
Renate Schmidt
Georg Struth (eds.)

Relations and Kleene Algebra
in Computer Science

PhD Programme at RelMiCS/AKA 2006

Manchester, UK
August 28 - September 2, 2006

Proceedings

Research Report CS-06-09, Department of Computer Science, University of Sheffield

Preface

This volume contains the tutorials and the contributed extended abstracts of
the PhD Programme at the 9th International Conference on Relational Methods
in Computer Science (RelMiCS-9) and the 4th International Workshop on Ap-
plications of Kleene Algebra (AKA’06). The Programme has been organised for
the first time in association with RelMiCS/AKA. It was hosted by the School
of Computer Science at the University of Manchester, UK, from August 29 to
September 2, 2006 and included invited tutorials, a student session and atten-
dance at the conference. Ten students have been selected for the programme by
the organisers due to the relevance and quality of their submissions.

The tutorials—Foundations of Relation Algebra and Kleene Algebra by Peter
Jipsen (Chapman University, USA) and Relational Methods for Program Refine-
ment by John Derrick (University of Sheffield, UK)—introduced the theory of
relational methods and presented an important application.

The student session allowed the participants to present and discuss their own
work. The extended abstracts of their talks nicely reflect the diverse applications
of relations and Kleene algebras in computing.

The RelMiCS/AKA conference series is the main forum for the relational
calculus as a conceptual and methodological tool and for topics related to Kleene
algebras. The programme of RelMiCS/AKA 2006 featured 25 contributed talks
and three invited lectures: Weak Kleene Algebra and Computation Trees by Ernie
Cohen (Microsoft, USA), Finite Symmetric Integral Relation algebras with no 3-
Cycles by Roger Maddux (Iowa State University, USA), and Computations and
Relational Bundles by Jeff Sanders (Oxford, UK). The proceedings are published
as volume 4136 of the Springer LNCS series.

The organisers would warmly like to thank all those who contributed to the
success of the programme: the tutorial and keynote speakers for accepting our in-
vitation, the students for their interest in the programme and the local organisers
at the University of Manchester for their dedicated help; the staff in the ACSO
office, especially Bryony Quick, the conference secretary, Helen Spragg, and Iain
Hart; the staff of the finance office; the technical staff and the building manage-
ment team; as well as Zhen Li, David Robinson and Juan Navarro-Perez. We are
very grateful to the UK Engineering and Physical Sciences Research Council for
funding the entire PhD programme (grant EP/D079926/1) and we are pleased
to acknowledge support of RelMICS/AKA 2006 by the London Mathematical
Society, the British Logic Colloquium and the University of Manchester.

Manchester and Sheffield, August 2006 Renate Schmidt
Georg Struth

Table of Contents

Tutorials

Foundations of Relations and Kleene Algebras . 1
Peter Jipsen

Relational Methods for Program Refinement . 23
John Derrick

Contributed Extended Abstracts

Relations for Specifying the Invariant Behavior of Object Collaborations . 45
Stephanie Balzer

RelAPS: A Proof System for Relational Categories . 50
Joel Glanfield and Michael Winter

f -Generated Kleene Algebra . 55
Peter Höfner

Nomadic Time . 60
Andrew Hughes

Combining Relational Methods and Evolutionary Algorithms 65
Britta Kehden

A topographical analysis of event structures . 70
José Juan Palacios Pérez

Relational Kleene Algebras and their compilation to modular
applicative transducers . 75

Benôıt Razet

Resolution Based Natural Deduction For Modal Logic 79
David Robinson

Some Notes on Duality in Refinement Algebra . 84
Kim Solin

Foundations of Relations and Kleene Algebras

Peter Jipsen

Department of Mathematics and Computer Science, Chapman University, USA.
jipsen@chapman.edu

F
ou

n
d
at

io
n
s

of
R
el

at
io

n
s

an
d

K
le

en
e

A
lg

eb
ra

P
et

er
Ji

p
se

n

C
h
a
p
m

a
n

U
n
iv

er
si
ty

A
u
gu

st
24

,
20

06

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

1
/

8
4

In
tr

o
d
u
ct

io
n

A
im

:
co

ve
r

th
e

b
as

ic
s

ab
ou

t
re

la
ti
on

s
an

d
K

le
en

e
al

ge
br

as
w

it
h
in

th
e

fr
am

ew
or

k
of

u
n
iv

er
sa

l
al

ge
br

a

T
h
is

is
a

tu
to

ri
al

S
lid

es
gi

ve
pr

ec
is
e

d
efi

n
it
io

n
s,

lo
ts

of
st

at
em

en
ts

D
ec

id
e

w
h
ic

h
st

at
em

en
ts

ar
e

tr
u
e

(c
an

b
e

im
pr

ov
ed

)
w

h
ic

h
ar

e
fa

ls
e

(a
n
d

p
er

h
ap

s
h
ow

th
ey

ca
n

b
e

fi
xe

d
).

90
m

in
u
te

s
is

fa
ir
ly

sh
or

t,
m

ay
h
av

e
to

co
n
ti
n
u
e

on
yo

u
r

ow
n

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

2
/

8
4

P
re

re
q
u
is
it
es

K
n
ow

le
d
ge

of
se

ts
,
u
n
io

n
,
in

te
rs

ec
ti
on

,
co

m
p
le

m
en

ta
ti
on

S
om

e
b
as

ic
fi
rs

t-
or

d
er

lo
gi

c

B
as

ic
d
is
cr

et
e

m
at

h
(e

.g
.

fu
n
ct

io
n

n
ot

at
io

n
)

T
h
es

e
n
ot

es
ta

ke
an

al
ge

br
ai

c
p
er

sp
ec

ti
ve

C
on

ve
n
ti
on

s:

M
in

im
iz

e
d
is
ti
n
ct

io
n

b
et

w
ee

n
co

n
cr

et
e

an
d

ab
st

ra
ct

n
ot

at
io

n

x
,y

,z
,x

1
,.

..
va

ri
ab

le
s

(i
m

p
lic

it
ly

u
n
iv

er
sa

lly
q
u
an

ti
fi
ed

)

X
,Y

,Z
,X

1
,.

..
se

t
va

ri
ab

le
s

(i
m

p
lic

it
ly

u
n
iv

er
sa

lly
q
u
an

ti
fi
ed

)

f
,g

,h
,f

1
,.

..
fu

n
ct

io
n

va
ri
ab

le
s

a,
b
,c

,a
1
,.

..
co

n
st

an
ts

i,
j,

k
,i

1
,.

..
in

te
ge

r
va

ri
ab

le
s,

u
su

al
ly

n
on

n
eg

at
iv

e

m
,n

,n
1
,.

..
n
on

n
eg

at
iv

e
in

te
ge

r
co

n
st

an
ts

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

3
/

8
4

A
lg

eb
ra

ic
pr

op
er

ti
es

of
se

t
op

er
at

io
n

L
et

U
b
e

a
se

t,
an

d
P

(U
)

=
{X

:
X

⊆
U
}

th
e

p
ow

er
se

t
of

U

P
(U

)
is

an
al

ge
br

a
w

it
h

op
er

at
io

n
s

u
n
io

n
∪

,
in

te
rs

ec
ti
on

∩
,

co
m

p
le

m
en

ta
ti
on

X
−

=
U
\

X

S
at

is
fi
es

m
an

y
id

en
ti
ti
es

:
e.

g.
X

∪
Y

=
Y

∪
X

fo
r

al
l
X

,Y
∈
P

(U
)

H
ow

ca
n

w
e

d
es

cr
ib

e
th

e
se

t
of

al
l
id

en
ti
ti
es

th
at

h
ol

d
?

C
an

w
e

d
ec

id
e

if
a

p
ar

ti
cu

la
r

id
en

ti
ty

h
ol

d
s

in
al

l
p
ow

er
se

t
al

ge
br

as
?

T
h
es

e
ar

e
q
u
es

ti
on

s
ab

ou
t

th
e

eq
u
at

io
n
al

th
eo

ry
of

th
es

e
al

ge
br

as

W
e

w
ill

co
n
si
d
er

si
m

ila
r

q
u
es

ti
on

s
ab

ou
t

se
ve

ra
l
ot

h
er

ty
p
es

of
al

ge
br

as
,

in
p
ar

ti
cu

la
r

re
la

ti
on

al
ge

br
as

an
d

K
le

en
e

al
ge

br
as

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

4
/

8
4

2

B
in

ar
y

re
la

ti
on

s

A
n

or
d
er

ed
p
ai

r,
w

ri
tt

en
(u

,v
),

h
as

th
e

d
efi

n
in

g
pr

op
er

ty

(u
,v

)
=

(x
,y

)
iff

u
=

x
an

d
v

=
y

T
h
e

d
ir
ec

t
pr

o
d
u
ct

of
se

ts
U

,
V

is

U
×

V
=

{(
u
,v

)
:
u
∈

U
,v

∈
V
}

A
b
in

ar
y

re
la

ti
on

R
fr
om

U
to

V
is

a
su

b
se

t
of

U
×

V

W
ri
te

u
R
v

if
(u

,v
)
∈

R
,
ot

h
er

w
is
e

w
ri
te

u
/ R
v

D
efi

n
e

u
R

=
{v

:
u
R
v
}

an
d

R
v

=
{u

:
u
R
v
}

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

5
/

8
4

O
p
er

at
io

n
s

on
b
in

ar
y

re
la

ti
on

s

C
om

p
os

it
io

n
of

re
la

ti
on

s:
R

;S
=

{(
u
,v

)
:
u
R
∩

R
v
6=

∅}

=
{(

u
,v

)
:
∃
x

u
R
x

an
d

xS
v
}

C
on

ve
rs

e
of

R
is

R
`

=
{(

v
,u

)
:
(u

,v
)
∈

R
}

Id
en

ti
ty

re
la

ti
on

I U
=

{(
u
,u

)
:
u
∈

U
}

A
b
in

ar
y

re
la

ti
on

on
a

se
t

U
is

a
su

b
se

t
of

U
×

U

D
efi

n
e

R
0

=
I U

an
d

R
n
+

1
=

R
;R

n
fo

r
n
≥

0

T
ra

n
si
ti
ve

cl
os

u
re

of
R

is
R

+
=

⋃ n
≥

1

R
n

R
efl

ex
iv

e
tr

an
si
ti
ve

cl
os

u
re

of
R

is
R
∗

=
R

+
∪

I U
=

⋃ n
≥

0

R
n

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

6
/

8
4

P
ro

p
er

ti
es

of
b
in

ar
y

re
la

ti
on

s

L
et

R
b
e

a
b
in

ar
y

re
la

ti
on

on
U

R
is

re
fl
ex

iv
e

if
xR

x
fo

r
al

l
x
∈

U

R
is

ir
re

fl
ex

iv
e

if
x
/ R
x

fo
r

al
l
x
∈

U

R
is

sy
m

m
et

ri
c

if
xR

y
im

p
lie

s
yR

x
(i
m

p
lic

it
ly

q
u
an

ti
fi
ed

)

R
is

an
ti
sy

m
m

et
ri
c

if
xR

y
an

d
yR

x
im

p
lie

s
x

=
y

R
is

tr
an

si
ti
ve

if
xR

y
an

d
yR

z
im

p
lie

s
xR

z

R
is

u
n
iv

al
en

t
if

xR
y

an
d

xR
z

im
p
lie

s
y

=
z

R
is

to
ta

l
if

xR
6=

∅
fo

r
al

l
x
∈

U
(o

th
er

w
is
e

p
ar

ti
al

)

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

7
/

8
4

P
ro

p
er

ti
es

in
re

la
ti
on

al
fo

rm

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

R
is

re
fl
ex

iv
e

iff
I U

⊆
R

R
is

ir
re

fl
ex

iv
e

iff
I U

*
R

R
is

sy
m

m
et

ri
c

iff
R

⊆
R

`

iff
R

=
R

`

R
is

an
ti
sy

m
m

et
ri
c

iff
R
∩

R
`

=
I U

R
is

tr
an

si
ti
ve

iff
R

;R
=

R
iff

R
=

R
+

R
is

fu
n
ct

io
n
al

iff
R

;R
`

⊆
I U

R
is

to
ta

l
iff

I U
⊆

R
;R

`

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

8
/

8
4

3

B
in

ar
y

op
er

at
io

n
s

an
d

pr
op

er
ti
es

A
b
in

ar
y

op
er

at
io

n
+

on
U

is
a

fu
n
ct

io
n

fr
om

U
×

U
to

U

W
ri
te

+
(x

,y
)

as
x

+
y

+
is

id
em

p
ot

en
t

if
x

+
x

=
x

(a
ll

im
p
lic

it
ly

q
u
an

ti
fi
ed

)

+
is

co
m

m
u
ta

ti
ve

if
x

+
y

=
y

+
x

+
is

as
so

ci
at

iv
e

if
(x

+
y
)
+

z
=

x
+

(y
+

z
)

+
is

co
n
se

rv
at

iv
e

if
x

+
y

=
x

or
x

+
y

=
y

+
is

le
ft

ca
n
ce

lla
ti
ve

if
z

+
x

=
z

+
y

im
p
lie

s
x

=
y

+
is

ri
gh

t
ca

n
ce

lla
ti
ve

if
x

+
z

=
y

+
z

im
p
lie

s
x

=
y

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

9
/

8
4

C
on

n
ec

ti
on

w
it
h

re
la

ti
on

s

D
efi

n
e

R
+

on
U

by
xR

+
y

iff
x

+
z

=
y

fo
r

so
m

e
z
∈

U

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

If
+

is
id

em
p
ot

en
t

th
en

R
+

is
re

fl
ex

iv
e.

If
+

is
co

m
m

u
ta

ti
ve

th
en

R
+

is
an

ti
sy

m
m

et
ri
c.

If
+

is
as

so
ci

at
iv

e
th

en
R

+
is

tr
an

si
ti
ve

.

A
se

m
ig

ro
u
p

is
a

se
t

w
it
h

an
as

so
ci

at
iv

e
b
in

ar
y

op
er

at
io

n

A
b
an

d
is

a
se

m
ig

ro
u
p

(U
,+

)
su

ch
th

at
+

is
id

em
p
ot

en
t

A
q
u
as

i-
or

d
er

ed
se

t
(q

os
et

)
is

a
se

t
w

it
h

a
re

fl
ex

iv
e

tr
an

si
ti
ve

re
la

ti
on

⇒
If

(U
,+

)
is

a
b
an

d
th

en
(U

,R
+
)

is
a

q
os

et

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

1
0

/
8
4

M
or

e
sp

ec
ifi

c
co

n
n
ec

ti
on

w
it
h

re
la

ti
on

s

D
efi

n
e
≤

+
on

U
by

x
≤

+
y

iff
x

+
y

=
y

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

+
is

id
em

p
ot

en
t

iff
≤

+
is

re
fl
ex

iv
e.

+
is

co
m

m
u
ta

ti
ve

iff
≤

+
is

an
ti
sy

m
m

et
ri
c.

+
is

as
so

ci
at

iv
e

iff
≤

+
is

tr
an

si
ti
ve

.

A
se

m
ila

tt
ic

e
is

a
b
an

d
(U

,+
)

su
ch

th
at

+
is

co
m

m
u
ta

ti
ve

A
p
ar

ti
al

ly
or

d
er

ed
se

t
is

a
q
os

et
(U

,R
)

su
ch

th
at

R
is

an
ti
sy

m
m

et
ri
c

⇒
If

(U
,+

)
is

a
se

m
ila

tt
ic

e
th

en
(U

,≤
+
)

is
a

p
ar

ti
al

ly
or

d
er

ed
se

t

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

1
1

/
8
4

A
p
ar

ti
al

ly
or

d
er

ed
se

t
is

ca
lle

d
a

p
os

et
fo

r
sh

or
t

A
st

ri
ct

p
ar

ti
al

or
d
er

is
an

ir
re

fl
ex

iv
e

tr
an

si
ti
ve

re
la

ti
on

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

If
<

is
a

st
ri
ct

p
ar

ti
al

or
d
er

on
U

,
th

en
(U

,<
∪

I U
)

is
a

p
os

et
.

If
(U

,≤
)

is
a

p
os

et
,
th

en
<

=
≤

\
I U

is
a

st
ri
ct

p
ar

ti
al

or
d
er

.

F
or

a,
b
∈

U
w
e

sa
y

th
at

a
is

co
ve

re
d

by
b

(w
ri
tt

en
a
≺

b
)

if
a

<
b

an
d

th
er

e
is

n
o

x
su

ch
th

at
a

<
x

<
b

T
o

vi
su

al
iz

e
a

fi
n
it
e

p
os

et
w
e

ca
n

d
ra

w
a

H
as

se
d
ia

gr
am

:

a
is

co
n
n
ec

te
d

w
it
h

an
u
pw

ar
d

sl
op

in
g

lin
e

to
b

if
a
≺

b

N
o
n
is
o
m

o
rp

h
ic

co
n
n
ec

te
d

p
o
se

ts
w

it
h
≤

4
el

em
en

ts

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

1
2

/
8
4

4

E
q
u
iv

al
en

ce
re

la
ti
on

s

A
n

eq
u
iv

al
en

ce
re

la
ti
on

is
a

re
fl
ex

iv
e

sy
m

m
et

ri
c

tr
an

si
ti
ve

re
la

ti
on

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

R
is

an
eq

u
iv

al
en

ce
re

la
ti
on

on
U

iff
I U

⊆
R

=
R

`

;R

L
et

R
b
e

an
eq

u
iv

al
en

ce
re

la
ti
on

on
a

se
t

U
,
an

d
u
∈

U

T
h
en

u
R

=
{x

:
u
R
x
}

is
ca

lle
d

an
eq

u
iv

al
en

ce
cl

as
s

of
R

U
su

al
ly

w
ri
tt

en
[u

] R
or

si
m

p
ly

[u
];

u
is

ca
lle

d
a

re
pr

es
en

ta
ti
ve

of
[u

]

T
h
e

se
t

of
al

l
eq

u
iv

al
en

ce
cl

as
se

s
of

R
is

U
/R

=
{[

u
]
:
u
∈

U
}

E
q
u
iv

a
le

n
ce

re
la

ti
o
n
s

o
n

a
3
-e

le
m

en
t

se
t

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

1
3

/
8
4

P
ar

ti
ti
on

s

A
p
ar

ti
ti
on

of
U

is
a

su
b
se

t
P

of
P

(U
)

su
ch

th
at

⋃

P
=

U
,
∅

/∈
P

,
an

d
X

=
Y

or
X

∩
Y

=
∅

fo
r

al
l
X

,Y
∈

P

(w
h
er

e
⋃

P
=

{x
:
x
∈

X
fo

r
so

m
e

X
∈

P
})

F
or

a
p
ar

ti
ti
on

P
d
efi

n
e

a
re

la
ti
on

by
x
≡

P
y

iff
x
,y

∈
X

fo
r

so
m

e
X

∈
P

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

T
h
e

m
ap

f
(R

)
=

U
/R

is
a

b
ij
ec

ti
on

fr
om

th
e

se
t

of
eq

u
iv

al
en

ce
re

la
ti
on

s
on

U
to

th
e

se
t

of
p
ar

ti
ti
on

s
of

U
,
w

it
h

f
−

1
(P

)
gi

ve
n

by
≡

P
.

