pariosiun)

S94N10N41S |BUOIIE|D) PUE SEUGIS|Y

v8 / 61 9002 ‘vT 1SNSny eiqeS|e auds|y pue seiqeSje uonePy

(Kussonun uewdey>) uasdir s2199

T = X+ X 1By} YdNS PIOUOW SAIN|OAUI UE SI dnois

U0IINJOAUI UB YLIM PIOUOW B S| pIouowW dAIINJOAUI Uy

X =X.]pue 1= _T Soysiies 3 usyl
X [[e pue T JUaWaje JWOS Joj X = T - X Salysi1es dnoiFiwas aaianjoaur ue jj

(x13 pue) anoidsip Jo (pusixa pue) anoid

X A= _(A-X) 1 sno saanquisipiaue
pue ‘x = __x :om1 pouad sey _ 1eyi yans (‘- ‘y) wioj syl jo o1

uoianjoAul ue yum dnoaSiwss e si dnossiwss aAIznjoAul uy
X-T=x=T-X1eyl yons (T‘ ‘y) wioj ay1 jo o1
Juswafe A33uspr ue yum dnoiBiwas e si prouow

uonesado anierosse ue si - 41 dnoiSiwss e (- ‘i) 1eyl |essy

UOIIN|OAUI PUE SPIOUO|A|

v8 /L1 9002 ‘vT 1SN3ny eiqeS|e auds|y pue seiqeSje uonePy

(Kussonun uewdeys) uasdir s2194

¢ = () uonnouny fidws sy1 Ajpweu uawspe suo sey {()} = 4N = ¢ PN
“nxx I = 2T pue un = 0 M am uayy {u) =)

/1 01 | WOy suodUNy |[B JO 1) 13S BY3 SI [) 21T enonued uj

121(!) 4on0 sojdny |je o 38s ayy st) P! 1onpoud 198.1p By)

| 318 404 ' D !n 1eya yons /3!(!n) sidna- ue si 12!(!n) Jeno sjdn1

“In 01 | > 1 Suiddew uonouny e s /3/(!n) 9jdni-| ue ‘J 13s e ioq

suolle[as pue suoijesado Ale-u |eiaASS aAjoAUl Ajjensn suolledlddy
(3(N)a) '(>‘N) 8o ‘uonejes Aeuiq e yam 2in1oniis [euonepal e (y)
(N“(N)d) '(+‘N) "3 ‘uonesado Aseuiq suo yum eigasie ue (+‘n)
1S94N10NJIS [EUOIIE[RI PUE SeIqaS|e JO So|dWexD [BI9ASS UDDS DABY AN

syonpoud 12a.1p pue sajdn|

v8 /2 900 ‘v IsnSny

eiqaBje audaly pue seiqasie uoneRy (Kussomun uewdeys) uasdir s2199

1 S sjeuoizes an1zsod Jo 39S aYy1 () YIM eiGaS|e uesjoog 23940U0D SS3|WOEe
ue s {NDu'‘sjeuonnesase 1> !'g>'e>o:[‘ge)n---N[lg‘le)} =4

N 195 Aians 1oy oiwoze si (N)d,

(x1y pue) anoidsip Jo (pusixa pue) anoid

X > e woje ue sl aJayl (# X A4oAs o} JI djwoze

pue ‘swole ou sey 1 Jl Ss3jWwoe SI () YIm 3d111ejiwss-uiol
0 4O S49A0D BY] a4k () YlM dD133e|Iwas-ulof e Jo swoje ay]

_ pue ‘U ‘N Jepun paso|d
Sl 1Byl () 19S B JO SIISCNS JO UOIIDB||0D AUk SI BIGaF|e ueajoog 91942U02

N 40 s1esqns [je jo esqasje uesjoog ayr st (_‘n‘U‘pn‘(n)d) = (nN)d
5195 JO Seuqa3|e uesjoog

v8 /e 9002 ‘vz IsnSny eigeSje auda)y pue seigeSje uonepy

(Kussomu uewdey?) uasdir s2199

L=1+xpueg=0-X4 L>X>0H
ao131€) papunoq e si (| *-‘0‘+ ‘y) usy ‘ao11ef e si (- ‘+ ‘y) asoddng

(x1y pue) anoidsip Jo (pusixa pue) anoid

Aauapt yam sadie|iwds e (| “‘y) ‘(0 °+ ‘v) pue aome esi (- ‘+‘y)
41 20m7€] papunog e st (1“0 '+)

plouow 1ua30dWap! SAIIBINWIWOD € SI AZ/2USP! YIIM 32171[IWSS Y

SAINQUISIP SI [eNP SI1 Jj1 SAINGUISIP SI 2D13E] B <=

(2 A) 4z %)+ (A X) = (24 4) - (2 +%) - (A+%)
H(Z+X) - (A4 x) = (2 £) + x g1 ornquisip si 22133e] v/
(x13 pue) anoidsip Jo (pusixa pue) anoid

(z-X) + (£ x) = (24 A) - x svysiIes U J1 2A1INqLISIP S| 9111€| Y

spunoq pue AJAIINGUISI

v8 / €C 9002 ‘v IsnSny eigaS|e 2uad|y pue seigadje uonepRy

(Kussonun uewdey>) uasdir s2199

‘0= _X:XPpue | = _X+ X '+ I9A0 S2INGUISIP - ‘- 19O S2INGLISIP + ‘T AMIuspl yum
aA1eINWWOD S| - () AJIUSP! YUM BAIIEINWWOD SI + Y41 eiqaS|e uesjoog e st (] ‘- ‘0‘+ V)

(x1y pue) anoidsip Jo (pusixa pue) anoid

A+ x=_(A-x)pue _A- _x= _(A+x)
sme| s,ueSiopaq pue x = __x Ajsizes seigaSje uesjoog

(x1y pue) anoidsip Jo (pusixa pue) anoid

uolejuaWa|dwod Yy3m ad133e| dAIINGUISIP B SI eigas|e uesjoog

A+ x=_(A-x)pue _A- _x= _(A+x)
smej s,ueSiopag pue X = __X Ajsizes uoizejusws|duwiod yiim sadige]

(x1y pue) anoudsip Jo (pusixa pue) anoid

0= _X-X pue | = _x+ X 1eyl yons ad133e| papunoq
s (1L0"+ y) y1 vonerusweydwos yum aomef e st (11 0+)

seuqo8|e uesjoog pue uoireruswa|dwor)

v8 /1T 9002 ‘vz IsnSny eigeSje auda)y| pue seigeSje uonepy

(Kussonun uewdeys) uasdir s2194

"90133€] € ueSe s 22133€] € Jo [enp dy |
"BSIDA 221/ PUE 22137€/IWIS-1P0W € S| 22133e[Iwds-ujof e Jo [enp By |
(x1y pue) anoidsip Jo (pusixa pue) anoid

(+-W) = p(-“+¥) pue (X4v)= (")
(Z4+v) = Lw ‘+y) jenp oyl xS A< A < x suysQg

A=A+ x & A> xaioym 9213181Wss-199W
e s (> ‘y) pue aomejiwas-ujof e si (> ‘+‘y) 41 21m1ef e st (- +‘y)
(x13 pue) anoidsip Jo (pusixa pue) anoid

X (A4 x) = x = (x- A) + x :sme| uongiosqe sy3 AJsizes
1ey3 suoijesado SAIIRINWIWIOD ‘SAIIRIDOSSE Sk - ‘+ J1 82/178] B Sl (- ‘+ ‘)

x=A-x& A> x yum adme|iwss e st (S ‘y) a0i7e)iwes-199w

S|enp pue sadijje

v8/82 900 ‘v IsnSny

eiqaBje audaly pue seiqasie uoneRy (Kussomun uewdeys) uasdir s2199

eigagie audafy e st (LN N (zN)d) = (N)1PYM ‘N 395 Aue o4
(x14 pue) snoudsip Jo (pusixe pue) anoid

X fuX = pyuX PUE {1} = ox 2iaym ,x O = .x auysp am y eigagje
suss[y{ e 03 papuedxa aq ued (N)d usy | ‘piouow e aq (1 ‘W) =W 197
(x13 pue) anoidsip Jo (pus1xa pue) anoid
AS XA<=ASXxA e
(A=A+xe A= xa19ym) ASAXxXE=LASAXx e
X= XX +HX+T e
Suuiwss jusjodwapr ue si (1404 ‘y) e
asaym (LTH°0‘+‘y) wioy sy 4o s eigasje auss)yf v

seJqasd|e auas|y

v8 /92 9002 ‘vz IsnSny eigeSje auda)y pue seigeSje uonepy

(Kussomu uewdey?) uasdir s2199

‘** ‘solojeulquiod ‘2180 9|qelieA 911uly ‘A10sy] 19S ‘seseqelep ‘UolleAlsp
‘uoizeoiyidads ‘soljuewss wes3oad ul suoiledijdde saey seuqad|e uoilejey

uolzefad asusjeainba ue si uoizejas
15984€] 8Y1 pue ‘eigaS|e uoirejal e si eigasie uoizejas 834ouod Aiang

'91240U0D S| eiqas|e uoliefas aienbs Aiang

(x14 pue) anoudsip Jo (pusixe pue) anoid

Ny sureuod pue ‘_ ‘1N

suoiesado ay3 Japun pasopd si 1ey3) 19S B UO SuOIleds AJeulq Jo 135 € S|

Daym (Nt giutN D) waog Byl Jo sI e/gad]e uoiiejel 9140U0d Y

N uo eiqasje uoizefas asenbs 3y (N o0 ‘puni(zn)d) = (n)iRY

seigaS|e uolje[al 93240U07)

v8/ L2 9002 ‘vz 1SnSny eiqeS|e auds|y pue seiqeSje uonePy

{AA xox:/A-x}=Atxaym ({T}pNn‘(W)d) = ()
sI Suniiwsas jusjodwsapi 39ssemod ay1 ‘(1 ‘py) = W plouow Aue o

(Kussonun uewdey>) uasdir s2199

Az S xiz pue z:A S zix seydwi A > x Suuiwss jusjodwspi ue uf
(x13 pue) anoidsip Jo (pusixa pue) anoid
! 10} 0I9Z B SI () PUB + ISAO S9INQUISIP ! ‘() JUSWIJD W0110q

e 'A=A+xE A= x yum soaejiwss-ulof e si Suliwass Jusjodwapl ue <
X = X 4 X JI quazodwapi s uliwas
X0=0=0Xx e

(z:x) 4+ (Aix) = (z+ A)'x e
plouow e s (T ‘y) e

(z:A) + (z:x) = z{(A + x)

plouow sAneINwwod e sl (0‘+‘y) e

1ey1 yons (10 ‘+ ‘y’) eiqaS|e ue si Sunwes y

sSuuiwas jusjodwsap

v8 /52 9002 ‘7T 1SNy ®iqaSje audajy pue seigedje uonepy

(Kussonun uewdeys) uasdir s2194

0=A- _(fix): xpue A+ x= _(A+x) ‘zx+ Aix=(z+ A)x i
eiqaS|e uoile[ol € sI pIoUOW SAIFNOAUI UE YIM papuedxd eigasie uesjoog v/

(x13 pue) anoudsip Jo (pusixa pue) anoid

(0=x-A%0=X-n)XA 4 A =n eiqagje uesjoog e uj :JulH
‘Z:X + A'x = (z + A):x pue uonnjorur ue st ‘K- _x=_(A-x)
o X=_ X' A+ x=_(A+x)oousy 0= A-xS0=4A- X

'9'1 '‘pajesnfuod-yjes si _ pue x = __x eiqasje uoizeas e uf

(x13 pue) anoidsip Jo (pusixa pue) anoid
(3 wy s,ueSiojp3Q 40) sedus|eAinbs 19poIYDS SY1 SeIeIS Bul| Ise| Sy |
0=x-(A2) & 0=A4A-(22x) & 0=2z-(Ax) e

plouow e sl (T ‘y) e
eiga|e uesjoog e sl (_‘| “‘0‘+‘y) e

¢

1“0+ ‘y) wioy ay1 Jo si eigaSje uoizeas (10e415qe) Uy
selqaS|e uolepy

v8/2€ 9002 ‘7T ISnBny

eiqaBje audaly pue seiqasie uoneRy (Kussomun uewdeys) uasdir s2199

(07 = 0s <= Y3 = Ys pue *** pue I3 = Ts) uoneoidwi ue si voizenbaisenb y

1 = s usnILM Ajjensn ‘(1 ‘s) swisl-L jo Jied e s uoizenba-L y

Cﬂvhnh B) :.NT.LE 104 A:.N,...quk ”TGT.LEV._.&
yum (“£34(,4)(x)*L) = L = (X)*L st X 42n0 eiqasje wua1 3y |

L(T)yuspn S gpue 39Ty e
pue ;| S X e

1eyr yns (x)4L =41
195 1S9||BWS BY] SI X WO S9|GELIEA YIIM SWI9]-L JO 195 Yl ‘X 135 B USAIS)

seiqa3|e asay) ||e Suliedwod pue 3ulApnis Joj yJomawels e si N

Se|NWL.IO} pue SWud |

v8 / 0g 9002 ‘vz IsnSny eigeSje auda)y pue seigeSje uonepy

(Kussomu uewdey?) uasdir s2199

_q:,(d'q) Aq passeidxe s d op g eTTyM
b:_q +d'q Aq passaudxa s1 b esTe d ueyl g IT 3onJisuod weiSoid sy

g uo Ajuo pauyap uonesado |eiued _ ylm S2INIdNJIS PILIOS-aUO
a4e A3y3 249y Inq ‘seuqaS|e Palios-0m] Se S|y sauyap [966T uazoy]

eiqaSje uesjoog e si (_‘1°‘0‘+‘g) ‘LyY eyl

(x13 pue) anoidsip Jo (pusixa pue) anoid

IT=_X+X ‘0= _XX ‘X=Xxx ‘g371‘0 ‘_X Aix A+x<=g>Ax
pue (i S) uonejas Aieun e si g ‘eiqag|e susspy e sl (LT 0+ ‘y) auaym
(g° " T7°0 + V) wuoy aya jo st (1LyY) S1597 yam eiqase auds)y|
uorjesoH

papJen3 pue a2loyd papJend pasu swesSoid [9pow 01 INq ‘UoileIR!
puE 9210YD J11SIUIWIS19PUOU ‘UOIIEUSIBIUOD [9POW SEIGaS|e dUdd|Y

S1591 Y1M seiqaS|e auas|y|

v8 /1€ 900z ‘¢z IsnSny eigoSje auda)y| pue seigeSje uonepy

(Kussonun uewdey>) uasdir s2199

susoddo aue Jojesado a8uei(aid) yum sSuiiwss jusiodwsapy
MU (~4'd) = (4)9 Aq 3qeulyp st soresado utewop ay3 (N)RY ul
(A:x)9 = ((A)9:x)¢ ppe urewop yum sSuiiiwss jusjoduwapl 104
()9 > (£(x)9)e pue xi(x)¢ > x
's1591 yum Suniiwes justodwapt ue si ([7]e ¢ _‘T 0+ ‘v) aaym
(0 _‘1°:°0“+ ‘y) wuoy 2y jo si urewopaid yim Suuiweas jusrodwapl uy

[900¢ yanuas Jsjjopy sieuseyssq] Jojessdo ulewop e ppe :sAIsssidxa SO

(4 vwo 3snl) 3597 yaim sSuLIwas Jusjodwap] duysp Os|e ued)
(N1)d 30 eigaS|eqns e ale 51591 9y ()PYM Y]

{1°0} = g yum Ly e sl eigaS|e suss|y| Aang

98ueJ pue urewop ypm s3uniwas jusjodwap|

v8 / 62 9002 ‘vz IsnSny eigeSje auda)y| pue seigeSje uonepy
***‘swyo3|e Jo sishjeue ‘swesBoid Jo 2130 pue dipuewss ‘Suiydlew

useired ‘Suisied ‘Aiosy3 ejewoine ul suonedijdde aney seiqaS|e sussy

(Kussonun uewdeys) uasdir s2194

*A*X\Q*X = *A\A + Xv pue *AX\CX = X*A\O«v

A= A.x <=z = Ax

(e21s0ddo s11 pue) ASzXE<ELAS 24 A

X = Xxadeym (X +T=,X pue X=X X X = XX

AS XE=AS5X

(xux = X T =X aioym) O < U j[e Joj X > X eigaSje susafy] e uf
(x1y pue) anoidsip Jo (pusixa pue) anoid

3jnsas a11soddo sy jo jooud e 01 paliaAu0D 9q ued 3|nsaJ e jo jooud Aue
0s ‘seiqad|e aua3|y| aulyep ulede seiqad|e suss|y Jo swolxe ansoddo ay |

‘uoissaidxe ay31 Buisianas Aq uaAIS a1/s0ddo ue sey uolssaudxs ausd|y W
Ax se Adwis Aix a3um am Ajjeuoinipe. |

panuijuod seiqaS|e ausa|y

8/ 9¢ 9002 ‘7T ISnBny

eiqaBje audaly pue seiqasie uoneRy (Kussomun uewdeys) uasdir s2199

1 Y =2d Pue Y =S ‘Y = YH 4 A1o1en e st oy
(GE6T Hoysig) waiosy |

eiqa3|e [essanlun Jo SuiuuiSaq 9y} SHJEW UOI1eZIISId.IEYD IXAU BY |

1 XD NHPUe XS Nd ‘X D NS uayr A1auensenb e sty 4
(x1y pue) snoidsip Jo (pus1xe pue) anoid

suolenbaisenb Jo & 195 awos 4o} (&))POIA W0y dy1 Jo s A1oLeaisendb y
suoiienbs Jo J 195 SWos Joj (F)POJN WO} SY1 JO I A191EA Y

Y Jo siaquiaw Jo s1onpoud 10a11p JO SSed 9yl i yd

7Y JO SiaquisW JO S2IN1NIISNS JO SSe|d dY3 SI YS

Y J0 sisquiaw jo saBewn diydiowowoy Jo ssepd ay3 st yH

dSH pue sailsle)n

v8/¥E 9002 ‘vz Isnny

eiqaBje audaly| pue seiqasie uoneRy (Kussomu uewdey?) uasdir s2199

N30 e oy iy S (Mt I IA S g S (4t)
pue 13/((sn -+t gy = (o))

AP =n p A seampnas jo onpoud aup syt AP [=n e
‘A 01 N wouy wsiydiowowoy

aA1123(1q B SISIX® 343yl JI ‘A = () S|OqIAS Ul ‘A O3 drydiowos) st | e
‘A« N Y wsiydiowowoy

3A1103[Uns e s1SIXe 24yl JI M) 4o aFewr diydiowowoy e s N e
N3¢t e oy zo 3 ((Un)y i (In)y) < q D (U0 tIn)
pue ((“m)y (Mg) a4 = (Ut) g)y

‘A O} /) WO} uoIdUNY B SI Y JI Wsiydiowowoy e st A< N1y e

n>4Yc<-‘In I8 40} 4N Uz = ¥ pue
(Un <) g = (U0 In) g A S) 4N JO 24n3onaIsqns e st e

431 ‘4o 190 98uel 3 ‘4 19] pue L adA jo seunpniis aq (1 3 1) 'ACACN 19T

s1onpoud pue swsiydiowowoy ‘saanoniisqng

8/ G€ 9002 ‘pT 33Ny

eigaBje auoaly pue seiqasie uoneRy (Kussonun uewdey>) uasdir s2199

(4spao-3s11y Ajuo j0u) ssipisdoid paunsp AjjeaiSo) e snssaid swisiydiowos|

swsiydiowowoy aie sdew uoridsfoid sy 3onpoud 100.41p Aue io4

(x1y pue) anoidsip Jo (pusixa pue) anoid
In = (n)!x aseym !p « !\ TP ¢ fu sdew uoidafosd sey 3onpoud 100u1p

S24N1DONJ1S [BIALIJUOU JO
1onpoud 10a4ip e 03 d1ydiowos! si 1 i 9/gesodwiodsp Aj10a.1p S 2AN3PNIIS Y

JBIAII] P3]|BD SI JUSWS[SUO Y1IM 34N1DN43S
s94n30n.3s 49331q asodwodap Jo pjing 01 pasn aJe syonpoid 12241

24n30n.J3s ulewop ay3 jo Ajue|ngai |eqo|8
aumded se8ew Jisy3 pue ‘sdew Juinissaid 2an1on.3s sJe swsiydiowowo

L uollewojul [ed0|, dAIS !suoijesado || Jopun paso|d aJe $eiNdNIISqng

v8 /€€ 9002 ‘vz IsnSny

eigaSje aualy pue seiqasie uoneRy (Kussonun uewdeys) uasdir s2194

Y 40 A102y3 wioH [esiaAlun 10143 dY1 pajjed osje st (7y)Pyl

Y j0 Ai0ay3 jeuoizenbaisenb = {suonenbaisenb-1} U (7y)yL = (2y)PuL
Y jo Aioay1 jeuoizenbs = {suonenba-1} U (y)yl = (2¥)°uL

Y 4o Aioayz sopio 351y = {p 5 ¥ : 9} = (N)uL

4 Jo spppow |je yo ssep = {4 = N : N} = (4)PON
42¢pueysnieopd =y 4=y aum

SE|NWLIO-L JO 13S B 4 ‘S2UNJONJIS-L 4O SSE|D € s 7y noysnoay |

(ugop paepuels) n 2un1oNIIs-L Ul SPlOY @ enULIo)-L Ji ¢ =| () AU
PXE|PXAlP < B¢ <= P|d—|p100|ppueg| wiy dlwore =:: ¢ ejnuuioj-L
431 D Y Joy (Ux ¢ fIx)y Jo uonrenbas-L e SI ejnwIoj diwole uy

S1I03Y3 PUE S|SPOIA|

10

eiqaBje audaly pue seiqasie uoneRy (Kussomun uewdeys) uasdir s2199

v8/0v 900 ‘v IsnSny

s < [P @ @it o=
dew ay3 ein (g/y)uo) o1 aiydiowos si (y)uo) jo {p > g : ¢t} =gl
195qns ay1 ‘(Y)uoD) D g 404 wai0dy] wsiydiowos! puodss ay |

wsyydiowosy pauyap jam e st (x)y = ([x]) 4
Aq uani8 [y « y o/ : 4 ‘weioayy wsiydiowos: 3sily oy |

g Jo [v]y eiqaSjeqns e jo 19s Suihjispun ayz si [y

(v)uod > y 19y usyz wsiydiowowoy e si g — \ : 4 Jf

(x13 pue) anoidsip Jo (pusixa pue) anoid
(154 @ousjeainbs ue) {(A)4 = (x)4: ¥ 3 (AX)} = 449 st 4 Jo jauiay 3y

{v 2 x:(x)4} = [v]s st 4 Joaews ays g « v : § uonduny e io4

swia40ay3 wsiydiowos! pue sjpuisy ‘saSew|

eiqaBje audaly| pue seiqasie uoneRy (Kussomu uewdey?) uasdir s2199

v8/8€ 9002 ‘vz Isnny

90171€] 919|dwod e s1 5 Aq patspio Ajjeiried +y
N D X Jje 404 s1sixa x | [y s18(dwod s1 = uspuo [erried yum n
(x13 pue) anoidsip Jo (pus1xa pue) anoid

¢]] = L doire pue (7 = wonoq e sey son1e| 919/dwod y
Ax]] = A - x oon1e| 919|dwod e si 221138 [1IWas-Ulof 919|dWod Alans <

N D X I|e 40} s1sixe x < 41 879/dwod si Jspio |eilied e yum M) 2n10n43s

{x >n:n}{ = x]] usyz 19s0d e jo 195qns Aians Joy sisixo x "< j|
(x14 pue) snoudsip Jo (pusixe pue) anoid

‘Ajjlenp paunap a1e x [[punoq semoj 15018245 sy pue x > n

(X 40 punoq uaddn 3sesj syrst x {os)n>z<<n> x) x L = zauysp
pue X S x [|BJojn > X Jin> X 91um) 19sod e Jo x 19sqns e uo4

so0111€| 919|dwo))

eigaBje auoaly pue seiqasie uoneRy (Kussonun uewdey>) uasdir s2199

¥8 /66 900T ‘v IsnSny

9/ ¥ 01uo \y wouy wsiydiowowoy sri32alins e si 0[x] = (x)by
Aq usniF /v «— v : by pue pauyap [am die . 4 suonessdo sy |

(x1y pue) anoidsip Jo (pusixa pue) anoid

(5) g = (1 900) s

asym (“£34(,/y4) 0/V) = 0/¥ S\ exgasje uanonb ay1 ‘(y)uod > ¢ 4o

2 do1 pue Vj woyioq ‘| J = [yum 221138 819/dwod e si (y)uo)
(x14 pue) anoudsip 1o (pusixe pue) anoid
W Uo s9ouaniSuod |[e Jo 195 ay3 s ()uod)

(U ;\Qfﬂi:{ e ;xvf« < UgUx pue " pue TAlx

u4 > 4 ||e Jo} 3°1 'y Jo suonesado syl yum a|qiredwod
Sl JeY} |/ UO g UOI1e[a4 dOUdjeAINDS ue S|y eiqaS|e ue uo sousni§uod

seiqad|e juannonb pue ssdusnifuor)

eigaSje aualy pue seiqasie uoneRy (Kussonun uewdeys) uasdir s2194

v8 /1€ 900 ‘v IsnSny

i S24n32n.3s Jo 7y Ssed Aue 1oj YdSH = YA

(9v6T psiel) waioay |

__ Y ssef Aue 10f dS = NSd PUE YdH = YHd ‘NSH = JYHS

(x1y pue) anoudsip Jo (pusixe pue) anoid

{7y ureluod 1eyy senauen |je}lJ = YA si oy Aq paresouss A1anen sy

s24n3on.3s-L [eiAl1 jo +Q sse ay1 = ({A = x})poyy = v U
SUO13995493U] A1B43IGIE J9PUN PISOlD SI *\/ 2oUBL