P
ar

ti
ti
o
n
s

o
f
a

3
-e

le
m

en
t

se
t

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

1
4

/
8
4

T
h
e

p
os

et
in

d
u
ce

d
by

a
q
u
as

i-
or

d
er

F
or

a
q
os

et
(U

,v
),

d
efi

n
e

a
re

la
ti
on

on
U

by
x
≡

y
iff

x
v

y
an

d
y
v

x

N
ow

d
efi

n
e
≤

on
U

/≡
by

[x
]
≤

[y
]
iff

x
v

y

≤
is

sa
id

to
b
e

w
el

l
d
efi

n
ed

if
[x

′]
=

[x
]
≤

[y
]
=

[y
′]

im
p
lie

s
[x

′]
≤

[y
′]

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

T
h
e

re
la

ti
on

≤
is

w
el

l
d
efi

n
ed

an
d

(U
/≡

,≤
)

is
a

p
os

et
.

F
ac

to
ri
n
g

m
at

h
em

at
ic

al
st

ru
ct

u
re

s
by

ap
pr

op
ri
at

e
eq

u
iv

al
en

ce
re

la
ti
on

s
is

a
p
ow

er
fu

l
w
ay

of
u
n
d
er

st
an

d
in

g
an

d
cr

ea
ti
n
g

n
ew

st
ru

ct
u
re

s.

◦
◦

◦
◦N
o
n
is
o
m

o
rp

h
ic

co
n
n
ec

te
d

q
o
se

ts
o
n

4
el

em
en

ts

◦
◦

◦
◦

◦
◦
◦

◦
◦
◦
◦

◦
◦
◦

◦

◦
◦
◦

◦

◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦ ◦ ◦

◦ ◦
◦ ◦

◦ ◦ ◦
◦

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

1
5

/
8
4

S
om

e
cl

as
se

s
of

b
in

ar
y

re
la

ti
on

s

a
ll

re
ls

a
r

s
t

ar
rs

a
t

q
o
se

ts
st

su
b
id

re
ls

p
o
se

ts
eq

u
iv

re
ls

id
re

ls

a
=

a
n
ti
sy

m
m

et
ri
c

r
=

re
fl
ex

iv
e

s
=

sy
m

m
et

ri
c

t
=

tr
a
n
si
ti
ve

a
a
n
d

s
⇒

t

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

1
6

/
8
4

5

T
u
p
le

s
an

d
d
ir
ec

t
pr

o
d
u
ct

s

W
e

h
av

e
se

en
se

ve
ra

l
ex

am
p
le

s
of

al
ge

br
as

an
d

re
la

ti
on

al
st

ru
ct

u
re

s:

(U
,+

)
an

al
ge

br
a

w
it
h

on
e

b
in

ar
y

op
er

at
io

n
,
e.

g.
(N

,+
),

(P
(U

),
∪

)

(U
,R

)
a

re
la

ti
on

al
st

ru
ct

u
re

w
it
h

a
b
in

ar
y

re
la

ti
on

,
e.

g.
(N

,≤
),

(P
(U

),
⊆

)

A
p
p
lic

at
io

n
s

u
su

al
ly

in
vo

lv
e

se
ve

ra
l
n
-a

ry
op

er
at

io
n
s

an
d

re
la

ti
on

s

F
or

a
se

t
I,

an
I-

tu
p
le

(u
i)

i∈
I

is
a

fu
n
ct

io
n

m
ap

p
in

g
i
∈

I
to

u
i.

A
tu

p
le

ov
er

(U
i)

i∈
I

is
an

I-
tu

p
le

(u
i)

i∈
I

su
ch

th
at

u
i
∈

U
i
fo

r
al

l
i
∈

I

T
h
e

d
ir
ec

t
pr

o
d
u
ct

∏

i∈
I
U

i
is

th
e

se
t

of
al

l
tu

p
le

s
ov

er
(U

i)
i∈

I

In
p
ar

ti
cu

la
r,

∏

i∈
I
U

is
th

e
se

t
U

I
of

al
l
fu

n
ct

io
n
s

fr
om

I
to

U

If
I

=
{1

,.
..

,n
}

th
en

w
e

w
ri
te

U
I
=

U
n

an
d

∏

i∈
I
U

i
=

U
1
×
··
·×

U
n

N
ot

e:
U

0
=

U
∅

=
{(

)}
h
as

on
e

el
em

en
t,

n
am

el
y

th
e

em
p
ty

fu
n
ct

io
n

()
=

∅

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

1
7

/
8
4

A
lg

eb
ra

s
an

d
re

la
ti
on

al
st

ru
ct

u
re

s

A
(u

n
is
or

te
d

fi
rs

t-
or

d
er

)
st

ru
ct

u
re

is
a

tu
p
le

U
=

(U
,(

f
U
) f

∈
F

τ
,(

R
U
) R

∈
R

τ
)

U
is

th
e

u
n
d
er

ly
in

g
se

t

F
τ

is
a

se
t

of
op

er
at

io
n

sy
m

b
ol

s
an

d

R
τ

is
a

se
t

of
re

la
ti
on

sy
m

b
ol

s
(d

is
jo

in
t

fr
om

F
τ
)

T
h
e

ty
p
e

τ
:
F

τ
∪
R

τ
→

{0
,1

,2
,.

..
}

gi
ve

s
th

e
ar

it
y

of
ea

ch
sy

m
b
ol

f
U

:
U

τ
(f

)
→

U
an

d
R

U
⊆

U
τ
(R

)
ar

e
th

e
in

te
rp

re
ta

ti
on

of
sy

m
b
ol

f
an

d
R

0-
ar

y
op

er
at

io
n

sy
m

b
ol

s
ar

e
ca

lle
d

co
n
st

an
t

sy
m

b
ol

s

U
is

a
(u

n
iv

er
sa

l)
al

ge
br

a
if
R

τ
=

∅;
u
se

A
,B

,C
fo

r
al

ge
br

as

C
on

ve
n
ti
on

:
th

e
st

ri
n
g

of
sy

m
b
ol

s
f
(x

1
,.

..
,x

n
)

im
p
lie

s
th

at
f

h
as

ar
it
y

n

T
h
e

su
p
er

sc
ri
p
t

U
is

of
te

n
om

it
te

d

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

1
8

/
8
4

M
on

oi
d
s

an
d

in
vo

lu
ti
on

R
ec

al
l
th

at
(A

,·
)

a
se

m
ig

ro
u
p

if
·
is

an
as

so
ci

at
iv

e
op

er
at

io
n

A
m

on
oi

d
is

a
se

m
ig

ro
u
p

w
it
h

an
id

en
ti
ty

el
em

en
t

i.
e.

of
th

e
fo

rm
(A

,·
,1

)
su

ch
th

at
x
·1

=
x

=
1
·x

A
n

in
vo

lu
ti
ve

se
m

ig
ro

u
p

is
a

se
m

ig
ro

u
p

w
it
h

an
in

vo
lu

ti
on

i.
e.

of
th

e
fo

rm
(A

,·
,`

)
su

ch
th

at
`

h
as

p
er

io
d

tw
o:

x
`

`

=
x
,
an

d
`

an
ti
d
is
tr

ib
u
te

s
ov

er
· :

(x
·y

)`
=

y
`

·x
`

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

If
an

in
vo

lu
ti
ve

se
m

ig
ro

u
p

sa
ti
sfi

es
x
·1

=
x

fo
r

so
m

e
el

em
en

t
1

an
d

al
l
x

th
en

it
sa

ti
sfi

es
1

`

=
1

an
d

1
·x

=
x

A
n

in
vo

lu
ti
ve

m
on

oi
d

is
a

m
on

oi
d

w
it
h

an
in

vo
lu

ti
on

A
gr

ou
p

is
an

in
vo

lu
ti
ve

m
on

oi
d

su
ch

th
at

x
·x

`

=
1

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

1
9

/
8
4

Jo
in

-s
em

ila
tt

ic
es

A
se

m
ila

tt
ic

e
is

a
co

m
m

u
ta

ti
ve

id
em

p
ot

en
t

se
m

ig
ro

u
p

(A
,+

,≤
)

is
a

jo
in

-s
em

ila
tt

ic
e

if
(A

,+
)

is
a

se
m

ila
tt

ic
e

an
d

x
≤

y
⇔

x
+

y
=

y

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

(A
,+

,≤
)

is
a

jo
in

-s
em

ila
tt

ic
e

iff
(A

,≤
)

is
a

p
os

et
an

d
x

+
y

=
z
⇔

∀
w

(x
≤

w
an

d
y
≤

w
⇔

z
≤

w
)

iff
(A

,≤
)

is
a

p
os

et
an

d
x

+
y
≤

z
⇔

x
≤

z
an

d
y
≤

z

⇒
an

y
tw

o
el

em
en

ts
x
,y

h
av

e
a

le
as

t
u
p
p
er

b
ou

n
d

x
+

y

W
h
ic

h
of

th
e

fo
llo

w
in

g
ar

e
jo

in
-s

em
ila

tt
ic

es
?

N
o
n
is
o
m

o
rp

h
ic

co
n
n
ec

te
d

p
o
se

ts
w

it
h
≤

4
el

em
en

ts

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

2
0

/
8
4

6

L
at

ti
ce

s
an

d
d
u
al

s

A
m

ee
t-

se
m

ila
tt

ic
e

(A
,·

,≤
)

is
a

se
m

ila
tt

ic
e

w
it
h

x
≤

y
⇔

x
·y

=
x

(A
,+

,·
)

is
a

la
tt

ic
e

if
+

,
·
ar

e
as

so
ci

at
iv

e,
co

m
m

u
ta

ti
ve

op
er

at
io

n
s

th
at

sa
ti
sf

y
th

e
ab

so
rb

ti
on

la
w

s:
x

+
(y

·x
)

=
x

=
(x

+
y
)
·x

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

(A
,+

,·
)

is
a

la
tt

ic
e

iff
(A

,+
,≤

)
is

a
jo

in
-s

em
ila

tt
ic

e
an

d
(A

,·
,≤

)
is

a
m

ee
t-

se
m

ila
tt

ic
e

w
h
er

e
x
≤

y
⇔

x
+

y
=

y
.

D
efi

n
e

x
≥

y
⇔

y
≤

x
.

T
h
e

d
u
al

(A
,+

,≤
)d

=
(A

,+
,≥

)
(A

,·
,≤

)d
=

(A
,·

,≥
)

an
d

(A
,+

,·
)d

=
(A

,·
,+

)

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

T
h
e

d
u
al

of
a

jo
in

-s
em

ila
tt

ic
e

is
a

m
ee

t-
se

m
ila

tt
ic

e
an

d
vi

ce
ve

rs
a.

T
h
e

d
u
al

of
a

la
tt

ic
e

is
ag

ai
n

a
la

tt
ic

e.

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

2
1

/
8
4

D
is
tr

ib
u
ti
vi

ty
an

d
b
ou

n
d
s

A
la

tt
ic

e
is

d
is
tr

ib
u
ti
ve

if
it

sa
ti
sfi

es
x
·(

y
+

z
)

=
(x

·y
)
+

(x
·z

)

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

A
la

tt
ic

e
is

d
is
tr

ib
u
ti
ve

iff
x

+
(y

·z
)

=
(x

+
y
)
·(

x
+

z
)

iff
(x

+
y
)
·(

x
+

z
)
·(

y
+

z
)

=
(x

·y
)
+

(x
·z

)
+

(y
·z

)

⇒
a

la
tt

ic
e

is
d
is
tr

ib
u
ti
ve

iff
it
s

d
u
al

is
d
is
tr

ib
u
ti
ve

A
se

m
ila

tt
ic

e
w

it
h

id
en

ti
ty

is
a

co
m

m
u
ta

ti
ve

id
em

p
ot

en
t

m
on

oi
d

(A
,+

,0
,·

,>
)

is
a

b
ou

n
d
ed

la
tt

ic
e

if
(A

,+
,·

)
is

a
la

tt
ic

e
an

d
(A

,+
,0

),
(A

,·
,>

)
ar

e
se

m
ila

tt
ic

es
w

it
h

id
en

ti
ty

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

S
u
p
p
os

e
(A

,+
,·

)
is

a
la

tt
ic

e.
T

h
en

(A
,+

,0
,·

,>
)

is
a

b
ou

n
d
ed

la
tt

ic
e

iff
0
≤

x
≤

>
iff

x
·0

=
0

an
d

x
+
>

=
>

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

2
2

/
8
4

C
om

p
le

m
en

ta
ti
on

an
d

B
o
ol

ea
n

al
ge

br
as

(A
,+

,0
,·

,>
,−

)
is

a
la

tt
ic

e
w

it
h

co
m

p
le

m
en

ta
ti
on

if
(A

,+
,0

,·
,>

)
is

a
b
ou

n
d
ed

la
tt

ic
e

su
ch

th
at

x
+

x
−

=
>

an
d

x
·x

−
=

0

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

L
at

ti
ce

s
w

it
h

co
m

p
le

m
en

ta
ti
on

sa
ti
sf

y
x
−
−

=
x

an
d

D
eM

or
ga

n
’s

la
w

s
(x

+
y
)−

=
x
−
·y

−
an

d
(x

·y
)−

=
x
−

+
y
−

A
B

o
ol

ea
n

al
ge

br
a

is
a

d
is
tr

ib
u
ti
ve

la
tt

ic
e

w
it
h

co
m

p
le

m
en

ta
ti
on

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

B
o
ol

ea
n

al
ge

br
as

sa
ti
sf

y
x
−
−

=
x

an
d

D
eM

or
ga

n
’s

la
w

s
(x

+
y
)−

=
x
−
·y

−
an

d
(x

·y
)−

=
x
−

+
y
−

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

(A
,+

,0
,·

,>
,−

)
is

a
B
o
o
le

a
n

a
lg

eb
ra

iff
+

is
co

m
m

u
ta

ti
ve

w
it
h

id
en

ti
ty

0
,
·
is

co
m

m
u
ta

ti
ve

w
it
h

id
en

ti
ty

1
,
+

d
is
tr

ib
u
te

s
o
ve

r
·,
·
d
is
tr

ib
u
te

s
o
ve

r
+

,
x

+
x
−

=
>

a
n
d

x
·
x
−

=
0
.

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

2
3

/
8
4

B
o
ol

ea
n

al
ge

br
as

of
se

ts

P
(U

)
=

(P
(U

),
∪

,∅
,∩

,U
,−

)
is

th
e

B
o
ol

ea
n

al
ge

br
a

of
al

l
su

b
se

ts
of

U

A
co

n
cr

et
e

B
o
ol

ea
n

al
ge

br
a

is
an

y
co

lle
ct

io
n

of
su

b
se

ts
of

a
se

t
U

th
at

is
cl

os
ed

u
n
d
er

∪
,
∩

,
an

d
−

T
h
e

at
om

s
of

a
jo

in
-s

em
ila

tt
ic

e
w

it
h

0
ar

e
th

e
co

ve
rs

of
0

A
jo

in
-s

em
ila

tt
ic

e
w

it
h

0
is

at
om

le
ss

if
it

h
as

n
o

at
om

s,
an

d

at
om

ic
if

fo
r

ev
er

y
x
6=

0
th

er
e

is
an

at
om

a
≤

x

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

P
(U

)
is

at
om

ic
fo

r
ev

er
y

se
t

U

H
=

{(
a 1

,b
1
]
∪
··
·∪

(a
n
,b

n
]
:
0
≤

a i
<

b
i
≤

1
ar

e
ra

ti
on

al
s,

n
∈

N
}

is
an

at
om

le
ss

co
n
cr

et
e

B
o
ol

ea
n

al
ge

br
a

w
it
h

U
th

e
se

t
of

p
os

it
iv

e
ra

ti
on

al
s
≤

1

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

2
4

/
8
4

7

R
el

at
io

n
al

ge
br

as

A
n

(a
b
st

ra
ct

)
re

la
ti
on

al
ge

br
a

is
of

th
e

fo
rm

(A
,+

,0
,·

,>
,−

,;
,1

,`
)

w
h
er

e

(A
,+

,0
,·

,>
,−

)
is

a
B

o
ol

ea
n

al
ge

br
a

(A
,;

,1
)

is
a

m
on

oi
d

(x
;y

)
·z

=
0

⇔
(x

`

;z
)
·y

=
0

⇔
(z

;y
`

)
·x

=
0

T
h
e

la
st

lin
e

st
at

es
th

e
S
ch

rö
d
er

eq
u
iv

al
en

ce
s

(o
r

D
eM

or
ga

n
’s

T
h
m

K
)

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

In
a

re
la

ti
on

al
ge

br
a

x
`

`

=
x

an
d

`

is
se

lf
-c

on
ju

ga
te

d
,
i.
e.

x
`

·y
=

0
⇔

x
·y

`

=
0.

H
en

ce
(x

+
y
)`

=
x

`

+
y

`

,
x
−

`

=
x

`
−
,

(x
·y

)`
=

x
`

·y
`

,
`

is
an

in
vo

lu
ti
on

an
d

x
;(

y
+

z
)

=
x
;y

+
x
;z

.
H

in
t:

In
a

B
o
o
le

a
n

a
lg

eb
ra

u
=

v
iff

∀
x
(u

·
x

=
0
⇔

v
·
x

=
0
)

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

A
B

o
ol

ea
n

al
ge

br
a

ex
p
an

d
ed

w
it
h

an
in

vo
lu

ti
ve

m
on

oi
d

is
a

re
la

ti
on

al
ge

br
a

iff
x
;(

y
+

z
)

=
x
;y

+
x
;z

,
(x

+
y
)`

=
x

`

+
y

`

an
d

x
`

;(
x
;y

)−
·y

=
0

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

2
5

/
8
4

C
on

cr
et

e
re

la
ti
on

al
ge

br
as

R
el

(U
)

=
(P

(U
2
),
∪

,∩
,∅

,U
2
,−

,;
,I

U
,`

)
th

e
sq

u
ar

e
re

la
ti
on

al
ge

br
a

on
U

A
co

n
cr

et
e

re
la

ti
on

al
ge

br
a

is
of

th
e

fo
rm

(C
,∪

,∩
,∅

,>
,−

,;
,I

U
,`

)
w

h
er

e
C

is
a

se
t

of
b
in

ar
y

re
la

ti
on

s
on

a
se

t
U

th
at

is
cl

os
ed

u
n
d
er

th
e

op
er

at
io

n
s

∪
,
−
,
;,

`

,
an

d
co

n
ta

in
s

I U

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

E
ve

ry
sq

u
ar

e
re

la
ti
on

al
ge

br
a

is
co

n
cr

et
e.

E
ve

ry
co

n
cr

et
e

re
la

ti
on

al
ge

br
a

is
a

re
la

ti
on

al
ge

br
a,

an
d

th
e

la
rg

es
t

re
la

ti
on

is
an

eq
u
iv

al
en

ce
re

la
ti
on

R
el

at
io

n
al

ge
br

as
h
av

e
ap

p
lic

at
io

n
s

in
pr

og
ra

m
se

m
an

ti
cs

,
sp

ec
ifi

ca
ti
on

,
d
er

iv
at

io
n
,
d
at

ab
as

es
,
se

t
th

eo
ry

,
fi
n
it
e

va
ri
ab

le
lo

gi
c,

co
m

b
in

at
or

ic
s,

..
.