(4 P'N)pon = (‘4)pon 2! seinusioy-1 jo !4 s30s 404

(x13 pue) anoidsip Jo (pusixa pue) anoid

sol19lIeA-L || Jo 195 = {suoienbs-L jo 19s e sl 3 : (F)popN} = v

sasse|d> Aq pa1esausl sallsliep

11

v8 /vy 900 ‘v IsnSny

eiqaBje audaly pue seiqasie uoneRy (Kussomun uewdeys) uasdir s2199

Jewixew si 4a3)y swiid iadoid Aisans 83113e] 9A1INGLISIP € Uf
swud si a1y jewixew Aians a2133ejwas-uiof e uj
901318 D1EAgaSE UE SI) 1950d e uo sialyl j1e jo (N)|14 195 By |

(x1y pue) snoidsip Jo (puaixe pue) anoid

XD A10 X DX< X DA+ x pownd st oniejiwss-uiofl e ul x 491 v
19113 49doud (uoisnjoul 01 109dsal Y1im) [EWIXEW € SI J2Y/1el1n uy
19s0d ajoym ay3 Jou si 11 Ji sadosd si 4931y JO |BIPI UY

A|lenp paulyap a.e Jaji) pue paidalip-umop ‘19sdn ‘x| ‘x| 4o/l jedidund
195umop pa3daiip-dn ue si X Ji jeapl ue sl X
(n>Apuen=x)x3ng< x> AXyparasp-dn si x

XT=x paesumop st x x] X = xTouyep n 5 x 404

{x> A: A} =x1 s > x joespl jedipund ay1 (> ‘) 19sod e o4
S|eap! pue si9}|l4

v8/2v 9002 ‘vz Isnny

eiqaBje audaly| pue seiqasie uoneRy (Kussomu uewdey?) uasdir s2199

Juswsale woizoquou 1ssjjews e sey (\f)uod) i
9/qionpail 19aw Aje19)dwod si (y)uod) > Y i 8jqionpaiil Aj1241pqns si

(x13 pue) snoidsip Jo (puaixa pue) anoid

wsiydiowos! ue si y o ‘1 Jey3 yons ; >/ ue

IP1] += v 1 y 12211pqns Aue Joy y1 3/qionpail Aj19241pqns st

st ajsyl ‘g

V) = !9 7' 41 Buippaquio 302.1ipqns e si y usy |

121(*%e]) = (e)y 49 'g/w ">'1 — v : y suyeq@

(x13 pue) anoidsip Jo (pusixe pue) anoid

1q P! « v : y Paupans e s assys 41 12/(!g) jo 10npoud 10011pqns e sy
131 11e 04 ‘g = [[¥]ly]*x y1 0221pqns st 'g '>'[] — v : y Suippaquis uy
wsiydiowowoy aA13ds(ul ue si Fuippaquia uy

sa|qonpalil Aj12a41pgns pue sonpoud 392.1pgng

v8/€v 900T ‘v IsnSny

eigaBje auoaly pue seiqasie uoneRy (Kussonun uewdey>) uasdir s2199

A fvuen Aue oy (1S4)dS = A <

7Y Jo sajqionpaii Aj32841pqns jo ssed aya si 1Sy

i sadew 8)qionpaiil A132941pqns s31 jo 3onpo.d 12.41pqns e si eiqag|e Aiang
(Pv6T ouptig) waiosy |

s320|q Sulp|ing aJe s3|qIaNPa.ll A|19241pgns 1Y} SMOYS 3NSaJ 1XaU dY |

i $3/qIonpalll 199w Aj39/dwiod Jo s1eaw aJe siaquidw [je do113e| dieiqasie ue uf
(x1y pue) anoidsip Jo (pusixa pue) anoid
SIUBWISD [ewIxew sey j|asyl 39sod syl usyy ‘punoq Jaddn ue

sey 19s0d e Jo 19s0dqns paiapio Alesul] A1aAs JI 1BY] S91IS BLUWST S, UI07

suoileluasaIdal 1024Ipgns pue S9|qIdNPaLIl 13

v8/1Iv 900 ‘v IsnSny

eigaSje aualy pue seiqasie uoneRy (Kussonun uewdeys) uasdir s2194

(pores2us3 Ajpaiuy = 1pedwod uiy) 9o133€) dleiqagie ue si (\)uod
(x14 pue) anoudsip Jo (pusixe pue) anoid
sjuswa|d 10edwod jo sulol aue usws|o ||e Ji dresgasie si ao111e| 919|dwod v

X D Ux‘ I awos Joy UX 4 -+ Ix S n <= x XS n oy oedwod sin

swud urof (Ajp19)dwod) = ayqianpa.ir uof (Ajp19)dwiod) <« Auannguisiq
X 2 n < x X = n i 8iqionpaiii uiof Aja1sjdwoo si n ‘saoizzef 939/dwod uf
(x14 pue) anoudsip Jo (pusixe pue) anoid

Ajjenp uani8 sue swd 199w (Aj918/dwod) pue sjqionpaiil 193w (A919)dwio)
X DXxdwos oy x> n < x> n powud uiof Ajpisidwos sin

n > jusws|e 1591e213 (anbiun) e si a1ey3 1 8/qionpa.ir uiol Ajp1sjdwod si n
A>Sniox>n < A+x>n pouwnd uof sin

{A‘x}5n < A+ x=n yosqonpaii uof s n ‘sd131e|iwas-uiof e u|

12

v8/8v 900 ‘v IsnSny

eiqaBje audaly pue seiqasie uoneRy (Kussomun uewdeys) uasdir s2199

(2 wuey paxiy e Joy) seuqagje
JOJeUIWILIDSIP JO SSe|D B Aq pa1etausl si A JI A1o1/eA J0Jeullidsip e si A

i oydwis si eiqaSje jojeulwidsip ajqionpaldl Aj30a41pqns Auy

(x13 pue) anoidsip Jo (pusixe pue) anoid

z=(z‘x‘x)1puex = (z'A'x) 1< A#£x-y
7 wud} AJBUID] BWOS JOY I BIGIS|E JOILUILIDSIP B SI Y

i 8/qionpa.li A|3241pqns si eigagje sjdwis Auy
(x13 pue) anoidsip Jo (pus1xa pue) anoid

3|qissod se s3ousnI3u0d M3y se sey ‘o'l {7 ‘V/} = (w)uo) i ojdwis st g

JojeulwLdsip a2yl pue seiqagje sjdwig

v8/9v 9002 ‘vz IsnSny

eiqaBje audaly| pue seiqasie uoneRy (Kussomu uewdey?) uasdir s2199

sa13a11eAqnS Auew Appaiuly Ajuo sey A1siien g paiessusd Appuuly v/
(x13 pue) anoidsip Jo (pusixa pue) anoid

seiqaS|e 911Ul JO SSe|D dUl SWOS o) YA = A JI paresouasd Ajpaiuly si A

AN # YA U2y D ! A pue diydiowosiuou d3iuy aie 1S4 > gV 4|
NSH S 1S4 Uayr @D s N\ pue seiqasle aquy Jo ssep aquy e st Y J

(x13 pue) anoidsip Jo (pusixa pue) anoid

N"dSH D 54 uays aAnnquasip 9ousni3uod st Y\ = A J

(296T uossuor) waioay |

@D st 7y ut eigaSje A1aAs i (7)) SI sedqas|e Jo 7y ssep v

901318 SANquUIsIp e st (y)uo) i (gD) Arngrisip aausnisuod sty
WI9J03Y | S,UOSSUQ[pue ALAIINGLIISIP 92usnI3uo?)

v8/ 1y 900 ‘v IsnSny

eigaBje auoaly pue seiqasie uoneRy (Kussonun uewdey>) uasdir s2199

(1sA) L o2ur Ay jo Suippaquia
221318/ e sI 1S« A dew ay3 pue aaianqLasIp s1 A\ usyr) SI A 4|

T ‘D) sessepd Aue uoy T"dSH N Y"dSH = (7 N Y)"dSH

A 4910 s|qezijewolxe Ajo11uly aJe 1ey ssi11slen
= sjuswafs 10edwod yum a2i31e| dieiqasje ue si Ay ‘A A1o1en Aue io4

(x14 pue) anoudsip 1o (pusixe pue) anoid

(AP M)A = 1 X st uiof sy pue | st 390w ay |
Ay Aq pa10usp s S91191IBAQNS JO 921118| 3yl A AI3LIeA B Jo4

a s!
s1onpaJ a2133e| Yim seiqasie jo A1aLien Aue os ‘gD SI Saoi11e| Jo A1aLien ay |

(,w)u0D jo 92133€/gNS € si (\)uoD) usyz \ Jo 1onpai e si i J
(x14 pue) anoudsip Jo (pusixe pue) anoid

Au&wkiv ‘V) = N S| ¥ BIgaBje-L B JO 10Npai-°f Syl Usyl L D Oy 4|
S9I19IeAQNS JO Sad131eT

v8 /Gy 900 ‘vg IsnSny

eigaSje aualy pue seiqasie uoneRy (Kussonun uewdeys) uasdir s2194

Y = 2Y"d Usy3 sain3oniis-L a3iuly Jo SSejd d3iuly e si 7y Jjf

sonpoudesyn
Jspun pasojd si oy Jo juaws|dwiod ay3 usyl sjqezijewoixe AUl si 7y J|

@ eynwioy 4apio 3suly Aue 1oj ¢ = y"d usyzr ¢ = y Jy

(x1y pue) anoidsip Jo (pusixa pue) anoid

¢ einwuoy 9|8uls e Joy (¢)poN = 7y §I 8jqezizeworxe Ajpaiuly sty

7Y Jo siaquisw jo s3onpoudesijn jo ssepd ayl st y"q

10npoadesyn ue pajjed si £g/M usyl JoyeIN Ue sl £ 4|

!n*11 Aq parousp ‘1onpoud pasnpa e pajjes st £9/n

L3{h =131} & ALgxemn!n'>[] = n uo sousniBuod e ssuyep £

(5(1)d) w sy e st £ 41 | 195 € 4210 423 € S| £
syonpoudesy|n

13

v8 /28 9002 ‘7T ISnBny

eiqaBje audaly pue seiqasie uoneRy (Kussomun uewdeys) uasdir s2199

9|qezilewolxe Ajp1ul 10U SI Yy <

s1onpoides3|n Jspun pasod 10U SI 7Yy Jo Juswa|dwod syl os ‘s|qelussaidal
sl Yy s|qejussaidaiuou jo aousnbas Suipuodsaliod ay3 jo 1onpoidesin ay |

siopio Auew Ap1uiyul
1o} 1s1xe 10U op saue|d aadsfoud [pHET 495Ky pue yonig] jo 1ynsai e Ag

u J9pJo jo aue|d anidafoid e sisixe aiayl
431 9|qejussaidal si Yy eyl Auedoid syl pue swole u yum Yy seiqadie
uolle[aJ d1uly Jo duanbas e i a4y | :Al|IqeZIIEWOIXE 91IUIJUOU JO BUIIINO

sojqeLien Auew Appaiuy yum pazijewolxe aq Jouued Y [166T uossuor]
ajqeziewolxe Ajuy 30U sI WY [696T HUON]
(vyY 3 "91) seiqaSje uoiejai sjqerussaidsiuou 1sixe 9oy | [0GHT UopukT]

wJody |

eiqaBje audaly| pue seiqasie uoneRy (Kussomu uewdey?) uasdir s2199

v8/0S 9002 ‘vz IsnSny

wuey Jojeulwdsip Aieun e si | ix | g

Suswafa [eapl Ajuo ayi aie | ‘0 4

a/qesodwodsp Aj30a41p 10U SI 31 441

9/q1anpa.ll Aj312241pqns si 31 Jyi ojdwis si eiqaSje uoiiefal v

_ey X ey 01 Y wouf
wsiydiowos ue si (_e-x ‘e-x) = (x)y dew ay1 e juswsys |eapi Aue o4

ele = _e = e Jj eigasje uoijejal e si ey

(x13 pue) anoidsip Jo (pusixa pue) anoid
1 'e!] =€ I JusWaje [E3p! UE S| BJGaS|E UOIR[3] B Ul € JUSWIP Uy

e X = . X pue ‘e(Ax) = A€!x ‘e-_X = ._X 3I9YyM i/ S & YyUM |/ eigade

¢

uoniefau jo eigageqns aaineal oyl oq (e ‘BT €¢ . ‘B0 ‘+‘e]) = ey 197

A31a11BA JOJRUILILIDSIP B 9B SEBIqa3|e uolle|ay

v8/ 18 9002 ‘pT 33Ny

eigaBje auoaly pue seiqasie uoneRy (Kussonun uewdey>) uasdir s2199

fsuen e st vy [§66T Pisiel] <

wa4039Y] uoieIUSaIdal 1241pqns s, jyjoxiig AG WYY = YdS = YN\ <
weu0ay | s,uossuor Aq Y S IS(yA) <

[Buippaquis pauyap jjam € si y moys pue 12> {!Aly'x 1 | 3 1} < [Al([Dy[x] 49 (A)eYd — v iy
auyap '!x "[] = A 19 ‘| 4210 py s23yye3yn dwios Joy (‘x)12Y [= W 41 05 "dS S S"d IUIH]

"d pue S ‘H 4apun pasopd si {195 € s1 X 1 (X)IPU}S = ¥ SseP YL

e.qasS|e uoijejal 91942U02 e Ul 9|qeppaquid SI 3 I \fYY Ul SI eigasie uy

(x13 pue) anoudsip Jo (pusixa pue) anoid

{19s e s1 x:(X)194}dS S! sesqasje uoizejai sjgeruasaidal Jo 7Yy SSepd ay |

seugeS|e uonea. a|qelussaiday

eigaSje aualy pue seiqasie uoneRy (Kussonun uewdeys) uasdir s2194

¥8/6v 900T ‘vg IsnSny

(1 =,¢) < ¢ 19npas uesjoog yum eiqgas|e JojeujwdsIp e uf
(x14 pue) anoudsip Jo (pusixe pue) snoid

((ODP = (@) @ =s(pued) (Ls+4)-(s+ 1) =,(s =)

Aq A|pA13dNpul ¢ WS} B SUYSP SM ¢ B|NWLIO) 3344 Jalj13uenb e o4

wJa] J0JeujuIISIp
Aeun e si | x| = (X)p wusl ay1 eiqgas|e uoiiejal 91942U0d e uf

[L(A-Xx+4 X)p-z24+(_A-x+A- _X)p-x=(2A'x)3 pue _(| ‘x‘0)2 = (X)p 39/ 3uIH]
wJa] Jojeundsip Aleun e sey 3 ji
eigoS|e J01eulWwLIdSIP € SI 1oNpal uesjoog e yum eigasie uy/

(x1y pue) anoidsip Jo (pusixa pue) anoid

1 = (x)p <0 # x pue g = (0)p 1eY1 yons 1oNpai
ues|oog e yUMm y eigeS|e Ue Ul p W] B SI wid] Jojeunudsip Aieun v

10NpaJ Uesj00g YIIM SeqaS|e ul Jojeulwndsip Aleupn

14

8/ 95 9002 ‘7T ISnBny

eiqaBje audaly pue seiqasie uoneRy (Kussomun uewdeys) uasdir s2199

seqoSje uoijejas uesjoog jo (| = 1)po|N = Ty" A1dLieA syl sa1esauas 1
X=_X'A-x=AX"'] =T yum ‘yy wawspp-omi ayi st (1)py

(1L = 0)PON = () £191BA By S31BISUSS !y JUsWS[e-suo 3y S (()[PY
2N10MJ3S WOIE dY3 YHM SHJOM Aj|ensn auo seiqad|e uollejos aHuly Jo-

Syy |eiS91ul 911Ul UO SUOP U] SeY 3jJom Isow os ‘seiqaS|e [eiSajul
J0 ,1onpoud 102.1pIwas, B 01Ul pasodwiodap aq U0 UBD Syyy [e4Sa1uluop

eiqa8|e uollejas |eiSa1uluou a|dwis 1S9||ewWS Y1 SI pue swole § sey (g)Py

1 = 1'X <= # X {fJo woie ue s/ Ty [eia1ul S\ eigaSje uoiefel v
(x13 pue) anoidsip Jo (pusixa pue) anoid

0=A100=Xx < (=AXxyjeiFojul sI eIqaS|e uoileps

seiqad|e uollejal a)uly pue |ei3aju|

v8 /%S 9002 ‘vz Isnny

eiqaBje audaly| pue seiqasie uoneRy (Kussomu uewdey?) uasdir s2199

dnoi3 e sy jy1 eiqasje uoiepi e st (y)w)

(x14 pue) anoudsip Jo (pusixe pue) anoid

{o} =g pue {z=Aox:(zAx)} = | aieym
(3¢ -1 ‘) 2an1onu3s e se pamaln aq ued (a¢ ‘o ‘y) = y eigagie uy

(L 2>MmA‘h)pue | 5 (A‘MmX))ME < | > (A‘n‘z) pue | > (zAX)
pue ‘| 3 (x‘ A2) & | (L2 x)& | 3(24)

‘1 9 (f‘z2'x) 3 3 zE & A = x Jy1 eigaFje uoneai e st (N)wD)

(x13 pue) anoidsip Jo (pusixa pue) anoid

F=1 pue {x3x: x}=_Xx

YA DA xdx0vwosiop | 5 (zAX):z} = A'X

aseym (T _‘nu‘p‘n‘(n)a) st (n)wD esqase xajdwoos sy |
N>3 ‘NeNi~ ‘gNDLywmaunpniaseaq (3.1 N)=n w0
seiga3|e xa|dwo?)

8/ 6§ 9002 ‘pT 33Ny

eigaBje auoaly pue seiqasie uoneRy (Kussonun uewdey>) uasdir s2199

Vv = ((v)r)wD usyz onwoze pue a19/dwiod si v 4
eiqgasje uoizejas e st (n)wd)
JJ! eigaS|e uoigejas diwole awos Jo ainganiis wore ayr st (34 . ‘n) =n

(x13 pue) anoidsip Jo (pusixa pue) anoid

1TU(v)r =3 pue {z < Aix:(y)r o (2°Ax)} = 1 a1sym
(3L ~(W)r) s! v eigeS|e uonejal dIWOIE UB JO 21101415 WOIe Sy |

((W)r)d o2 o1ydiowosi si eigasdje uesjoog dlwoie pue 939dwod Aiong

XTU(W)r < x e ((W)r)d ul ajqeppaqus si yg dlwore Aiang
V Jo swoje jo 33s ay1 si (y)[eiqaSje uesjoog e uf

(x13 pue) anoudsip Jo (pusixa pue) anoid
V 4O suawaja 2|qnpal uiof Aj919|dwod 4o 1s ay3 saouap ()1

S24N30NJ3S WOy

v8 /€S 9007 ‘v IsnSny

eigaSje aualy pue seiqasie uoneRy (Kussonun uewdeys) uasdir s2194

seiqasje uoieas aqiuly 1oj djqepidapun si Aljiqelusasaiday
(T00Z uosUBPOH YasiIH) waioay |

[€66T] wesSoud qyo e se pajusws|dwi osje A1ljiqelussaidal
JOJ SUOITIPUOD 1UBIDIYNS SBAIS USJO POYISW UOISUSIX® ulod-Buo S JaWo?)

[£66T ussdif] weiSoud dyo) e se parusws|dw)
B Uyy ui s eagag|e
aHuy e 1 3jqepap st 1 pue vy T = vy C Svy C vy = vy

18y 4Yons Yy SaIIdLIeA Jo duanbas e saulyep Xnppejy|

V¥ 10} UOI1EZITBWOIXE SAISINDAI B SIAIT UOPUAT

a/qejuasaidal

Jou SI BAgaS|e uoije[al d1iuly USAIS e jI SIjey 1eyl wyilog|e ue si aay |
(€86T XNppPeN ‘0G6T UOpuAT) wiaioay |

9|qejuasaidal s eagaB|e uoileja. ULy e J1 Sudsy)

15

8/ 09 9002 ‘7T ISnBny

eiqaBje audaly pue seiqasie uoneRy (Kussomun uewdeys) uasdir s2199

$921118| 9AIINQLIASIP pajusws|dwod = sesgasfje uesjoog = ygq

z-X + A-x = (z + A)-x yum seon1e| = seo/1e] 2AIINGLISIP = 187

0= _X:-X pue | = _X+ X yum L0je = saoi1ze) pajuswsjdwiod = _3e7
1 = |-X pue X = (+ X YlIM S921118| = sa2/37e] papunoq = L0jeq

X = 0+ x Ay2uapr yum saoizrefiwes-uiof = 0eqgr

T = X- X YUMm splouow aAln|oAul = sdnos§ = digy

(A:X) X = _X Yy1m Splouow = spiouow aAIINJoAUI = _UOIN|
X1 =X=T-x Ayuap! yum sdnoiBiwas = spiouow = Uo
sme| uo11dJosqe Yiim S9111.[IWSS OM) = $92/778) = 1e7]
A=A+ xE& A X yum saie|iwes = saoip1ejiwas-uiol = 1e|g
SPpUBQ SAI1RINWWOD = $92/71E[/W3S = 1B|§

sdnoiBiwes (x = x + x) jusrodwspl = spueq = pug

spiodnou8 saijeidosse = sdnoiSiwes = di3g

s19sonb oulswwAs = suorzejas aousjeainbs = ninbg

x- A=

s19s0nb duPWWASIIUE = S795 paJoplo Ajjeizied = 19s0d
UOI1B[2] DAIISUBI] PUB DAIXI|J2] B YLM S19S = 5195 pasaploisenb = 19s0)

S24N1DN43S JO SISSe|d dIseq Jo Alewwng

v8/85 9002 ‘vz IsnSny

eiqaBje audaly| pue seiqasie uoneRy (Kussomu uewdey?) uasdir s2199

{9°¢}epurBS = ¥4
(EZ)wd =23 {6897 ‘lezurdS =12 {€}oyuy3S=*%a
{0 <414} 085 =120 {291 sun35=2a {¥‘Thoyur3S =124
{r'e1hiuy8s=1 v 1hepurds=9%a {t}uy8s =14
9|qejussaidas sousy ‘seugal|e uoinejas dnoid jo seugs3jeqns
pa1elauas-T || ‘sjuswsfe g Yum seiqaS|e uollejas [eiSaqul 0T 24e a4y
x Aq pa1esaual eiqaB|eqns ays st (x)8S 'y 3 X pue y eigasje ue Jog

VHY Jo A1sLeAqns e sl YD <

{x2x‘n>n:(xon‘n)} =(x)y Ag uaniS ‘uorrerussaidai

s, Aajfe) ein (n)PY ul pappaqus si (N)wD) usyz dnois e si) J|
(x14 pue) snoudsip Jo (pusixe pue) anoid

seiqad|e uonejas dnoig |je Aq paresaual AlolieA sy sl Yo
eiqagje uoizejal dnoi3 e pajjed st dnog e jo eigadje xa|dwod y

g 9zIs Jo syy [eiSa3ul pue syy dnoug

8/ 65 9002 ‘pT 33Ny

eigaBje auoaly pue seiqasie uoneRy (Kussonun uewdey>) uasdir s2199

9|qejuasaidas dnou3 aq 03 umouy| Jou Ing 3|qerussaidal
9Je Jey] Tway xnppeues/ded/uesdr(~/npe ueudeys nan 1 S)EPIPULD {¢ BB BUSY |

(SIUBWaID 9T YIIM DUO 24347 S|
VYD ul Jou si 1ey] vy ojqeluasaida. 1sajews ayl s 1ey/)
ws|qo.d

(ourpWwWASs ale () s|qeiuasaidaiuou T¢ [XNppey Jawedy| [pzusH uasdir]
(30U 218 /¢ pue ‘DLIPWWAS 2l Gg)

9|qeluasaidal e 10U ‘Syyy 1UaWR|9-9T [e4Fo1ul gQOT o4 sy [swo))]

€9 2y ‘T ‘OLrswwAs ale Lg ‘- - fTg

€}/ an0qe sl19LieA 3|qIonpali-ulof 1essuss Asyy <

eigadjeqns sadoid Ajuo syl se €y aAeY ||B S\yy |ed391ul JUSWS|S-8 Y |

Swole { Yim seiqag|e uolejal |eudaiu|

¥8 /18 900T ‘v IsnSny

eigaSje aualy pue seiqasie uoneRy (Kussonun uewdeys) uasdir s2194

€y 4o Ty ‘T sepnjoul seiqaSje uoiejas Jo A191eA [eirLuou Aiang

(uossuor) waioay |

vy Jo swoje aJe € pue Iy ‘T waIosy | S,U0SSUor Ag

€ pue T~ pajousp aJe €y pue 2y Aq ps1esausd ssinslen sy

S((EZ)wd) = 2y pue (Tz)w) = Ly SpwawWafP p YuM Sy OM] S4e 243y |
V JO eiqaSjeqns e si \\f usyl ‘oA13eInuwwod si \ 4

(x13 pue) anoidsip Jo (pusixa pue) anoid
(W = sV) X = x JiouzawwAs si y eigad|e uonejal y

{V 2 X : sx} = 47 195 BUIA|Iapun aAeY o\ 19| PUB _X + X = ;X aula(

SseJqa8|e uolle[aJ ||BWS JO SIIBLEA

16

v8/¥9 900 ‘v IsnSny

eiqaBje audaly pue seiqasie uoneRy (Kussomun uewdeys) uasdir s2199

(pasolo d ‘g a1e Asyi souls) sanauien(isenb) [je ul 1sixs seiqaSie sal) <

Y 3 4 uayz ‘sponpoud 12241pgns Jspun pasojd si
Y 41 pue pajessussd Apasy-y st (x)*L =4 uayy {7y D v ‘wsiydiowowoy
esi g — (X)*L:y |y = Yg 19/ ‘seigafje-L jo ssepd Aue si oy jj

X U0 eiqasie oou-7y
ay1 s1 (X)*L eiqase wuay ay1 Uyl seiqagie-L je Jo ssed ay1 si Y jf
(x13 pue) snoidsip Jo (puaixe pue) anoid

"(x)X4 Aq paiousp si pue x uo eigaS|e 9a4j-7 dY1 Sl 4 UsYl Yy D 4 Os|e §|

V < 4 4 wsiydiowowoy

B 01 SPUdIX® 7y D Y «— X : 4 Aue JI x Aq paiesauad Ajaaiy-oy st 4

(X suteauod 1eys eigaSjeqns sadoud ou sey 4 "o'1)
4 D X 19s e Aq pazessusF si 1eyl eiqaB|e ue 9q 4 19| pue Ssepd e 3q 7y 197

seiqa3|e 2244

v8/29 9002 ‘vz IsnSny

eiqaBje audaly| pue seiqasie uoneRy (Kussomu uewdey?) uasdir s2199

Vi
vy ~LIM INGM
9SISAUOD Yyum =
SIS9) Yyum = |
Suuiweg =g
uonepy =y ~LIN7 ~M ~1VX wea 1M
plouojy =
paJopio-92111] = 7
eome = 1
suds|y = | ~W7 1Sl ~VY LIND ™ 1vM

juazodwap| = |
uesjoog = g
eiqEsly = v

~SI N7 1sI VM

AN

Sl

. '_ ‘1esW 's31s9] ‘, JO SUOIlBUIqUIOD WOJ) SIsse|dqng

8/ €9 9002 ‘pT 33Ny

eigaBje auoaly pue seiqasie uoneRy (Kussonun uewdey>) uasdir s2199

Y"ddS = YO s! 2y Suiuiejuod farieisenb issjjews ay |
nd pue d ‘S Jspun pasojd si 11 Jji A1sLieaisenb e si 7y ssepd v/

(n92,[e|A]) WiRI09Yy |

‘eiqase

aus9y{ e 10U sI g/ Inq ‘eousniFuod e si g usy | {s1esqns ayuyul [je’}
pue {p{o} # swos aauy jje} {{o}} {0} 2019 yum vonejai asusjeanbs
ay1 aq g 19 pue (0 ‘+ ‘N) 4o esqgase auaayy| 19siomod oyl aq \ 137

(x14 pue) anoudsip Jo (pusixe pue) anoid

VM \ (WM)H ut eiga8je ue pul ‘A1aLieA e jou s 7y 1eYl 935 O

safew! diydiowowoy Aq pantesaid jou aie suonedijdwi ‘|essuss u|
seljalieAISEND 9JB $9SSB[OQNS S1I JO SWOS Pue Seuqas|e auds|y| ‘A|qelou SO
suoienbs jo suoinedijdwi Aq pauljap sasse|d ale sajaliealsenb jeys [|easy

S31191IBA 9B SOSSE|D 9S9Y3 JO ‘||e jou Inq ‘Auely

¥8/19 9002 ‘vz IsnSny

eigaSje aualy pue seiqasie uoneRy (Kussonun uewdeys) uasdir s2194

*-9Udd|Y YUM MY = SeigaSje uoijejal auss|y| ajqerussaidas = yyyy
seuqaS|e UOIIe|aJ 91240U0D = seiqas|e uoliejal a|qelussaidal = yyy
*-9Ud3|Y| Y1M seugaS|e uolejps = seiqasje uoiieas aussly = YyH
S|ENPIS2J PUB UOIIN|OAUI Y}IM SPIOUOW UBd|00g = Seiqas|e uollefal = Yy
*-9U93|}| YIIM SPIUOW UBD|00g = Splouow uesjoog auas(y = INGH
sjuaWd|dWod YlIM SpIoUOW-) SAIINQLISIP = Splouow uesjoog = |Ng
193W Y3IM SeuqaS|e auss|y = Se2/371€/ U3y = M

urewop yim seiqagie sussjy = Qv

T > eigqa8|eqns uesjoog YUm Y = 51597 Yim Sseiqasje ausasy = 1Y)
CTYUM Y = edgel)e auss)y snonuijuod-k =)

uo12NpuUl pue pjojun ‘. yum Suuiwss ustodwspl = eigasje suss|y = ¥
S|enpisal Y1im SPIOUOW-) = 321718 palenpisal = Ty

199W YUm sSuLiwss usjodwapl = splouow palaplo-23111e] = |N)

X = X + X yum sSuuiwes = sSuniwas jusajodwapi (Ajpainippe) =)

0 PUE SPIOUOW dAI1BINWWOD JBA0 3ul1INqLISIP splouow = sSuuiwas = 3ulg

sSuLIWBs Jo sassejdqns juauiwold swog

17

8/ 89 9002 ‘7T ISnBny

eiqaBje audaly pue seiqasie uoneRy (Kussomun uewdeys) uasdir s2199

X e e o) 22y 3 {e} {2} p
(x14 pue) anoudsip Jo (pusixe pue) anoid

uojewolne- awos Aq paziudoda. seSen3ue| ||e Jo 19s ayl sI Xooy
{0# L *xSUgm:,X3m}=(N)7 s N Aq paziusosas a5ensuel 2y
AMinE = p(m-e) pue Ny = 3 Aq ym suyap X > M uog

Kjani1oadsal
$91€15 [EUIW.] PUE S9]8]S 1/EIS 'S91e1S P3||ed Ble | ‘G ‘M) JO SIusWd(]

‘suoile|as Aieun aue J ‘G pue uoliepps Aseulq

B Sl (8 1y yons (L ‘G ‘X3¢(1e) ‘) = N 24nIoNIs e S| uojewoIne-x Y

e1eWOINY

v8/99 9002 ‘vz IsnSny

eiqaBje audaly| pue seiqasie uoneRy (Kussomu uewdey?) uasdir s2199

(swn [eiwouAjod ur) [gZ6T WaI04S] 9|qepIdap ||11s S Alosy3 [euoirenbs
a1 INq 21UNUI SI SI01eIaUdS ¢ < uO eqaS|e 9344 dY] 'SIDIIE| U0

((X)d)d 01 2rydiowos! Ajjenide si yg 3944 dy3 ‘X 231Ul Jog

(x)y = x pue {A3x:(X)d D A}=(xX)y sesed 430q UI UBYM
vd —

:X_QVQXVADQ\MW = (x)ved

(IX1) (xS = (x)*194

2qLIDsap 0} Ases os|e aJe yg pue 1e7(] 40} seiqad|e a4y 3y |

SeuqoS|e UBS|00g PUE SIDIIIE| DAIINGLIISIP d314

v8/ 19 9002 ‘pT 33Ny

eigaBje auoaly pue seiqasie uoneRy (Kussonun uewdey>) uasdir s2199

ejewolne aluly Aq paulwialep 9q ued s19s Jejndai ul diysisquis|y

|enba aue s3es
JepnSal omq Ji Sunydayd 01 usjeAinba si (y)?yl 2 (2 = s) 41 Suipsp og

w91 Yy e jo aSewl ayy si 70s Jeyndas e ‘Jendined u)

X UO eiqaFie auss|y| 9914 Byl SI X

(#661 uszoy) waiosy |

{zxox: ﬁxv:v?ww@wm = X} I 5195 JE[NS24 JO BIqaS|e aUddY dY |
uoIeus1edU0d si - pue ‘() sousnbas A1dws ay3 s 3 819K

(3%4.%) = X I X Aq paressuad piouow sa.4) Sy |

19geydje ue pas||ed ‘19s AUl B 3G X 197

>}4om aJow 1iq e sexel Ing ‘9|qissod os|e si 7y ul suoirenbs Suipoaq

S19S Je|n3aJ pue seuqal|e auad|y

eigaSje aualy pue seiqasie uoneRy (Kussonun uewdeys) uasdir s2194

v8/69 9002 ‘vz Isnny

9|qepioap aJe G| ‘3uig ‘1e|S ‘uoly ‘diSS jo seLioay] |euoiienbs syl <

a/qepioap si Aioay1 jeuoizenbs ay3 usyl ‘s|qepiosp
sI seiqafje 9a.4) pajesauss App3iuly e jo sjuswale usemiaq Aiienbs j

(x14 pue) anoudsip 1o (pusixe pue) anoid

(:X)"d = (x)94 {.x 40 swsanw anuy} 5 ()54

O ex (0)Me = ()™ {0\ ()™ = ()54
+X Pue | x Aq psjousp Ajjensn aie s3|dnj-u jo s319S 33y |

() x WX ONE 00N WX TN S (0%

7Y 4O SidqWIBW |[B Ul pP|oYy 1By} S3|qeLien
w S yum suoijenbs asoyy Ajuo salysijes siojessusl w uo eiqaSie a4y

seiqa3|e 9244 Jo so|dwex]

18

v8 /2L 9002 ‘7T ISnBny

eigoBje auas)y pue seigaBje uonepPy (Kussonun uewdeys) uasdif s394

elewoiny pue safenSue [ewlo dAIRdRIAIU| UY dy][Ul Sy K]

9|qepIoap si sedqad|e ausa|y| Jo Aioay) |euoiienbs ay| <«

‘A= n# (AT =(N)7 usyy “ezeworne jewuiw 2q A‘N 197
(x13 pue) anoidsip Jo (pusixa pue) anoid

d

uonea. Ayjuspl ay3 si
20uaNJISU0D g Y} PuE 3|ISSIIOE B SIILIS ||B JI |EWIUIW SI UOJEWOINE Uy

v8/0L 9002 ‘vz IsnSny

(n)7 = (6/n)7 pue uoreworne

ay1 uo ousniuod e st | S (A)m & | S (n)m X S MA I Agn uoirefod
3Y1 ‘S91E1S 3GISSIDEUI OU YUM () UOIEWOINE JIISIUIULIDIDP € UDAID)
(86T aposaN “[IIYA|) wiaiosy |

91€1S 1elS dYl Woiy palessusd

e1ga3|eqns ay3 dJe $31e1S 9|qISSIIIE B} ‘UOIBWIOINE DIISIUIWIDIAP € U]
«X D M PUB G D1 3WOS IO} M D (A °N) 41 9/qISsaoeE SI A 338IS Y
e1EWOINE [BWIUI|A|

eiqaBje audaly| pue seiqasie uoneRy (Kussomu uewdey?) uasdir s2199

(W)4w st os ‘eiqaSie sussjyf e si Y Jf

uo11150dw0ap UISOYD Y1 JO JUBPUIADIPUI SI Y JO UOINUYSP B |
(x14 pue) snoudsip Jo (pusixe pue) anoid

:weiSelp ayy Aq pajeairow si siy |

AdNO) | 0.4d +N)O.Y

(I NO+A)dN | 0. dd+N) | N
suysp (v)“m > w m =) pue eiqaBje susaly €SI 4|

XLjew A3uspl ay3 si Y pue ‘Xulew o4z ayi sl Q
uonedijdinw pue uonippe xulew [ensn yum Suuiwss e uiege si ()Y
V 490 S9DUIBW U X U JO 335 3Y1 3] 4, ¥ = (V)“/ 39| 'V BuLiwsas e o4

sedqa3|e aud3|y| pue SSULIIWSS Ul SIOLIIBIA

v8/ 1L 9002 ‘pT 33Ny

eigaBje auoaly pue seiqasie uoneRy (Kussonun uewdey>) uasdir s2199

(n)7=(n)728y2 yons {p # 1 UX : X} = L pue {S} =S
{Xx 3nouwosioy jes(an):a}=(x)e '(n)d =N yum nouo
211SIUIWIDIBP € O] PaIIdAUOD 8q UED [} UOJeWoIne dIisiuiwiaIspuou Auy

(x1y pue) anoudsip Jo (pusixa pue) anoid

19s uo19|3uIs
€SI G PUE /) UO UOIDUNY B SI (€ YDBD JI UOIBLUOINE D/ISIU/ULIDISP € SI)

195 Je|nSal swes syl 01 puodsaiiod Aew elewolne jususyip Auew ing

[966T suss|y] 15 4enSau e s 8enSue| a|qeziuBodas Aisns <

v8/69 9002 ‘vz IsnSny

{()} = (x)y Aq paonpur st 2 — ()AL =y 240ym (31 1s)y = (N)7T
(x13 pue) anoidsip Jo (pusixa pue) anoid
13ne1="4pue{es(nm:e}{=yw'samer="5
9J3UM JOJDDA-U UWN|OD-T ‘() B PUB XLIBW U X U UE 'J0}IDA-U MOI-T ‘0

eaq (2w ‘s) W {“n ¢ In} = yum (L ‘S 23%(4e)‘N) = N usnIH
S9D141BW SE BlRWOlNe 9}iul

eigaSje aualy pue seiqasie uoneRy (Kussonun uewdeys) uasdir s2194

uolewolne 91Ul swos Aq paziudodal si 19s Jejndal A1sns <

+(N)7= ()7 Pre (A)7:(N)7 = (A:N)7 (AT (N7 = (A+n)7
(x14 pue) anoudsip 1o (pusixe pue) anoid
A:H n_..miu.m\NQ_.-.w, Xl :mv M :mv ‘n)=+n
{aL 372 (A‘n)ag:n} = 1€
asIMIBYI0 2SN S

pue =5
0= nlUnSH NI

a13ym (7L /5 T3 ((AS X nLn8) MAEM) AMN) = AN
A ‘N Jo uolun 1uiofsip ay3y 8q 01 A +) dUYSP ‘A ‘() BIBWOINE UDAID)

n€ 2 (/nén) g1 !n 03 'n woyy e pajjaqe| moie ue pue

sopou se sa1els yum ydeiS paldadip e Se PaMaIA 37 UED UOJEWOINE YUl Y

9|qeziu802a4 aJe SIS Jenday

19

v8/9L 900 ‘v IsnSny

eiqaBje audaly pue seiqasie uoneRy (Kussomun uewdeys) uasdir s2199

X
X
X

ViXr
vad

vy

Nd

15y
vMsH
avi
1VM ‘WA
S

3uig

digy

vd

®1a

1€

€IS

uoly ‘diSs

S X X X

XN XN N XX XXX XXX XXX
XXN NN XXX XXNSNNSNSSSNS
XX XN XX XXX XXXXX
XN SN NN XX XXX XXXXX

X
SIS

—

TIHEHSHSHHHH S XXSSSSSS

uyo0| | ad 29p Yy | 22p Pyy | 28p °y|
saiuadoud Jsyio pue Ayijigepidsp jo Alewwng

v8 /L 9007 ‘v IsnSny

eiqaBje audaly| pue seiqasie uoneRy (Kussomu uewdey?) uasdir s2199

a|qepopun si (vy)°yL <

1Syy Ul spoy ¢ 1 vy ul sploy
yoiym T = ,¢ uolrenbs ue ojul pajejsuely aq ued ¢ (B|NwWIo) 3344 Jalyiauenb
Aue 104 u1) uoienbaisenb Aue 9ousy ‘A151ieA JOTRUIILIDSIP B SI WY

3/qepioapun si 7YY pue vy ‘1Syy jo Aioayy jeuoizenbaisenb ay |
sdnoiSiwss jo ssep ayr = S uaya {syy sjdwis jo spnpai-t} = %y Jy

{y 3 A : (Ax‘x)} i x dew A9ife)) ay1 ein (Ty)]9y
40 30onpau-! ay3 ul pappaqua si Ty prouow ay3 ‘y dnoiSiwss Aue 1o

(x14 pue) snoudsip Jo (pusixe pue) anoid

3|qepIoapun st yy jo Aiosys [euoirenbs ay |

v8/GL 900T ‘v IsnSny

eigaBje auoaly pue seiqasie uoneRy (Kussonun uewdey>) uasdir s2199

a/qepidapun ale
seiqaS|e uoizejas dnoid pue sy/y J1IBWWAS ‘Sy/y [eiFaqul Jo Saialien ay |

(x14 pue) anoudsip Jo (pusixe pue) anoid

a/gepioepun st H°y] udy3
. pue ! uapun dnoi§ e wioy 1ey3 suswafs uofsip asimiied u jses) e jo
195qns e yum 7y ul eiqaS|e ue si asayl T < U YIea 4oy 18yl yons vy S oy J

a/qepioapun si Y2y | uayl Ajiuspl syl mojoq sjuswale u
1583) 18 YUM ISy Ul BIGaS|e ue S| 94yl T < U YDed J0j 1eY3 YINs vy S oy jf

(2661 n2wa ueAI) eyRIpuY) Waioay |

vdy/ ul aniseasad si Al1jiqepioapun

¥8 /€L 900T ‘v IsnSny

eigaSje aualy pue seiqasie uoneRy (Kussonun uewdeys) uasdir s2194

Sploy 3nsai awes 3y1 NG ‘AVM ‘LVM ‘WM J0 1onpai e si (y)d 3duis

s|qepidapun si s3uLiwas (juslodwspt) jo Aiosya [euonnenbaisenb syy <

sdnouiwss |e ui spjoy 11 Jj1 Oy ul spjoy : Ajuo sssn 1eyz uoizenbaisenb v/
sdno.Siwss jo ssefd ay1 = 7yS uayl {sSuiwes jo s3onpai-t} = 7y 4|
(V)d 40 12npas-t ay1 jo eiqgaSjeqns e si yy dnoiSiwes Auy

(x1y pue) anoidsip Jo (pusixa pue) anoid

T Suluiofpe Aq paureiqo plouow ay3 aq Ty 19| 'y dnoiSiwas e uo4

a/qepioapun si sdnoSiwes jo Aioayy jeuoizenbaisenb ay |

(66T AOHEN ‘Ly6T 150d) W09y |

s|qepidapun si (sSuuiwas(ustodwsapt))Py |

20

eiqaBje audaly pue seiqasie uoneRy (Kussomun uewdeys) uasdir s2199

8/ 08 9002 ‘7T ISnBny

sa8en3ue| uoijedl
|lom saydrew 31 aouls suoiredljdde ul [nydjay si yoeoiudde [eono8a1ed ay |

odwod se uoine
yum ‘A10391e2 Suliiwss e jo sjdwexs jueriodwl ue sl 7 J9AO SadlIIeW
llejo {1 S u'w =y} = (V)1eN 395 341 ‘(- ‘+ ‘y) Buuiwas e usnig

salioFajje (uoisinip/aA11nqLisIp)

(51501 y1m) sali0Fa1e0 BUBA|Y

sali0Sa1e0 Suniwes (1uszodwapi)

sali05a1e2 921318]IWas-(199wW /uiol)

(as49Au00 y3im) sali0Fa1€0 paiapio

soniS ([£00g [yeM] "8'0 99s) sy H Jo swoixe syl Suiussesm A|qeling

$21103918D payduud Iyl

eiqaBje audaly| pue seiqasie uoneRy (Kussomu uewdey?) uasdir s2199

v8/8L 9002 ‘vz Isnny

SWwsIydiowowoy plouow 91e $910F91ed Yons usamiaq sio03ouny
1uelierod pue ‘piouow e (01 Jusjeainba) si 12afqo suo yum AioSazed vy

(x13 pue) anoidsip Jo (pusixa pue) anoid

Floyd=(4o8)duz— AT ‘A =X 441 @
X4 Ad 44 UYL A X @ 4§ pue X3 = (XT)4 e

S9WO029q UOINIULRP 3yl @ «— D) : 4 J010UN) JUELIEARIIUOD B IO

jdo8d=(4oF)quyp z— AT A =X e
Ad = X444 UYL A — X 1 44l pue XA = (XT)4 e

1eY1 Yans 40 < 50
pue g <« D sdew Q <« D : 4 Jo1ouny JueLerod e @ ‘D) so1i0391ed U0

sal0391ed Jo (swsiydiowowoy) sdew Sulaiesaid 24n1onu1s aJe si01ouny

soIjewsyiew Jo sease 3uilejal oy pauns |[om si Aioayl Aio3aier)
SJ03oun4

eigaBje auoaly pue seiqasie uoneRy (Kussonun uewdey>) uasdir s2199

8/ 6L 9002 ‘pT 33Ny

128[qo suo yum syyH (01 wsjeainba) sie seigaSe uoirejsy
(x13 pue) anoidsip Jo (pusixa pue) anoid

0=4(517)e0=5(2 1) 0=1(s) (A x)woy > 1°s!4 ||e Joj e
pue eigaBje uesjoog e st (_‘0* ‘] ‘+ ‘(A ‘x)woH) ‘A ‘x s1da(qo ||e o) e
A s = _(s4)

XT = X7 ‘4= __4saysies (x‘A)woy «— (A x)woH :

L]

Ki108a1e0 €SI (pod ‘wop ‘T ¢p ‘))

L]

1eY3 yons A \so ¢, FF fT ¢)h_UOUrEO_u »H “ “0 “Uv — U
ain1onuis e st (YyH) e/gase uoiiejas snosusfolsaiay y

G'y se y o G uonisodwod LM 03 [eanjeu os|e si 3 SuiIas siyl u)

(A ‘X)woH s19s ay1 uo uoiesado UeS|0Og PUE 3SISAUOD
3uippe Aq psyduus Ajjensn si suoilejas Aseuiq padAy Jo [oy Aio3s1ed sy |

seiqa3|e uolle[a4 snosus30.4919H

eigaSje aualy pue seiqasie uoneRy (Kussonun uewdeys) uasdir s2194

v8 /2L 9002 ‘v IsnSny
swsiydiow se suoijejas Aieuiq pue s309(qo se s1as ym Aio3sied e si |9y

swsiydiow se suolouny pue s309[qo se s39s yum Aio8a1ed e si 19§

s est {4 = Jpod pue x = jwop: 4} = (A ‘X)woH ssep ay| e
#=7PPToy pue j=joJHPT XTpod = x = XTwop e

(yo8)o 4 =yo(8oy) uayl ypod = Fwop ji pue Fpod = (4 o F)pod
‘jwop = (4 o §)wop ased yoiym ui ‘Jpod = Fwop Jj1 s1sIxe jo 5 e
A = JPOD pue X = JWOp SUBSW A « X : f ‘XT pajousp si (X)T e

D uo uoinjesado Aseuiq |einied e si o voizisodwiod

pue ‘wsiydiow Ay13uspl ue seN8) «— O i T

‘U1ewopod pue uiewop syl sAI8 O «—) 1 pod ‘wop
's32a/qo Jo sse|d e sl O ‘swisiydiow Jo ssepp e s) e

1ey1 yons (pod‘wop ‘T ‘o‘p ‘D)) = D 2innuis e si fi05a1e0

sauo3a1e)

21

8/ 8 9002 ‘7T ISnBny

eiqaBje audaly pue seiqasie uoneRy (Kussomun uewdeys) uasdir s2199

201d "USIBA\ PRV HIPIN "UIUOY 'Jjf S[apow jo Aioay3 ay3 03 suoinguiuo) [GGET Msie] |
‘YIB uuy ‘seiqaS|e aaiy Ajjeuoizouny uo yiewsd v [9y6T Hsie]]
surjuo “198undg ‘'gJ¥ SONT Ul ‘woranpuy aind pue 3150 uoidy [066T 11€4d]

autjuo ‘498undg
| 'seiqaSje uoiefas jo juswiSel paneysaq-jjom e se seiqasie oiweulq [066T 1eld]

‘Se¥ SON1
J21A9s|] 'sesqaSie uoizepy [900Z XNppeN]
108undS ‘6YTT N Ul 'seiqaBje uonejas [eiFour a31ul4 [S86T XNPPei]

21807 '|ddy pue aing ‘uuy ‘seiqaSje uoizejal oj snjnojed juanbas v [£86T xnppeln]

SNV ‘sues| ‘seiqagje uonrejas Suiuieuod sanaleA awos [g86T Xnppely]

suljuo ‘498unds ‘ggeT
SN Ut ‘A3jiqepiosp pue sssuaisidwo) 3593 yum seiqasie aussfy| [966T YIWS pue uszoy]

auljuo “dwsluo) jewsie|y ‘suonedyydde pue sSuiiis papiens uo erewoiny [£00g uszoy]

|]] Suipeas Jaylny pue sadUI)eY

eiqaBje audaly| pue seiqasie uoneRy (Kussomu uewdey?) uasdir s2199

v8/28 9002 ‘vz Isnny

sijesianlun eiqas|y ‘sowes Aq sesgaSje xajdwod Suizizewolxy [T00Z BWSUSA Se|NYI|A UOSUPOH]
pue|ioH-Yyuo ‘sswes Aq seiqaSje uonrefday [g00g UOSUIPOH ydsiiH]

SV
‘suel| ‘seiqaS|e uoijejal d3iul Jof djqepidap Jou si Ayjiqerussaiday [100Z UOSUINPOH YosiiH]

auljuo ‘SOINYOr ‘suonedidde pue seiqasje ausapy [epoyy [$00T YINAAS J3IQIN Sleuleysaq]
auljuo ‘urewop yim seiqasje aussly [€00Z YINAIS 3O\ Sleuteysaq]

lleH pue uewdey) ‘ssuiysew ayuly pue eigasje sengsy (1,61 Aemuo)]

suljuo ‘498undg ‘esqaSje jesioniun ul 95inod v/ [186T Jeneueddeyueg suung)

198undg *9ouaiog 493ndwo) ul spoyiapy [euoizepy [166T (SPI) IPIWYDS [yey yuug]

SV lINg ‘eqa5je jesionun uy suoun 3294pqns [y6T Hoyiig]

205 “|Iyd ‘quie) dold ‘seiqage 10eiisqe jo a4n3oniis oyl uO [SE6T Hoytdig]

433upds 'T1G0E SONT '92ualo8
493ndwo) ur spoyiayy dreiqasje-auss)y pue jeuonredy [£00Z (SPF) YInaas 43)|QN Pwweysiag]

SNV sitowsi

‘seiqagje uoizejal o sali0ay3 [euoizenbs 4oy swajqoid uoisIP3([L66T 1IPWSN IUEAID) exaipuy]
21307 J1joquiAg

‘['seiqaS|e uoizejal o|qeIuasaidal Jo sallaLeA JO 931318 Ay [F66T 1IPWSN IUBAID EaIpuy]

| Suipeas Jayiny pue SEOURIRRY

eigaBje auoaly pue seiqasie uoneRy (Kussonun uewdey>) uasdir s2199

v8/ €8 9002 ‘pT 33Ny

198undg Aujigeandwos pue ejewoiny [166T uszody]

auljuo ‘ssaid ||\ ‘,MO|4 uoiewuosu| pue 21807, ul ‘seiqade uoide uQ [y66T uszoy]
surjuo *Indwo)) pue “ioju|

'S1uaAa JenSai Jo eiqafje ay1 pue seigasje auss[y| J0oj Waiodyl ssausla|dwod v [y66T uszoy]

autjuo ‘SHINYOr
'9519AU0D pue $a1103218D palopio punole seiqasje uoilea. sr 1939y Surio1desay [4002 1YeM]

Y\ [4wy) ‘| siopesado yum seiqaSie uesjoog [g/1G6T 1Msiel uossuor]
puejioH-yuop * 21807 dreiqas|y,, ui ‘suonerss Aseulq jo Aioayi sy [166T uossuor]

|esianlun eiqaB|y ‘seigadje uoirejai jo saaLieA [z86T uossuor]

‘PuUBdS YIB|\ '9AIINqLISIP Se S21138] 92USNIFU0D dsoym seiqas|y [L96T uossuor]

suijuo
“aMN[Y *,$94N30N43s dleuqas|e pasapl(,, Ul 'sadizie) pajenpisal jo Aaains v [z00g siyeuls) uasdir]

auljuo “1d9| T ‘seiqasje jerusnbas sjqeruasaidaiuop [L66T Xnppey ussdir]
|esiaAlun eiqad|y ‘seigadie uoizeja jewiulyy [y66T SogxnT uasdir]

suljuo ‘e21807 elpnig 'sadiizel ausaly parenpisai o1 sSuLiwes woi [700g uasdir]

auluo “|qng 493us) yoeueq ‘ 1807 dreiqasd)y,,
ul ‘siogesado pazenpisal yim seiqag|e ueajoog Jo saliaLeA Jojeulwidsi [£66T uasdir]

|] Suipeas Jayliny pue SadUIYRY

eigaSje aualy pue seiqasie uoneRy (Kussonun uewdeys) uasdir s2194

v8 /18 9002 ‘vz IsnSny

MO[2q Pa3sI| 2Je YDIYM JO SWOS ‘syiom Alelisodxs Jus|jaoxe pue
s904nos Atewnd sy} Jo awWos Ul Jayny peas o} pageinodus ale syueddiped

eiga3|e |esssnlun wodj s3deouod uo siseydws
Ue Y1Mm ‘sdIseq Syl JO SWOS UOIIUSW 01 3|qe U33q AJUO SABY oM JdH

9ouaIds Jeandwod pue 2130 ‘eiqas|e jo 1ed |eiqueisqns
e ueds seiqaS|e aus3|y| pue seiqaS|e uolle|as JO SUOIIEPUNO) BY |

uoisnppuo))

22

Relational Methods for Program Refinement

John Derrick

Department of Computer Science, University of Sheffield, UK.
jd@dcs.shef.ac.uk

RelMiCS 2006

Relational methods for
Program Refinement

John Derrick
University of Sheffield

+ +

Qutline:
e Overview of Refinement

A relational framework

Data refinement

Simulations

Refinement in Z

Deriving simulations in Z

Examples

Concurrent models of refinement

Unifying relational and concurrent refine-
ment

+ +

A Tutorial on Refinement in State-
based Specification Languages

In this tutorial we aim to provide:

An introduction to the idea of refinement
as a formal development process.