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

2
6

/
8
4

Id
em

p
ot

en
t

se
m

ir
in

gs

A
se

m
ir
in

g
is

an
al

ge
br

a
(A

,+
,0

,;
,1

)
su

ch
th

at

(A
,+

,0
)

is
a

co
m

m
u
ta

ti
ve

m
on

oi
d

(A
,;

,1
)

is
a

m
on

oi
d

x
;(

y
+

z
)

=
(x

;y
)
+

(x
;z

),
(x

+
y
);

z
=

(x
;z

)
+

(y
;z

)

x
;0

=
0

=
0;

x

A
se

m
ir
in

g
is

id
em

p
ot

en
t

if
x

+
x

=
x

⇒
an

id
em

p
ot

en
t

se
m

ir
in

g
is

a
jo

in
-s

em
ila

tt
ic

e
w

it
h

x
≤

y
⇔

x
+

y
=

y
,
a

b
ot

to
m

el
em

en
t

0,
;
d
is
tr

ib
u
te

s
ov

er
+

an
d

0
is

a
ze

ro
fo

r
;

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

In
an

id
em

p
ot

en
t

se
m

ir
in

g
x
≤

y
im

p
lie

s
x
;z

≤
y
;z

an
d

z
;x

≤
z
;y

F
or

an
y

m
on

oi
d

M
=

(M
,·

,1
),

th
e

p
ow

er
se

t
id

em
p
ot

en
t

se
m

ir
in

g
is

P
(M

)
=

(P
(M

),
∪

,∅
,;

,{
1}

)
w

h
er

e
X

;Y
=

{x
·y

:
x
∈

X
,

y
∈

Y
}

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

2
7

/
8
4

K
le

en
e

al
ge

br
as

A
K

le
en

e
al

ge
br

a
is

of
th

e
fo

rm
(A

,+
,0

,;
,1

,∗
)

w
h
er

e

(A
,+

,0
,;

,1
)

is
an

id
em

p
ot

en
t

se
m

ir
in

g

1
+

x
+

x
∗
;x

∗
=

x
∗

x
;y

≤
y
⇒

x
∗
;y

≤
y

(w
h
er

e
x
≤

y
⇔

x
+

y
=

y
)

y
;x

≤
y
⇒

y
;x

∗
≤

y

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

L
et

M
=

(M
,·

,1
)

b
e

a
m

on
oi

d
.

T
h
en

P
(M

)
ca

n
b
e

ex
p
an

d
ed

to
a

K
le

en
e

al
ge

br
a

if
w
e

d
efi

n
e

X
∗

=
⋃

n
≥

0
X

n
w

h
er

e
X

0
=

{1
}

an
d

X
n
+

1
=

X
n
;X

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

F
or

an
y

se
t

U
,
K

R
el

(U
)

=
(P

(U
2
),
∪

,,
;,

I U
,∗

)
is

a
K

le
en

e
al

ge
br

a

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

2
8

/
8
4

8

K
le

en
e

al
ge

br
as

co
n
ti
n
u
ed

T
ra

d
it
io

n
al

ly
w
e

w
ri
te

x
;y

si
m

p
ly

as
xy

A
K

le
en

e
ex

pr
es

si
on

h
as

an
op

p
os

it
e

gi
ve

n
by

re
ve

rs
in

g
th

e
ex

pr
es

si
on

.

T
h
e

op
p
os

it
e

ax
io

m
s

of
K

le
en

e
al

ge
br

as
ag

ai
n

d
efi

n
e

K
le

en
e

al
ge

br
as

,
so

an
y

pr
o
of

of
a

re
su

lt
ca

n
b
e

co
n
ve

rt
ed

to
a

pr
o
of

of
th

e
op

p
os

it
e

re
su

lt

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

In
a

K
le

en
e

al
ge

br
a

x
n
≤

x
∗

fo
r

al
l
n
≥

0
(w

h
er

e
x

0
=

1,
x

n
+

1
=

x
n
x
)

x
≤

y
⇒

x
∗
≤

y
∗

xx
∗

=
x
∗
x

x
∗
∗

=
x
∗

an
d

x
∗

=
1

+
x

+
w

h
er

e
x

+
=

xx
∗

xy
+

z
≤

y
⇒

x
∗
z
≤

y
(a

n
d

it
s

op
p
os

it
e)

xy
=

yz
⇒

x
∗
y

=
yz

∗

(x
y
)∗

x
=

x
(y

x
)∗

an
d

(x
+

y
)∗

=
x
∗
(y

x
∗
)∗

K
le

en
e

al
ge

br
as

h
av

e
ap

p
lic

at
io

n
s

in
au

to
m

at
a

th
eo

ry
,
p
ar

si
n
g,

p
at

te
rn

m
at

ch
in

g,
se

m
an

ti
c

an
d

lo
gi

c
of

pr
og

ra
m

s,
an

al
ys

is
of

al
go

ri
th

m
s,
..

.

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

2
9

/
8
4

K
le

en
e

al
ge

br
as

w
it
h

te
st

s

K
le

en
e

al
ge

br
as

m
o
d
el

co
n
ca

te
n
at

io
n
,
n
on

d
et

er
m

in
is
ti
c

ch
oi

ce
an

d
it
er

at
io

n
,
b
u
t

to
m

o
d
el

pr
og

ra
m

s
n
ee

d
gu

ar
d
ed

ch
oi

ce
an

d
gu

ar
d
ed

it
er

at
io

n

A
K

le
en

e
al

ge
br

a
w

it
h

te
st

s
(K

A
T

)
is

of
th

e
fo

rm
(A

,+
,0

,;
,1

,∗
,−

,B
)

w
h
er

e
(A

,+
,0

,;
,1

,∗
)

is
a

K
le

en
e

al
ge

br
a,

B
is

a
u
n
ar

y
re

la
ti
on

(⊆
A

)
an

d
x
,y

∈
B

⇒
x

+
y
,

x
;y

,
x
−
,

0,
1
∈

B
,

x
;x

=
x
,

x
;x

−
=

0,
x

+
x
−

=
1

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

In
a

K
A
T

,
(B

,+
,0

,;
,1

,−
)

is
a

B
o
ol

ea
n

al
ge

br
a

[K
oz

en
19

96
]
d
efi

n
es

K
A
T

s
as

tw
o-

so
rt

ed
al

ge
br

as
,
b
u
t

h
er

e
th

ey
ar

e
on

e-
so

rt
ed

st
ru

ct
u
re

s
w

it
h

−
a

p
ar

ti
al

op
er

at
io

n
d
efi

n
ed

on
ly

on
B

T
h
e

pr
og

ra
m

co
n
st

ru
ct

i
f

b
t
h
e
n

p
e
l
s
e

q
is

ex
pr

es
se

d
by

b
;p

+
b
−
;q

w
h
i
l
e

b
d
o

p
is

ex
pr

es
se

d
by

(b
;p

)∗
;b

−

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

3
0

/
8
4

Id
em

p
ot

en
t

se
m

ir
in

gs
w

it
h

d
om

ai
n

an
d

ra
n
ge

E
ve

ry
K

le
en

e
al

ge
br

a
is

a
K

A
T

w
it
h

B
=

{0
,1
}

In
K

R
el

(U
)

th
e

te
st

s
ar

e
a

su
b
al

ge
br

a
of

P
(I

U
)

C
an

al
so

d
efi

n
e

id
em

p
ot

en
t

se
m

ir
in

gs
w

it
h

te
st

s
(j
u
st

om
it

∗
)

M
or

e
ex

pr
es

si
ve

:
ad

d
a

d
om

ai
n

op
er

at
or

[D
es

h
ar

n
ai

s
M

öl
le

r
S
tr

u
th

20
06

]

A
n

id
em

p
ot

en
t

se
m

ir
in

g
w

it
h

pr
ed

om
ai

n
is

of
th

e
fo

rm
(A

,+
,0

,;
,1

,−
,δ

)
w

h
er

e
(A

,+
,0

,;
,1

,−
,δ

[A
])

is
an

id
em

p
ot

en
t

se
m

ir
in

g
w

it
h

te
st

s,
x
≤

δ(
x
);

x
an

d
δ(

δ(
x
);

y
)
≤

δ(
x
)

F
or

id
em

p
ot

en
t

se
m

ir
in

gs
w

it
h

d
om

ai
n

ad
d

δ(
x
;δ

(y
))

≤
δ(

x
;y

)

In
R
el

(U
)

th
e

d
om

ai
n

op
er

at
or

is
d
efi

n
ab

le
by

δ(
R

)
=

(R
;R

`

)
∩

I U

Id
em

p
ot

en
t

se
m

ir
in

gs
w

it
h

(p
re

)r
an

ge
op

er
at

or
ar

e
op

p
os

it
e

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

3
1

/
8
4

T
er

m
s

an
d

fo
rm

u
la

s

U
A

is
a

fr
am

ew
or

k
fo

r
st

u
d
yi

n
g

an
d

co
m

p
ar

in
g

al
l
th

es
e

al
ge

br
as

G
iv

en
a

se
t

X
,
th

e
se

t
of

τ
-t

er
m

s
w

it
h

va
ri
ab

le
s

fr
om

X
is

th
e

sm
al

le
st

se
t

T
=

T
τ
(X

)
su

ch
th

at

X
⊆

T
an

d

if
t 1

,.
..

,t
n
∈

T
an

d
f
∈
F

τ
th

en
f
(t

1
,.

..
,t

n
)
∈

T
.

T
h
e

te
rm

al
ge

br
a

ov
er

X
is

T
τ
(X

)
=

T
=

(T
τ
(X

),
(f

T
) f

∈
F

τ
)

w
it
h

f
T
(t

1
,.

..
,t

n
)

=
f
(t

1
,.

..
,t

n
)

fo
r

t 1
,.

..
,t

n
∈

T
τ
(X

)

A
τ
-e

q
u
at

io
n

is
a

p
ai

r
of

τ
-t

er
m

s
(s

,t
),

u
su

al
ly

w
ri
tt

en
s

=
t

A
q
u
as

ie
q
u
at

io
n

is
an

im
p
lic

at
io

n
(s

1
=

t 1
an

d
..

.
an

d
s n

=
t n

⇒
s 0

=
t 0

)

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

3
2

/
8
4

9

M
o
d
el

s
an

d
th

eo
ri
es

A
n

at
om

ic
fo

rm
u
la

is
a

τ
-e

q
u
at

io
n

or
R

(x
1
,.

..
,x

n
)

fo
r

R
∈
R

τ

A
τ
-f
or

m
u
la

φ
::
=

at
om

ic
fr
m

.|
φ
an

d
φ
|φ

or
φ
|¬

φ
|φ

⇒
φ
|φ

⇔
φ
|∀

x
φ
|∃

x
φ

W
ri
te

U
|=

φ
if

τ
-f
or

m
u
la

φ
h
ol

d
s

in
τ
-s

tr
u
ct

u
re

U
(s

ta
n
d
ar

d
d
ef

n
)

T
h
ro

u
gh

ou
t
K

is
a

cl
as

s
of

τ
-s

tr
u
ct

u
re

s,
F

a
se

t
of

τ
-f
or

m
u
la

s

W
ri
te

K
|=

F
if

U
|=

φ
fo

r
al

l
U

∈
K

an
d

φ
∈

F

M
o
d
(F

)
=

{U
:
U

|=
F
}

=
cl

as
s

of
al

l
m

o
d
el

s
of

F

T
h
(K

)
=

{φ
:
K

|=
φ
}

=
fi
rs

t
or

d
er

th
eo

ry
of

K

T
h
e
(K

)
=

T
h
(K

)
∩
{τ

-e
q
u
at

io
n
s}

=
eq

u
at

io
n
al

th
eo

ry
of

K

T
h
q
(K

)
=

T
h
(K

)
∩
{τ

-q
u
as

ie
q
u
at

io
n
s}

=
q
u
as

ie
q
u
at

io
n
al

th
eo

ry
of

K

T
h
q
(K

)
is

al
so

ca
lle

d
th

e
st

ri
ct

u
n
iv

er
sa

l
H

or
n

th
eo

ry
of

K

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

3
3

/
8
4

S
u
b
st

ru
ct

u
re

s,
h
om

om
or

p
h
is
m

s
an

d
pr

o
d
u
ct

s

L
et

U
,V

,V
i
(i

∈
I)

b
e

st
ru

ct
u
re

s
of

ty
p
e

τ
an

d
le

t
f
,R

ra
n
ge

ov
er

F
τ
,R

τ

U
is

a
su

b
st

ru
ct

u
re

of
V

if
U

⊆
V

,
f
U
(u

1
,.

..
,u

n
)

=
f
V
(u

1
,.

..
,u

n
)

an
d

R
U

=
R

V
∩

U
n

fo
r

al
l
u
1
,.

..
,u

n
∈

U

h
:
U

→
V

is
a

h
om

om
or

p
h
is
m

if
h

is
a

fu
n
ct

io
n

fr
om

U
to

V
,

h
(f

U
(u

1
,.

..
,u

n
))

=
f
V
(h

(u
1
),

..
.,

h
(u

n
))

an
d

(u
1
,.

..
,u

n
)
∈

R
U
⇒

(h
(u

1
),

..
.,

h
(u

n
))

∈
R

V
fo

r
al

l
u
1
,.

..
,u

n
∈

U

V
is

a
h
om

om
or

p
h
ic

im
ag

e
of

U
if

th
er

e
ex

is
ts

a
su

rj
ec

ti
ve

h
om

om
or

p
h
is
m

h
:
U

³
V

.

U
is

is
om

or
p
h
ic

to
V

,
in

sy
m

b
ol

s
U

∼ =
V

,
if

th
er

e
ex

is
ts

a
b
ij
ec

ti
ve

h
om

om
or

p
h
is
m

fr
om

U
to

V
.

U
=

∏

i∈
I
V

i,
th

e
d
ir
ec

t
pr

o
d
u
ct

of
st

ru
ct

u
re

s
V

i,
if

U
=

∏

i∈
I
V

i,
(f

U
(u

1
,.

..
,u

n
) i

) i
∈

I
=

(f
V

i
(u

1
i,

..
.,

u
n
i)

) i
∈

I
an

d
(u

1
,.

..
,u

n
)
∈

R
U
⇔

∀
i(

u
1
i,

..
.,

u
n
i)
∈

R
V

i
fo

r
al

l
u
1
,.

..
,u

n
∈

U

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

3
4

/
8
4

S
u
b
st

ru
ct

u
re

s
ar

e
cl

os
ed

u
n
d
er

al
l
op

er
at

io
n
s;

gi
ve

“l
o
ca

l
in

fo
rm

at
io

n
”

H
om

om
or

p
h
is
m

s
ar

e
st

ru
ct

u
re

pr
es

er
vi

n
g

m
ap

s,
an

d
th

ei
r

im
ag

es
ca

p
tu

re
gl

ob
al

re
gu

la
ri
ty

of
th

e
d
om

ai
n

st
ru

ct
u
re

D
ir
ec

t
pr

o
d
u
ct

s
ar

e
u
se

d
to

b
u
ild

or
d
ec

om
p
os

e
b
ig

ge
r

st
ru

ct
u
re

s

A
st

ru
ct

u
re

w
it
h

on
e

el
em

en
t

is
ca

lle
d

tr
iv

ia
l

A
st

ru
ct

u
re

is
d
ir
ec

tl
y

d
ec

om
p
os

ab
le

if
it

is
is
om

or
p
h
ic

to
a

d
ir
ec

t
pr

o
d
u
ct

of
n
on

tr
iv

ia
l
st

ru
ct

u
re

s

A
d
ir
ec

t
pr

o
d
u
ct

h
as

pr
oj

ec
ti
on

m
ap

s
π

i
:
∏

i∈
I
V

i
³

V
i
w

h
er

e
π

i(
u
)

=
u
i

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

F
or

an
y

d
ir
ec

t
pr

o
d
u
ct

th
e

pr
oj

ec
ti
on

m
ap

s
ar

e
h
om

om
or

p
h
is
m

s

Is
om

or
p
h
is
m

s
pr

es
er

ve
al

l
lo

gi
ca

lly
d
efi

n
ed

pr
op

er
ti
es

(n
ot

on
ly

fi
rs

t-
or

d
er

)

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

3
5

/
8
4

V
ar

ie
ti
es

an
d

H
S
P

H
K

is
th

e
cl

as
s

of
h
om

om
or

p
h
ic

im
ag

es
of

m
em

b
er

s
of

K

S
K

is
th

e
cl

as
s

of
su

b
st

ru
ct

u
re

s
of

m
em

b
er

s
of

K

P
K

is
th

e
cl

as
s

of
d
ir
ec

t
pr

o
d
u
ct

s
of

m
em

b
er

s
of

K

A
va

ri
et

y
is

of
th

e
fo

rm
M

o
d
(E

)
fo

r
so

m
e

se
t

E
of

eq
u
at

io
n
s

A
q
u
as

iv
ar

ie
ty

is
of

th
e

fo
rm

M
o
d
(Q

)
fo

r
so

m
e

se
t

Q
of

q
u
as

ie
q
u
at

io
n
s

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

If
K

is
a

q
u
as

iv
ar

ie
ty

th
en

S
K

⊆
K

,
P
K

⊆
K

an
d

H
K

⊆
K

T
h
e

n
ex

t
ch

ar
ac

te
ri
za

ti
on

m
ar

ks
th

e
b
eg

in
n
in

g
of

u
n
iv

er
sa

l
al

ge
br

a

T
h
eo

re
m

(B
ir
kh

off
19

35
)

K
is

a
va

ri
et

y
iff

H
K

=
K

,
S
K

=
K

an
d

P
K

=
K

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

3
6

/
8
4

10

V
ar

ie
ti
es

ge
n
er

at
ed

by
cl

as
se

s

Λ
τ

=
{M

o
d
(E

)
:
E

is
a

se
t

of
τ
-e

q
u
at

io
n
s}

=
se

t
of

al
l
τ
-v

ar
ie

ti
es

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

F
or

se
ts

F
i
of

τ
-f
or

m
u
la

s
⋂

i∈
I
M

o
d
(F

i)
=

M
o
d
(⋃

i∈
I
F

i)

H
en

ce
Λ

τ
is

cl
os

ed
u
n
d
er

ar
b
it
ra

ry
in

te
rs

ec
ti
on

s
⋂

Λ
τ

=
M

o
d
({

x
=

y
})

=
th

e
cl

as
s

O
τ

of
tr

iv
ia

l
τ
-s

tr
u
ct

u
re

s

T
h
e

va
ri
et

y
ge

n
er

at
ed

by
K

is
V
K

=
⋂

{a
ll

va
ri
et

ie
s

th
at

co
n
ta

in
K
}

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

S
H
K

=
H

S
K

,
P
H
K

=
H

P
K

an
d

P
S
K

=
S
P
K

fo
r

an
y

cl
as

s
K

T
h
eo

re
m

(T
ar

sk
i
19

46
)

V
K

=
H

S
P
K

fo
r

an
y

cl
as

s
K

of
st

ru
ct

u
re

s

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

3
7

/
8
4

C
om

p
le

te
la

tt
ic

es

F
or

a
su

b
se

t
X

of
a

p
os

et
U

w
ri
te

X
≤

u
if

x
≤

u
fo

r
al

l
x
∈

X
an

d
d
efi

n
e

z
=

∑

X
if

X
≤

u
⇔

z
≤

u
(s

o
∑

X
is

th
e

le
as

t
u
p
p
er

b
ou

n
d

of
X

)

u
≤

X
an

d
th

e
gr

ea
te

st
lo

w
er

b
ou

n
d

∏

X
ar

e
d
efi

n
ed

d
u
al

ly
.