An insight into how refinement is defined
in Z and other specification languages.

An understanding of how the relational
basis for Z leads to the derivation of the
Z simulation rules as they are usually pre-
sented.

An understanding of the relationship to
various process algebraic refinement rela-
tions.

What is Refinement?

e \Write a program to input a number, dou-
ble it and output the result on the screen.

e Draw a Jack playing card.

Specifications define what is observable and
what is hidden.

They are also often loose, i.e., contain non-
determinism.

+ +

Refinement is the process of development:
e the internal representation doesn’'t mat-

ter, all that matters is the observable be-
haviour.

if options have been left open, we are
free to make a choice i.e., reduce non-
determinism.

So refinement is based upon:

The Principle of Substitutivity: it
is acceptable to refine one program by
another,

- provided it is impossible for a user
of the programs to observe that the
substitution has taken place.

Refinement in Z

Data refinement is a methodology that allows
state spaces to be altered in a development,
and non-determinism to be reduced.

For example, a digital watch might have the
state space

— TimeHM — TimeHMInit
| hrs:0.23 TimeHM'
‘ mins : 0..59

With operations to show and reset the time

—ShowTime — ResetTime
| ETimeHM | ATimeHM
| hrs!:0.23 | hrs?:0.23

| mins!:0.59 mins? :0..59
s — hrs R

| mins = mins! ‘ mins' = mins?

25

All formal methods have notions of refine-
ment:

e Process algebras (CSP, LOTOS etc) - trace,
failure-divergence, reduction etc.

e Automata;

e State-based languages (Z, VDM, B etc) -
data refinement.

A refinement to the watch might add some
more detail to this design:

Change the internal representation, e.qg.,

— TimeHM — CTimeHM
| hrs:0..23 time : N x N
| mins : 0..59

and/or reduce some non-determinism

_ TimeHMInit _ CTimeHMInit
| TimeHM' \ CTimeHM'
| time' = (0,0)

What is the correct specification of ShowTime
using CTimeHM?

+ +

Programs in this specification are sequences
of operations:

TimeHMInit § ShowTime g ShowTime
o ResetTime g ShowTime

In a refinement we will need to match equiv-
alent programs, so that an abstract program
can be refined by a concrete program.

AOp; AOp; AOpn

/AInit AF}

CInit CFi
COD1 CODQ CODn

So a specification A is refined by C iff for each
program P

P(C) C P(A)
e.g.

ClInit § COp; g COpy g CFin C
Alnit § AOp; § AOps § AFin

Several issues

e What exactly are the observations of an
abstract data type, and what is their re-
lation to ADT programs?

e How do inputs and outputs fit in with this?

What is the effect of using operations spec-
ified by relations which are not necessarily
total?

e What is the function of initialisation?

e How can we verify refinements without
checking all programs?

26

Thus for our example, we need:

CTimeHMInit § CShowTime
gCShowTime g CResetTime
C
TimeHMInit § ShowTime
gShowTime § ResetTime

(Don't worry about the AFin and CFin bit.)

But we need to verify this for every possible
program.

+ +
Data Refinement and Simulations

Next:

e the standard definition of data refinement
for data types whose operations are total
relations,

e the definitions of upward and downward
simulations,

e the statement of their soundness and joint
completeness.

To apply this theory to a specification lan-
guage we look at how operations in a specifi-
cation are modelled as partial relations.

The application of the simulation rules to spec-
ifications with partial operations leads to the
simulation rules as they are normally presented
in Z.

First, some definitions ...
+ 12

Definition 1 (Data type)

A data type, (State,Init,{Op;}ier,

Fin), has operations {Op;}, indexed by i€,
that are total relations on the set State; Init
is a relation from G to State,; Fin is a relation
from State to G. O

A data type is canonical if Init, Op; and Fin are
all functions. Two data types are conformal
if their global data space G and the indexing
sets of their operations are equal.

Definition 2 (Complete program)

A complete program over a data type D is
an expression of the form Init§ P § Fin, where
P, a relation over State, is a program over
{Opitier- o

For example, if p=(p1,...,pn) then
pp =Init§Opp, §...§OPp, § Fin.

+ +

Definition 3 (Data refinement)

For data types A and C, C refines A (denoted
A C C) iff for each finite sequence p over 1,
pPc C Pa- O

Data refinement is transitive and reflexive, i.e.,
it is a preorder.

Example

Let G =N, with

A= (N., idN, {AOD}‘ IdN)

C = (N, idy, {COP}, idy)

AOp = {x,y :N|x<ye(xy)}
COp={x:Ne(x,x+1)}

Show that for any sequence p:
Pa = {%V:N|x+#p <ye(x,y)}, whereas
Pc={x:Ne(x,x+#p)}

Thus pc € pa, and therefore C refines A.
+ 15

+ +

Example

Let G=N, D = (N, Init,{Op1,Ops}, Fin) where

Init = {x:Ne(x,0)}

Op; ={x:Nex' =x+1}

Opz = {x,y : N|x € {x,x +2}}
Fin = idy

The program [1,2,1]p denotes
Init§ Opq § Op2 § Opy1 § Fin which is
{X:N; y:{2,4} e (x,y)}.

P
7
1

VAN
/N
o

3
4

Init Op; Opy Opy Fin

How to verify a refinement

Simulations are used to verify refinements:

e they allow a step-by-step comparison of
operations,

e instead of looking at the effect of the
whole program.

4 AOpji AOp3 © AOpy
e A
1 iR iR iR iR
] f CFi
COpi COPp; | copy”

R links the abstract and concrete state spaces.

+ +

Simulations

How to verify a refinement by considering step
by step values.

We need a relation R between the two sets of
states AState and CState.

Then we can consider two types of step by
step comparisons: downwards simulation and
upwards simulation.

Facts: these two simulations are sound and
jointly complete.

Every downwards or upwards simulation is a
valid refinement.

Every valid refinement can be proved by a
combination of downwards and upwards sim-
ulations. In fact every refinement needs just
one upwards simulation followed by a down-
wards simulation.

+ 17

+ +

Definition 5 (Upward simulation)

For data types A and C as above, an up-
ward simulation is a relation T from CState
to AState such that

CInit§ T C Alnit (4)
CFin C T §AFin (5)
Vi:1e COpj3T CTyAOpD; (6)

If such a simulation exists, we also say that C
is an upward simulation of A. m|

Another term for this is backward simulation.
Exercise:

Show that if a relation T between CState and
AState is total and functional, then T is an
upward simulation between A and C if and
only if T~1 is a downward simulation between
A and C.

+ 19

28

+ +

Two ways of making the diagram commute:
AOp AOp

R R R R

~Cop ~Cop

Definition 4 (Downward simulation)
Given A = (AState, Alnit, {AOp;}ie1, AFin) and
C = (CState, ClInit, {COpPj}ic1, CFin). A down-
ward simulation is a relation R from AState
to CState satisfying

CInit C Alnit§R (1)
R§CFin C AFin (2)
Vi:Ie R3COp; C AOpPjgR 3)

If such a simulation exists, C is called a down-
ward simulation of A. O

Downward simulations are also known as for-
ward simulations.
+ 18

+ +

Answer: Totality of T is encoded relation-
ally as T T~ Didcstate. and functionality as
T-15T Cidastate.

Together these allow the proof of equivalence
for the corresponding upward and downward
simulation conditions.

E.g.

COp;§ T C T §AOp;
=
T lgCopgTygT T tgTgAOp T !
= { totality on Ihs, functionality on rhs }
T-lecop c AOp; g T !
=
TygT 13COpiy TCTYAOR§T 1yT
= { totality on Ihs, functionality on rhs }
COPp; 3T C T3AOD;
(The middle line is the condition for T 1 to
be a downward simulation, which both implies
and is implied by the top/bottom line.)
+ 20

+ +

Theorem 1 (Horizontal composition) For con-

formal data types A and C as above, and ap-

propriately typed relations R and T,

(a) if (1) and (3) hold, then (1) holds for
Alnit := Alnit § AOp; and CInit := CInit § COp;

(b) if (3) holds, then it also holds for any se-
quence of two operations, i.e.,
Vi,j:1e R§COp;§ COp; C AOp;§AOD;§R

(c) if (3) and (2) hold, then (2) holds for
AFin := AOp; § AFin and CFin := COp; § CFin

(d) if (4) and (6) hold, then (4) holds for
Alnit := Alnit § AOp; and ClInit := CInit § COp;

(e) if (6) holds, then it also holds for any se-
quence of two operations, i.e.,
Vi,j:1e COPp;3COP;3T C T gAOpP; § AOD;

(f) if (6) and (5) hold, then (5) holds for
AFin := AOp; § AFin and CFin := COp; § CFin

+ 21
+ +
()
R §COp; g CFin
C {pby (3)}
AOp; §R§ CFin
c {by (2)}
AOp; § AFin

Show the following:

Theorem 2 (Soundness of simulations) If an
upward or downward simulation exists between
conformal data types A and C, then C is a
data refinement of A.

By induction on the (complete) programs, by
proving a base case, and using Theorem 1
(a)/(d) as the induction step.

Answer:

(@)
CInit§ COp;
C {by (1)}
Alnit§ R§COp;
C {by (3)}
Alnit § AOp; § R

(b)
R §COp; § COp;
C {by (3)}
AQOp; 9 RSCODJ‘
C {by (3)}
AQOp; 9 CODJ 9 R
+ 22
+ +

(in) Completeness

However, neither downward simulation nor up-
ward simulation is complete on their own.

Example of ADTs which are related by data
refinement where no downward simulation ex-
ists are as follows:

Let G =0..4, which acts as the global state
and one of the local states; the other local
state is YS = {0, 1,3,4}. Define

X = (G, Init, {XOp1,XOps},idg),

Y = (YS,Init, {YOp1, YOpay, },idys), where

Init = {x: G e (x,0)},
XOp1 ={(0,1),(0,2),(1,1),(2,2),(3,3),(4,4)},
XOpy = {(O, O)! (13 3)3 (234)~ (3: 3)? (4! 4)}:
YOp1 = {(0.1),(1,1),(3,3),(4.4)},
YOpy ={(0.0),(1,3),(1,4),(3,3).(4,4)}.

+ 24

29

0 1 3
Init Op1XOpy
2 4

0 1 3

Init YOp1~YOpy
4

A program here is a finite sequence over the
numbers 1 and 2. The finalisation is the iden-
tity, so the final state is the only observable
outcome of a program.

e Any program which does not include op-
eration 1 (including the empty program)
will end in state 0.

e Any program containing operation 1 but
not 2 after it will end in state 1 or 2 for
X, and in state 1 for Y.

+ +

Assume we have a downward simulation R
from G to YS.

From the finalisation condition (2) we get
R Q idys.

From initialisation and refinement for the first
operation we then get that (1,1) € R.

The refinement condition for the second op-
eration then gives us:

RSYODQ C XOpo §R
= {(1,1) € R, transitivity of C}
{(1,3),(1,4)} C XOp2§R
{(1.3).(1.9)} C{(1.3)}§R
= {3}
(3,4)eR
which contradicts that R is contained in the
identity relation.

Thus, no such R can exist.
+ 26

30

e Any other program (i.e., containing at least
operation 1 followed by 2 sometime later)
could end in either state 3 or 4 for both
X and Y.

As the outcomes for Y are always included in
those for X, data refinement holds.

Exercise:

Show that it can be proved that {(0,0),(1,1),
(1.2),(3,3),(4,4)} does constitute an upward
simulation in this case.

Exercise:

Construct a similar example where the ab-
stract and concrete data type are swapped
and {(1,2),(2,1)} added to both finalisations
to show a data refinement where no upward
simulation exists.

Theorem 3 Upward and downward simula-
tion are jointly complete, i.e., any data re-
finement can be proved by a combination of
simulations.

Partiality

Not all operations are total, the meaning of
an operation Op specified as a partial relation
is:

e Op behaves as specified when used within
its precondition (domain);

e outside its precondition, anything may hap-
pen.

We model this by totalising relations, i.e., adding
a distinguished element 1, denoting undefined-
ness.

Two ways to do this: contract vs behavioural.

+ +

E.g., in the behavioural approach, values out-
side the domain are linked to L only.

Definition 6 (Totalisation)

For a partial relation Op on State, its totalisa-
tion is a total relation Op on State |, defined
in the “contract” approach to ADTS by

Op == OpuU{x,y : State| | x ¢ domOp e (x,y)}
or in the behavioural approach to ADTs by
Op ==Op U {x: State, | x ¢ domOp e (x, 1)}

Totalisations of initialisation and finalisation
are defined analogously. O
+ 30

31

+ +

In the “contract” approach, the domain (pre-
condition) of an operation describes the area
within which the operation should be guaran-
teed to deliver a well-defined result, as speci-
fied by the relation.

Outside that domain, the operation may be
applied, but may return any value, even an un-
defined one (modelling, e.g., non-termination).

In the “behavioural” approach, operations may
not be applied outside their precondition; do-
ing so anyway leads to an undefined result.

In either case, in both approaches the simu-
lation rules for partial operations are derived
from those for total operations:

partial relations on a set S are modelled as to-
tal relations on a set S|, which is S extended
with a distinguished value L not in S.

+ 29

Definition 7 (Extension)

A relation R between AState and CState is
extended to a relation R between AState | and
CState |, defined in the contract approach by

R==RU ({Lastate} x CState,)

and in the behavioural approach by

R == RU{(L astate: L cstate)}

+ +

Extracting the partiality

The simulation rules are defined in terms of
totalised relations. We can extract the under-
lying rules for the original operations.

Thus our goal is to apply the simulation rules
to the totalised versions of these data types,
and then to remove all occurrences of ~, ~
and L in the rules.

For initialisation we have:

CInit C ATnitgR

CInit U {(Lg, Lcstate)}

N

(AInit U

~

(LG, Lastate)}) § (RU{(Lastate, Lcstate)})
CInit U {(Lg, Lcstate)} € AInit§RU{(Lg, Lcstate)}

Clnit C AlnitgR

+ 32

Definition 8

Let A = (AState, Alnit, {AODj}ic1. AFin) and C =
(CState, CInit, {COp;}icr, CFin) be data types
where the operations may be partial.

A downward simulation is a relation R from
AState to CState satisfying, in the contract
interpretation

CInit C AlnitgR

R § CFin C AFin

ran(dom AFin < R) C dom CFin

Vi:1e ran(domAOp; < R) C dom COpj;

Vi:Te (domAOp;<R)§COp; C AOp;gR

The five conditions are commonly referred to
as initialisation, finalisation, finalisation ap-
plicability, applicability and correctness. In
the behavioural interpretation, correctness is
strengthened to:

Vi:1e R§COp; CAODP;§R

32

+ +
We use the following abbreviation:

X4 —— (dom X) |

For the operations we get the following:
R3COp C AOp R

R§COp C AOp§R

A
(R§(CODPA x {Lcstate})) € (AOP# x {Lcstate})

The second conjunct can be further simpli-
fied. As the ranges of both relations are { Lcstate},
only their domains are relevant. Removing
also the complements, we get

ran(dom AOp < R) C dom COp
For finalisation, using analogous steps:
R ¢ CFin C AFin

R § CFin C AFin
A
ran(dom AFin < R) C dom CFin

+ 33

+ +
Upward Simulations
CInit§ T C Alnit simplifies to CInit§ T C Alnit.

For operations, we get:
COpyT CT3AODp
COpygTCTGAOp
A
dom COp C dom(T & dom AOp)

For finalisation, as with downward simulation,
we obtain an applicability condition compara-
ble to that for operations

Vc:CStateec(T) C domAFin = c € dom CFin

plus the “undecorated” version of the original
condition

CFin C T §AFin

+ 35

+ +

Definition 9 (Upward simulation)
Let A = (AState, Alnit, {AOD;}ic1, AFin) and C =
(CState, CInit, {COp;}ic1, CFin) be data types
where the operations may be partial.

An upward simulation is a relation T from
CState to AState satisfying, in the contract
interpretation

CInit§ T C Alnit
CFin C T AFin

Vc:CStateec(T |) C domAFin = c € domCFin

Vi:1e dom COp; C dom(T & domAOp;)

Vi:1e dom(T & domAOp;) < COp;§ T C T 3AOp;

In the behavioural interpretation, correctness
is strengthened to:

Vi:1e COp;3T C T3AOp

Theorem 4 (Upward simulations are total)
When the concrete finalisation is total, the

upward simulation T from CState to AState

is total on CState.

+ 36

+ +

Refinement in Z

To derive simulation rules in Z, interpret
initialisation, operations etc as appropriate
relations:

Init picks a suitable initial state and copies
over the sequence of inputs from the global
state. Op; consumes an input, produces an
output and the state is transformed according
to the operation:

Init is (is, 0s) = (is, (),0State’)
Opj is ((§70p;) " is, 0s, State) —
(is,0s ™ {0!Op;), OState’)
Finalisation just makes all outputs visible:
Fin is (is, 0s,8State) — ((), 0s)
Given this embedding, we can translate the
downward and upward simulation conditions

into the Z schema calculus.
+ 38

33

+ +
Transforming into Z

These rules can be written in the Z schema
calculus, where they become:

e V CState’ o CInit = 3 AState’ o Alnit A R'

e V AState; CState e
pre AOp AN R — pre COp

e VY AState; CState; CState' e
pre AOpARACOp — J AState’ ¢ R'AAOP

These are the three conditions you need to
prove to verify a refinement. You have to
prove the 2nd and 3rd conditions for all oper-
ations.

Finalisation has disappeared because output
appears at each operation step, rather than
waiting to the end.

We now explore these issues.
+ 37

Example - without input or output.

The standard Z ADT (B, Init,{On, Off }) where

-B ~On

| b:B AB

it ~bAb

B' _ Off

b’ AB
bA-b

is interpreted as the relational data type
(B, Init, {On, Off}, Fin) where

B == {(b ==true),{b== false)}

Init == {x+— (b ==true)}

On —— {({ b == false) = (b==true))}

Off == {{ b ==true) — (b == false)}

Fin — {{ b ==true |) — *, | b== false) > *}

A retrieve relation R between AState and CState
must be embedded in the relational setting
similarly to how we embedded operations:

R == {R e §AState — §CState}

The retrieve relation R between B in and N =
[x:{0,1}] given by

is represented by the relation

R-—={({b==true) —» (z==1),
(b==false) » {z==0)}

For finalisation:

R§CFin C AFin
= { definition of C }

Vg,ae(ag) € R§CFin= (a.g) € AFin
= { definition of AFin }

Vg,ae(ag) € R§CFin = (a € AStateAg = %)
= { ranCFin = {x}, domR C AState }

true

and

ran(dom AFin < R) C dom CFin
= { dom CFin = CState }

true

34

+ +
Deriving Downward Simulation in Z

Given the embedding above, we can translate
the relational refinement conditions of simu-
lations into refinement conditions for Z.

Initialisation:

CInit C AInitgR
= { definition of C }
v g,c’' e (g,c') € Clnit = (g,c) € AInitgR
= { definition of § }
Vg,c'e(g, c)e Clnit
= 32d e (g,d) € AlnitA (a',c/) €R
= { interpretation of Init and R g= *}
v c' e c' € {CInit e §CState'} =
33 e d € {Alnit ¢ 0AState}
A (@, c') € {R" e AState’ — HCState'}
= { use schema quantification }
V CState' o CInit = 3 AState’ o Alnit A R’

Applicability:

ran(dom AOp; < R) C dom COp;

V CState; AState e R N\ pre AOp; = pre COp;

Correctness:

(dom AOp; < R) § COp; C AOp; §R
V AState; CState; CState' e
R A pre AOpj A COp;
= JAState' e AOp; A R'

Together, these conditions make up the rules
for downward simulation for Z schemas in sys-
tems without input or output.

+ + + +

The relation R on AState A\ CState is a down-
ward simulation from A to C if Deriving Upward Simulation

V CState' o CInit = 3 AState’ e Alnit A R’ o i
In a similar fashion:

and for all i e I
CInit§ T C Alnit
V AState; CState e -
pre AOp; A R = pre COPp; V AState’; CState' e Clnit A T' = Alnit
V AState; CState; CState' e

pre AOp; A R A COp;
= JAState' « R' A AOp; Finalisation produces an important condition:

CFin C T g AFin
In the behavioural interpretation, the rule for =
correctness becomes V CState e 3 AState e T

V AState; CState; CState' e

R A COp; = 3 AState’ « R' A AOp; Applicability gives:
When this behavioural correctness condition dom COp; C dom(T & dom AOp;)
holds, the applicability condition above is equiv- _ -
alent to

V CState o (V AState @ T = pre AOpj) = pre COp;
V AState; CState e R = (pre AOp; < pre COp;)

+ a4 + 45

+ + + +

For correctness, we have:

dom(T &domAOp;) < COp;§ T C T §AOp; Under the assumption of totality of T, the
= applicability condition can be written
V AState!; CState; CState' e
(VAState ¢ T = pre AOp;)
= (COp; A T' = I AStatee T A AOpD))

V CState e 3 AState e T A (pre AOp; = pre COp;)

In the behavioural interpretation, the rule for
correctness becomes
Together these become:
V AState!; CState; CState' e
The relation T on AState A CState is an up- (COp; A T') = FAState e T A AOp;
ward simulation from A to C if
Downward and upward simulations allow the
same sort of changes in a refinement: precon-
ditions can be weakened and non-determinism
in postconditions resolved.

V CState e 3 AStatee T
vV AState; CState' o CInit A T' = Alnit

and for all i eI

V CState o (Y AState e T = pre AOp;) = pre COp;
V AState'; CState; CState' e But ... downward simulations do not allow

(VAState e T = pre AOp;) postponement of non-deterministic choice.
= (COp; A T' = 3 AState e T A AOp;)

35

+ +

In a downward simulation a concrete program
is simulated starting in the initial state, and
each concrete step is then matched by an ab-
stract one. They are sometimes called for-
ward simulations.

In an upward simulation an arbitrary point in a
concrete program is picked and the simulation
works backwards to see if it could be simu-
lated from some abstract initialisation. They
are sometimes called backward simulations.

This also explains why upward simulations need
to be total.

Totality is needed because the upward simu-
lation begins at an arbitrary point in the con-
crete program, and we need to be sure that
from any such point we can simulate back-
wards.

Because downward simulations begin at the
initialisation totality is not necessary for their
retrieve relations.