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

If
∑

X
ex

is
ts

fo
r

ev
er

y
su

b
se

t
of

a
p
os

et
th

en
∏

X
=

∑

{u
:
u
≤

X
}

A
st

ru
ct

u
re

U
w

it
h

a
p
ar

ti
al

or
d
er

is
co

m
p
le

te
if

∑

X
ex

is
ts

fo
r

al
l
X

⊆
U

⇒
ev

er
y

co
m

p
le

te
jo

in
-s

em
ila

tt
ic

e
is

a
co

m
p
le

te
la

tt
ic

e;
x
·y

=
∏

x
,y

A
co

m
p
le

te
la

tt
ic

e
h
as

a
b
ot

to
m

0
=

∑

∅
an

d
a

to
p
>

=
∏

∅

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

U
w

it
h

p
ar

ti
al

or
d
er

≤
is

co
m

p
le

te
iff

∏

X
ex

is
ts

fo
r

al
l
X

⊂
U

Λ
τ

p
ar

ti
al

ly
or

d
er

ed
by

⊆
is

a
co

m
p
le

te
la

tt
ic

e

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

3
8

/
8
4

C
on

gr
u
en

ce
s

an
d

q
u
ot

ie
n
t

al
ge

br
as

A
co

n
gr

u
en

ce
on

an
al

ge
br

a
A

is
an

eq
u
iv

al
en

ce
re

la
ti
on

θ
on

A
th

at
is

co
m

p
at

ib
le

w
it
h

th
e

op
er

at
io

n
s

of
A

,
i.
e.

fo
r

al
l
f
∈

F
n

x 1
θy

1
an

d
..

.
an

d
x n

θy
n
⇒

f
A
(x

1
,.

..
,x

n
)θ

f
A
(y

1
,.

..
,y

n
)

C
on

(A
)

is
th

e
se

t
of

al
l
co

n
gr

u
en

ce
s

on
A

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

C
on

(A
)

is
a

co
m

p
le

te
la

tt
ic

e
w

it
h

∏

=
⋂

,
b
ot

to
m

I A
an

d
to

p
A

2

F
or

θ
∈

C
on

(A
),

th
e

q
u
ot

ie
n
t

al
ge

br
a

is
A

/θ
=

(A
/θ

,(
f
A

/
θ
) f

∈
F

τ
)

w
h
er

e

f
A

/
θ
([

x 1
] θ

,.
..

,[
x n

] θ
)

=
f
A
(x

1
,.

..
,x

n
)

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

T
h
e

op
er

at
io

n
s

f
A

/
θ

ar
e

w
el

l
d
efi

n
ed

an
d

h
θ

:
A
→

A
/θ

gi
ve

n
by

h
θ
(x

)
=

[x
] θ

is
a

su
rj
ec

ti
ve

h
om

om
or

p
h
is
m

fr
om

A
on

to
A

/θ

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

3
9

/
8
4

Im
ag

es
,
ke

rn
el

s
an

d
is
om

or
p
h
is
m

th
eo

re
m

s

F
or

a
fu

n
ct

io
n

f
:
A
→

B
th

e
im

ag
e

of
f

is
f
[A

]
=

{f
(x

)
:
x
∈

A
}

T
h
e

ke
rn

el
of

f
is

ke
r
f

=
{(

x
,y

)
∈

A
2

:
f
(x

)
=

f
(y

)}
(a

n
eq

u
iv

al
en

ce
re

l)

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

If
h

:
A

→
B

is
a

h
om

om
or

p
h
is
m

th
en

ke
r
h
∈

C
on

(A
)

h
[A

]
is

th
e

u
n
d
er

ly
in

g
se

t
of

a
su

b
al

ge
br

a
h
[A

]
of

B

T
h
e

fi
rs

t
is
om

or
p
h
is
m

th
eo

re
m

:
f

:
A

/k
er

h
³

h
[A

]
gi

ve
n

by
f
([

x
] θ

)
=

h
(x

)
is

a
w
el

l
d
efi

n
ed

is
om

or
p
h
is
m

T
h
e

se
co

n
d

is
om

or
p
h
is
m

th
eo

re
m

:
F
or

θ
∈

C
on

(A
),

th
e

su
b
se

t
↑θ

=
{ψ

:
θ
⊆

ψ
}

of
C
on

(A
)

is
is
om

or
p
h
ic

to
C
on

(A
/θ

)
vi

a
th

e
m

ap
ψ
7→

ψ
/θ

w
h
er

e
[x

]ψ
/θ

[y
]
⇔

x
ψ

y

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

4
0

/
8
4

11

In
a

jo
in

-s
em

ila
tt

ic
e,

u
is

jo
in

ir
re

d
u
ci

b
le

if
u

=
x

+
y

⇒
u
∈
{x

,y
}

u
is

jo
in

pr
im

e
if

u
≤

x
+

y
⇒

u
≤

x
or

u
≤

y

u
is

co
m

p
le

te
ly

jo
in

ir
re

d
u
ci

b
le

if
th

er
e

is
a

(u
n
iq

u
e)

gr
ea

te
st

el
em

en
t

<
u

u
is

co
m

p
le

te
ly

jo
in

pr
im

e
if

u
≤

∑

X
⇒

u
≤

x
fo

r
so

m
e

x
∈

X

(c
om

p
le

te
ly

)
m

ee
t

ir
re

d
u
ci

b
le

an
d

(c
om

p
le

te
ly

)
m

ee
t

pr
im

e
ar

e
gi

ve
n

d
u
al

ly

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

In
co

m
p
le

te
la

tt
ic

es
,
u

is
co

m
p
le

te
ly

jo
in

ir
re

d
u
ci

b
le

iff
u

=
∑

X
⇒

u
∈

X

D
is
tr

ib
u
ti
vi

ty
⇒

(c
om

p
le

te
ly

)
jo

in
ir
re

d
u
ci

b
le

=
(c

om
p
le

te
ly

)
jo

in
pr

im
e

u
is

co
m

p
ac

t
if

u
≤

∑

X
⇒

u
≤

x 1
+
··
·+

x n
fo

r
so

m
e

x 1
,.

..
,x

n
∈

X

A
co

m
p
le

te
la

tt
ic

e
is

al
ge

br
ai

c
if

al
l
el

em
en

t
ar

e
jo

in
s

of
co

m
p
ac

t
el

em
en

ts

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

C
on

(A
)

is
an

al
ge

br
ai

c
la

tt
ic

e
(h

in
t:

co
m

p
a
ct

=
fi
n
it
el

y
g
en

er
a
te

d
)

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

4
1

/
8
4

S
u
b
d
ir
ec

t
pr

o
d
u
ct

s
an

d
su

b
d
ir
ec

tl
y

ir
re

d
u
ci

b
le

s

A
n

em
b
ed

d
in

g
is

an
in

je
ct

iv
e

h
om

om
or

p
h
is
m

A
n

em
b
ed

d
in

g
h

:
A

↪→
∏

i∈
I
B

i
is

su
b
d
ir
ec

t
if

π
i[
h
[A

]]
=

B
i
fo

r
al

l
i
∈

I

A
is

a
su

b
d
ir
ec

t
pr

o
d
u
ct

of
(B

i)
i∈

I
if

th
er

e
is

a
su

b
d
ir
ec

t
h

:
A

↪→
∏

i∈
I
B

i

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

D
efi

n
e

h
:
A

↪→
∏

i∈
I
A

/θ
i
by

h
(a

)
=

([
a]

θ i
) i
∈

I

T
h
en

h
is

a
su

b
d
ir
ec

t
em

b
ed

d
in

g
iff

⋂

i∈
I
θ i

=
I A

A
is

su
b
d
ir
ec

tl
y

ir
re

d
u
ci

b
le

if
fo

r
an

y
su

b
d
ir
ec

t
h

:
A

↪→
∏

i∈
I
B

i
th

er
e

is
an

i
∈

I
su

ch
th

at
π

i
◦

h
is

an
is
om

or
p
h
is
m

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

A
is

su
b
d
ir
ec

tl
y

ir
re

d
u
ci

b
le

iff
I A

∈
C
on

(A
)

is
co

m
p
le

te
ly

m
ee

t
ir
re

d
u
ci

b
le

iff
C
on

(A
)

h
as

a
sm

al
le

st
n
on

b
ot

to
m

el
em

en
t

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

4
2

/
8
4

M
ee

t
ir
re

d
u
ci

b
le

s
an

d
su

b
d
ir
ec

t
re

pr
es

en
ta

ti
on

s

Z
or

n
’s

L
em

m
a

st
at

es
th

at
if

ev
er

y
lin

ea
rl
y

or
d
er

ed
su

b
p
os

et
of

a
p
os

et
h
as

an
u
p
p
er

b
ou

n
d
,
th

en
th

e
p
os

et
it
se

lf
h
as

m
ax

im
al

el
em

en
ts

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

In
an

al
ge

br
ai

c
la

tt
ic

e
al

l
m

em
b
er

s
ar

e
m

ee
ts

of
co

m
p
le

tl
y

m
ee

t
ir
re

d
u
ci

b
le

s

T
h
e

n
ex

t
re

su
lt

sh
ow

s
th

at
su

b
d
ir
ec

tl
y

ir
re

d
u
ci

b
le

s
ar

e
b
u
ild

in
g

b
lo

ck
s

T
h
eo

re
m

(B
ir
kh

off
19

44
)

E
ve

ry
al

ge
br

a
is

a
su

b
d
ir
ec

t
pr

o
d
u
ct

of
it
s

su
b
d
ir
ec

tl
y

ir
re

d
u
ci

b
le

im
ag

es

K
S
I
is

th
e

cl
as

s
of

su
b
d
ir
ec

tl
y

ir
re

d
u
ci

b
le

s
of

K

⇒
V

=
S
P
(V

S
I)

fo
r

an
y

va
ri
et

y
V

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

4
3

/
8
4

F
ilt

er
s

an
d

id
ea

ls
F
or

a
p
os

et
(U

,≤
)

th
e

pr
in

ci
p
al

id
ea

l
of

x
∈

U
is
↓x

=
{y

:
y
≤

x
}

F
or

X
⊆

U
d
efi

n
e
↓X

=
⋃

x
∈

X
↓x

;
X

is
a

d
ow

n
se

t
if

X
=

↓X

X
is

u
p
-d

ir
ec

te
d

if
x
,y

∈
X

⇒
∃
u
∈

X
(x

≤
u

an
d

y
≤

u
)

X
is

an
id

ea
l
if

X
is

an
u
p
-d

ir
ec

te
d

d
ow

n
se

t

pr
in

ci
p
al

fi
lt
er

↑x
,
↑X

,
u
p
se

t,
d
ow

n
-d

ir
ec

te
d

an
d

fi
lt
er

ar
e

d
efi

n
ed

d
u
al

ly

A
n

id
ea

l
or

fi
lt
er

is
pr

op
er

if
it

is
n
ot

th
e

w
h
ol

e
p
os

et

A
n

u
lt
ra

fi
lt
er

is
a

m
ax

im
al

(w
it
h

re
sp

ec
t

to
in

cl
u
si
on

)
pr

op
er

fi
lt
er

A
fi
lt
er

X
in

a
jo

in
-s

em
ila

tt
ic

e
is

pr
im

e
if

x
+

y
∈

X
⇒

x
∈

X
or

y
∈

X

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

T
h
e

se
t

F
il(

U
)

of
al

l
fi
lt
er

s
on

a
p
os

et
U

is
an

al
ge

br
ai

c
la

tt
ic

e
In

a
jo

in
-s

em
ila

tt
ic

e
ev

er
y

m
ax

im
al

fi
lt
er

is
pr

im
e

In
a

d
is
tr

ib
u
ti
ve

la
tt

ic
e

ev
er

y
pr

op
er

pr
im

e
fi
lt
er

is
m

ax
im

al

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

4
4

/
8
4

12

U
lt
ra

pr
o
d
u
ct

s

F
is

a
fi
lt
er

ov
er

a
se

t
I

if
F

is
a

fi
lt
er

in
(P

(I
),
⊆

)

F
d
efi

n
es

a
co

n
gr

u
en

ce
on

U
=

∏

i∈
I
U

i
vi

a
x
θ F

y
⇔

{i
∈

I:
x i

=
y i
}
∈
F

U
/θ

F
is

ca
lle

d
a

re
d
u
ce

d
pr

o
d
u
ct

,
d
en

ot
ed

by
∏

F
U

i

If
F

is
an

u
lt
ra

fi
lt
er

th
en

U
/θ

F
is

ca
lle

d
an

u
lt
ra

pr
o
d
u
ct

P
u
K

is
th

e
cl

as
s

of
u
lt
ra

pr
o
d
u
ct

s
of

m
em

b
er

s
of

K

K
is

fi
n
it
el

y
ax

io
m

at
iz

ab
le

if
K

=
M

o
d
(φ

)
fo

r
a

si
n
gl

e
fo

rm
u
la

φ

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

If
K

|=
φ

th
en

P
u
K

|=
φ

fo
r

an
y

fi
rs

t
or

d
er

fo
rm

u
la

φ

If
K

is
fi
n
it
el

y
ax

io
m

at
iz

ab
le

th
en

th
e

co
m

p
le

m
en

t
of

K
is

cl
os

ed
u
n
d
er

u
lt
ra

pr
o
d
u
ct

s

If
K

is
a

fi
n
it
e

cl
as

s
of

fi
n
it
e

τ
-s

tr
u
ct

u
re

s
th

en
P

u
K

=
K

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

4
5

/
8
4

C
on

gr
u
en

ce
d
is
tr

ib
u
ti
vi

ty
an

d
Jó

n
ss

on
’s

T
h
eo

re
m

A
is

co
n
gr

u
en

ce
d
is
tr

ib
u
ti
ve

(C
D

)
if

C
on

(A
)

is
a

d
is
tr

ib
u
ti
ve

la
tt

ic
e

A
cl

as
s
K

of
al

ge
br

as
is

C
D

if
ev

er
y

al
ge

br
a

in
K

is
C
D

T
h
eo

re
m

(J
ón

ss
on

19
67

)

If
V

=
V
K

is
co

n
gr

u
en

ce
d
is
tr

ib
u
ti
ve

th
en

V
S
I
⊆

H
S
P

u
K

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

If
K

is
a

fi
n
it
e

cl
as

s
of

fi
n
it
e

al
ge

br
as

an
d

V
K

is
C
D

th
en

V
S
I
⊆

H
S
K

If
A

,B
∈
V

S
I
ar

e
fi
n
it
e

n
on

is
om

or
p
h
ic

an
d
V

is
C
D

th
en

V
A

6=
V
B

V
is

fi
n
it
el

y
ge

n
er

at
ed

if
V

=
V
K

fo
r

so
m

e
fi
n
it
e

cl
as

s
of

fi
n
it
e

al
ge

br
as

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

A
fi
n
it
el

y
ge

n
er

at
ed

C
D

va
ri
et

y
h
as

on
ly

fi
n
it
el

y
m

an
y

su
b
va

ri
et

ie
s

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

4
6

/
8
4

L
at

ti
ce

s
of

su
b
va

ri
et

ie
s

If
F

σ
⊂

F
τ

th
en

th
e
F

σ
-r

ed
u
ct

of
a

τ
-a

lg
eb

ra
A

is
A

′
=

(A
,(

f
A
) f

∈
F

σ
)

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

If
A

′
is

a
re

d
u
ct

of
A

th
en

C
on

(A
)

is
a

su
b
la

tt
ic

e
of

C
on

(A
′)

T
h
e

va
ri
et

y
of

la
tt

ic
es

is
C
D

,
so

an
y

va
ri
et

y
of

al
ge

br
as

w
it
h

la
tt

ic
e

re
d
u
ct

s
is

C
D

F
or

a
va

ri
et

y
V

th
e

la
tt

ic
e

of
su

b
va

ri
et

ie
s

is
d
en

ot
ed

by
Λ
V

T
h
e

m
ee

t
is

⋂

an
d

th
e

jo
in

is
∑

i∈
I
V

i
=

V
(⋃

i∈
I
V

i)

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

F
or

an
y

va
ri
et

y
V

,
Λ
V

is
an

al
ge

br
ai

c
la

tt
ic

e
w

it
h

co
m

p
ac

t
el

em
en

ts
=

va
ri
et

ie
s

th
at

ar
e

fi
n
it
el

y
ax

io
m

at
iz

ab
le

ov
er

V

H
S
P

u
(K

∪
L

)
=

H
S
P

u
K
∪

H
S
P

u
L

fo
r

an
y

cl
as

se
s
K

,L

If
V

is
C
D

th
en

Λ
V

is
d
is
tr

ib
u
ti
ve

an
d

th
e

m
ap

V
7→

V
S
I
is

a
la

tt
ic

e
em

b
ed

d
in

g
of

Λ
V

in
to

P
(V

S
I)

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

4
7

/
8
4

S
im

p
le

al
ge

br
as

an
d

th
e

d
is
cr

im
in

at
or

A
is

si
m

p
le

if
C
on

(A
)

=
{I

A
,A

2
}

i.
e.

h
as

as
fe

w
co

n
gr

u
en

ce
s

as
p
os

si
b
le

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

A
n
y

si
m

p
le

al
ge

br
a

is
su

b
d
ir
ec

tl
y

ir
re

d
u
ci

b
le

A
is

a
d
is
cr

im
in

at
or

al
ge

br
a

if
fo

r
so

m
e

te
rn

ar
y

te
rm

t
A

|=
x
6=

y
⇒

t(
x
,y

,z
)
=

x
an

d
t(

x
,x

,z
)
=

z

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

A
n
y

su
b
d
ir
ec

tl
y

ir
re

d
u
ci

b
le

d
is
cr

im
in

at
or

al
ge

br
a

is
si
m

p
le

V
is

a
d
is
cr

im
in

at
or

va
ri
et

y
if
V

is
ge

n
er

at
ed

by
a

cl
as

s
of

d
is
cr

im
in

at
or

al
ge

br
as

(f
or

a
fi
xe

d
te

rm
t)