+ 48

Finalisation just makes all outputs visible:

Fin is (is, 0s,f§State) — ({), 0s)

Op; consumes an input, produces an output
and the state is transformed according to the
operation:

Op; is ((870p;) " is, 0s, State) —
(is,0s " (0!Op;), OState’)

seq Input t/
hd ——

seq Output Mi
70p 1Op

State State’
Op

+ +

Embedding Inputs and Outputs

How to apply to operations with input and
output?

70 10
'?O% 'Op P P

State State' State State’
Op Op

Add input and output information to the global
and local state:

G == seqInput x seq Output

State == seqgInput x seq Output x State

Init picks a suitable initial state and copies
over the sequence of inputs from the global
state.

Init is (is, 0s) — (is, (),0State’)

+ 49

+ +

We can now derive the simulation rules again,
the result is essentially the same set of rules
except that we have to quantify over inputs
and outputs.

The given finalisation is total, so the applica-
bility condition for finalisation holds. We also
have:

RgCF C AF
= { definition of C }
Vis,0s,a,is', 0s' e ((is, 0s,a), (is', 0s')) € Ry CF =
((is, 0s,a), (is', 0s')) € AF
={}
Vis,os,ae ((is, 0s,a),(().0s) € R§CF =
((is, 0s,a),((), 0s) € AF
< { predicate calculus }
Vis,os,ae ((is,o0s,a),((),os) € AF
= { definition of AF }

true

Downward simulations - Operation refine-
ment

When the retrieve relation is the identity, e.g.,
when we use the same state space in abstract
and concrete, the rules are simplified:

e V State' e CInit = Alnit

e V State e pre AOp — pre COp

e V State; State' e pre AOp A COp == AOp

2. Reducing non-determinism in after-state

—State
‘ x:N

~AOp ~COp
AState AState
| x" e {0,1} x' e {0}

We need to show that:

V State e pre AOp == pre COp
V State; State’ e pre AOp A COp = AOp

latter is (why?):

Vx,x'ex' € {0} = x'€{0,1}

+ +

Examples

1. Initialisation condition

— TimeHM
| hrs:0.23
| mins :0.59

— TimeHMInit — CTimeHMInit
| TimeHM' TimeHM'

‘ hrs' =0A mins' =0

Then (TimeHM, CTimeHMInit) is a refine-
ment of (TimeHM, CTimeHMInit).

We need to show that:

VY TimeHM' o TimeHMInit = TimeHMInit

Y hrs’ :0..23; mins':0..59 e
hrs' = 0 A mins' =0 = true

+ 53

3. Reducing non-determinism in output

_ State —Init
x:N State’
x'=1
~AOp —~COp
| AState | AState
n N n' N
nl e {0,1} nl e {0}

We need to show that (4 initialisation condi-
tion):

V State e pre AOp = pre COp
V State; State' e pre AOp A COp = AOp

latter is:

Vx; x'; nlenle{0}= nle{0,1}

37

4. Widening the pre-condition

_ State —Init
x: N State’
x'=1
~AOp___COp
| AsState | AState
n':N n':N
x=1Ane€{0,1} (x =1An e {0}V

| x=2An=2)

We need to show that (+ initialisation condi-
tion):

V State e pre AOp — pre COp
V State; State’ e pre AOp A COp — AOp

What is pre AOp and pre COp?

+ 56

Retrieve relation:

R
| AsState
CState

Conditions are:

e Y CState' o CInit = 3 AState’ o Alnit A R’

e V AState; CState e
pre AOp A R = pre COp

e V AState; CState; CState' e

pre AOpPARACOp == 3 AState’ e R'”AAOpP

+ +
Data refinement

1. Changing variable names

_AState__Alnit
x:N AState’
x'=1
__AOp
AAState
n' N

x=1An!€e{0,1}

Refinement is:

_CState . Clnit
v:N CState'
y' =
__COp
ACState
n N

y=1Ane{0,1}

2. Watch example

~TimeHM _________ TimeHMlInit
hrs :0..23 TimeHM'
mins : 0..59

~ShowTime _____ResetTime
ETimeHM | ATimeHM
hrs!: 0..23 | hrs?:0..23
mins! : 0..59] 0..59

| hrs = hrs! hrs' = hrs?
mins = mins! ‘ mins' = mins?

Refine this to:

~CTimeHM ______ CTimeHMInit
time : N x N CTimeHM'
time' = (0,0)
+ 59

+ +
— CShowTime — CResetTime
| ECTimeHM | ACTimeHM
| hrs!:0.23 | hrs?:0..23
| mins! :0..59 mins? :0..59

time' = (hrs?, mins?)

time.1 = hrs!

‘ time.2 = mins!

Retrieve relation:

R
| TimeHM
| CTimeHMm

VY CTimeHM' « CTimeHMInit =
3 TimeHM' e TimeHMInit A R’
Y TimeHM; CTimeHM e

pre ShowTime AN R == pre CShowTime

YV TimeHM; CTimeHM; CTimeHM' o

pre ShowTime A R AN CShowTime =

3 TimeHM' ¢ R' A ShowTime

etc
+ 60
+

_ CEnter _ ClLeave

| Acstate | ACsState

p?: Person p?: Person
#1 < Max p? € ranl

p? Zranl | ran/' =ran/\ {p?}

I'=17(p?)

What is R?

What are the conditions we have to prove?

39

3. Changing sets into sequences

[Person]
_ AState . Alnit
d : P Person AState’
#d < Max d=0
— AEnter —AlLeave
| AAState | AAState
p? : Person p?: Person
#d < Max p?ed
| p?¢d ‘d’:d\{p?}
| d'=du{p?}

Refinement uses sequences instead of sets to
record the people in the class:

_ CState — CInit
| : iseqPerson CState'
#1 < Max I'={)
+ 61
+ +
Example

The abstract specification evaluates the mean
of a set of real numbers in a bag.

— AState —Alnit
| b:bagR AState’
b =]
— Enterp —Meany
| AAState | ZAState
r7:R m!: R
b =bw[r?] b#£[]Am! = (sb)/#b

The concrete specification only maintains a
running sum and a count of the items in the

bag.

_ CState CInit
| s:R CsState’

| n:N s'=0An"=0

+ 63

Enterc

| Meanc

| =Cstate

m!: R
n#0Aml=s/n

The required retrieve relation is

R
| Astate
CState

s=xbAn=4#b

+ +

Other approaches to refinement

In process algebras there are a range of refine-
ment relations, each with different strengths.

These include trace and failure-divergence re-
finement, plus equivalences such as weak and
strong bisimulation.

Trace refinement

Trace refinement checks that safety proper-
ties are preserved.

These are characterised by saying 'nothing
bad happens’.

If nothing bad happens in the abstract spec-
ification, then nothing bad should happen in
a refinement.

This is achieved by asking for trace subset-
ting.
+ 66

40

Unifying Concurrent and Relational Re-
finement

Why is a process algebra blessed with a
multitude of refinement relations, whereas
a language like Z only has one notion of
refinement?

How can one use Z to specify concurrent
systems?

What is the difference between failures-
divergences refinement and an
input/output model?

+ +

A trace is a sequence of events that can hap-
pen in the process.

E.g., for P = a; b; stop the following are all
valid traces of P:

e, (a), (a, b)

We normally write (a, b) as ab.

The set of traces of a specification (or pro-
cess) P is denoted Traces(P).

Trace refinement is defined by saying Py is
refined by P; (written Py C¢ P;) whenever:

Traces(P) C Traces(Py)
Examples:
a; b; stop Cy, a; stop

a; b; stop Cy, stop

+ 67

+ +
But:

a; b; c; stop ¢ a; c; stop

a; b; c; stop Lt a; b; c; d; stop

Trace refinement fails to distinguish between
processes that we would naturally think of as
different (technically - be able to construct
tests that distinguish them).

For example, we can’'t distinguish between
a; (b; stop]c; stop)

and

(a; b; stop)[(a; c; stop)

Failures record more information. A failure is
a pair (tr, X) where tr is a trace of the process,
and X is a refusal set.

A refusal set is a record of events that the
process would refuse after that trace.
+ 68

Failures-divergences refinement

The traces of events are recorded as opposed
to an input/output relation.

For example, in failures-divergences refinement
a process is modelled by the triple (A, F,D)
where A is its alphabet, F is its failures and
D is its divergences.

The failures of a process are pairs (t, X) where
t is a finite sequence of events that the
process may undergo and X is a set of events
the process may refuse to perform after
undergoing t.

A process Q is a refinement of a process P if

failures Q C failures P
divergences @ C divergences P

41

+ +
Failures(P) is the set of all failures of the pro-

cess P.

E.g., for P = a; b; stop the following are fail-
ures of P:

(e,{b}),(a.{a}), (ab,{a, b})

Failures refinement asks for subsetting of fail-
ure sets:

Py is a failures refinement of Py if:

Failures(Py) C Failures(Py)

We can now distinguish between
a; (b; stop[|c; stop)
and

(a; b; stop)]](a; c; stop)

Why? Calculate their failures.
+ 69

+ +

Differences

Relational refinement is only concerned with
the relation between input and output, since
that is all that is observed in the global state.

In a process algebra the event names have
an importance not attributed to them in the
relational setting.

Relational refinement looks at reduction of
non-determinism visible in the global state as
given by programs.

Failures-divergences refinement is not just
concerned with traces but also with refusals
and divergences.

The relationship between these two views is
not immediately obvious.

cf. Work of Bolton and Davies shows that
failures-divergences refinement is not the same
as relational refinement as in Z.

+ 71

Adding refusals to relational refinement

The basic observations the relational model
makes are thus very weak:

e make more observations,

e the only way we can do this is to increase
the expressitivity of the finalisation.

Generalise finalisation from being
(is, 0s,68State) — ((), 0s)
to becoming

(is, 0s,6State) — ((), 0s, E)

What goes in E depends on what we want to
observe.

+ 72

+ +
Simulation rules - no input or output

1. Downward simulation

R§CFin C AFin

becomes
VRe({i:I|-preCOp;}C{i:I|-preAOp;})

This places no extra conditions on a
downward simulation.

2. Upward simulation
CFin C T §AFin
becomes
V CState ¢« 3 AState e TA
({i:I|-preCOp;} C{i:I|-preAOp;})
This is,
V CState e 3 AStateeVi:Ie ...
instead of
Vi:I1eV CState e JAStatee ...

+ 74

42

Example - no input or output

_B ~On
b:B AB
/
it | ~bAb
!
B _ Off
b AB
bA-b

Make E refusals, finalisation changes from
Fin=={ ({ b==true) — x,...}
to
Fin == { { b == true) — {On},
(b==true)) — 2,

(b== false) — {Of [},
(b== false) — @}

Notes

We have extended our observations beyond
acceptance of traces and now record refusals.

This appears in the simulation rules via the
quantification over i that occurs within the
scope of the quantification over AState and
CState.

Although we began by embedding refusals in a
finalisation, the conditions can be unwound to
be expressed in terms of the schema calculus
directly.

The conditions extracted from this finalisation
requirement work with both the blocking and
the non-blocking model of preconditions.

+ +

The correspondence with
failures-divergences refinement

This relational refinement corresponds in some
sense to failures-divergences refinement.

In some sense means it is modulo an
encoding of the specification as a set of events,
however, this encoding is natural and
uncontroversial.

Theorem 5 In the blocking model, relational
refinement with extended finalisations

corresponds to failures-divergences refinement.

In the non-blocking model the encoding is
slightly different, e.g., there are divergences,
but no refusals beyond those after a
divergence.

Theorem 6 In the non-blocking model, rela-
tional refinement with extended finalisations

corresponds to failures-divergences refinement.

+ 76

+ +

Refusals of an event with output:

e Demonic - the environment cannot
influence the output, and there are
refusals due to a particular output being
chosen, or

e Angelic - the environment can influence
the output, and there are no such refusals.

Finalisation includes these refusals.

+ 78

43

Dealing with input and output (blocking
model)

Describe the correct corresponding
process and its failures and divergences,

Define the finalisation,

e Prove that relational refinement is the same
as failures-divergences refinement, and

e Extract simulation rules from the relational
refinement, expressing them in the schema
calculus.

+ +
The simulation rules

1. Downward simulation in the demonic model
Theorem 7 The condition R§CFin C AFin in
the demonic model is subsumed by the normal
applicability and correctness rules.

2. Upward simulation in the demonic model

Example 1

A and C are not failures-divergences equiva-
lent.

A has failure ((B),{ TVF, ESF}) which is not
present in C

To recover failures-divergences refinement in

the blocking model one needs to add the strength-

ened applicability condition:

V CState e I AStateceVi: I e
T A (pre AOp; = pre COp;j)

+ 79

Example 2

This example shows that we need an addi-
tional condition on refusal sets due to outputs
as well.

Now the strengthened applicability condition
holds

- each state simple, luxury, tv and ensuite
have operations HasES and HasTV enabled -

so this does not pick up the different refusal
information due to the outputs.

+ +

Downward simulations - summary

Outputs: [none | Demonic | Angelic
Init Init

App App | -

Corr CorrBlock

Fin - | FinAng

Init V CState’ o CInit = 3 AState’ @ Alnit A R’
App VR; i:I, Input e pre AOp; = pre COp;

CorrBlock Vi:I; Input; Output; R; CState' e
COp; = FAState’ « R' A AOp;

FinAng VY R; i: I, Input; Output e
Pre AOp; = Pre COp;

where in angelic rules we alter the definition
of pre Op to include existential quantification
of the after state only, i.e.,

Pre Op = 3 State’ e Op.

+ 82

44

Simulation rules

Based on maximal refusal sets.
Sim = (I x Input) + Output
E : Sim represents:

dom E disabled;
dom E enabled, outputs in E chosen

encoded as Maxref (E, State)
The finalisation condition is:

V CState; E : Sim « Maxref(E, CState)
= JAState; E' C E ¢ T A MaxRef(E', AState)

Simpler for the angelic model of outputs.

+ +

Upward simulations - summary

[Outputs: [none | Demonic | Angelic
Init Init

App -

Corr CorrBlock

Fin FinRef | FinDem | FinAng

Init V T’ e CInit = Alnit

CorrBlock Vi: I; Input; Output; T': CState e
COpj = JAStatee T N AOp;

FinRef V CState e 3 AState e TAV i : I, Input e
pre AOp; = pre COp;

FinDem V CState; E : Sime
Maxref (E, CState) = ...

FinAng V CState e 3 AStatee TA
VInput; Output; i:1e Pre AOp; = Pre COp;

+ 83

Relations for Specifying the Invariant Behavior
of Object Collaborations

Stephanie Balzer

ETH Zurich (Swiss Federal Institute of Technology)
Department of Computer Science
CH-8092 Ziirich, Switzerland
stephanie.balzer@inf.ethz.ch

Abstract. The missing first-class support of object collaborations in
class-based object-oriented programming languages is increasingly criti-
cized as it results in distributing the information about such collabora-
tions across multiple classes. In response, the introduction of first-class
relationships is proposed. Relationships are the programming language
abstractions that encapsulate the collaborations that emerge from the
interacting objects. With first-class support, relationships exist in addi-
tion to classes and can — like classes — define their own members, such
as attributes and methods. Our work enriches the concept of first-class
relationships with the notion of structural invariants. Structural invari-
ants specify the invariant behavior of object collaborations. They restrict
the participation of objects in relationships and are expressed in terms
of mathematical relations.

1 Introduction

Common class-based object-oriented programming languages do not provide the
necessary abstractions to reflect object collaborations. Object collaborations are
implemented using (unidirectional) references. This approximation results in the
loss of a global view as the information about a given collaboration may be
distributed across multiple classes [1]. In response, numerous authors propose
to preserve collaborations from the design to the implementation stage [2—4,1,
5]. Whereas Noble and Grundy [4] stay within the limits of the programming
language and represent collaborations explicitly using separate classes, Rum-
baugh [2], Albano et al. [3], and Bierman and Wren [1] go further and extend
the programming language to include relationships, the abstractions necessary
to encapsulate these object collaborations. Relationships together with classes
then constitute the first-class notions of the programming language. Like classes,
relationships can also declare attributes and methods.

Our work relies on the foundations of previous work on first-class relation-
ships. However, we significantly differ from existing approaches in that we include
invariants to allow reasoning about programs with classes and relationships. The
application of invariants to class-based object-oriented programming and spec-
ification languages [6-10] has already proved viable to express the consistency

conditions of the instances of a class. We want to exploit the benefits of in-
variants also to specify the invariant behavior of object collaborations. We thus
introduce the concepts of value-based and structural invariants [11]. Unlike tra-
ditional class-based invariants, relationship invariants are specified on the collab-
orating classes. Due to a shortage of space, we only discuss structural invariants
in this paper.

An important contribution of our work is the observation that structural
invariants can be expressed by means of mathematical relations. Using relations,
we have the full mathematical expressiveness at our disposal when restricting
relationship participation. The mathematical basis further allows us to reason
on the interdependences between structural invariants and any operations that
change relationship participation.

The remainder of this paper is structured as follows: Section 2 provides a short
introduction to the modeling of object collaborations. Section3 discusses the
concept of structural invariants and shows their application to the specification
of object collaborations. Section 4 describes future work and Section 5 concludes
this paper.

2 Example

Figure 1 depicts an Entity-Relationship (ER) diagram [12] modeling parts of a
person information system, which serves as the running example of this paper.
The example illustrates the different collaborations a person can take part in. For
example, a person can be a writer and thus become the author of books. Addi-
tionally (or alternatively) a person can be a member of a golf club. Figure 1 also
displays the cardinality and participation constraints [13] of the relationships. In
the case of the author relationship, for example, these constraints specify that
every book needs to have at least one author.

Fig. 1. Person Information System (ER)

Modeling the person information system (see Figure 1) using first-class re-
lationships results in the classes Person, Book, GolfClub, and Hospital and the
relationships Author, Member, Patient, and Marriage.

46

3 Structural Invariants

Structural invariants restrict the participation of objects in relationships based
on the occurrence of objects. A possible restriction is, for example, to require
that a particular object participates with at most one other object in a specific
relationship. We use mathematical relations' to express structural invariants.
Using relations, we have the full mathematical expressiveness and rigor at our
disposal for defining participation restriction. The mathematical basis of our
work is also the distinguishing feature that separates structural invariants from
related concepts, such as the cardinality and participation constraints of rela-
tional databases [13] and the multiplicities as proposed by Bierman and Wren [1].

Applying structural invariants to the person information system results in
surjective relations for Author, Member, and Patient and a symmetric, irreflecive
partial injection for Marriage.

Figure 2 illustrates the concepts introduced so far on the basis of the Author
relationship, using a Java-like notation. The relationship has the participant
classes Person and Book. We use role names to denote the role of a participant
in a relationship. For instance, a person plays the role of a writer, and a book
the one of the author’s work. Roles are particularly helpful when a relationship
involves instances of the same class. The relationship further declares the at-
tribute submissionDate, which records the date the manuscript was submitted.
The structural invariant of the Author relationship is introduced by the keyword
invariant and specifies a surjective relation.

relationship Author {
participants(Person writer, Book work);

//structural invariant
invariant
surjectiveRelation(writer, work)

//attribute of relationship Author
Date submissionDate;

}
Fig. 2. Relationship Author

An illustration of the structural invariant of the Author relationship is given
in Figure 3. The figure depicts several illustration forms: mathematical relations

! To clarify the terminology, note that we use the term relationship to refer to the
abstraction that encapsulates object collaborations and use the mathematical term
relation to denote the set of participant pairs of relationships.

47

in the upper right corner, and a VEN diagram-like representation of relations
in the lower right corner. If expressible in terms of cardinality and participation
constraints, the respective ER diagram representation is provided additionally.
Especially the VEN diagram-like representation nicely illustrates the surjectivity
of the relation: every book is connected to a person at least through one line,
but not every person is connected to a book.

surjective relation
AUTHOR: PERSON <—>> BOOK

PERSON

PERSON BOOK

Fig. 3. Illustrations of Structural Invariants

4 Future Work

Structural invariants clearly must hold over the entire lifespan of relationships.
Any programming language together with its supportive system implementing
the concepts introduced in this paper thus has to provide means, preferably
static ones, to maintain those invariants.

Before starting out implementing a particular invariant monitoring mecha-
nism, we specify the semantics of structural invariants. Our current work thus
involves the modeling of the interdependences between structural invariants and
any operations that change relationship participation. We use Event-B [14] for
this purpose, a methodology to model software systems based on discrete math-
ematics and refinement. The resulting model will define the semantics of struc-
tural invariants by indicating the invariant-maintaining actions for every kind of
relation and operation applied.

5 Concluding Remarks

We have presented in this paper our ongoing work on the specification of ob-
ject collaborations. The approach we describe relies on the concept of first-class
relationships, the programming language abstraction to encapsulate the collab-
orations that emerge from the interacting instances of classes. The main contri-
bution of our work is to include structural invariants to allow the specification

48

of the invariant behavior of object collaborations. Structural invariants are ex-
pressed in terms of mathematical relations, which in turn facilitate the definition
of the semantics of structural invariants.

References

10.

11.

12.

13.

14.

Bierman, G.M., Wren, A.: First-class relationships in an object-oriented language.
In Black, A.P., ed.: ECOOP. Volume 3586 of Lecture Notes in Computer Science.,
Springer-Verlag GmbH (2005) 262286

Rumbaugh, J.: Relations as semantic constructs in an object-oriented language. In:
OOPSLA ’87: Conference proceedings on Object-oriented programming systems,
languages and applications, New York, NY, USA, ACM Press (1987) 466-481
Albano, A., Ghelli, G., Orsini, R.: A relationship mechanism for a strongly typed
object-oriented database programming language. In: VLDB. (1991) 565-575
Noble, J., Grundy, J.: Explicit relationships in object-oriented development. In
Meyer, B., ed.: TOOLS’95: Conference proceedings on the Technology of Object-
Oriented Languages and Systems, Prentice-Hall (1995) 211-226

Thomas, D.A.: On the next move in programming. Journal of Object Technology
5 (2006) 7-11

Meyer, B.: Object-Oriented Software Construction. Second edn. Prentice Hall
Professional Technical Reference (1997)

Meyer, B.: Eiffel: The Language. Prentice Hall Professional Technical Reference
(1991)

Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In Barthe, G., Burdy, L., Huisman, M., Lanet, J.L., Muntean, T., eds.:
Construction and Analysis of Safe, Secure, and Interoperable Smart Devices: In-
ternational Workshop, CASSIS 2004. Volume 3362 of Lecture Notes in Computer
Science., Springer-Verlag GmbH (2005) 49-69

Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for java. Technical Report 98-06-rev29, Iowa State
University (2006)

Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of jml tools and applications. STTT’05: Interna-
tional Journal on Software Tools for Technology Transfer 7 (2005) 212-232
Balzer, S., Eugster, P., Gross, T.R.: Value-based and structural invariants for
object relationships. Technical report, ETH Zurich (2006)

Chen, P.P.: The entity-relationship model - toward a unified view of data. ACM
Trans. Database Syst. 1 (1976) 9-36

Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 2nd Edition.
Second edn. Benjamin/Cummings (1994)

Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (1996)

49

RelAPS: A Proof System for Relational
Categories

Joel Glanfield and Michael Winter*

Department of Computer Science,
Brock University,
St. Catharines, Ontario, Canada, L2S 3A1
{jg00de |mwinter}@brocku.ca

Abstract. This paper provides a short introduction to the RelAPS sys-
tem — an interactive system assisting in proving relation-algebraic theo-
rems.

1 Introduction

In the past thirty years relational methods have become of fundamental impor-
tance in computer science. Especially, theories of relations based on category
theory are used as a tool to describe programs and their behavior. Therefore,
proving relation-algebraic theorems has become a part of certain areas of com-
puter science. These proofs usually follow a specific style, e.g., they might be
based on chains of inclusions. Since theorem-proving by hand can be rather
error-prone and tedious we developed a system that would aid in the imita-
tion of typical relation-algebraic proofs while eliminating some of the negative
aspects.

The aim of the RelAPS system is to provide a graphical environment where a
user may prove various theorems, within the context of the category of relations,
as if the proof were being done by hand [4]. It should be noted that automatic
theorem-proving is not a goal of the system, i.e., RelAPS is not a theorem-prover.

Contrary to the RALF system [5,6] RelAPS is text-based and does not use
a tree representation of the corresponding formula/term object. It should be
mentioned that RelAPS focuses on a subset of the formulae, and is, therefore,
not as general as RALF. However, future extensions of RelAPS aim in a different
direction (see Section 5), which motivates this restriction.

2 Relational Preliminaries

Throughout this paper, we use the following notation. To indicate that a mor-
phism R of a category R has source A and target B we write R : A — B. The

* The author gratefully acknowledges support from the Natural Sciences and Engi-
neering Research Council of Canada.

collection of all morphisms R : A — B is denoted by R[A, B] and the compo-
sition of a morphism R : A — B followed by a morphism S : B — C by R;S.
Last but not least, the identity morphism on A is denoted by I 4.

We recall briefly the notion of a Schroder category introduced in [7]. Similar
approaches were taken in [2,8,9]. Within the numerous equivalent definitions of
Schroder categories we have chosen the following axiomatization:

Definition 1. A Schrider category R is a category satisfying the following:

1. For all objects A and B the collection R[A, B] is a Boolean algebra. Meet,
join, negation, least and greatest element and the induced ordering are de-
noted by MU, ,llap, Tap and C, respectively. The morphisms are also
called relations.

2. There is a unary operation ~ (called converse) mapping a relation R : A —
B to a relation R~ : B — A.

8. For all relations Q : A —- B,R: B — C and S : A — C the modular law
Q;RNSCQ;(RNQ~;8) holds.

4. There is a binary operation \ (called right residual) defined by Q; RC S <=
RCQ\S forallQ:A— B, R:B—C and S: A— C.

Notice, that we may define an operation / (called left residual) by S/R =

(R\S~) . This operation is characterized by Q; RC S <= Q C S/R for all
Q:A— B, R:B— (Cand S:A— C. However, both residuals can be defined
in terms of the other operations, i.e., we have S/R = S; R~ and Q\S = Q~; S.

The RelAPS system uses a formal language introduced in [10]. The language
is based on two kinds of entities - objects and relations. Relational variables are
typed by object variables, and consequently, there are quantifiers for each kind
of variable. For details we refer to [10].

Since the system is currently limited to the use of ASCII characters, it was
necessary to develop a grammar (using ASCII characters) that would represent
the language described in [10]. For example, the user may wish to enter formulae
requiring the use of any of the symbols mentioned in Definition 1, but alternate
representations would be required within this environment. Table 1 displays the
translation of the necessary symbols into related ASCII character-tokens.

Expanding all definitions used we finally end up with the following set of
axioms provided in the language of RelAPS:

(A1) forall a forall b forall Q:a->b forall R:a->b forall S:a—>b
(Q&R) &S=Q& (R&S)

(A2) forall a forall b forall Q:a->b forall R:a->b forall S:a->b
(QIR) Is=QI (RIS)

(A3) forall a forall b forall Q:a—>b forall R:a->b Q&R=R&Q
(A4) forall a forall b forall Q:a->b forall R:a->b QIR=RIQ
(A5) forall a forall b forall Q:a->b forall R:a->b Q| (Q&R)=Q
(A6) forall a forall b forall Q:a->b forall R:a->b Q&(QIR)=Q
(A7) forall a forall b forall Q:a->b forall R:a->b

Q<=R <=> Q&R=Q

o1

Table 1. RelAPS Tokens

Token ASCII

A forall

3 exists

mn &

I |
J_Lab Oab
TTab Lab

I, Ia

C <=

\ \
<~ <=>
— =>

R: A — B|R:A->B

(A8) forall a forall b forall Q:a->b forall R:a->b forall S:a->b
Q& (R18)=(Q&R) | (Q&S)

(A9) forall a forall b forall Q:a->b Q&0ab = QOab
(A10) forall a forall b forall Q:a->b Ql0ab = Q
(A11) forall a forall b forall Q:a->b Q&Lab = Q
(A12) forall a forall b forall Q:a->b Q|Lab = Lab
(A13) forall a forall b forall Q:a->b Q&-Q = Oab
(A14) forall a forall b forall Q:a->b Q|-Q = Lab

(A15) forall a forall b forall c forall d
forall Q:a->b forall R:b->c forall S:c->d
(Q;R);5=Q; (R;3)
(A16) forall a forall b forall Q:a->b Ia;Q=Q
(A17) forall a forall b forall Q:a->b Q;Ib=Q
(A18) forall a forall b forall c
forall Q:a->b forall R:b->c forall S:a->c
Q;R&S<=Q; (R"&Q;S)
(A19) forall a forall b forall c
forall Q:a->b forall R:a->c forall X:b->c
X<=Q\R <=> Q;X<=R

3 The System

The RelAPS system is designed in such a manner to allow the greatest amount
of flexibility with respect to the style of proving different theorems. The sys-
tem accepts Horn-style formulae as input, using the notation explained in the
previous section. The current version of RelAPS accept formulae of the style

52

[quantifiers|[(A11 A ... NA1n, = Bi) Ao A (Apa Ao AN Ay Ny = B

where [quanti fiers] is a list of universal quantifiers with object and/or relational
variables, and Ay 1,...,Am N, and Bj...Bjy are arbitrary atomic formulae.
Notice that the system also allows A < B in the mantissa for atomic formulae
A and B since this is equivalent to (A = B) A (B = A).

The interface itself is divided into different ‘windows’ or areas where the
user can work with different aspects of a single formula. It is this concept that
increases flexibility with respect to proof-styles. For example, the interface has
areas for dealing with assumptions and assertions respectively, and another area
designated as the working area where the user performs derivations. Within
the assumption and assertions areas, the user may select different subterms or
subformulae, move them to the working area, perform some derivation, and then
apply the result to the original assumption or assertion. Hence, the metalogical
rules, i.e., the rules of the sequence calculus restricted to the subset of formulae
used in the system, are actually handled by the layout of the interface.

Other beneficial aspects of the system include, but are not limited to, the
options to prove monotonicity, associativity, and commutativity - in order to
allow the automatic use of these rules without having to continually specify
when to use them.

4 Example

As an example, we will describe how a proof of the formula
QLR < QNR=1g4

would be completed using RelAPS. First of all, the formula is entered into the
system (with the appropriate typing) as

forall a forall b forall Q:a->b forall R:a->b Q<=R <=> Q&-R=0ab

We then specify that the equivalence will be proven by separating the related
implications. Both statements are to be proven separately. Starting with the first
implication

QERSQHE:J»UJ),

we first use the deduction theorem by moving the assumption into the respective
assumption window. Working with the assertion, we select QMR with the mouse,
and move the term to the working area. We then perform a derivation by selecting
subterms and applying appropriate axioms giving

QNMRCRNR= 1,

which concludes this proof.

53

Next, we prove the converse implication in a similar manner, namely, by first
separating the assumption and assertion. Then we select the entire assertion and
move it into the working area. Using axiom (A7) (an equivalence) we modify the
assertion getting QMR = Q). We replace the assertion by the modified one, select
the term @ M R, move it to the working area, and finish the proof equationally
similar to the first proof.

Since both implications have been derived appropriately, the system consid-
ers the proof of the original equivalence to be complete. The theorem is then
automatically appended to the system’s collection of theorems.

5 Future Work

Although there are many possible extensions to the RelAPS system, the next
phases will involve implementation of modules to consider decidable fragments
of relational theory, and to generate IATEX 2¢ output of completed derivations.

As for the first, it has been shown in [1] that binary operations including
<H, . "> are decidable. As for the second, having a WTEX 2¢ generator will allow
the user to conveniently generate proof-text that may be included in publications
with little or no modification.

References

1. Dougherty D., Gutiérrez C.: Normal Forms and Reduction for Theories of Binary
Relations. LNCS 1833 (2000), 95-109.

2. Furusawa H., Kahl W.: A Study on Symmetric Quotients. Technical Report 1998-
06, University of the Federal Armed Forces Munich (1998)

3. Freyd P., Scedrov A.: Categories, Allegories. North-Holland (1990).

4. Glanfield J.: ReWiRe — Reasoning With Relations. COSC 4F90 Computing
Project, Brock University (2006)

5. Hattensperger C., Berghammer R., Schmidt G.: RALF - A Relation-Algebraic
Formula Manipulation System and Proof Checker. Algebraic Methodology and
Software Technology (AMAST ’93), Springer (1993), 405-406.

6. Hattensperger C., Kempf P.: Towards a Formal Framework for Heterogeneous Re-
lation Algebra. Inf. Sci. 119(3-4) (1999), 193-203.

7. Olivier J.P., Serrato D.: Catégories de Dedekind. Morphismes dans les Catégories
de Schroder. C.R. Acad. Sci. Paris 290 (1980), 939-941.

8. Schmidt G., Strohlein T.: Relationen und Graphen. Springer (1989); English ver-
sion: Relations and Graphs. Discrete Mathematics for Computer Scientists, EATCS
Monographs on Theoret. Comput. Sci., Springer (1993).

9. Winter M.: Strukturtheorie heterogener Relationenalgebren mit Anwendung auf
Nichtdetermismus in Programmiersprachen. Dissertationsverlag NG Kopierladen
GmbH, Miinchen (1998)

10. Winter M.: A new Algebraic Approach to L-Fuzzy Relations Convenient to Study
Crispness. INS Information Science 139, 233-252 (2001).

54

f-Generated Kleene Algebra

Peter Hofner

Institut fiir Informatik, Universitdat Augsburg
D-86135 Augsburg, Germany

hoefner@informatik.uni-augsburg.de

Abstract. When describing iterations or loops it is well known and
common to use the Kleene star. We first show an example for iteration,
where the star operation is not adequate, since it just iterate and do not
modify the iterated element. Therefore we introduce, as a generalisation
of Kleene algebra, the structure of f-generated Kleene algebra, that have
an iteration operation which depends on a function f and modify the
iterated element in each step.

1 Introduction and Motivation

The use of Kleene star for describing iterations or loops is well known and
common (see e.g. [3,5]). From a theoretical point of view, a* is the least fixed
point of Az.1 + a - x and therefore characterises finite iteration. Nevertheless, as
we will see, in some situations it is useful to have an additional function, which
modifies an iterated element a in each step; i.e., instead of calculating a-a-...-a,
we want to get a- f(a)-...- f""1(a). More precisely, Ax.1 + a - z is replaced by
Ax.1+a- f(z). As far as we know this generalisation of Kleene star has not been
discussed before. Let us motivate our idea by a concrete example.

Example 1.1 In [4] we presented an algebra of hybrid systems, which is based
on (lazy) Kleene algebra and uses sets of trajectories as elements.® A trajectory
t is a pair (d, g), where d € R and g : [0,d] — V, where d is the duration of the
trajectory and V a set of (possible) values. We define composition of trajectories
(dlagl) and (dg,gg) as

_ J{di+da2,9)if g1(d1) = g2(0)
(d1,91) - (d2, 92) =us {undeﬁned otherwise
with g(z) = gi1(z) for all x € [0,d;] and g(x + d1) = g2(x) for all € [0, dy].
Since the algebra uses sets of trajectories as elements, the composition is lifted
pointwise to those sets.

! For lack of space, we only recapitulate the definition and composition of trajectories
and not the whole algebra. Furthermore, we restrict the set of durations to]Rar ,
which simplifies the structure and excludes trajectories with infinite length.

We assume the set, which only includes the trajectory
(2, S“””) This single set is called tg,. It describes a single
swing of a pendulum. The element ¢ describes sequences
of swings, but does not consider the fact that the pendu-]

. . . 0 2m
lum gets slower by gravity, friction and so on. a Sketch of tuip

2 f-Generated Kleene Algebra

Motivated by the previous example, we now define an iteration operator w.r.t.
to a function f. In the remainder we will use a, b, c... for arbitrary elements of
an idempotent semiring S.

Definition 2.1 Let f : S — S be a homomorphism w.r.t. addition and mul-
tiplication, i.e., f(a +b) = f(a) + f(b), f(0) = 0 and f(a-b) = f(a)- f(b),
f(1) = 1.2 An f-generated Kleene algebra is a structure (S,+,-,0,1,%), such
that (S, +,-,0,1) is an idempotent semiring and ** satisfies

14+a- f(a™) < a (f1) l4+a-fb)<b=a™*<b (f2)

Similarly to the Kleene star, * is the least prefixed point of the function Az.1+a-
f(z) and (f1) can be strengthened to an equation. But in contrast to the Kleene
star, we do not postulate the symmetrical laws of (f1) and (f2), since this would
imply a - a” = af* - a. Using fixpoint iteration, we calculate for Az.1 4+ a - f(z):

{EO:O
x1=14a- f(
xo=14a- f(x1
x3=14a- f(z2
rg=14+a- f(xs

Zo

1

1+

1—|—a—|—a f(a)
l+ata-f(a)+a-fa)- f(f(a))

o — — —

In general, we get
n—11i—1

In—1+a ,fxnl ZH]U (1)

1=0 5=0
-1
where, as usual, [[z = 1. Before returning to our example of Section 1, we give

1=0
some other simple examples, which illustrate that there are more applications of
the theory than trajectories.

Example 2.2
1. The standard Kleene star is subsumed by # when choosing f as identity.
2. Using infinite lists, the f-generated Kleene star corresponds to

sum scan [1,a, f(a), f%(a),...]
in functional programming, which is discussed by Bird in [1]. O

2 In the setting of semirings (monoids) f(0) = 0 does not follow from f(a +b) =
f(a) + f(b); this implication only holds in groups, rings,

56

Example 1.1 continued By setting f((d,g)) =as (d, %), we are able to illus-
trate the difference between ¢, and t/f

n sin*

A characteristic element of t% just
fx
t

sin

repeats tgy, for a finite number of times; whereas a characteristic element of
repeats and modifies tgjy,.

L L | L L |

L 1 L 1
0 2nm 0 2nm
Sketch of an element of t%, Sketch of an element of tgn
Therefore we are able to describe a pendulum considering changes in time,
like gravity, without changing the trajectory itself. Of course the function of our
example as well as the trajectory are freely chosen and do not reflect reality.
If one wants to describe a real pendulum, the trajectory and the function will
getting much more complex; but do not change the idea of /. a
Of course, it is also possible to change the duration using another homomorphism

f; e.g., to simulate Zeno effects one can set the function f((d, g(z))) = (%,9(%)).

3 Properties

In this section we discuss some properties of . Since the Kleene star is a very
special f-generated star, we cannot expect to get all the (well-known) properties
of star in our setting. Therefore we also discuss those properties, which hold for
Kleene star but not for the f-generated one.

First we give some useful properties of homomorphisms.

Lemma 3.1 Let (M,+,0) be a monoid and f : M — M be a homomorphism
w.r.t. addition.

1. f preserves idempotency.
2. f is isotone, i.e, a < b = f(a) < f(b).

Following Kozen’s approach to Kleene algebra with tests [5], we say that a f-
generated Kleene algebra with tests is a f-generated Kleene algebra S with a
distinguished Boolean subalgebra test(S) of [0,1] with greatest element 1 and
least element 0. Using tests yields an interesting result concerning f which follows
directly from the homomorphism properties.

Lemma 3.2 If test(S) is mazimal, i.e., there is no Boolean subalgebra B of
[0, 1] with test(S) C B, then f(p) € test(S) for all p € test(S).

In the remainder of the section we discuss some properties of . First, we get
immediately from (f1) by lattice algebra

1<a® and a-f(a”) <a’™. (2)

Furthermore, we get laws similar to the standard Kleene star.

o7

Lemma 3.3
1. TI f7(a) < a’* for alln € N,
=0

2. af* <af*. af*,

3. a<1=adaF =1,
4. a<b= af* <bf,
5. af* < (af)f.
Proof.

n—1
1. By (1) we get [] f’(a) < z, and x,_; < x,. Then the claim follows by
3=0

induction.
2. By (2) and isotony, we get 1 < a’* = af* < al* . af*.
3. By lattice algebra, homomorphism and (f2), we get
a<l e l+a<l e l+a-f(1)<1=a*<1.
The other direction is by (2).
4. By (f2), assumption, isotony and (f1)
af* <bF <= 14a- f(bF) <P < 1+0b- f(bF) <bF < true.
5. By 4., homomorphism and (2) (twice), we get
a* < (o) < a<af & a f(1) <o = a- f(aF) <af = true.
O

Due to Example 2.2.1 the definition of * is a generalisation of the standard
Kleene star. Therefore we cannot expect that all properties of *, like leapfrog,
hold for it. More precisely, we have

Lemma 3.4
1. af - aP* £ af*.
2. (af)f £ .

3. ar - (b- qf*)-f* £ (a+b)* and (a+0b)* £af - (b-af)f.
4.a-(b-a)* £(a-b)*-a and (a-b)-a<La-(b-a).
The proof is straightforward by choosing explicit elements. E.g., a-a < a/*-a/*
and a - a £ o’ implies the first item.
Since the function f often simulates physical behaviours, it will explicitly oc-

cur in algebraic expressions. Therefore we briefly discuss the interaction between
f and .

Lemma 3.5 Assume a f-generated Kleene algebra. Then f(a)® < f(a®). If f
1s even universally disjunctive, then

Fla)f = fa™).

Proof. The first claim (f(a)™ < f(a'*)) is immediate by induction (f2) and the
assumed properties of f. Using u-fusion together with a® = p,(1 4+ a- f(z))
and f(@)F* = po(1+ f(a) - f(z)), we get

f(l+a- f(z)) <1+ fla)- f(f(z)) = f(a™) <a.

The antecedent holds since f is a homomorphism. ad

58

4 Conclusion and Outlook

Sumarising, we have showed that the Kleene star is not the best in some situa-
tions. Therefore we introduced an f-generated Kleene star, which modifies the
iterated element in each step. The new operator can be used e.g. in describ-
ing physical behaviours like a pendulum. We have also presented some basic
properties of f*.

Since this research is still ongoing, there is a lot of further work. First it
will be interesting to find more properties of the homomorphism f and the f-
generated Kleene star. Especially the interaction of both should be discussed
in more detail. Also the connection to functional programming (Example 2.2.2)
will help to find more useful properties. This will lead to a better understanding
of f-generated Kleene algebras.

In the paper we showed how to weaken the finite iteration operator of a
Kleene algebra. But in the same way it should easily be possible to weaken the
finite iteration of lazy Kleene algebra [6], the infinite iteration operator of omega
algebras [2,6] and the strong iteration of refinement algebra [7].

Additionally, as already mentioned, we give an algebra for hybrid systems,
which is based on lazy Kleene algebra [4]. Using this approach the homomor-
phism f can be interpreted as changing behaviours in (continuous) time. There-
fore the operator /™ fits well in the development, specification and analysis of
hybrid systems. As a first step, a case study will be done.

Acknowledgements. I am very grateful to Bernhard Moller and Kim Solin for
valuable and fruitful discussions.

References

1. R. Bird. Lectures on constructive functional programming. In B. Manfred, editor,
Constructive Methods in Computing, Science, volume F55 of NATO ASI Series,
pages 151-216, 1989.

2. E. Cohen. Seperation and Reduction. In R. Backhouse and J. Olivera, editors,
Mathematics of Program Construction, Lecture Notes in Computer Science 1837,
pages 45-59, 2000.

3. J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.

4. P. Hofner and B. Moller. Towards an Algebra of Hybrid Systems. In W. MacCaull,
M. Winter, and I. Duentsch, editors, Relational Methods in Computer Science, Lec-
ture Notes in Computer Science 3929, pages 121-133, 2006. (in press).

5. D. Kozen. Kleene Algebra with Tests. Transactions on Programming Languages
and Systems, 19(3):427-443, 1997.

6. B. Moller. Kleene getting lazy. Science of Computer Programming, Special issue on
MPC 2004, 2006. (to appear)

Previous version: B. Moller: Lazy Kleene algebra. In D. Kozen (ed.): Mathematics
of program construction. LNCS 3125. Springer 2004, 252-273.

7. J. von Wright. From Kleene Algebra to Refinement Algebra. In E. Boiten and
B. Moller, editors, Proc. of 6th Int. Conf. on Mathematics of Program Construction,
MPC 2002, Lecture Notes in Computer Science 2386, pages 233-262, 2002.

59

Nomadic Time
(Extended Abstract)

Andrew Hughes'

Department of Computer Science, University of Sheffield,
Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK.
e-mail: a.hughes@dcs.shef.ac.uk

1 Introduction

CCS [I] is commonly used for modelling synchronous communication between
two processes, where one sends a signal and the other receives it at the same
time (a concept referred to as local synchronization). However, it cannot directly
represent, systems involving synchronization of a sender with an arbitrary num-
ber of recipient processes (known as global synchronization) in a compositional
manner. Crucially, the semantics of a broadcast agent cannot suitably be rep-
resented using CCS. If the agent is defined as transmitting a signal to each of
the recipients sequentially, through multiple local synchronizations, then its se-
mantics will become non-compositional, because such behaviour depends upon
the number of recipients. Each time a new recipient is introduced, or one of the
existing ones is removed, the semantics will have to be changed.

A solution to this deficiency lies in providing a way of determining when
all possible synchronizations have taken place. With this facility available, the
broadcast agent can recurse, transmitting signals, until this condition holds. The
family of abstract timed process calculi (including TPL[2] and CaSE[3]) allow
this by extending CCS with abstract clocks. These don’t represent real time, with
units such as minutes and seconds, but are instead used to form synchronous
cycles of internal actions followed by clock ticks. A concept known as mazimal
progress enforces the precedence of internal actions over clock ticks, allowing the
possible synchronizations to be monitored. When a synchronization takes place,
it appears to the system as an internal action. Thus, with maximal progress,
synchronizations prevent the clock from ticking, and a result, the occurrence of
a clock tick also indicates that there are no possible synchronizations.

However, the timed calculi mentioned above lack any notion of distribution
or mobility. Thus, while they can adequately represent large static systems, in-
volving both local and global synchronization, they fail to model more mobile
systems, where the location of a process can change during execution. In con-
trast, the ambient calculus [4] includes both distribution (via structures known
as ambients) and mobility (by allowing these structures to be moved, along
with their constituent processes, during execution). But, it suffers from similar
deficiencies to CCS when modelling global synchronization.

This extended abstract presents the calculus of Typed Nomadic Time (TNT),
which combines the abstract timed calculus, CaSE, with notions of distribu-
tion and mobility from the ambient calculus and its variants ([506]). This allows

the creation of a compositional semantics for mobile component-based systems,
which utilise the notion of communication between arbitrary numbers of pro-
cesses within a mobile framework. To extend the example of a broadcast agent
given above, this extension allow broadcasts to be localised to a particular group
of processes, which can change during execution. Section [2] provides a simple
example, illustrating the use of the calculus, while section [3| concludes with a
discussion of future work.

2 A Simple Example

Consider the familiar children’s game of musical chairs. The conduct of the game
can be divided into the following stages:

1. The players begin the game standing. The number of players is initially equal
to the number of chairs.

The music starts.

A chair is removed from the game.

The music stops.

Each player attempts to obtain a chair.

Players that fail to obtain a chair are out of the game.

The music restarts. Any players who are still in the game leave their chairs
and the next round begins (from stage three).

N U o

The winner is the last player left in the game. A model of this game can be
created using the TNT process calculus.

The game environment is represented using named locations (commonly
known as localities in the literature). These localities can be nested within each
other and form a forest structure (due to the possibility of multiple localities
occurring at the top level). In the musical chairs scenario, each chair is repre-
sented by a locality, as is the ‘sin bin’, to which players are moved when they
are no longer in the game. These localities are all nested inside a further local-
ity which represents the room itself. This is not a necessity, but makes for a
cleaner solution; it allows multiple instances of the system to be nested inside
some larger system, each performing its own internal interactions and entering
into the synchronization cycle of the larger system.

The locality structure is represented in the calculus by the expression shown
below. The room locality contains multiple chair localities, each of which con-
tains 0, a process with no explicit behaviou The | operator connecting the
chair localities denotes parallel composition; each locality and its constituent
processes runs concurrently. CB and the ¢ and w symbols will be explained
shortly.

room|chair(0]§7 | chaz‘r[()]gB]fg}. (1)

! Tt does exhibit contextual behaviour, due to transitions created by clock ticks.

61

The players themselves are represented by processes. This allows them both
to interact and to move between localities. A gamesmaster process is also in-
troduced. This doesn’t play an active role in the game itself, but is instead
responsible for performing the administrative duties of removing chairs from the
game and controlling player movement. The process definitions are summarised
in Table |1, along with the derived syntax used in this example.

Table 1. Summary of Processes and Derived Syntax for Musical Chairs

def

w= pX.(in.X + out.X + open.X) (2)

o.P ET0]0(P) (3)
CB Y X .(in.out.X + open) (4)
SBY i X.in.X (5)
GM2% c.GM3 (6)
GM3Y open chair.GM5 (7)
GM5 d:*’qu.([m chair sit. X|o(GMG)) (8)
GM6 d:"qu.([m sinbin leave. X |o(GM2)) 9)
Player def [sit.PInChair]o(Loser) (10)
PInChair %' o.(out chair stand.O|stand.Player) (11)
Loser leave.0 (12)

The presence of music is signified by the ticks of a clock o. A tick from o
is also used to represent the implicit acknowledgement that everyone who can
obtain a chair has done so, and that the remaining player left in the room has
lost. o appears as part of a set of clocks on the bottom right of the locality
definition to signify that its ticks are visible within the locality (including any
nested localities), but not outside. Instead, ticks appear as silent actions outside
the location boundaries.

The top right of a locality is used to specify a further property of the locality,
the bouncer. This is essentially a process with a very limited choice of available
actions. It has no real behaviour of its own, but instead performs the job of
managing the locality. It dictates whether processes or other localities may enter
or exit the locality, and whether the locality may be destroyed by a process in
the parent locality. Within the musical chairs model, such protection is irrelevant
for the room itself (a bouncer, w , is used which ensures that all possible
movements are allowed), but is essential for the chairs and the sin bin (F).

62

It is the chair bouncer that enforces the implicit predicate that only one player
may inhabit a chair at any one time, while the sin bin bouncer prevents players
leaving the sin bin once in there.

To model stage one of the game, n player processes and n chair locations
are placed in the room. The advantage of using TNT for this model is that the
actual number of players or chairs is irrelevant. They only have to be equal at
the start to accurately model the game. The calculus allows the creation of a
compositional semantics, as discussed in section [1} which work with any n.

For the purposes of demonstration, n is assumed to be two to give the fol-
lowing starting state:

room|chair[0]§? | chair[0]§® | o.0.Player | 0.0.Player | GM2]%. (13)

The room and chairs appear as shown earlier. The processes of the form o.0. Player
simply wait until two clock cycles have passed, the end of each being signalled by
a tick from o. The intermittent period between the ticks (the second clock cycle)
represents the playing of the music. This syntactic form, denoted more generally
by o.P (P being some arbitrary process), is derived from the core syntax of TNT
as shown in . Like most of the model, it relies on the stable timeout operator,
[Elo(F), where F acts if E times out on the clock, o. In this case, E, being 0,
will always time out as it has no actions to perform.

The gamesmaster (GM?2 (6)) also waits for the first clock tick (the music
starting), but then evolves to GM3 and uses the second cycle, prior to the
music stopping, to remove a chair from the game. Maximal progress, as explained
in section [I} ensures that this occurs before the next clock tick, as the removal
emits a silent action.

The most interesting part of the model lies in the interaction with the chairs,
which forms part of stages five to seven. The aim of stage five is to get as
many player processes as possible inside chair localities. This is handled by again
relying on maximal progress to essentially perform a form of broadcast that
centres on mobile actions. Rather than sending a signal to a number of recipients,
a request to move into a chair (see and) is delivered instead.