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

4
8

/
8
4

13

U
n
ar

y
d
is
cr

im
in

at
or

in
al

ge
br

as
w

it
h

B
o
ol

ea
n

re
d
u
ct

A
u
n
ar

y
d
is
cr

im
in

at
or

te
rm

is
a

te
rm

d
in

an
al

ge
br

a
A

w
it
h

a
B

o
ol

ea
n

re
d
u
ct

su
ch

th
at

d
(0

)
=

0
an

d
x
6=

0
⇒

d
(x

)
=

>

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

A
n

al
ge

br
a

w
it
h

a
B

o
ol

ea
n

re
d
u
ct

is
a

d
is
cr

im
in

at
or

al
ge

br
a

iff
it

h
as

a
u
n
ar

y
d
is
cr

im
in

at
or

te
rm

[H
in

t:
le

t
d
(x

)
=

t(
0
,x

,>
)−

a
n
d

t(
x
,y

,z
)
=

x
·
d
(x

−
·
y

+
x
·
y
−

)
+

z
·
d
(x

−
·
y

+
x
·
y
−

)−
]

In
a

co
n
cr

et
e

re
la

ti
on

al
ge

br
a

th
e

te
rm

d
(x

)
=

>
;x

;>
is

a
u
n
ar

y
d
is
cr

im
in

at
or

te
rm

F
or

a
q
u
an

ti
fi
er

fr
ee

fo
rm

u
la

φ
w
e

d
efi

n
e

a
te

rm
φ

t
in

d
u
ct

iv
el

y
by

(r
=

s)
t
=

(r
−

+
s)

·(
r

+
s−

),
(φ

an
d

ψ
)t

=
φ

t
·ψ

t ,
(¬

φ
)t

=
d
((

φ
t)
−
)

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

In
a

d
is
cr

im
in

at
or

al
ge

br
a

w
it
h

B
o
ol

ea
n

re
d
u
ct

φ
⇔

(φ
t
=

1)

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

4
9

/
8
4

R
el

at
io

n
al

ge
br

as
ar

e
a

d
is
cr

im
in

at
or

va
ri
et

y

L
et

A
a

=
(↓

a,
+

,0
,·

,a
,−

a
,;

a
,1
·a

,
à
)

b
e

th
e

re
la

ti
ve

su
b
al

ge
br

a
of

re
la

ti
on

al
ge

br
a

A
w

it
h

a
∈

A
w

h
er

e
x
−

a
=

x
−
·a

,
x
; a

y
=

(x
;y

)·
a,

an
d

x
à
=

x
`

·a

A
n

el
em

en
t

a
in

a
re

la
ti
on

al
ge

br
a

is
an

id
ea

l
el

em
en

t
if

a
=

>
;a

;>

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

A
a

is
a

re
la

ti
on

al
ge

br
a

iff
a

=
a`

=
a;

a

F
or

an
y

id
ea

l
el

em
en

t
a

th
e

m
ap

h
(x

)
=

(x
·a

,x
·a

−
)

is
an

is
om

or
p
h
is
m

fr
om

A
to

A
a
×

A
a−

A
re

la
ti
on

al
ge

br
a

is
si
m

p
le

iff
it

is
su

b
d
ir
ec

tl
y

ir
re

d
u
ci

b
le

iff
it

is
n
ot

d
ir
ec

tl
y

d
ec

om
p
os

ab
le

iff
0,
>

ar
e

th
e

on
ly

id
ea

l
el

em
en

ts
iff

>
;x

;>
is

a
u
n
ar

y
d
is
cr

im
in

at
or

te
rm

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

5
0

/
8
4

R
ep

re
se

n
ta

b
le

re
la

ti
on

al
ge

br
as

T
h
e

cl
as

s
R
R
A

of
re

pr
es

en
ta

b
le

re
la

ti
on

al
ge

br
as

is
S
P
{R

el
(X

):
X

is
a

se
t}

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

A
n

al
ge

br
a

is
in

R
R
A

iff
it

is
em

b
ed

d
ab

le
in

a
co

n
cr

et
e

re
la

ti
on

al
ge

br
a

T
h
e

cl
as

s
K

=
S
{R

el
(X

)
:
X

is
a

se
t}

is
cl

os
ed

u
n
d
er

H
,
S

an
d

P
u

[H
in

t:
P

u
S
⊆

S
P

u
so

if
A

=
∏

U
R
el

(X
i)

fo
r

so
m

e
u
lt
ra

fi
lt
er

U
o
ve

r
I,

le
t

Y
=

∏

U
X

i,
d
efi

n
e

h
:
A

→
R
el

(Y
)

b
y

[x
]h

([
R

])
[y

]
⇔

{
i
∈

I
:
x i

R
iy

i}
∈

U
a
n
d

sh
o
w

h
is

a
w
el

l
d
efi

n
ed

em
b
ed

d
in

g
]

⇒
(V

K
) S

I
⊆

K
by

Jó
n
ss

on
’s

T
h
eo

re
m

⇒
V
K

=
S
P
K

=
R
R
A

by
B

ir
ko

ff
’s

su
b
d
ir
ec

t
re

pr
es

en
ta

ti
on

th
eo

re
m

⇒
[T

ar
sk

i
19

55
]
R
R
A

is
a

va
ri
et

y

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

5
1

/
8
4

T
h
eo

re
m

[L
yn

d
on

19
50

]
T

h
er

e
ex

is
t

n
on

re
pr

es
en

ta
b
le

re
la

ti
on

al
ge

br
as

(i
.e

.
/∈

R
R
A

)

[M
on

k
19

69
]
R
R
A

is
n
ot

fi
n
it
el

y
ax

io
m

at
iz

ab
le

[J
on

ss
on

19
91

]
R
R
A

ca
n
n
ot

b
e

ax
io

m
at

iz
ed

w
it
h

fi
n
it
el

y
m

an
y

va
ri
ab

le
s

O
u
tl
in

e
of

n
on

fi
n
it
e

ax
io

m
at

iz
ab

ili
ty

:
T

h
er

e
is

a
se

q
u
en

ce
of

fi
n
it
e

re
la

ti
on

al
ge

br
as

A
n

w
it
h

n
at

om
s

an
d

th
e

pr
op

er
ty

th
at

A
n

is
re

pr
es

en
ta

b
le

iff
th

er
e

ex
is
ts

a
pr

oj
ec

ti
ve

p
la

n
e

of
or

d
er

n

B
y

a
re

su
lt

of
[B

ru
ck

an
d

R
ys

er
19

49
]
pr

oj
ec

ti
ve

p
la

n
es

d
o

n
ot

ex
is
t

fo
r

in
fi
n
it
el

y
m

an
y

or
d
er

s

T
h
e

u
lt
ra

pr
o
d
u
ct

of
th

e
co

rr
es

p
on

d
in

g
se

q
u
en

ce
of

n
on

re
pr

es
en

ta
b
le

A
n

is
re

pr
es

en
ta

b
le

,
so

th
e

co
m

p
le

m
en

t
of

R
R
A

is
n
ot

cl
os

ed
u
n
d
er

u
lt
ra

pr
o
d
u
ct

s

⇒
R
R
A

is
n
ot

fi
n
it
el

y
ax

io
m

at
iz

ab
le

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

5
2

/
8
4

14

C
h
ec

ki
n
g

if
a

fi
n
it
e

re
la

ti
on

al
ge

br
a

is
re

pr
es

en
ta

b
le

T
h
eo

re
m

(L
yn

d
on

19
50

,
M

ad
d
u
x

19
83

)

T
h
er

e
is

an
al

go
ri
th

m
th

at
h
al

ts
if

a
gi

ve
n

fi
n
it
e

re
la

ti
on

al
ge

br
a

is
n
ot

re
pr

es
en

ta
b
le

L
yn

d
on

gi
ve

s
a

re
cu

rs
iv

e
ax

io
m

at
iz

at
io

n
fo

r
R
R
A

M
ad

d
u
x

d
efi

n
es

a
se

q
u
en

ce
of

va
ri
et

ie
s

R
A

n
su

ch
th

at
R
A

=
R
A

4
⊃

R
A

5
⊃

..
.R

R
A

=
⋂

n
≥

4
R
A

n
an

d
it

is
d
ec

id
ab

le
if

a
fi
n
it
e

al
ge

br
a

is
in

R
A

n

Im
p
le

m
en

te
d

as
a

G
A

P
pr

og
ra

m
[J

ip
se

n
19

93
]

C
om

er
’s

on
e-

p
oi

n
t

ex
te

n
si
on

m
et

h
o
d

of
te

n
gi

ve
s

su
ffi

ci
en

t
co

n
d
it
io

n
s

fo
r

re
pr

es
en

ta
b
ili

ty
;
al

so
im

p
le

m
en

te
d

as
a

G
A

P
pr

og
ra

m
[J

19
93

]

T
h
eo

re
m

(H
ir
sc

h
H

o
d
ki

n
so

n
20

01
)

R
ep

re
se

n
ta

b
ili

ty
is

u
n
d
ec

id
ab

le
fo

r
fi
n
it
e

re
la

ti
on

al
ge

br
as

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

5
3

/
8
4

C
om

p
le

x
al

ge
br

as

L
et

U
=

(U
,T

,`
,E

)
b
e

a
st

ru
ct

u
re

w
it
h

T
⊆

U
3
,

`

:
U

→
U

,
E
⊆

U

T
h
e

co
m

p
le

x
al

ge
br

a
C
m

(U
)

is
(P

(U
),
∪

,∅
,∩

,U
,−

,;
,`

,1
)

w
h
er

e
X

;Y
=

{z
:
(x

,y
,z

)
∈

T
fo

r
so

m
e

x
∈

X
,y

∈
Y
},

X
`

=
{x

`

:
x
∈

X
},

an
d

1
=

E

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

C
m

(U
)

is
a

re
la

ti
on

al
ge

br
a

iff
x

=
y
⇔

∃
z
∈

E
(x

,z
,y

)
∈

T
,

(x
,y

,z
)
∈

T
⇔

(x
`

,z
,y

)
∈

T
⇔

(z
,y

`

,x
)
∈

T
,
an

d
(x

,y
,z

)
∈

T
an

d
(z

,u
,v

)
∈

T
⇒

∃
w

((
x
,w

,v
)
∈

T
an

d
(y

,v
,w

)
∈

T
)

A
n

al
ge

br
a

A
=

(A
,◦

,`
,e

)
ca

n
b
e

vi
ew

ed
as

a
st

ru
ct

u
re

(A
,T

,`
,E

)
w

h
er

e
T

=
{(

x
,y

,z
)

:
x
◦

y
=

z
}

an
d

E
=

{e
}

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

C
m

(A
)

is
a

re
la

ti
on

al
ge

br
a

iff
A

is
a

gr
ou

p

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

5
4

/
8
4

A
to

m
st

ru
ct

u
re

s

J
(A

)
d
en

ot
es

th
e

se
t

of
co

m
p
le

te
ly

jo
in

ir
re

d
u
ci

b
le

el
em

en
ts

of
A

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

In
a

B
o
ol

ea
n

al
ge

br
a

J
(A

)
is

th
e

se
t

of
at

om
s

of
A

E
ve

ry
at

om
ic

B
A

is
em

b
ed

d
ab

le
in

P
(J

(A
))

vi
a

x
7→

J
(A

)
∩
↓x

E
ve

ry
co

m
p
le

te
an

d
at

om
ic

B
o
ol

ea
n

al
ge

br
a

is
is
om

or
p
h
ic

to
P

(J
(A

))

T
h
e

at
om

st
ru

ct
u
re

of
an

at
om

ic
re

la
ti
on

al
ge

br
a

A
is

(J
(A

),
`

,T
,E

)
w

h
er

e
T

=
{(

x
,y

,z
)
∈

J
(A

)
:
x
;y

≥
z
}

an
d

E
=

J
(A

)
∩
↓1

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

U
=

(U
,`

,T
,E

)
is

th
e

at
om

st
ru

ct
u
re

of
so

m
e

at
om

ic
re

la
ti
on

al
ge

br
a

iff
C
m

(U
)

is
a

re
la

ti
on

al
ge

br
a

If
A

is
co

m
p
le

te
an

d
at

om
ic

th
en

C
m

(J
(A

))
∼ =

A

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

5
5

/
8
4

In
te

gr
al

an
d

fi
n
it
e

re
la

ti
on

al
ge

br
as

A
re

la
ti
on

al
ge

br
a

is
in

te
gr

al
if

x
;y

=
0

⇒
x

=
0

or
y

=
0

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

A
re

la
ti
on

al
ge

br
a

A
is

in
te

gr
al

iff
1

is
an

at
om

of
A

iff
x
6=

0
⇒

x
;>

=
>

R
el

(2
)

h
as

4
at

om
s

an
d

is
th

e
sm

al
le

st
si
m

p
le

n
on

in
te

gr
al

re
la

ti
on

al
ge

br
a

N
on

in
te

gr
al

R
A

s
ca

n
of

te
n

b
e

d
ec

om
p
os

ed
in

to
a

“s
em

id
ir
ec

t
pr

o
d
u
ct

”
of

in
te

gr
al

al
ge

br
as

,
so

m
os

t
w
or

k
h
as

b
ee

n
d
on

e
on

fi
n
it
e

in
te

gr
al

R
A

s

F
or

fi
n
it
e

re
la

ti
on

al
ge

br
as

on
e

u
su

al
ly

w
or

ks
w

it
h

th
e

at
om

st
ru

ct
u
re

R
el

(∅
)

is
th

e
on

e-
el

em
en

t
R
A

;
ge

n
er

at
es

th
e

va
ri
et

y
O

=
M

o
d
(0

=
>

)

R
el

(1
)

is
th

e
tw

o-
el

em
en

t
R
A

,
w

it
h

1
=

>
,
x
;y

=
x
·y

,
x

`

=
x

It
ge

n
er

at
es

th
e

va
ri
et

y
A

1
=

M
o
d
(1

=
>

)
of

B
o
ol

ea
n

re
la

ti
on

al
ge

br
as

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

5
6

/
8
4

15

V
ar

ie
ti
es

of
sm

al
l
re

la
ti
on

al
ge

br
as

D
efi

n
e

x
s

=
x

+
x

`

an
d

le
t
A

s
h
av

e
u
n
d
er

ly
in

g
se

t
A

s
=

{x
s

:
x
∈

A
}

A
re

la
ti
on

al
ge

br
a

A
is

sy
m

m
et

ri
c

if
x

=
x

`

(i
ff

A
s

=
A

)

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

If
A

is
co

m
m

u
ta

ti
ve

,
th

en
A

s
is

a
su

b
al

ge
br

a
of

A
T

h
er

e
ar

e
tw

o
R
A

s
w

it
h

4
el

em
en

ts
:
A

2
=

C
m

(Z
2
)

an
d

A
3

=
(C

m
(Z

3
))

s

T
h
e

va
ri
et

ie
s

ge
n
er

at
ed

by
A

2
an

d
A

3
ar

e
d
en

ot
ed

A
2

an
d
A

3

B
y

Jó
n
ss

on
’s

T
h
eo

re
m

A
1
,
A

2
an

d
A

3
ar

e
at

om
s

of
Λ

R
A

T
h
eo

re
m

(J
ón

ss
on

)

E
ve

ry
n
on

tr
iv

ia
l
va

ri
et

y
of

re
la

ti
on

al
ge

br
as

in
cl

u
d
es

A
1
,
A

2
or

A
3

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

5
7

/
8
4

G
ro

u
p

R
A
s

an
d

in
te

gr
al

R
A
s

of
si
ze

8
A

co
m

p
le

x
al

ge
br

a
of

a
gr

ou
p

is
ca

lle
d

a
gr

ou
p

re
la

ti
on

al
ge

br
a

G
R
A

is
th

e
va

ri
et

y
ge

n
er

at
ed

by
al

l
gr

ou
p

re
la

ti
on

al
ge

br
as

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

If
U

is
a

gr
ou

p
th

en
C
m

(U
)

is
em

b
ed

d
ed

in
R
el

(U
)

vi
a

C
ay

le
y’

s
re

pr
es

en
ta

ti
on

,
gi

ve
n

by
h
(X

)
=

{(
u
,u

◦
x
)

:
u
∈

U
,x

∈
X
}

⇒
G

R
A

is
a

su
b
va

ri
et

y
of

R
R
A

F
or

an
al

ge
br

a
A

an
d

x
∈

A
,
S
g
A
(x

)
is

th
e

su
b
al

ge
br

a
ge

n
er

at
ed

by
x

T
h
er

e
ar

e
10

in
te

gr
al

re
la

ti
on

al
ge

br
as

w
it
h

8
el

em
en

ts
,
al

l
1-

ge
n
er

at
ed

su
b
al

ge
br

as
of

gr
ou

p
re

la
ti
on

al
ge

br
as

,
h
en

ce
re

pr
es

en
ta

b
le

B
1

=
S
g
C
m

Z
4
{2
}

B
5

=
S
g
C
m

Z
5
{1

,4
}

C
1

=
S
g
C
m

Z
7
{1

,2
,4
}

B
2

=
S
g
C
m

Z
6
{2

,4
}

B
6

=
S
g
C
m

Z
8
{1

,4
,7
}

C
2

=
S
g
C
m

Q
{r

:
r

>
0}

B
3

=
S
g
C
m

Z
6
{3
}

B
7

=
S
g
C
m

Z
1
2
{3

,4
,6

,8
,9
}

C
3

=
C
m

(Z
3
)

B
4

=
S
g
C
m

Z
9
{3

,6
}

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

5
8

/
8
4

In
te

gr
al

re
la

ti
on

al
ge

br
as

w
it
h

4
at

om
s

T
h
e

8-
el

em
en

t
in

te
gr

al
R
A

s
al

l
h
av

e
A

3
as

th
e

on
ly

pr
op

er
su

b
al

ge
br

a

⇒
th

ey
ge

n
er

at
e

jo
in

-i
rr

ed
u
ci

b
le

va
ri
et

ie
s

ab
ov

e
A

3

B
1
,.

..
,B

7
ar

e
sy

m
m

et
ri
c,

C
1
,C

2
,C

3

[C
om

er
]
T

h
er

e
ar

e
10

2
in

te
gr

al
16

-e
le

m
en

t
R
A

s,
n
ot

al
l
re

pr
es

en
ta

b
le

(6
5

ar
e

sy
m

m
et

ri
c,

an
d

37
ar

e
n
ot

)

[J
ip

se
n

H
er

tz
el

K
ra

m
er

M
ad

d
u
x]

31
n
on

re
pr

es
en

ta
b
le

(2
0

ar
e

sy
m

m
et

ri
c)

P
ro

b
le

m

W
h
at

is
th

e
sm

al
le

st
re

pr
es

en
ta

b
le

R
A

th
at

is
n
ot

in
G

R
A

?
Is

th
er

e
on

e
w

it
h

16
el

em
en

ts
?