If a chair is available, then a player process will enter it (the actual chair and
player chosen is non-deterministic). This will cause an internal action to occur,
as illustrated by , and this will take precedence over the clock tick. Thus,
when the clock eventually does tick, it is clear that no more players can enter
chairs. Using clocks in this manner makes the system compositional; in contrast
to other models, players and chairs can be added without requiring changes to
the process definitions.

GMS5 | Player chair[O]gB
s GM5 | chairl0 | PInChair]§™-“P

(14)

Stages six and seven proceed in a similar way. Stage six sees essentially the
same broadcasting behaviour applied to the losing players (see (9) and (12)).

63

The difference is that stage six demonstrates something which wouldn’t be pos-
sible without mobility: the broadcast is limited to those player processes which
remain in the room. Communication between processes in different localities is
disallowed in TNT, causing an implicit scoping of the broadcast. The broadcast
is again terminated by a tick from o, which, in this case, also signifies the music
starting up again. The remaining players leave their chairs , and the system
essentially returns to stage three, with n — 1 chairs and n — 1 players.

3 Conclusions and Future Work

This extended abstract outlines a calculus which provides a novel combination
of features, allowing arbitrary numbers of agents both to synchronize with other
agents and move around a dynamic topology, constructed from nested localities.
Current work on this calculus focuses on the formalisation of an operational
semantics and the creation of a type system to allow additional validity and
security checks to be performed. The existing equivalence theory for CaSE will
also require extension in order to encompass the new features found in TNT.
In the longer term, further case studies will be considered, which go beyond the
simple example presented here. In particular, the modelling of quorum sensing
bacteria is of interest.

Acknowledgements

This work is supported by a grant from the Engineering and Physical Sciences
Research Council (EPSRC). I would also like to thank my supervisor, Mike Stan-
nett, as well as Simon Foster and Georg Struth, for their insightful discussions
and support.

References

1. Milner, R.: Communication and Concurrency. Prentice-Hall, London (1989)

2. Hennessy, M., Regan, T.: A process algebra for timed systems. Information and
Computation 117(2) (1995) 221-239

3. Norton, B., Liittgen, G., Mendler, M.: A compositional semantic theory for syn-
chronous component-based design. In: Proceedings of the 14th International Con-
ference on Concurrency Theory (CONCUR ’03). Number 2761 in Lecture Notes in
Computer Science, Springer-Verlag (2003) 461-476

4. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Proceedings of the 1st International
Conference on Foundations of Software Science and Computation Structures (FoS-
SaCS ’98). Volume 1378 of Lecture Notes in Computer Science., Springer-Verlag
(1998) 140-155

5. Levi, F., Sangiorgi, D.: Mobile safe ambients. ACM Transactions on Programming
Languages and Systems (TOPLAS) 25(1) (2003) 1-69

6. Teller, D., Zimmer, P., Hirschkoff, D.: Using ambients to control resources. In Brim,
L., Janar, P., Ketinsky, M., Kuera, A., eds.: Proceedings of the 13th International
Conference on Concurrency Theory (CONCUR ’02). Number 2421 in Lecture Notes
in Computer Science, Springer-Verlag (2002) 288-303

64

Combining Relational Methods and Evolutionary
Algorithms

Britta Kehden

Christian-Albrechts University of Kiel, 24098 Kiel, Germany
bk @informatik.uni-kiel.de

Abstract. We take a relation-algebraic view on the formulation of evolutionary
algorithms in discrete search spaces. We show how individuals and populations
can be represented as relations and how important moduls of evolutionary algo-
rithms can be implemented using relational algebra. For many important prob-
lems, the evaluation of a population with respect to certain constraints is the most
costly step in one generation of an evolutionary algorithm. We show that the eval-
uation process for a given population can be sped up by using relational methods.

1 Introduction

Evolutionary algorithms (EAs) have become quite popular in solving problems from
combinatorial optimization in the recent years. The representation of possible solutions
for a given problem has been widely discussed (see e.g. [1] and [2]) We study the ques-
tion whether representations using relations can be useful. Another impotant issue in
the area of evolutionary computation is hybridization, where one combines evolution-
ary algorithms with other approaches in order to get better results. We think that it may
be useful to combine evolutionary algorithms with relational methods. A first step in-
top this direction was made in [3]. We consider evolutionary algorithms for the search
space {0,1}" and examine how the most important modules of an evolutionary algo-
rithm can be implemented on the basis of relational operations. Relational algebra has
been widely used in computer science. Especially in the case of NP-hard combinatorial
optimization problems on graphs, a lot of algorithms have been developed. Relational
algebra has a small, but efficiently to implement, set of operations and it allows a for-
mal development of algorithms and expressions starting usually with a predicate logic
description of the problem.

We represent a population, which is a set of search points, as one single relation and
evaluate this population using relational algebra. It turns out that this approach can be
implemented in a way that mainly relies on the relation-algebraic formulation of the
specific modules. Considering the evaluation of a given population we show that this
process can be made more efficient using relational algebra. After giving a brief in-
troduction into evolutionary algorithms and relational algebra in sections 2 and 3, we
discuss the relation-algebraic formulation of important modules of evolutionary algo-
rithms in Section 4. After that we consider three well-known NP-hard combinatorial
optimization problems, namely minimum vertex covers, maximum cliques, and max-
imum independent sets, and show how the whole population can be evaluated using

relational algebra. It turns out that using this approach can reduce the runtime from
O(n?) to O(n?37) for a population of size n compared with a standard approach. A
more detailed presentation of these results can be found in [4].

2 Evolutionary Algorithms

Evolutionary Algorithms (see e.g [5]) are randomized search heuristics that follow Dar-
win’s principle of evolution, the survival of the fittest. Given a fitness function to be
maximized (or minmized), a set of search points, called population, is evolved w.r.t the
function until a stopping criterium is fulfilled. For example the algorithm stops after a
given number of iterations or if the best individual in the population has not been im-
proved for a certain number of generations. In each step, a parent population randomly
generates an offspring population by applying different variation operators. Then a sub-
set of individuals of both populations is selected for the next parent generation, so that
the fitness of the population is increased in each step. Possible variation operators are
mutation, where each parent individual generates one child, and crossover, where two
individuals of the parent population create one child. The selection of the individuals
for the next generation can be done in different ways. One can choose a subset of a
certain size consisting the best individuals of both populations, i.e, the elements with
the highest fitness values, or build tournaments of each one parent and one child and
choose the better one for the next generation.

3 Representing populations as relations

We consider evolutionary algorithms working in the search space {0, 1}". We want to
represent each population as a relation P where each individual of P is stored in one
single column. As we want to show how to use relational algebra in an evolutionary
algorithm we have to start with some basic definitions. For a more detailed description
of relational algebra see [6]. We write R : X < Y if R is a relation with domain X
and range Y, i.e. a subset of X x Y. In the case of finite carrier sets, we may consider a
relation as a Boolean matrix. Since this Boolean matrix interpretation is well suited for
many purposes, we often use matrix terminology and matrix notation in the following.
Especially, we speak of the rows, columns and entries of ? and write R, instead of
(x,y) € R. The basic operations on relations are R (transposition), R (negation),
R U S (union), RN S (intersection), RS (composition), the special relations O (empty
relation), L (universal relation), and | (identity relation). A relation v : X « 1 is called
vector, where 1 = {_L} is a specific singleton set. We omit in such cases the second
subscript, i.e. write v; instead of v;) . Such a vector can be considered as a Boolean
matrix with exactly one column and describes the subset {x € X : v,} of X. Note,
that one search point of the considered search space can be represented as a vector of
length . A set of k subsets of X can be represented as a relation P : X < [1..k] with k
columns. For i € [1..k] let P(*) be the i-th column of P. More formally, every column

P is a vector of the type X « 1 with P;Ei) <= P,;. We assume that we are always
working with populations that have exactly n individuals, i.e., the relation P has exactly

66

n rows and n columns. Under the assumption that we work with n x n relations, the
operations transposition, negation, union and intersection can be implemented in time
O(n?). The standard implementation for the composition needs time ©(n?). Using the
algorithm proposed by Coppersmith and Winograd (see [7]) for the multiplication of
two n x n matrices we can reduce the runtime for the composition to O(n?376).

4 Relation-algebraic formulation of important modules

Variation operators are important to construct new solutions for a given problem. We
assume that the current population is represented by a relation P and present a relation-
algebraic formulation for some well-known variation-operators. In addition we formu-
late an important selection method based on relational algebra. It turns out that the run-
times for our general framework are of the same magnitude as in a standard approach.

4.1 Mutation

An evolutionary algorithm that uses only mutation as variation operator usually flips
each bit of each individual with a certain probability p. To model the mutation operator
with relational algebra, we assume that we have constructed a relation M randomly,
that gives the mask which entries are flipped in the next step. In this case each entry of
M is set to 1 with probability p. Then we can construct the relation C' for the children
of P using the symmetric difference of P and M.

C=(PNnM)uU(PNM).

4.2 Crossover

A crossover operator for the current population P takes two individuals of P to produce
one child. To create the population of children C' by this process, we assume that we
have in addition created a relation P’ by permuting the columns of P. Then we can
decide which entry to use for the relation C' by using a mask M.

C=(MnP)u(MnP)

To implement different crossover operators we have to use different masks in this ex-
pression.

4.3 Selection

We focus on tournament selection, and assume that we have a parent population P and
a child population C' both of size n. To establish n tournaments of size 2 we use a
random bijective mapping that assigns each individual of P to an individual of C. This
can be done by permuting the columns of C randomly. Due to the evaluation process we
assume that we have a decision vector d that tells us to take the individual of P or the
individual of C' for the new population N. Let P,C' : X « [l.n] and d : [1..n] < 1,
where we assume that the columns of C' have already been permuted randomly. We

67

want to construct a new population N, such that for each i € [1..n] either P(¥) or C'¥
is the i-th column of N. The vector d specifies which columns should be adopted in the
new population N.

d; <= P should be adopted and d; < C'% should be adopted.
The new population NV is determined by
N=(PnLd")u(CnLd").

It is easy to see that the presented determinations can be done in time O(n?), which is
the same magnitude as in a standard approach. In the following section we will give an
example to show how the decision vector d can be determined.

5 Testing properties of solutions for some graph problems

Assume that we have a relation P that represents a population. One important issue is
to test which of the individuals of the population fulfill given constraints which means
that they are feasible solutions. Given a graph G = (V, E) with n vertices represented
as an adjacency relation R we want to test each individual to fulfill a given property.
We concentrate on the constraints for some well-known combinatorial optimization
problems for graphs, namely minimum vertex covers, maximum cliques, and maximum
independent sets. A vertex cover of a given graph is a set of vertices V' C V' such that
e NV’ # () holds for each e € E. For a clique C C V the property that R,,,, for all
u,v € C with u # v has to be fulfilled and in an independent set I C V, R,,, has
to hold for all u,v € I with u # v. It is well known that computing a vertex cover
of minimum cardinality or cliques and independent sets of maximal cadinality are NP-
hard optimization problems (see e.g.[8]). It is easy to see that it affords a runtime of
©(n?) to test whether one individual fulfills one of the stated properties with a standard
approach. Working with a population of size n this means that we need time ©(n?) for
evaluating each of these properties. We want to show that the runtime for evaluating a
population that is represented as a relation can be substantially smaller using relation-
algebraic expressions. Note, that the size of the solutions, which means the number of
ones in the associated column, can be determined for the whole population P in time
O(n?) . Therefore, the most costly part of the evaluation process for the three mentioned
problems seems to be the test whether the given constraints are fulfilled. Given the two
relations R and P we can compute a vector that marks all individuals of the population
that are vertex covers. The ¢ —th column in P represents a vertex cover, if the following
condition holds.))
Vu,v: Ryy — (PP v PY),

This predicate logic expression can be transformed into a relation-algebraic expression
and we achieve the vector T
L(RPNP)

that specifies all vertex cover in P. For the case of independent sets we can use the fact

that P() is an independent set iff ﬁ(l) is a vertex cover. We obtain the vector

L(RPNP)

68

that represents all independent sets in the population. Since a set of vertices is a clique
of G if and only if it is an independent set of the complement graph with adjacency
relation R N |, we can determine the vector

T

L(TUR)PN P)
that specifies all columns of P that represent cliques of R. Considering the different
expressions, the most costly operation that has to be performed is the composition of
two n x n relations. Therefore the evaluation process for a given population P and a
relation R can be implemented in time O(n?-37%) by adapting the algorithm of Copper-

smith and Winograd (see [7]) for the multiplication of two n X n matrices to relations,
which beats the lower bound of §2(n?) for the standard implementation.

6 Conclusions

We have taken a relation-algebraic view on evolutionary algorithms for some graph
problems. It turns out that the evaluation of a population can be sped up by using
relation-algebraic expressions to test whether the solutions of the population fulfill
given constraints. In the case of the three considered graph problems the computation
time for one generation can be reduced from ©(n?) to O(n?-37°).

References

1. Michalewicz, Z. (2004). How to solve it: Modern heuristics. 2nd edition, Springer-Verlag,
Berlin.

2. Raidl, G.R. and Julstrom, B.A. (2003). Edge sets: an effective evolutionary coding of spanning
trees. IEEE Trans. on Evolutionary Computation 7, 225-239.

3. Kehden B., Neumann F., Berghammer R. (2005): Relational Implementation of Simple Paral-
lel Evolutionary Algorithms In: Proc. of the 8th International Conference on Relational Meth-
ods in Computer Science (ReIMiCS 8), LNCS 3929, Springer, Berlin, Germany

4. Kehden, B., Neumann F. (2006): A Relation-Algebraic View on Evolutionary Algorithms for
Some Graph Problems In: Gottlieb and Raidl (Eds.): EvoCop 2006, LNCS 3906, Springer,
Berlin, pages 147 - 158.

5. Eiben, A.E., Smith, J.E.(2003). Introduction to Evolutionary Computing. Springer

6. Schmidt, G., and Strohlein, T. (1993). Relations and graphs. Discrete mathematics for com-
puter scientists, EATCS Monographs on Theoret. Comp. Sci., Springer.

7. Coppersmith, D., and Winograd, S. (1990). Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation, 9:251-280.

8. Garey, M. R., Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of
NP-completeness. Freeman, New York.

69

A topographical analysis of event structures

José Juan Palacios Pérez*

The University of Manchester

Abstract In the thesis [PP06] we introduce the notion of a topographical
space to carry out an analysis of event structures, which is a model for
concurrent computation. We show how the notion of a topographical
space produces a clear and uniform presentation of several kinds of event
structures and related structures in the literature.

1 Introduction

In the field of mathematical models of concurrent computation, the model known
as an event structure has a distinguished role. Introduced by Nielsen, Plotkin
and Winskel in [NWP81] and later extended by Winskel in [Win85,Win89], event
structures are based in the following basic ideas.

1. The behaviour of a concurrent process is expressed by the occurrence of
events. An event is an atomic entity, on the same level of abstraction as that
of a point in geometry.

2. There is a notion of consistency among events, that is, whether it is the
case that two (or more) events can occur without any conflict. The notion
of consistency is related to the notion of non-determinism which pervades
concurrent computation.

3. The occurrence of an event may causally depend on the occurrence of previ-
ous events. Such a relation of causal dependency can be given by a preorder
on events or something more elaborated which is sometimes called an en-
abling relation.

A state or configuration of a concurrent system is defined as a coherent set of
(the occurrence of) events which is closed under the causal dependency relation.
If two events inside a configuration are independent of each other, then they can
occur simultaneously (that is, in parallel).

A number of relations between event structures and several models of con-
currency, such as Petri nets, labelled transition systems and trace languages
has been accomplished [WN95]. Event structures first appeared about 25 years
ago. Since then they have re-appeared in various forms, sometimes using differ-
ent terminology, and sometimes with the same terminology meaning something

* Thanks to Dr. Andrea Schalk my supervisor, and Dr. Harold Simmons, my adviser
for their guidance and support.

different. Part of the aim of the thesis is to clarify and generalise the relation-
ships between these various notions, hence providing a clearer and more uniform
account of these various patterns.

First, we review the original definition of event structures and point out the
importance of the family of configurations. Then, we introduce the notion of
topographical spaces and describe some properties as well as different kinds of
topographies, each one associated with a particular class of event structure.

2 Topographies from configurations

The following definition is taken from [Win86].
Definition 1. An event structure S is a triple (S,Se,+) which consists of

— a set S of events, its carrier,

— a non-empty family Se of finite subsets of S, called the consistency predicate,
which satisfies being downwards closed under inclusion, that is if X € So and
Y C X thenY € 8,,

— an enabling relation —C S, X S, which is upwards closed under inclusion,

that is if Y = s and Y C X then X v+ s (for X, Y C; S).

Ezample 1. Consider the event structure S; = (5, So,+) with carrier S = {a, b, ¢, d},
consistency predicate given by S = Py — {{a,b},{a,b,c},{a,b,c,d},{a,b,d}}
and + given by @ + a,b,d, {a} +— ¢, and {b} + c. The first sentence of the
enabling says that events a, b, d are independent each other, the second sentence
says that event ¢ depends on the occurrence of either event a or b'. Note that
the events a, b are incompatible each other.

In Figure 1 we show the family of configurations (&, C) of S;, which forms
a partial order under inclusion.

{ajc {bjc}
da} {b,d}

1

Figurel. Family of configurations of the event structure S;.

It is precisely the family of configurations of an event structure that models a
concurrent system. Such family of configurations forms a special kind of domain

! Nothing forbid us to have something like {a, d, c} + c or {b,d} + b.

71

(that is, a poset with certain completeness properties), and is naturally described
in terms of topographical spaces.

Definition 2. Let S be a set. A topography on S is a family & of subsets with
the following properties.

(i) D& () U6 =S5
(iii) For each subfamily X C & which is locally bounded? in &, we have |y X € &.

A topographical space (S, &) is a set S equipped with a topography &. A region
of the space is a set X € &. For each region X € & the family 65X ={Y € & ’
Y C X} is the down family below X in &.

Indeed, a region of a topographical space captures a configuration of an event
structure. It is easy to show that the poset (&, C) associated to the family of
configurations of the event structure from Example 1 is a topographical space.
As the name suggest, this is related to the standard notion of a topological space,
but more suited to our investigation®.

A topographical space (5, &) is locally topological if for all regions X € &, we
have Y, Z € 6X = Y N Z € 6X. In particular, the space is locally Alexandroff
if for each region X € & the family GX is closed under arbitrary intersections.
The space is locally discrete if 6X = PX.

Each topographical space induces two kinds of comparison, a global and a
local comparison. Both are important in describing properties among and inside
regions, respectively.

Each topography & has a associated a canonical family, its cover given by
XelC©) << (YW <y X)3Ze©)Y C Z] (for X CS). Such a family is the
smallest topography that contains G and is downwards closed under inclusion.

In the following section we consider

Capital Country Commonwealth

spaces, each of which generates a topography which is at least locally topological.

3 From capitals to commonwealth

We think of S, as a consistency predicate in the small, since it deals only with
finite sets. In contrast, a consistency predicate in the large deals with arbitrary
sets. Hence the name capital.

Definition 3. A Consistency Predicate in the Large (capital) on a set S is a
family S of subsets of S with the following properties.

(i) Des (i) US=S

2 In any poset (S, <) a subset X C S is locally bounded iff every finite set Y C; X is
bounded in S.
3 In fact, each topological space gives an example of a topographical space.

72

(i) For each subfamily X C S which is directed, we have |JX € S.
(iv) The family S is downwards closed under inclusion, thatisY C X € S=Y €
S for subsets X, Y of S.

A capital space (S,S) is a set S equipped with a capital S.

It is immediate to show that each consistency predicate S, is isomorphic to
its capital S. Intuitively, a capital space can be seen as an event structure where
all events are independent to each other, that is, the causality relation is just
equality. Note that the cover C(&) of a topography & forms a capital space
(S,C(6)), and for any other capital S we have C(&) C S. That is, the cover is
the minimal capital associated to the parent topography.

Each capital space produces a locally discrete topography. Capital spaces
have appeared in the literature as qualitative domains and coherence spaces
(the latter using a binary conflict relation).

We now consider the case when the causality relation is given by a partial
order.

Definition 4. Let (S, <) be a poset. A capital S on S is compatible with the
carried comparison < if for all X € PS we have X € S= | X € §. A country
space

(8,8,<)

s a poset with a compatible capital.
The topography & of a country space (S, S, <) is given as
&6=8nLS

that is, each region X € & is a consistent lower section. Such topographies are
locally separated, locally Alexandroff, the partial order < coincides with the
comparison induced by &, and C(&) = S. For each region X € & we have
x <x y=x <y (for all z,y € S). As consequence, for Y € LxX we have
Y = |Y N X for each region X € G.

For practical purposes, one can assume that each event in a country space can
occur once a number of events have occurred. A special kind of country spaces
are Winskel’s prime event structures (5, Se, <) [Win86] where the occurrence of
each event is dependent only on a finite number of events.

In a country space each event depends on (at most) a set of events. We extend
the causal dependency relation by allowing an event to depend of several sets.
For this we replace the partial order of a country space by a tree.

Definition 5. (a) Let S be a set, let S be a capital on S and let S be a tree over
S. We say (S,S) is a compatible pair if

ueS=|ul €S,

That is, if for each node of S its underlying set is in the finite part of the
capital.

73

(b) A commonwealth space is a structure
S=(S,8,9)

where (S,S) is a capital space and S is a tree over S such that the pair (S,S)
18 compatible.

From an event structure S = (.9, S,,+) it is easy to obtain a commonwealth
€S = (5,S,S) by constructing the tree S over S as follows.

Lo = {1}
Ly ={Lls |0+ s}
Livi ={us |uecl; |u/rs, s¢u)}

for all s € S. Each L; denotes the tree S up to level i. The converse is also
immediate.

We now define the topography & induced by a commonwealth S = (S,S,S).
For each s € X C S we say that the membership s € X is witnessed by the node
ueSifse|ul CX.

The harvest ‘HS of S is the family

XeHS «— (Vse X)(FueS)[se |u| CX]

for X C S.

The harvest HS is indeed a topography on .S, but is not necessarily closed
under intersections. We define the topography & of the commonwealth S as
follows

G =8SNHS

which is the family of those X € & such that each member s € X is witnessed
by a node of S. Such topography is locally separated with very finite character.

For any commonwealth S = (5,S,S) with topography & the pair (C(6),S)
is compatible and induces G.

References

[NWP81] Mogens Nielsen, Glynn Winskel, and Gordon Plotkin. Petri nets, Event
structures and Domains, part 1. Theoretical Computer Science, 13:85-108,
1981.

[PP06] José Juan Palacios-Pérez. The categorical analysis of Event structures. PhD
thesis, Computer Science, The University of Manchester, 2006.

[Win85] Glynn Winskel. Petri Nets, Algebras and Morphisms. Technical Report 79,
Univ. of Cambridge Computer Laboratory, 1985.

[Win86] Glynn Winskel. Event structures : Lecture notes for the Advanced course on
Petri nets. Technical Report UCAM-CL-TR-95, University of Cambridge,
1986.

[Win89] G. Winskel. An introduction to event structures. Lecture Notes in Com-
puter Science: Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency., 354:364-397, 1989. NewsletterInfo: 34.

[WNO95] G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, D. Gab-
bay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science.
Oxford University Press, 1995.

74

Relational Kleene Algebras and their
compilation to modular applicative transducers

Benoit Razet

Université Paris 7 - INRIA Rocquencourt

1 Introduction

Finite-state methods are commonly used in computational linguistic and parti-
curlarly at the morphology level. Gérard Huet[8] uses those structures to treat
the sanskrit language segmentation problem which deals with the sandhi re-
lation inversion. The method uses a technology based on annotated lexicons
implemented in the Zen toolkit[6]. A more general transducer representation
method is inspired from this application and leads the introduction of aums[7].
We plan to study potential algebraic operators, inspired from Kleene algebras,
to describe rational relations useful in the natural language processing field.

In the following we suppose that the reader is familiar with rational languages
or relations, automata, transducers and regular expressions.

2 Modular transducers

Let remind that rational sets or rational relations are completely described with
Kleene algebra models. Basic Operators of the Kleene algebras like -(concatenation),
+(union) and *(Kleene’s star) are often used to describe modular automata con-
structions. The automata constructions associated to thoses operations give no
guaranty to produce a deterministic or mininimal automaton. Since determiniza-
tion and miminization have exponentional costs, automata constructions must
not do those operations too frequently.

An originality of aums for representing automata or transducers is that they
are completely applicative data structures, loops are coded with a virtual ad-
dress system. The recognition or transduction is done using a reactive process
over aums. In [8] lexicons (finite sets of words) are coded as DAGs with maximal
sharing using aums data structure. A reactive engine is introduced to perform
the recognition of L* for a lexicon L, and it uses continuations to perform the
non-deterministic search. This engine is highly configurable since additional pa-
rameters could affect the search and then extensions can be made easily.

We have done one such extension for modular transducers[9]. Let now de-
scribe modular automata which is based on the aum technology, modular trans-
ducers are a direct extension from modular automata using decorated aums. Let
consider a finite set of lexicons indexed L;, one would like to modify the reactive
engine to perform the recognition of the language defined by a regular expression

over the L; which is still a rational language. Regular expressions are elements
of the following Kleene algebra :

regexp 1= 1

| Li

| regexp + regexp
| regexp - regexp
| regexp*

As aums can code with the maximal sharing for lexicons, we do not want to
change those aums during the regular expression compilation. We choose to keep
separated lexicons from the geometry over those lexicons, the geometry refering
the regular expression. Let compile the regular expression into an automaton
over a new phase alphabet, each phase linked to an aum, we now have modular
automata description with two levels.

In the second version of the Zen toolkit, description of modular transducers is
possible using system’s of regular expressions. For example the definition of the
sanskrit word morphology could be expressed that way :

INVAR prev.abso | unde
CONJUG = prev? . root

SUBST = iic* .noun | iic+ .ifc
VERBAL = CONJUG | iiv.auxi
WORD SUBST | VERBAL | INVAR

WORD, CONJUG, SUBST, VERBAL and INVAR are names for equations. iiv, auxi,
noun, iic, ifc, prev, root, abso and unde are lexicons for sanskrit lexical cat-
egories.

The way such regular expressions are compiled using the Berry-Sethi algo-

rithm[2] into a modular transducers is described in [9]. In this article we in-
troduce modular transducers incrementally using three various reactive engines.
They differ from the way the power of aums are in use. Firstly aums code for
lexicons then for automata and finally for transducers. But the modularity no-
tion is the same for the three engines. And at the end of the article we present
the way it is compiled (using the Berry-Sethi algorithm) into a macro-generated
dispatching module used by the various reactive engines. The Berry-Sethi algo-
rithm is described in purely functional code guaranted having the theoretical
complexity.
More generally, the design of all those algorithms exploits and justifies the func-
tional programming methodology in which algreabric closure operations are eas-
ily described, formal proofs are amenable, concise expression of powerful control
paradigms is possible and the resulting tool is efficient for a concrete linguistic
application.

76

3 Ongoing work

We have used the Berry-Sethi algorithm because it produces efficiently a com-
pact non-deterministic automaton. Such an automaton has the property that for
every state, every edge pointing that state have the same label. This property
is due to a linearization step of the regular expression which leeds to the defini-
tion of a local language[5, 3]. This linearization cannot treat regular expressions
with additional useful operators like complement and intersection. Then we have
studied other automata constructions as defined by Brzozowski[4], Raymond[11]
and Antimirov[l]. As a short summary :

— Brzozowski’s algorithm treats regular expressions with additional operators
and produce a deterministic automaton, this construction is exponential but
practically possible.

— Raymond’s algorithm is very efficient since it produces a non-determnistic
with e-transition automaton of the linear length of the regular expression
and in linear time. But it does not extend to additional operators and the
presence of e-transitions could be problematic, looping the reactive engine.

— Antimirov’s algorithm produces a more compact non-deterministic au-
tomaton than the Berry-Sethi does, but the algorithm is not as efficient.
Antimirov also indicates as a possible further research the question if his
algorithm can be adapted to extended regular expressions.

We plan to extend our regular expression language in the same spirit of
Kaplan and Kay[10] which presented a way to define phonological rewriting
rules as rational relations adding some macro operators over the basic ones of
regular expressions. We then aim to present efficient algorithms to compile our
extended language, inspired from relational Kleene algebras, in a Zen style.

References

1. V. Antimirov. Partial derivatives of regular expressions and finite automaton con-
structions. Theor. Comput. Sci., 155(2):291-319, 1996.

2. G. Berry and R. Sethi. From regular expressions to deterministic automata. The-
oretical Computer Science, 48(1):117-126, 1986.

3. J. Berstel and J.-E. Pin. Local languages and the berry-sethi algorithm. Theor.
Comput. Sci., 155(2):439-446, 1996.

4. J. A. Brzozowski. Derivatives of regular expressions. J. Assoc. Comp. Mach.,
11(4):481-494, October 1964.

5. S. Eilenberg. Automata, Languages, and Machines, Volume A. Academic Press,
Inc., Orlando, FL, USA, 1974.

6. G. Huet. The zen computational linguistics toolkit. ESSLLI 2002 Lectures, Trento,
Ttaly, 2002.

7. G. Huet. Automata mista. verification: theory and practice: essays dedicated to zo-
har manna on the occasion of his 64th birthday. Springer-Verlag LNCS, 2772:359—
372, 2003.

8. G. Huet. A functional toolkit for morphological and phonological processing, ap-
plication to a Sanskrit tagger. J. Functional programming, 15, 2005.

7

9.

10.

11.

G. Huet and B. Razet. the reactive engine for modular transducers. In Algebra,
Meaning and Computation, Festschrift in Honor of Prof. Joseph Goguen, to appear
2006.

R. M. Kaplan and M. Kay. Regular models of phonological rule systems. Compu-
tational Linguistics 20(8):331-378, 1994.

P. Raymond. Recognizing regular expressions by means of dataflows networks.
In 238rd International Colloguium on Automata, Languages, and Programming,
(ICALP’96), Paderborn, Germany, July 1996. LNCS 1099, Springer Verlag.

78

Resolution Based Natural Deduction For Modal
Logic

David Robinson

University Of Manchester

1 Introduction

In resolution based natural deduction (RND) [1], Andrzej Indrzejczak in-
troduces a system called RND that mixes some features of two of the most
well known systems, natural deduction and resolution. This combination
of the two methods gives a proof system that produces proofs that are
easily understood, unlike resolution proofs which can make little sense
to understand individual steps, and fairly straight forward to produce,
unlike some natural deduction proofs such as proof by contradicition.

The following will introduce and develop the system of RND for modal
logic and then introduce a method which makes it possible to automat-
ically generate RND proofs using resolution theorem provers. To save
space, only the rules and encodings required for an example will be pre-
sented.

2 Modal Logic and RND

The syntax and semantics of modal logic used is that of Goré [2].

In this section I will present the resolution based natural deduction
system, RND, introduced by Indrzejczak [1], but presented in a more
recognisable style as introduced in [3].

Figure 1 shows a selection of the rules of RND for modal logic K. The
a rules use the compact notation of Smullyan [4]. The [Sub| rule allows
the making and discharging of assumptions. Formulae enclosed in square
brackets are assumptions which are discharged when the rule is applied.
The « rules allow manipulation of connectives and the introduction and
elimination forms are the mirror of each other. The R’ rule is the resolu-
tion rule, and is used here instead of the less general resolution rule given
in the original presentation [1] for simplicity. It is easy to show that the
R’ resolution rule is derivable in the original system [1]. The O rules are
standard.

Is: 1]][5l [R(s,)]
s:I'Var s:I'Vas :

[Sub] : (al) : @)
sy s: I'Va tip
s:yYyVe1r V..V s: Oy
NS 'V s:AV-p s:I'Va s:0p R(s,t)
(7) s: I'VA (aE)SIF\/Oél s: 'V ao (HE) t:

Fig. 1. RND rules for Modal Logic K

3 Encodings

Any formula can be structurally transformed using the transformations
shown in figure 2. These are applied to connectives present in the formula
in turn to get an equivalent set of clauses which are suitable for resolution.
The two tables show the encoding depending upon whether the connective
appears positively or negatively in the formula being encoded.

5 reoaiive positive
= = Y1 Vo ﬁQ@p()V Qyy (1) V Quy ()

b1V 2 ngxg ﬂgil Em; i As | Q@) V Quy ()

@ 2 ﬁQp(l’) vV QwQ()
YiAP2 |Qp(T) V 2Qy, (T) V ~Quy, (z) — —Qy(z) V—Qy(z)
) Qe(z) V Qy(x) =(¥1 V P2)[=Qe (%) V =Quyy, (z)
(11 V 42)|Qy(z) V le() V Qys (2) —Qq () V ﬁsz (z)
] [P [e

Fig. 2. Structural Transformations for Connectives

Figure 3 shows encodings for some of the RND rules for modal logic
K. C, D represent sets of formulae, possibly empty. A clause containing
C or D will be called a derived clause, as it will be a clause that has
been derived from previous steps and does not form part of the encoding
of the original problem, except in the first application of a rule at the
beginning of a proof where C, D will be empty. The clause under the line
is the resolvent of the clauses above possibly with factoring performed.

80

CV Qa, (1)

(0B) ~Qu(®) V Qui(a) D) (1
Qa(z) V Qa; (z) V Qa, (2)
CV Qay(t) CVDVQu(t)
lan(s) V R(s,t)]
cv Q?e@ (;)
DV R(s,t C s o(s
(OE) =Qn, () V-R(z,y) V Qu(y) @D QE\,/(P%I;)(v) Xqi(i))
CVDVQ(t) Qop (@) V ~Qy(f(2))
cv QDLP(t)
cv q-p; (3) v Qﬁj (5)
=q-p, () V Qp, () CVQu(t)V Qo)
[Sub] Qs(z) V —Qp, (2) (Res) DV =Qo(t) V Qy(t)
Qs(r) vV Qg (z) CVDVQy(t)VQu(t)

CV Qp(x)

Fig. 3. Encodings of RND Rules

All other clauses are definitional clauses that appear in the encoding of
the problem if the rule can be applied.

In O the square brackets indicate a clause that is not used in the
rule application but is a clause that appears somewhere in the generation
of one of the derived clauses, and relates exactly to the subproof in the
RND O rule.

The encoding will also include splitting on any positive clauses gener-
ated with ¢’s introduced into clauses generated by the splitting. These ¢’s
correspond to assumptions in the RND, and this can be seen in the struc-
tural encoding, where the only positive clauses generated are for [J and —
formulae, corresponding to the two RND rules that require assumptions.

Theorem 1. [t is possible to simulate any RND derivation using the
above structural transformation and rule encodings.

Congjecture 1. I strongly believe that it is possible to automatically gen-
erate any RND proof using the same encodings.

4 A Simple [J Example

The simple example in figure 4 shows the resolution proof on the left hand
side, beside the RND proof on the right. The first 9 lines of the resolution
proof are the encoding of the formula, with the connective numberings
indicated at the top. Lines 10-13 are the result of splitting on positive

81

definitional clauses. The RND rule to which some of the resolution steps
relates is also indicated for some lines in brackets.

s:-0(p Ay) VO
s:24(5)13

Resolution Proof

) Q?g Y o 14 an(e) V au(a) V Qs(f(@)) 12,10,7 (OF)
3 Qi(z) Vv -Qs(x) 15 qr(z) V qa(z) V Qu(f(2)) 14,8 (ak)
4 Qa(z)V Qu() 15a gr(z) V qa(z) V Qu(f(2)) 14,9 (aE)
5 Qs(z)V R(z, f(z)) 16 qa(z) vV Qs(z) V Qe (f(z)) 15,13 (OI)
6 Qs(z)V _‘Qw((@) 17 qu(z) vV Qs(z) V Qs(z) 16,6 (O1)
7 —Qu(x)V —R(z,y) vV Qs(y) 18 qu(z) V Qs(x fact.
8 () V O (o) 19 Q2(z) vV Qs(x) 18,11
9 —|Q5({E) v Qw(x) 20 Ql(a:) V QQ(JZ) 19,3
10 ga(z) V Qa(x) Split 4 3; @1(z) V Qu(z) 20’3
11 —qa(z) V Qa(x) Split 4 o Cfl(m) Joct:
12 qr(x) V R(z, f(z)) Split 5 ’
13 =qr(z) V Qs(z) Split 5

RND Proof 4 t:g aFE 3
1s:0(p A9) ass. dat: aE 3
2 R(s,t) ass. 5 s:0p Or 2,4
3t: oA OF 1 6 s: ﬁ[l(t,p/\l/})\/Dgo[Sub]l'S

Fig.4. A Simple O Example

Line 14 is the resolvent of lines 12, 10 and 7, using hyperresolution
which gives qr(x) V q4(z) V Q5(f(x)). The corresponding inference steps
in the RND proof are steps 1-3. 1 is the assumption of s : (¢ A1) which
corresponds to clause 10 in the resolution proof, 2 is the assumption of
R(s,t) which corresponds to clause 12. The derivation of t : ¢ A9 in step
3 using the OF rule (and 1 and 2) corresponds to the hyperresolution
step producing clause 14. We see that Q5(f(z)) corresponds to t : ¢ A
because 5 is the number of ¢ A ¢ in the original formula.

Line 15 and 15a are the resolvents of lines 14 and 8, and 14 and 9
respectively, giving qr(z)V qa(x)Va; for i € 1,2. The corresponding steps
in the RND proof are steps 4 and 4a. These two steps are the derivations
of the a;’s of t : ¢ A ¥ using the aF rule and are still dependent upon
the two assumptions s : (¢ A) and R(s,t). This corresponds to lines
15 and 15a which still contain the ¢’s indicating these lines still depend
on the assumptions, and which now contain Q(f(x)) and Qu(f(x)), the
two formulae derived in the RND proof.

82

Line 18 is the resolvent of line 15 with line 13 and 6 and with factoring
applied. This is done in a number of steps at lines 16, 17 and 18 for clarity
but could have been done in one hyperresolution step. The corresponding
step in the RND proof is step 5, the derivation of s : [y using the 1
rule and discharging the assumption R(s,t). We see that qr(z) no longer
appears in the clause at line 18, and that Q3(z) corresponds to s : Oy
since 3 is the number of Ly in the original formula.

Line 22 of the proof is the resolvent of line 18 with 11,3 and 2. This
can again be combined into one single hyperresolution step, but the steps
are performed separately for clarity. The corresponding step in the RND
proof is step 6, the derivation of the initial formula by the [Sub] rule and
discharging the remaining assumption s : O(p A ¥). We again see that
q4(z) which corresponds to s : O(¢ A1) is no longer present in the clause
at line 22, and that Q1 (x) corresponds to the initial formula to be proved.

Line 23 completes the resolution proof by deriving | as required.

5 Conclusion

The example in figure 4 shows that it is possible to simulate RND steps
using clauses from the encoding of the initial formula. It is also possible
to establish what information is required in the clauses in order that an
RND rule can be applied. The rule encodings given in figure 3 provide the
clauses that are required in order that the RND rules can be simulated,
and the clause that would be derived given this information. I believe
therefore that it is possible to generate an RND proof automatically,
using these encodings by only ever resolving clauses that map exactly to
an RND rule encoding. A proof of this type could then be generated using
modern resolution theorem provers, and could then easily be translated
into the corresponding RND proof.

This should give easily and automatically generated proofs which can
be easily read and understood by a human reader. I hope to have devel-
oped a proof of this before the conference.

References

1. Andrzej Indrzejczak. Resolution Based Natural Deduction. Bulletin of the Section
of Logic, pages 159170, 2002.

2. Reiner Hahnle Marcello D’Agostino, Dov M. Gabbay and Joachim Posegga. Hand-
book of Tableau Methods. Kluwer Academic Publishers, 1999.

3. David Robinson. Resolution based natural deduction. Master’s thesis, Manchester
University, Mathematics, 2004.

4. Raymond M. Smullyan. First-Order Logic. Dover Publications, Inc., 1995.

83

Some Notes on Duality in Refinement Algebra

Kim Solin*

TUCS (Turku Centre for Computer Science)
Lemminké&inengatan 14 A, FIN-20520 Abo, Finland
kim.solin@utu.fi

Abstract. We formulate a duality principle for refinement algebras. We
first consider the dual of Kleene star: angelic iteration. Angelic iteration
was introduced by Back, Mikhajlova and von Wright in a predicate-
transformer setting, here we propose an abstract-algebraic characterisa-
tion. This allows us to formulate the duality principle. We conclude by
considering iterative choice and by introducing the dual of action sys-
tems.

1 Introduction

Duality in different structures has often been used to simplify proofs, to give two-
in-one theorems and has inspired the conception of new and useful structures.
In the program refinement tradition, duality has proved a useful technical tool
and seems to have inspired new structures as well [1]. The purpose of this paper
is to cast the duality of some program-refinement concepts in the form of the
recent abstract refinement algebras.

Refinement algebras are abstract algebras (simply a set equipped with oper-
ators) for reasoning about program refinement [6,7,5,4]. It can be argued that
by reasoning on a more abstract level one obtains a more perspicuous view than
provided by the classical model-theoretic frameworks: due to the abstraction
there are not so many details that clutter the view. Thanks to this perspicuity,
seeing common features amongst already established frameworks is also made
easier.

2 A refinement algebra with angelic iteration

In [2] Back, Mikhajlova and von Wright introduced the angelic iteration opera-
tor ¢ in a predicate-transformer setting. Angelic iteration can be seen as a finite
repetition of a program statement of any length determined by the user (as op-
posed to being determined by the system). It is not hard to consider angelic
iteration abstract-algebraically and this is what we shall do in this section of
the paper. An intuition and a model for the operators involved in the definition
below will be given in the next section. We shall introduce the operator into a

* Work done while visiting Institut fur Informatik, Universitat Augsburg.

refinement algebra having a signature containing all the operators that (as of
yet) have been considered. However, by varying the signature and/or by having
the conjunctivity condition to hold for all elements, we can get other refinement
algebras, such as the ones in 7] and [4], of which the later one also could harbour
angelic iteration.

A full refinement algebra is a structure over the signature (1,1, =, ;,*,¢ « T,
L, T,1) such that (1,1, -, L, T) is a Boolean algebra, (;,1) is a monoid, and the
following equations hold (the operator — binds stronger than the equally strong
*« ¢ and t, which in turn bind stronger than ;, which, finally, binds stronger
than the equally strong M and U; x E y Sy =a; and ; is left implicit):

—ay = =(y),
Tx=T, la=1,
(xMy)z =zzNyz and (xUy)z =zzUyz.

Moreover, if an element x satisfies y C z = zy C zz we say that x is isotone,
and if x and y are isotone, then

r* =xx* M1, zCzxzNy =z Caty,
% =za? U1, rzUyCz = 2%y C 2,
¥ =zz¥ M1, rzMNyCz = ¥y C 2z,

2f =z2TUl and zCzxzUy = zExTy

hold. If x satisfies z(y M 2) = zy Mazz and z(y U z) = 2y U xz we say that x is
conjunctive and disjunctive, respectively. Of course, conjunctivity or disjunctiv-
ity implies isotony. If an element is both conjunctive and disjunctive, then we
say that it is functional. If x and y are conjunctive, then * and “ are assumed
to satisfy

¥ =z MNza¥T and zEzxMy = 2z C ya™,
and if and y are disjunctive then
2 =2uatL and szyEzéyz‘ﬁEz

are assumed to hold.?

Guards and assertions are special elements of the carrier set. An element g is
a guard if it is is functional, it has a complement g satisfying gg = T and gMg =
1, and for any ¢’ also satisfying the two first conditions it holds that g¢' = gLig’.
An element p is an assertion if it is functional, it has a complement p satisfying
pp= L and pUp = 1, and for any p’ also satisfying the two first conditions it
holds that pp’ = pMp’. If G is the set of guards and A is the set of assertions, then
(G,M,;,51,T) and (4,;,U,7, L,1) are Boolean algebras. We will use g, g1, g2, - - -
to denote guards and p, p1, po, ... to denote assertions.

! Let C and D be the sets of conjunctive and disjunctive elements, respectively.
When the operators are interpreted as above, the structures (C,;,M,*,L1,1) and
(D,;, u?, T, 1) satisfy all the axioms of a Demonic Algebra [3] except right annihi-
lation for | and T, respectively.

85

The enabledness operator € is a mapping from the set of isotone elements
to the set of guards defined by ex =df z L U 1. The termination operator T is a
mapping from isotone elements to the set of assertions defined by 7o = df T,

3 Intuition and a model

The elements of the carrier set can be seen as program statements. The operators
should be understood so that M is demonic choice (a choice we cannot affect,
a choice by the system), U is angelic choice (a choice we can affect, a choice
made by the user), ; is sequential composition, —x terminates from any state
where x would not terminate and the other way around. The constant L is
abort, an always aborting program statement; T is magic, a program statement
that establishes any postcondition; and 1 is skip. If y establishes anything that
x does and possibly more, then z is refined by y: * C y. Weak iteration *
(Kleene star) can be seen as an iteration of any finite length determined by
the system. The (weak) angelic iteration ® can be seen as a finite repetition of a
program statement in which the length of the iteration is determined by the user.
Strong iteration, “, is an iteration that either terminates or goes on infinitely, in
which case it aborts, and T, the strong angelic iteration [4], is an iteration that
terminates or goes on infinitely, in which case a miracle occurs. The difference
between the operators can be displayed by the fact that 1* =1,1¢ = 1,1¢ =1
and 1 = T.

A conjunctive element can be seen as facilitating demonic nondeterminism,
but not angelic, whereas a disjunctive element can have angelic nondeterminism,
but not demonic. An isotone element permits both kinds of nondeterminism.

Guards should be thought of as programs that check if some predicate holds,
skip if that is the case, and otherwise a miracle occurs. Assertions are similar to
guards, but instead of performing a miracle when the predicate does not hold,
they abort. The enabledness operator maps any program to a guard that skips
in those states in which the program is enabled, that is, in those states from
which the program will not terminate miraculously. The termination operator
applied to a program denotes an assertion that skips in those states from which
the program is guaranteed to terminate, that is, states from which it will not
abort.

The operators, the guards and the assertions can all be given an interpreta-
tion such that the set of predicate transformers over a fixed state space forms a
full refinement algebra.

4 A duality principle

Given a statement @ about a refinement algebra, we formulate the order-dual
statement ®7 by replacing occurrences of symbols according to the following
rules: C is replaced by 3 and vice versa, I is replaced by L and vice versa, * is
replaced by ¢ and vice versa, “ is replaced by T and vice versa, T is replaced
by L and vice versa, any arbitrary guard g is replaced by an arbitrary assertion

86

p and vice versa, and € is replaced by 7 and vice versa. We assume that a given
signature that contains an opertor o also contains the dual operator o? (its
replacement operator according to the above). By this, we can now formulate
a duality principle for refinement algebras: Given statement @ which holds true
in a refinement algebra, the dual statement &2 also holds true in the refinement
algebra.

Note that although ez and 7x are a guard and an assertion respectively, their
duality does not follow from that fact, but from the duality of their respective
definitions. Moreover, from the properties of Boolean algebra it directly follows
that M and U are de Morgan dual with respect to the negation.

5 Iterative choice and dual action systems

The iterative choice construct [1,2], bo py it z1() ... {pn = @, ob, can be seen as
an iteration done by the user and in every iteration step the user can choose either
to execute one of the statements x1, ..., x,, provided the related assertion holds,
and continue the iteration — or choose to skip and end the iteration. The user
will be assumed to choose a statement for which the guard holds. The iterative
choice statement has been used to reason about interactive programs [2]. An
intuitive example of an iterative choice is an interactive dialog box (a menu).

By expressing iterative choice in an abstract refinement algebra we would
have the possibility to reason about interactive programs also on a more ab-
stract level — and, perhaps, to more easily see connections between different
frameworks intended for reasoning about interaction. It is easy to give iterative
choice an abstract formulation. In fact, in a concrete predicate-transformer al-
gebra it was formulated in [2], so the only thing we need to do is to translate
this into the abstract algebra: (p1x1 U...Up,x,)?. By the duality principle and
known results for weak iteration and demonic choice, this directly yields useful
properties such as decomposition, (piz1 Upez2)? = (p121)? (paz2(p171)?)?, and
leapfrog, (p1z122)?p121 C p121(z2p121)?. In the concrete predicate-transformer
algebra, these and other results were noted to arise from duality already in [2].

In [4,5] action systems were considered abstract-algebraically. We now con-
sider the dual of an action system. To the best of our knowledge, this structure
has not earlier appeared in the literature and constitutes an example of how
duality considerations can give rise to new interesting structures. A dual ac-
tion system bo x1()...{)x, ob is abstract-algebraically defined by (xz; U ... U
xn)TTixl. ..TZn, Where x1,...x, are disjunctive actions.

An intuition is that the user iterates and for every iteration the user should
choose one of the terminating actions. The user should choose to end the iteration
when none of the actions are any longer guaranteed to terminate. If the user
would end the iteration prematurely, the statement 77 ...7Z, would ensure
that the dual action system would abort and if the user would continue to
iterate although no action would be guaranteed to terminate (by choosing a non-
terminating action), the dual action system would of course also abort. (One can
also look at it as if the iteration ends automatically when none of the actions

87

will terminate.) The user can also attempt to continue the iteration forever (e.g.
by in turn increasing and decreasing a value of variable). This kind of behaviour
could be called angelic nontermination or perpetuum mobile behaviour. If the user
succeeds in doing this, a miracle is brought about (so here we equal perpetuum
mobile behaviour and miraculous behaviour).

Many interesting properties of dual action systems follow from duality and
results on classical action systems. One such property is leapfrog for dual action
systems: (z122) 7 (2122)21 C 21 (20m1) 17 (2021).

A more concrete example of a dual action system is a code lock consisting
of a numerical pad and an enter button. The lock works on a state space and
the numerical keys act on this space. Opening the lock corresponds to the ac-
tion system terminating, entering a wrong code and thus setting off the alarm
corresponds to the action system aborting, and being able to click the numbers
for ever corresponds to having found an evighetsmaskin. Entering a digit cor-
responds to choosing one of the actions, choosing the wrong digit might set off
the alarm. Hitting the enter button corresponds to ending the iteration. (One
can also look at it as if the iteration automatically ends when a correct code is
entered.) There are several codes — possibly of different length — that produce a
state so that none of the actions will terminate and thus open the lock.

6 Ending remarks

We considered angelic iteration abstract-algebraically which enabled us to for-
mulate a duality principle. The duality principle can be used for proving two-in-
one theorems and also inspires the conception of new structures, as exemplified
by the dual action-system construct. The dual action systems were here only
sketched and deserve further investigation to determine if they, in combination
with classical constructs, could be employed for reasoning about more elaborate
interactive systems.

Acknowledgements. Peter Hofner and Bernhard Moller both provided con-
structive critique that substantially improved the paper.

References

1. R.-J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer, 1998.

2. R.-J. Back, A. Mikhajlova and J. von Wright. Modeling Component Environments
and Interactive Programs Using Iterative Choice. Technical Report 200, TUCS, 1998.

3. J.-L. de Carufel and J. Desharnais. Demonic algebra with domain. Accepted to
RelMiCS/AKA 2006.

4. K. Solin. On Two Dually Nondeterministic Refinement Algebras. Accepted to
RelMiCS/AKA 2006.

5. K. Solin and J. von Wright. Refinement Algebra with Operators for Enabledness
and Termination. In Math. of Progr. Constr., vol. 4014 of LNCS, Springer, 2006.

6. J. von Wright. From Kleene Algebra to Refinement Algebra. In Math. of Prog.
Constr., vol. 2386 of LNCS, Springer, 2002.

7. J. von Wright. Towards a Refinement Algebra. Sci. of Comp. Prog., 51, 2004.

88