T
h
er

e
ar

e
34

ca
n
d
id

at
es

at
w
w
w
.
c
h
a
p
m
a
n
.
e
d
u
/
∼
j
i
p
s
e
n
/
g
a
p
/
r
a
m
a
d
d
u
x
.
h
t
m
l

th
at

ar
e

re
pr

es
en

ta
b
le

b
u
t

n
ot

kn
ow

n
to

b
e

gr
ou

p
re

pr
es

en
ta

b
le

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

5
9

/
8
4

S
u
m

m
ar

y
of

b
as

ic
cl

as
se

s
of

st
ru

ct
u
re

s

Q
os

et
=

q
u
as

io
rd

er
ed

se
ts

=
se

ts
w

it
h

a
re

fl
ex

iv
e

an
d

tr
an

si
ti
ve

re
la

ti
on

P
os

et
=

p
ar

ti
al

ly
or

d
er

ed
se

ts
=

an
ti
sy

m
m

et
ri
c

q
u
os

et
s

E
q
u
iv

=
eq

u
iv

al
en

ce
re

la
ti
on

s
=

sy
m

m
et

ri
c

q
u
os

et
s

S
gr

p
=

se
m

ig
ro

u
p
s

=
as

so
ci

at
iv

e
gr

ou
p
oi

d
s

B
n
d

=
b
an

d
s

=
id

em
p
ot

en
t

(x
+

x
=

x
)

se
m

ig
ro

u
p
s

S
la

t
=

se
m

ila
tt

ic
es

=
co

m
m

u
ta

ti
ve

b
an

d
s

JS
la

t
=

jo
in

-s
em

ila
tt

ic
es

=
se

m
ila

tt
ic

es
w

it
h

x
≤

y
⇔

x
+

y
=

y
L
at

=
la

tt
ic

es
=

tw
o

se
m

ila
tt

ic
es

w
it
h

ab
so

rp
ti
on

la
w

s
M

on
=

m
on

oi
d
s

=
se

m
ig

ro
u
p
s

w
it
h

id
en

ti
ty

x
·1

=
x

=
1
·x

M
on

`

=
in

vo
lu

ti
ve

m
on

oi
d
s

=
m

on
oi

d
s

w
it
h

x
`

`

=
x
,
(x
·y

)`
=

y
`

·x
`

G
rp

=
gr

ou
p
s

=
in

vo
lu

ti
ve

m
on

oi
d
s

w
it
h

x
`

·x
=

1
JS

L
at

0
=

jo
in

-s
em

ila
tt

ic
es

w
it
h

id
en

ti
ty

x
+

0
=

x
L
at

0
>

=
b
ou

n
d
ed

la
tt

ic
es

=
la

tt
ic

es
w

it
h

x
+

0
=

x
an

d
x
·>

=
>

L
at

−
=

co
m

p
le

m
en

te
d

la
tt

ic
es

=
L
at

0
>

w
it
h

x
+

x
−

=
>

an
d

x
·x

−
=

0
D

L
at

=
d
is
tr

ib
u
ti
ve

la
tt

ic
es

=
la

tt
ic

es
w

it
h

x
·(
y

+
z
)

=
x
·y

+
x
·z

B
A

=
B

o
ol

ea
n

al
ge

br
as

=
co

m
p
le

m
en

te
d

d
is
tr

ib
u
ti
ve

la
tt

ic
es

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

6
0

/
8
4

16

S
om

e
pr

om
in

en
t

su
b
cl

as
se

s
of

se
m

ir
in

gs

S
rn

g
=

se
m

ir
in

gs
=

m
on

oi
d
s

d
is
tr

ib
u
ti
n
g

ov
er

co
m

m
u
ta

ti
ve

m
on

oi
d
s

an
d

0
IS

=
(a

d
d
it
iv

el
y)

id
em

p
ot

en
t

se
m

ir
in

gs
=

se
m

ir
in

gs
w

it
h

x
+

x
=

x
`M

=
la

tt
ic

e-
or

d
er

ed
m

on
oi

d
s

=
id

em
p
ot

en
t

se
m

ir
in

gs
w

it
h

m
ee

t
R
L

=
re

si
d
u
at

ed
la

tt
ic

es
=

`-
m

on
oi

d
s

w
it
h

re
si
d
u
al

s
K

A
=

K
le

en
e

al
ge

br
a

=
id

em
p
ot

en
t

se
m

ir
in

g
w

it
h

∗
,
u
n
fo

ld
an

d
in

d
u
ct

io
n

K
A
∗

=
∗-

co
n
ti
n
u
ou

s
K

le
en

e
al

ge
br

a
=

K
A

w
it
h

..
.

K
A
T

=
K

le
en

e
al

ge
br

as
w

it
h

te
st

s
=

K
A

w
it
h

B
o
ol

ea
n

su
b
al

ge
br

a
≤

1
K

A
D

=
K

le
en

e
al

ge
br

as
w

it
h

d
om

ai
n

K
L

=
K

le
en

e
la

tt
ic

es
=

K
le

en
e

al
ge

br
as

w
it
h

m
ee

t
B

M
=

B
o
ol

ea
n

m
on

oi
d
s

=
d
is
tr

ib
u
ti
ve

`-
m

on
oi

d
s

w
it
h

co
m

p
le

m
en

ts
K

B
M

=
K

le
en

e
B

o
ol

ea
n

m
on

oi
d
s

=
B

o
ol

ea
n

m
on

id
s

w
it
h

K
le

en
e-
∗

R
A

=
re

la
ti
on

al
ge

br
as

=
B

o
ol

ea
n

m
on

oi
d
s

w
it
h

in
vo

lu
ti
on

an
d

re
si
d
u
al

s
K

R
A

=
K

le
en

e
re

la
ti
on

al
ge

br
as

=
re

la
ti
on

al
ge

br
as

w
it
h

K
le

en
e-
∗

R
R
A

=
re

pr
es

en
ta

b
le

re
la

ti
on

al
ge

br
as

=
co

n
cr

et
e

re
la

ti
on

al
ge

br
as

R
K

R
A

=
re

pr
es

en
ta

b
le

K
le

en
e

re
la

ti
on

al
ge

br
as

=
R
R
A

w
it
h

K
le

en
e-
∗

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

6
1

/
8
4

S
u
b
cl

as
se

s
fr
om

co
m

b
in

at
io

n
s

of
∗
,
te

st
s,

m
ee

t,
−
,

`

IS

K
A

IS
T

`M
IS

`

K
A
T

K
L

`M
T

K
A

`
IS

T
`

`M
`

K
LT

B
M

K
A
T

`
K

L
`

`M
T

`

K
B
M

K
LT

`
R
A

K
R
A

A
=

A
lg

eb
ra

B
=

B
o
o
le

a
n

I
=

Id
em

p
o
te

n
t

K
=

K
le

en
e

L
=

L
a
tt

ic
e

`
=

la
tt

ic
e-

o
rd

er
ed

M
=

M
o
n
o
id

R
=

R
el

a
ti
o
n

S
=

S
em

ir
in

g
T

=
w

it
h

te
st

s
`

=
w

it
h

co
n
ve

rs
e

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

6
2

/
8
4

M
an

y,
b
u
t

n
ot

al
l,

of
th

es
e

cl
as

se
s

ar
e

va
ri
et

ie
s

R
ec

al
l
th

at
q
u
as

iv
ar

ie
te

s
ar

e
cl

as
se

s
d
efi

n
ed

by
im

p
lic

at
io

n
s

of
eq

u
at

io
n
s

M
os

t
n
ot

ab
ly
,
K

le
en

e
al

ge
br

as
an

d
so

m
e

of
it
s

su
b
cl

as
se

s
ar

e
q
u
as

iv
ar

ie
ti
es

In
ge

n
er

al
,
im

p
lic

at
io

n
s

ar
e

n
ot

pr
es

er
ve

d
by

h
om

om
or

p
h
ic

im
ag

es

T
o

se
e

th
at

K
A

is
n
ot

a
va

ri
et

y,
fi
n
d

an
al

ge
br

a
in

H
(K

A
)
\

K
A

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

L
et

A
b
e

th
e

p
ow

er
se

t
K

le
en

e
al

ge
br

a
of

(N
,+

,0
)

an
d

le
t

θ
b
e

th
e

eq
u
iv

al
en

ce
re

la
ti
on

w
it
h

b
lo

ck
s
{∅
},

{{
0}
},

{a
ll

fi
n
it
e

se
ts

6=
{0
},
∅}

an
d

{a
ll

in
fi
n
it
e

su
b
se

ts
}.

T
h
en

θ
is

a
co

n
gr

u
en

ce
,
b
u
t
A

/θ
is

n
ot

a
K

le
en

e
al

ge
br

a.

T
h
eo

re
m

(M
al

’c
ev

)

A
cl

as
s
K

is
a

q
u
as

iv
ar

ie
ty

iff
it

is
cl

os
ed

u
n
d
er

S
,
P

an
d

P
u

T
h
e

sm
al

le
st

q
u
as

iv
ar

ie
ty

co
n
ta

in
in

g
K

is
Q
K

=
S
P
P

u
K

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

6
3

/
8
4

F
re

e
al

ge
br

as

L
et

K
b
e

a
cl

as
s

an
d

le
t
F

b
e

an
al

ge
br

a
th

at
is

ge
n
er

at
ed

by
a

se
t

X
⊆

F
(i
.e

.
F

h
as

n
o

pr
op

er
su

b
al

ge
br

a
th

at
co

n
ta

in
s

X
)

F
is
K

-f
re

el
y

ge
n
er

at
ed

by
X

if
an

y
f

:
X

→
A

∈
K

ex
te

n
d
s

to
a

h
om

om
or

p
h
is
m

f̂
:
F
→

A

If
al

so
F
∈
K

th
en

F
is

th
e
K

-f
re

e
al

ge
br

a
on

X
an

d
is

d
en

ot
ed

by
F
K
(X

).

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

If
K

is
th

e
cl

as
s

of
al

l
τ
-a

lg
eb

ra
s

th
en

th
e

te
rm

al
ge

br
a

T
τ
(X

)
is

th
e

K
-f
re

e
al

ge
br

a
on

X

If
K

is
an

y
cl

as
s

of
τ
-a

lg
eb

ra
s,

le
t

θ K
=

⋂

{k
er

h
|
h

:
T

τ
(X

)
→

A
is

a
h
om

om
or

p
h
is
m

,
A

∈
K
}.

T
h
en

F
=

T
τ
(X

)
is
K

-f
re

el
y

ge
n
er

at
ed

an
d

if
K

is
cl

os
ed

u
n
d
er

su
b
d
ir
ec

t
pr

o
d
u
ct

s,
th

en
F
∈
K

⇒
fr
ee

al
ge

br
as

ex
is
t

in
al

l
(q

u
as

i)
va

ri
et

ie
s

(s
in

ce
th

ey
ar

e
S
,P

cl
os

ed
)

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

6
4

/
8
4

17

E
xa

m
p
le

s
of

fr
ee

al
ge

br
as

A
fr
ee

al
ge

br
a

on
m

ge
n
er

at
or

s
sa

ti
sfi

es
on

ly
th

os
e

eq
u
at

io
n
s

w
it
h
≤

m
va

ri
ab

le
s

th
at

h
ol

d
in

al
l
m

em
b
er

s
of

K

F
S
g
rp

(X
)
∼ =

⋃

n
≥

1
X

n
F

M
o
n
(X

)
∼ =

⋃

n
≥

0
X

n
x
7→

(x
)

T
h
es

e
se

ts
of

n
-t

u
p
le

s
ar

e
u
su

al
ly

d
en

ot
ed

by
X

+
an

d
X

∗

F
S
la

t(
X

)
∼ =

P
fi
n
(X

)
\
{∅
}

F
S
la

t 0
(X

)
∼ =

P
fi
n
(X

)
x
7→

{x
}

F
S
rn

g
(X

)
∼ =

{fi
n
it
e

m
u
lt
is
et

s
of

X
∗
}

F
IS

(X
)
∼ =

P
fi
n
(X

∗
)

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

If
eq

u
al

it
y

b
et

w
ee

n
el

em
en

ts
of

al
l
fi
n
it
el

y
ge

n
er

at
ed

fr
ee

al
g
eb

ra
s

is
d
ec

id
ab

le
,
th

en
th

e
eq

u
at

io
n
al

th
eo

ry
is

d
ec

id
ab

le

⇒
th

e
eq

u
at

io
n
al

th
eo

ri
es

of
S
gr

p
,
M

on
,
S
la

t,
S
rn

g,
IS

ar
e

d
ec

id
ab

le

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

6
5

/
8
4

F
re

e
d
is
tr

ib
u
ti
ve

la
tt

ic
es

an
d

B
o
ol

ea
n

al
ge

br
as

T
h
e

fr
ee

al
ge

br
as

fo
r

D
L
at

an
d

B
A

ar
e

al
so

ea
sy

to
d
es

cr
ib

e

F
D

L
a
t(

X
)
∼ =

S
g

P
(P

(X
))

D
L
a
t

(h
[X

])

F
B
A
(X

)
∼ =

S
g

P
(P

(X
))

B
A

(h
[X

])

w
h
er

e
in

b
ot

h
ca

se
s

h
(x

)
=

{Y
∈
P

(X
)

:
x
∈

Y
}

an
d

x
7→

h
(x

)

F
or

fi
n
it
e

X
,
th

e
fr
ee

B
A

is
ac

tu
al

ly
is
om

or
p
h
ic

to
P

(P
(X

))

F
or

la
tt

ic
es

,
th

e
fr
ee

al
ge

br
a

on
>

3
ge

n
er

at
or

s
is

in
fi
n
it
e

b
u
t

th
e

eq
u
at

io
n
al

th
eo

ry
is

st
ill

d
ec

id
ab

le
[S

ko
le

m
19

28
]
(i
n

p
ol

yn
om

ia
l
ti
m

e)

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

6
6

/
8
4

K
le

en
e

al
ge

br
as

an
d

re
gu

la
r

se
ts

D
ec

id
in

g
eq

u
at

io
n
s

in
K

A
is

al
so

p
os

si
b
le

,
b
u
t

ta
ke

s
a

b
it

m
or

e
w
or

k

L
et

Σ
b
e

a
fi
n
it
e

se
t,

ca
lle

d
an

al
p
h
ab

et

T
h
e

fr
ee

m
on

oi
d

ge
n
er

at
ed

by
Σ

is
Σ

∗
=

(Σ
∗
,·

,ε
)

H
er

e
ε

is
th

e
em

p
ty

se
q
u
en

ce
()

,
an

d
·
is

co
n
ca

te
n
at

io
n

T
h
e

K
le

en
e

al
ge

br
a

of
re

gu
la

r
se

ts
is
R

Σ
=

S
g

P
(Σ

∗
)

K
A

({
{(

x
)}

:
x
∈

Σ
})

T
h
eo

re
m

(K
oz

en
19

94
)

R
Σ

is
th

e
fr
ee

K
le

en
e

al
ge

br
a

on
Σ

In
p
ar

ti
cu

la
r,

a
re

gu
la

r
se

t
is

th
e

im
ag

e
of

a
K

A
te

rm

S
o

d
ec

id
in

g
if

(s
=

t)
∈

T
h
e
(K

A
)

is
eq

u
iv

al
en

t
to

ch
ec

ki
n
g

if
tw

o
re

gu
la

r
se

ts
ar

e
eq

u
al

M
em

b
er

sh
ip

in
re

gu
la

r
se

ts
ca

n
b
e

d
et

er
m

in
ed

by
fi
n
it
e

au
to

m
at

a

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

6
7

/
8
4

A
u
to

m
at

a

A
Σ

-a
u
to

m
at

on
is

a
st

ru
ct

u
re

U
=

(U
,(

aU
) a

∈
Σ
,S

,T
)

su
ch

th
at

aU
is

a
b
in

ar
y

re
la

ti
on

an
d

S
,T

ar
e

u
n
ar

y
re

la
ti
on

s.

E
le

m
en

ts
of

U
,S

,T
ar

e
ca

lle
d

st
at

es
,
st

ar
t

st
at

es
an

d
te

rm
in

al
st

at
es

re
sp

ec
ti
ve

ly

F
or

w
∈

Σ
∗

d
efi

n
e

w
U

by
εU

=
I U

an
d

(a
·w

)U
=

aU
;w

U

T
h
e

la
n
gu

ag
e

re
co

gn
iz

ed
by

U
is

L
(U

)
=

{w
∈

Σ
∗

:
w

U
∩

S
×

T
6=

∅}

R
ec

Σ
is

th
e

se
t

of
al

l
la

n
gu

ag
es

re
co

gn
iz

ed
by

so
m

e
Σ

-a
u
to

m
at

on

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

∅,
{ε
},

{a
}
∈

R
ec

Σ
fo

r
al

l
a
∈

Σ

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

6
8

/
8
4

18

R
eg

u
la

r
se

ts
ar

e
re

co
gn

iz
ab

le

A
fi
n
it
e

au
to

m
at

on
ca

n
b
e

vi
ew

ed
as

a
d
ir
ec

te
d

gr
ap

h
w

it
h

st
at

es
as

n
o
d
es

an
d

an
ar

ro
w

la
b
el

le
d

a
fr
om

u
i
to

u
j
iff

(u
i,

u
j)
∈

aU

G
iv

en
au

to
m

at
a

U
,V

,
d
efi

n
e

U
+

V
to

b
e

th
e

d
is
jo

in
t

u
n
io

n
of

U
,V

U
;V

=
(U

]
V

,(
aU

]
aV

]
(a

U
T

U
×

S
V
))

a
∈

Σ
,S

′ ,
T

V
)

w
h
er

e

S
′
=

{

S
U

if
S

U
∩

T
U

=
∅

S
U
∪

S
V

ot
h
er

w
is
e

an
d

aU
T

U
=

{u
:
∃
v
(u

,v
)
∈

aU
,v

∈
T

U
}

U
+

=
(U

,(
aU

]
(a

U
T

U
×

S
U
))

a
∈

Σ
,S

U
,T

U
)

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

L
(U

+
V

)
=

L
(U

)
∪

L
(V

),
L
(U

;V
)
=

L
(U

);
L
(V

),
an

d
L
(U

+
)

=
L
(U

)+

⇒
ev

er
y

re
gu

la
r

se
t

is
re

co
gn

iz
ed

by
so

m
e

fi
n
it
e

au
to

m
at

on

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

6
9

/
8
4

M
at

ri
ce

s
in

se
m

ir
in

gs
an

d
K

le
en

e
al

ge
br

as

F
or

a
se

m
ir
in

g
A

,
le

t
M

n
(A

)
=

A
n
×

n
b
e

th
e

se
t

of
n
×

n
m

at
ri
ce

s
ov

er
A

M
n
(A

)
is

ag
ai

n
a

se
m

ir
in

g
w

it
h

u
su

al
m

at
ri
x

ad
d
it
io

n
an

d
m

u
lt
ip

lic
at

io
n

0
is

th
e

ze
ro

m
at

ri
x,

an
d

I n
is

th
e

id
en

ti
ty

m
at

ri
x

If
A

is
a

K
le

en
e

al
ge

br
a

an
d

M
=

[

N
P

Q
R

]

∈
M

n
(A

)
d
efi

n
e

M
∗

=

[

(N
+

P
R
∗
Q

)∗
N

∗
P

(R
+

Q
N

∗
P

)∗

R
∗
Q

(N
+

P
R
∗
Q

)∗
(R

+
Q

N
∗
P

)∗

]

T
h
is

is
m

ot
iv

at
ed

by
th

e
d
ia

gr
am

:

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

T
h
e

d
efi

n
it
io

n
of

M
∗

is
in

d
ep

en
d
en

t
of

th
e

ch
os

en
d
ec

om
p
os

it
io

n

If
A

is
a

K
le

en
e

al
ge

br
a,

so
is

M
n
(A

)

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

7
0

/
8
4

F
in

it
e

au
to

m
at

a
as

m
at

ri
ce

s
G

iv
en

U
=

(U
,(

aU
) a

∈
Σ
,S

,T
)

w
it
h

U
=

{u
1
,.

..
,u

n
}

le
t

(s
,M

,t
)

b
e

a
0,

1-
ro

w
n
-v

ec
to

r,
an

n
×

n
m

at
ri
x

an
d

a
0,

1-
co

lu
m

n
n
-v

ec
to

r
w

h
er

e

s i
=

1
⇔

u
i
∈

S
,
M

ij
=

∑

{a
:
(u

i,
u
j)
∈

aU
},

an
d

t i
=

1
⇔

u
i
∈

T

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

L
(U

)
=

h
(s

;M
;t

)
w

h
er

e
h

:
T

K
A
(Σ

)
→

R
Σ

is
in

d
u
ce

d
by

h
(x

)
=

{(
x
)}

⇒
ev

er
y

re
co

gn
iz

ab
le

la
n
gu

ag
e

is
a

re
gu

la
r

se
t

[K
le

en
e

19
56

]

B
u
t

m
an

y
d
iff

er
en

t
au

to
m

at
a

m
ay

co
rr

es
p
on

d
to

th
e

sa
m

e
re

gu
la

r
se

t

U
is

a
d
et

er
m

in
is
ti
c

au
to

m
at

on
if

ea
ch

aU
is

a
fu

n
ct

io
n

on
U

an
d

S
is

a
si
n
gl

et
on

se
t

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

A
n
y

n
on

d
et

er
m

in
is
ti
c

au
to

m
at

on
U

ca
n

b
e

co
n
ve

rt
ed

to
a

d
et

er
m

in
is
ti
c

on
e

U
′
w

it
h

U
′
=

P
(U

),
a′

(X
)

=
{v

:
(u

,v
)
∈

aU
fo

r
so

m
e

u
∈

X
},

S
′
=

{S
}

an
d

T
′
=

{X
:
X

∩
T

6=
∅}

su
ch

th
at

L
(U

′)
=

L
(U

)

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

7
1

/
8
4

M
in

im
al

au
to

m
at

a
A

st
at

e
v

is
ac

ce
ss

ib
le

if
(u

,v
)
∈

w
U

fo
r

so
m

e
u
∈

S
an

d
w

∈
Σ
∗

In
a

d
et

er
m

in
is
ti
c

au
to

m
at

on
,
th

e
ac

ce
ss

ib
le

st
at

es
ar

e
th

e
su

b
al

ge
br

a
ge

n
er

at
ed

fr
om

th
e

st
ar

t
st

at
e

T
h
eo

re
m

(M
yh

ill
,
N

er
o
d
e

19
58

)

G
iv

en
a

d
et

er
m

in
is
ti
c

au
to

m
at

on
U

w
it
h

n
o

in
ac

ce
ss

ib
le

st
at

es
,
th

e
re

la
ti
on

u
θv

iff
∀
w

∈
Σ
∗

w
(u

)
∈

T
⇔

w
(v

)
∈

T
is

a
co

n
gr

u
en

ce
on

th
e

au
to

m
at

on
an

d
L
(U

/θ
)

=
L
(U

)

A
n

au
to

m
at

on
is

m
in

im
al

if
al

l
st

at
es

ar
e

ac
ce

ss
ib

le
an

d
th

e
θ

co
n
gr

u
en

ce
is

th
e

id
en

ti
ty

re
la

ti
on

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

L
et

U
,V

b
e

m
in

im
al

au
to

m
at

a.
T

h
en

L
(U

)
=

L
(V

)
iff

U
∼ =

V
.

⇒
T

h
e

eq
u
at

io
n
al

th
eo

ry
of

K
le

en
e

al
ge

br
as

is
d
ec

id
ab

le

T
ry

th
is

in
JF

L
A

P
:
A

n
In

te
ra

ct
iv

e
F
or

m
al

L
an

gu
ag

es
an

d
A

u
to

m
at

a
P
ac

ka
ge

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

7
2

/
8
4

19

T
h

q
((

id
em

p
ot

en
t)

se
m

ir
in

gs
)

is
u
n
d
ec

id
ab

le

T
h
eo

re
m

(P
os

t
19

47
,
M

ar
ko

v
19

49
)

T
h
e

q
u
as

ie
q
u
at

io
n
al

th
eo

ry
of

se
m

ig
ro

u
p
s

is
u
n
d
ec

id
ab

le

F
or

a
se

m
ig

ro
u
p

A
,
le

t
A

1
b
e

th
e

m
on

oi
d

ob
ta

in
ed

by
ad

jo
in

in
g

1

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

A
n
y

se
m

ig
ro

u
p

A
is

a
su

b
al

ge
br

a
of

th
e

;-
re

d
u
ct

of
P

(A
)

If
K

=
{;

-r
ed

u
ct

s
of

se
m

ir
in

gs
}

th
en

S
K

=
th

e
cl

as
s

of
se

m
ig

ro
u
p
s

A
q
u
as

ie
q
u
at

io
n

th
at

u
se

s
on

ly
;
h
ol

d
s

in
K

iff
it

h
ol

d
s

in
al

l
se

m
ig

ro
u
p
s

⇒
th

e
q
u
as

ie
q
u
at

io
n
al

th
eo

ry
of

(i
d
em

p
ot

en
t)

se
m

ir
in

gs
is

u
n
d
ec

id
ab

le

S
in

ce
P

(A
)

is
a

re
d
u
ct

of
K

A
,
K

A
T

,
K

A
D

,
B

M
th

e
sa

m
e

re
su

lt
h
ol

d
s

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

7
3

/
8
4

T
h
e

eq
u
at

io
n
al

th
eo

ry
of

R
A

is
u
n
d
ec

id
ab

le

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

F
or

an
y

se
m

ig
ro

u
p

A
,
th

e
m

on
oi

d
A

1
is

em
b
ed

d
ed

in
th

e
;-
re

d
u
ct

of
R
el

(A
1
)

vi
a

th
e

C
ay

le
y

m
ap

x
7→

{(
x
,x

y
)

:
y
∈

A
1
}

If
K

=
{;

-r
ed

u
ct

s
of

si
m

p
le

R
A

s}
th

en
S
K

=
th

e
cl

as
s

of
se

m
ig

ro
u
p
s

T
h
e

q
u
as

ie
q
u
at

io
n
al

th
eo

ry
of

R
A

S
I,

R
A

an
d

R
R
A

is
u
n
d
ec

id
ab

le

R
A

is
a

d
is
cr

im
in

at
or

va
ri
et

y,
h
en

ce
an

y
q
u
as

ie
q
u
at

io
n

(i
n

fa
ct

an
y

q
u
an

ti
fi
er

fr
ee

fo
rm

u
la

)
φ

ca
n

b
e

tr
an

sl
at

ed
in

to
an

eq
u
at

io
n

φ
t
=

1
w

h
ic

h
h
ol

d
s

in
R
A

iff
φ

h
ol

d
s

in
R
A

S
I

⇒
T

h
e
(R

A
)

is
u
n
d
ec

id
ab

le

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

7
4

/
8
4

U
n
d
ec

id
ab

ili
ty

is
p
er

va
si
ve

in
Λ

R
A

T
h
eo

re
m

(A
n
d
ré

ka
G

iv
an

t
N

em
et

i
19

97
)

If
K

⊆
R
A

su
ch

th
at

fo
r

ea
ch

n
≥

1
th

er
e

is
an

al
ge

br
a

in
K

S
I
w

it
h

at
le

as
t

n
el

em
en

ts
b
el

ow
th

e
id

en
ti
ty

th
en

T
h
e
K

is
u
n
d
ec

id
ab

le

If
K

⊆
R
A

su
ch

th
at

fo
r

ea
ch

n
≥

1
th

er
e

is
an

al
ge

br
a

in
K

w
it
h

a
su

b
se

t
of

at
le

as
t

n
p
ai

rw
is
e

d
is
jo

in
t

el
em

en
ts

th
at

fo
rm

a
gr

ou
p

u
n
d
er

;
an

d
`

th
en

T
h
e
K

is
u
n
d
ec

id
ab

le

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

T
h
e

va
ri
et

ie
s

of
in

te
gr

al
R
A

s,
sy

m
m

et
ri
c

R
A

s
an

d
gr

ou
p

re
la

ti
on

al
ge

br
as

ar
e

u
n
d
ec

id
ab

le

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

7
5

/
8
4

S
u
m

m
ar

y
of

d
ec

id
ab

ili
ty

an
d

ot
h
er

pr
op

er
ti
es

T
h
e

d
ec

T
h
q

d
ec

T
h

d
ec

V
ar

C
D

lo
c

fi
n

S
gr

p
,
M

on
X

×
×

X
×

×

S
la

t
X

X
×

X
×

X

L
at

X
X

×
X

X
×

D
L
at

X
X

×
X

X
X

B
A

X
X

X
X

X
X

G
rp

X
×

×
X

×
×

S
rn

g
X

×
×

X
×

×

IS
X

×
×

X
×

×

K
A

,
K

A
T

X
×

×
×

×
×

K
A

D
×

×
×

×
×

R
sK

A
×

×
X

X
×

R
sL

X
×

×
X

X
×

B
M

×
×

×
X

X
×

R
A

×
×

×
X

X
×

R
R
A

×
×

×
X

X
×

K
R
A

×
×

×
X

X
×

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

7
6

/
8
4

20

C
at

eg
or

ie
s

A
ca

te
go

ry
is

a
st

ru
ct

u
re

C
=

(C
,O

,◦
,1

,d
om

,c
o
d
)

su
ch

th
at

C
is

a
cl

as
s

of
m

or
p
h
is
m

s,
O

is
a

cl
as

s
of

ob
je

ct
s,

d
om

,c
o
d

:
C

→
O

gi
ve

th
e

d
om

ai
n

an
d

co
d
om

ai
n
,

1
:
O

→
C

gi
ve

s
an

id
en

ti
ty

m
or

p
h
is
m

,
an

d
co

m
p
os

it
io

n
◦

is
a

p
ar

ti
al

b
in

ar
y

op
er

at
io

n
on

C

1(
X

)
is

d
en

ot
ed

1
X
,

f
:
X

→
Y

m
ea

n
s

d
om

f
=

X
an

d
co

d
f

=
Y

g
◦

f
ex

is
ts

iff
d
om

g
=

co
d
f
,
in

w
h
ic

h
ca

se
d
om

(g
◦

f
)

=
d
om

f
,

co
d
(g

◦
f
)

=
co

d
g

an
d

if
d
om

g
=

co
d
h

th
en

(f
◦

g
)
◦

h
=

f
◦

(g
◦

h
)

d
om

1
X

=
X

=
co

d
1 X

,
1 d

o
m

f
◦

f
=

f
an

d
f
◦

1 c
o
d
f

=
f

T
h
e

cl
as

s
H

om
(X

,Y
)

=
{f

:
d
om

f
=

X
an

d
co

d
f

=
Y
}

is
a

se
t

S
e
t

is
a

ca
te

go
ry

w
it
h

se
ts

as
ob

je
ct

s
an

d
fu

n
ct

io
n
s

as
m

or
p
h
is
m

s

R
e
l
is

a
ca

te
go

ry
w

it
h

se
ts

as
ob

je
ct

s
an

d
b
in

ar
y

re
la

ti
on

s
as

m
or

p
h
is
m

s

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

7
7

/
8
4

F
u
n
ct

or
s

C
at

eg
or

y
th

eo
ry

is
w
el

l
su

it
ed

fo
r

re
la

ti
n
g

ar
ea

s
of

m
at

h
em

at
ic

s

F
u
n
ct

or
s

ar
e

st
ru

ct
u
re

pr
es

er
vi

n
g

m
ap

s
(h

om
om

or
p
h
is
m

s)
of

ca
te

go
ri
es

F
or

ca
te

go
ri
es

C
,D

a
co

va
ri
an

t
fu

n
ct

or
F

:
C
→

D
m

ap
s

C
→

D
an

d
O

C
→

O
D

su
ch

th
at

F
(1

X
)

=
1 F

X
an

d
if

f
:
X

→
Y

th
en

F
f

:
F
X

→
F
Y

if
f

:
X

→
Y

,
g

:
Y

→
Z

th
en

F
(g

◦
f
)

=
F
g
◦
F
f

F
or

a
co

n
tr

av
ar

ia
n
t

fu
n
ct

or
F

:
C
→

D
th

e
d
efi

n
it
io

n
b
ec

om
es

F
(1

X
)

=
1 F

X
an

d
if

f
:
X

→
Y

th
en

F
f

:
F
Y

→
F
X

if
f

:
X

→
Y

,
g

:
Y

→
Z

th
en

F
(g

◦
f
)

=
F
f
◦
F
g

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

A
ca

te
go

ry
w

it
h

on
e

ob
je

ct
is

(e
q
u
iv

al
en

t
to

)
a

m
on

oi
d
,
an

d
co

va
ri
an

t
fu

n
ct

or
s

b
et

w
ee

n
su

ch
ca

te
go

ri
es

ar
e

m
on

oi
d

h
om

om
or

p
h
is
m

s

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

7
8

/
8
4

H
et

er
og

en
eo

u
s

re
la

ti
on

al
ge

br
as

T
h
e

ca
te

go
ry

R
e
l
of

ty
p
ed

b
in

ar
y

re
la

ti
on

s
is

u
su

al
ly

en
ri
ch

ed
by

ad
d
in

g
co

n
ve

rs
e

an
d

B
o
ol

ea
n

op
er

at
io

n
on

th
e

se
ts

H
om

(X
,Y

)

In
th

is
se

tt
in

g
it

is
al

so
n
at

u
ra

l
to

w
ri
te

co
m

p
os

it
io

n
S
◦

R
as

R
;S

A
h
et

er
og

en
eo

u
s

re
la

ti
on

al
ge

br
a

(H
R
A

)
is

a
st

ru
ct

u
re

C
=

(C
,O

,;
,1

,d
om

,c
o
d
,`

,+
,>

,·
,0

,−
)

su
ch

th
at

(C
,O

,;
,1

,d
om

,c
o
d
)

is
a

ca
te

go
ry

`

:
H

om
(x

,y
)
→

H
om

(y
,x

)
sa

ti
sfi

es
r`

`

=
r,

1` x
=

1 x
,

(r
;s

)`
=

s`
;r

`

fo
r

al
l
ob

je
ct

s
x
,y

,
(H

om
(x

,y
),

+
,>

,·
,0

,−
)

is
a

B
o
ol

ea
n

al
ge

br
a

an
d

fo
r

al
l
r;

s,
t
∈

H
om

(x
,y

),
(r

;s
)·

t
=

0
⇔

(r
`

;t
)·
s

=
0
⇔

(t
;s

`

)·
r

=
0

P
ro

ve
(a

n
d

ex
te

n
d
)

or
d
is
pr

ov
e

(a
n
d

fi
x)

R
el

at
io

n
al

ge
br

as
ar

e
(e

q
u
iv

al
en

t
to

)
H

R
A

s
w

it
h

on
e

ob
je

ct

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

7
9

/
8
4

O
th

er
en

ri
ch

ed
ca

te
go

ri
es

S
u
it
ab

ly
w
ea

ke
n
in

g
th

e
ax

io
m

s
of

H
R
A

s
(s

ee
e.

g.
[K

ah
l
20

04
])

gi
ve

s
or

d
er

ed
ca

te
go

ri
es

(w
it
h

co
n
ve

rs
e)

(j
oi

n
/m

ee
t)

-s
em

ila
tt

ic
e

ca
te

go
ri
es

(i
d
em

p
ot

en
t)

se
m

ir
in

g
ca

te
go

ri
es

K
le

en
e

ca
te

go
ri
es

(w
it
h

te
st

s)
(d

is
tr

ib
u
ti
ve

/d
iv

is
io

n
)

al
le

go
ri
es

G
iv

en
a

se
m

ir
in

g
(A

,+
,·

),
th

e
se

t
M

at
(A

)
=

{A
m
×

n
:
m

,n
≥

1}
of

al
l

m
at

ri
ce

s
ov

er
A

is
an

im
p
or

ta
n
t

ex
am

p
le

of
a

se
m

ir
in

g
ca

te
go

ry
,
w

it
h

m
at

ri
x

m
u
lt
ip

lic
at

io
n

as
co

m
p
os

it
io

n

T
h
e

ca
te

go
ri
ca

l
ap

pr
oa

ch
is

h
el

p
fu

l
in

ap
p
lic

at
io

n
s

si
n
ce

it
m

at
ch

es
w
el

l
w

it
h

ty
p
ed

sp
ec

ifi
ca

ti
on

la
n
gu

ag
es

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

8
0

/
8
4

21

C
on

cl
u
si
on

T
h
e

fo
u
n
d
at

io
n
s

of
re

la
ti
on

al
ge

br
as

an
d

K
le

en
e

al
ge

br
as

sp
an

a
su

b
st

an
ti
al

p
ar

t
of

al
ge

br
a,

lo
gi

c
an

d
co

m
p
u
te

r
sc

ie
n
ce

H
er

e
w
e

h
av

e
on

ly
b
ee

n
ab

le
to

m
en

ti
on

so
m

e
of

th
e

b
as

ic
s,

w
it
h

an
em

p
h
as

is
on

co
n
ce

p
ts

fr
om

u
n
iv

er
sa

l
al

ge
br

a

P
ar

ti
ci

p
an

ts
ar

e
en

co
u
ra

ge
d

to
re

ad
fu

rt
h
er

in
so

m
e

of
th

e
pr

im
ar

y
so

u
rc

es
an

d
ex

ce
lle

n
t

ex
p
os

it
ar

y
w
or

ks
,
so

m
e

of
w

h
ic

h
ar

e
lis

te
d

b
el

ow

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

8
1

/
8
4

R
ef

er
en

ce
s

an
d

fu
rt

h
er

re
ad

in
g

I
[A

n
d
re

ka
G
iv

a
n
t

N
em

et
i
1
9
9
4
]
T

h
e

la
tt

ic
e

o
f
va

ri
et

ie
s

o
f
re

p
re

se
n
ta

b
le

re
la

ti
o
n

a
lg

eb
ra

s,
J
.

S
ym

b
o
li
c

L
o
g
ic

[A
n
d
re

ka
G
iv

a
n
t

N
em

et
i
1
9
9
7
]
D

ec
is
io

n
p
ro

b
le

m
s

fo
r

eq
u
a
ti
o
n
a
l
th

eo
ri
es

o
f
re

la
ti
o
n

a
lg

eb
ra

s,
M

em
o
ir
s

A
M

S

[B
er

g
h
a
m

m
er

M
ö
ll
er

S
tr

u
th

(E
d
s)

2
0
0
4
]
R
el

a
ti
o
n
a
l
a
n
d

K
le

en
e-

a
lg

eb
ra

ic
M

et
h
o
d
s

in
C
o
m

p
u
te

r
S
ci

en
ce

,
L
N

C
S

3
0
5
1
,
S
p
ri
n
g
er

[B
ir
k
h
o
ff

1
9
3
5
]
O

n
th

e
st

ru
ct

u
re

o
f
a
b
st

ra
ct

a
lg

eb
ra

s,
P
ro

c.
C
a
m

b
.

P
h
il
.

S
o
c.

[B
ir
k
h
o
ff

1
9
4
4
]
S
u
b
d
ir
ec

t
u
n
io

n
s

in
u
n
iv

er
sa

l
a
lg

eb
ra

,
B
u
ll
.

A
M

S

[B
ri
n
k

K
a
h
l
S
ch

m
id

t
(E

d
s)

1
9
9
7
]
R
el

a
ti
o
n
a
l
M

et
h
o
d
s

in
C
o
m

p
u
te

r
S
ci

en
ce

,
S
p
ri
n
g
er

[B
u
rr

is
S
a
n
ka

p
p
a
n
a
va

r
1
9
8
1
]
A

co
u
rs

e
in

u
n
iv

er
sa

l
a
lg

eb
ra

,
S
p
ri
n
g
er

,
o
n
li
n
e

[C
o
n
w
ay

1
9
7
1
]
R
eg

u
la

r
a
lg

eb
ra

a
n
d

fi
n
it
e

m
a
ch

in
es

,
C
h
a
p
m

a
n

a
n
d

H
a
ll

[D
es

h
ar

n
a
is

M
ö
ll
er

S
tr

u
th

2
0
0
3
]
K

le
en

e
a
lg

eb
ra

s
w

it
h

d
o
m

a
in

,
o
n
li
n
e

[D
es

h
ar

n
a
is

M
ö
ll
er

S
tr

u
th

2
0
0
4
]
M

o
d
a
l
K

le
en

e
a
lg

eb
ra

s
a
n
d

a
p
p
li
ca

ti
o
n
s,

J
o
R
M

iC
S
,
o
n
li
n
e

[H
ir
sc

h
H

o
d
k
in

so
n

2
0
0
1
]
R
ep

re
se

n
ta

b
il
it
y

is
n
o
t

d
ec

id
a
b
le

fo
r

fi
n
it
e

re
la

ti
o
n

a
lg

eb
ra

s,
T
ra

n
s.

A
M

S

[H
ir
sc

h
H

o
d
k
in

so
n

2
0
0
2
]
R
el

a
ti
o
n

a
lg

eb
ra

s
b
y

g
a
m

es
,
N

o
rt

h
-H

o
ll
a
n
d

[H
o
d
k
in

so
n

M
ik

u
la

s
V
en

em
a

2
0
0
1
]
A
xi

o
m

a
ti
zi

n
g

co
m

p
le

x
a
lg

eb
ra

s
b
y

g
a
m

es
,
A
lg

eb
ra

U
n
iv

er
sa

li
s

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

8
2

/
8
4

R
ef

er
en

ce
s

an
d

fu
rt

h
er

re
ad

in
g

II
[J

ip
se

n
1
9
9
3
]
D

is
cr

im
in

a
to

r
va

ri
et

ie
s

o
f
B
o
o
le

a
n

a
lg

eb
ra

s
w

it
h

re
si
d
u
a
te

d
o
p
er

a
to

rs
,
in

“
A
lg

eb
ra

ic
L
o
g
ic

”
,
B
a
n
a
ch

C
en

te
r

P
u
b
l.
,
o
n
li
n
e

[J
ip

se
n

2
0
0
4
]
F
ro

m
se

m
ir
in

g
s

to
re

si
d
u
a
te

d
K

le
en

e
la

tt
ic

es
,
S
tu

d
ia

L
o
g
ic

a
,
o
n
li
n
e

[J
ip

se
n

L
u
k
á
cs

1
9
9
4
]
M

in
im

a
l
re

la
ti
o
n

a
lg

eb
ra

s,
A
lg

eb
ra

U
n
iv

er
sa

li
s

[J
ip

se
n

M
a
d
d
u
x

1
9
9
7
]
N

o
n
re

p
re

se
n
ta

b
le

se
q
u
en

ti
a
l
a
lg

eb
ra

s,
J
.
IG

P
L
,
o
n
li
n
e

[J
ip

se
n

T
si
n
a
k
is

2
0
0
2
]
A

su
rv

ey
o
f
re

si
d
u
a
te

d
la

tt
ic

es
,
in

“
O

rd
er

ed
a
lg

eb
ra

ic
st

ru
ct

u
re

s”
,
K

lu
w
er

,
o
n
li
n
e

[J
ó
n
ss

o
n

1
9
6
7
]
A
lg

eb
ra

s
w

h
o
se

co
n
g
ru

en
ce

la
tt

ic
es

ar
e

d
is
tr

ib
u
ti
ve

,
M

a
th

S
ca

n
d
.

[J
ó
n
ss

o
n

1
9
8
2
]
V
ar

ie
ti
es

o
f
re

la
ti
o
n

a
lg

eb
ra

s,
A
lg

eb
ra

U
n
iv

er
sa

li
s

[J
ó
n
ss

o
n

1
9
9
1
]
T

h
e

th
eo

ry
o
f
b
in

ar
y

re
la

ti
o
n
s,

in
“
A
lg

eb
ra

ic
L
o
g
ic

”
,
N

o
rt

h
-H

o
ll
a
n
d

[J
o
n
ss

o
n

T
ar

sk
i
1
9
5
1
/
2
]
B
o
o
le

a
n

a
lg

eb
ra

s
w

it
h

o
p
er

a
to

rs
I,

II
,
A
m

er
.

J
.
M

a
th

.

[K
a
h
l
2
0
0
4
]
R
ef

a
ct

o
ri
n
g

h
et

er
o
g
en

eo
u
s

re
la

ti
o
n

a
lg

eb
ra

s
ar

o
u
n
d

o
rd

er
ed

ca
te

g
o
ri
es

a
n
d

co
n
ve

rs
e,

J
o
R
M

iC
S
,
o
n
li
n
e

[K
o
ze

n
1
9
9
4
]
A

co
m

p
le

te
n
es

s
th

eo
re

m
fo

r
K

le
en

e
a
lg

eb
ra

s
a
n
d

th
e

a
lg

eb
ra

o
f
re

g
u
la

r
ev

en
ts

,
In

fo
r.

a
n
d

C
o
m

p
u
t.
,
o
n
li
n
e

[K
o
ze

n
1
9
9
4
]
O

n
a
ct

io
n

a
lg

eb
ra

s,
in

“
L
o
g
ic

a
n
d

In
fo

rm
a
ti
o
n

F
lo

w
”
,
M

IT
P
re

ss
,
o
n
li
n
e

[K
o
ze

n
1
9
9
7
]
A
u
to

m
a
ta

a
n
d

co
m

p
u
ta

b
il
it
y,

S
p
ri
n
g
er

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

8
3

/
8
4

R
ef

er
en

ce
s

an
d

fu
rt

h
er

re
ad

in
g

II
I

[K
o
ze

n
2
0
0
3
]
A
u
to

m
a
ta

o
n

g
u
ar

d
ed

st
ri
n
g
s

a
n
d

a
p
p
li
ca

ti
o
n
s,

M
a
té

m
a
t.

C
o
n
te

m
p
.,

o
n
li
n
e

[K
o
ze

n
a
n
d

S
m

it
h

1
9
9
6
]
K

le
en

e
a
lg

eb
ra

s
w

it
h

te
st

:
C
o
m

p
le

te
n
es

s
a
n
d

d
ec

id
a
b
il
it
y,

in
L
N

C
S

1
2
5
8
,
S
p
ri
n
g
er

,
o
n
li
n
e

[M
a
d
d
u
x

1
9
8
2
]
S
o
m

e
va

ri
et

ie
s

co
n
ta

in
in

g
re

la
ti
o
n

a
lg

eb
ra

s,
T
ra

n
s.

A
M

S

[M
a
d
d
u
x

1
9
8
3
]
A

se
q
u
en

t
ca

lc
u
lu

s
fo

r
re

la
ti
o
n

a
lg

eb
ra

s,
A
n
n
.

P
u
re

a
n
d

A
p
p
l.

L
o
g
ic

[M
a
d
d
u
x

1
9
8
5
]
F
in

it
e

in
te

g
ra

l
re

la
ti
o
n

a
lg

eb
ra

s,
in

L
N

M
1
1
4
9
,
S
p
ri
n
g
er

[M
a
d
d
u
x

2
0
0
6
]
R
el

a
ti
o
n

a
lg

eb
ra

s,
E
ls
ev

ie
r

[P
ra

tt
1
9
9
0
]
D

yn
a
m

ic
a
lg

eb
ra

s
a
s

a
w
el

l-
b
eh

a
ve

d
fr
a
g
m

en
t

o
f
re

la
ti
o
n

a
lg

eb
ra

s,
in

L
N

C
S

4
2
5
,

S
p
ri
n
g
er

,
o
n
li
n
e

[P
ra

tt
1
9
9
0
]
A
ct

io
n

lo
g
ic

a
n
d

p
u
re

in
d
u
ct

io
n
,
in

L
N

C
S

4
7
8
,
S
p
ri
n
g
er

,
o
n
li
n
e

[T
ar

sk
i
1
9
4
6
]
A

re
m

ar
k

o
n

fu
n
ct

io
n
a
ll
y

fr
ee

a
lg

eb
ra

s,
A
n
n
.

M
a
th

.

[T
ar

sk
i
1
9
5
5
]
C
o
n
tr

ib
u
ti
o
n
s

to
th

e
th

eo
ry

o
f
m

o
d
el

s
II
I,

K
o
n
in

.
N

ed
er

l.
A
ka

d
.

W
et

en
.

P
ro

c.

P
e
te

r
J
ip

se
n

(C
h
a
p
m

a
n

U
n
iv

e
rs

it
y
)

R
e
la

ti
o
n

a
lg

e
b
ra

s
a
n
d

K
le

e
n
e

a
lg

e
b
ra

A
u
g
u
st

2
4
,
2
0
0
6

8
4

/
8
4

22

Relational Methods for Program Refinement

John Derrick

Department of Computer Science, University of Sheffield, UK.
jd@dcs.shef.ac.uk

+ +

RelMiCS 2006
Relational methods forProgram Re�nement

John DerrikUniversity of SheÆeld

+ 1

+ +A Tutorial on Re�nement in State-based Spei�ation LanguagesIn this tutorial we aim to provide:
� An introdution to the idea of re�nementas a formal development proess.
� An insight into how re�nement is de�nedin Z and other spei�ation languages.
� An understanding of how the relationalbasis for Z leads to the derivation of theZ simulation rules as they are usually pre-sented.
� An understanding of the relationship tovarious proess algebrai re�nement rela-tions.+ 2

+ +Outline:
� Overview of Re�nement
� A relational framework
� Data re�nement
� Simulations
� Re�nement in Z
� Deriving simulations in Z
� Examples
� Conurrent models of re�nement
� Unifying relational and onurrent re�ne-ment+ 3

+ +

What is Re�nement?
� Write a program to input a number, dou-ble it and output the result on the sreen.
� Draw a Jak playing ard.

Spei�ations de�ne what is observable andwhat is hidden.They are also often loose, i.e., ontain non-determinism.
+ 4

24

+ +Re�nement is the proess of development:
� the internal representation doesn't mat-ter, all that matters is the observable be-haviour.
� if options have been left open, we arefree to make a hoie i.e., redue non-determinism.

So re�nement is based upon:
The Priniple of Substitutivity: itis aeptable to re�ne one program byanother,- provided it is impossible for a userof the programs to observe that thesubstitution has taken plae.+ 5

+ +

All formal methods have notions of re�ne-ment:
� Proess algebras (CSP, LOTOS et) - trae,failure-divergene, redution et.
� Automata;
� State-based languages (Z, VDM, B et) -data re�nement.

+ 6

+ +
Re�nement in ZData re�nement is a methodology that allowsstate spaes to be altered in a development,and non-determinism to be redued.For example, a digital wath might have thestate spaeTimeHMhrs : 0::23mins : 0::59 TimeHMInitTimeHM0
With operations to show and reset the timeShowTime�TimeHMhrs ! : 0::23mins ! : 0::59hrs = hrs !mins = mins !

ResetTime�TimeHMhrs? : 0::23mins? : 0::59hrs 0 = hrs?mins 0 = mins?
+ 7

+ +
A re�nement to the wath might add somemore detail to this design:Change the internal representation, e.g.,TimeHMhrs : 0::23mins : 0::59 CTimeHMtime : N � N
and/or redue some non-determinismTimeHMInitTimeHM0 CTimeHMInitCTimeHM0time 0 = (0; 0)
What is the orret spei�ation of ShowTimeusing CTimeHM?
+ 8

25

+ +Programs in this spei�ation are sequenesof operations:TimeHMInit o9 ShowTime o9 ShowTimeo9 ResetTime o9 ShowTimeIn a re�nement we will need to math equiv-alent programs, so that an abstrat programan be re�ned by a onrete program.
��������AInit�������RCInit

-AOp1
-COp1

-AOp2
-COp2

-
-

-AOpn
-COpn��������
AFin�������RCFin

So a spei�ation A is re�ned by C i� for eahprogram PP(C) � P(A)e.g.CInit o9COp1 o9COp2 o9CFin �AInit o9AOp1 o9AOp2 o9AFin+ 9

+ +

Thus for our example, we need:CTimeHMInit o9CShowTimeo9CShowTime o9CResetTime� TimeHMInit o9 ShowTimeo9ShowTime o9ResetTime
(Don't worry about the AFin and CFin bit.)But we need to verify this for every possibleprogram.

+ 10

+ +
Several issues
� What exatly are the observations of anabstrat data type, and what is their re-lation to ADT programs?
� How do inputs and outputs �t in with this?
� What is the e�et of using operations spe-i�ed by relations whih are not neessarilytotal?
� What is the funtion of initialisation?
� How an we verify re�nements withoutheking all programs?

+ 11

+ +Data Re�nement and SimulationsNext:
� the standard de�nition of data re�nementfor data types whose operations are totalrelations,
� the de�nitions of upward and downwardsimulations,
� the statement of their soundness and jointompleteness.

To apply this theory to a spei�ation lan-guage we look at how operations in a spei�-ation are modelled as partial relations.The appliation of the simulation rules to spe-i�ations with partial operations leads to thesimulation rules as they are normally presentedin Z.First, some de�nitions : : :+ 12
26

+ +
De�nition 1 (Data type)A data type, (State; Init; fOpigi2I;Fin), has operations fOpig, indexed by i 2 I,that are total relations on the set State; Initis a relation from G to State; Fin is a relationfrom State to G. 2A data type is anonial if Init, Opi and Fin areall funtions. Two data types are onformalif their global data spae G and the indexingsets of their operations are equal.De�nition 2 (Complete program)A omplete program over a data type D isan expression of the form Init o9P o9 Fin, whereP, a relation over State, is a program overfOpigi2I. 2For example, if p = hp1; : : : ;pni thenpD = Init o9Opp1 o9 : : : o9Oppn o9 Fin.+ 13

+ +ExampleLet G = N , D = (N ; Init; fOp1;Op2g;Fin) whereInit = fx : N � (x;0)gOp1 = fx : N � x0 = x + 1gOp2 = fx; y : N j x0 2 fx; x + 2ggFin = idNThe program [1;2;1℄D denotesInit o9Op1 o9Op2 o9Op1 o9 Fin whih isfx : N ; y : f2;4g � (x; y)g.

rr
rr
r

rr
rr
r

rr
rr
r

rr
rr
r

rr
rr
r

rr
rr
r01234

01234

-�������������
���

...
Init

�����R

Op1

-AAAAAAAAAU
Op2

�����R
�����ROp1

-
-Fin+ 14

+ +De�nition 3 (Data re�nement)For data types A and C, C re�nes A (denotedA v C) i� for eah �nite sequene p over I,pC � pA. 2Data re�nement is transitive and reexive, i.e.,it is a preorder.ExampleLet G = N , withA = (N ; idN ; fAOpg; idN)C = (N ; idN ; fCOpg; idN)AOp = fx; y : N j x < y � (x; y)gCOp = fx : N � (x; x + 1)g
Show that for any sequene p:pA = fx; y : N j x + #p � y � (x; y)g; whereaspC = fx : N � (x; x + #p)g
Thus pC � pA, and therefore C re�nes A.+ 15

+ +
How to verify a re�nementSimulations are used to verify re�nements:
� they allow a step-by-step omparison ofoperations,
� instead of looking at the e�et of thewhole program.

��������AInit�������RCInit
-AOp1
-COp1

-AOp2
-COp2

-
-

-AOpn
-COpn��������
AFin�������RCFinR R R R R

R links the abstrat and onrete state spaes.
+ 16

27

+ +SimulationsHow to verify a re�nement by onsidering stepby step values.We need a relation R between the two sets ofstates AState and CState.Then we an onsider two types of step bystep omparisons: downwards simulation andupwards simulation.Fats: these two simulations are sound andjointly omplete.Every downwards or upwards simulation is avalid re�nement.Every valid re�nement an be proved by aombination of downwards and upwards sim-ulations. In fat every re�nement needs justone upwards simulation followed by a down-wards simulation.+ 17

+ +Two ways of making the diagram ommute:-AOp
-COpR R� -
�
?

-AOp
-COpR R� -
�
6

De�nition 4 (Downward simulation)Given A = (AState;AInit; fAOpigi2I;AFin) andC = (CState;CInit; fCOpigi2I;CFin). A down-ward simulation is a relation R from AStateto CState satisfyingCInit � AInit o9R (1)R o9CFin � AFin (2)8 i : I � R o9COpi � AOpi o9R (3)If suh a simulation exists, C is alled a down-ward simulation of A. 2Downward simulations are also known as for-ward simulations.+ 18

+ +De�nition 5 (Upward simulation)For data types A and C as above, an up-ward simulation is a relation T from CStateto AState suh thatCInit o9T � AInit (4)CFin � T o9AFin (5)8 i : I � COpi o9T � T o9AOpi (6)If suh a simulation exists, we also say that Cis an upward simulation of A. 2Another term for this is bakward simulation.Exerise:Show that if a relation T between CState andAState is total and funtional, then T is anupward simulation between A and C if andonly if T�1 is a downward simulation betweenA and C.+ 19

+ +Answer: Totality of T is enoded relation-ally as T o9T�1 � idCState, and funtionality asT�1 o9T � idAState.Together these allow the proof of equivalenefor the orresponding upward and downwardsimulation onditions.E.g.,COpi o9T � T o9AOpi)T�1 o9COpi o9T o9T�1 � T�1 o9T o9AOpi o9T�1) f totality on lhs, funtionality on rhs gT�1 o9COpi � AOpi o9T�1)T o9T�1 o9COpi o9T � T o9AOpi o9T�1 o9T) f totality on lhs, funtionality on rhs gCOpi o9T � T o9AOpi(The middle line is the ondition for T�1 tobe a downward simulation, whih both impliesand is implied by the top/bottom line.)+ 20
28

+ +Theorem 1 (Horizontal omposition) For on-formal data types A and C as above, and ap-propriately typed relations R and T,(a) if (1) and (3) hold, then (1) holds forAInit := AInit o9AOpi and CInit := CInit o9COpi
(b) if (3) holds, then it also holds for any se-quene of two operations, i.e.,8 i; j : I � R o9COpi o9COpj � AOpi o9AOpj o9R() if (3) and (2) hold, then (2) holds forAFin := AOpi o9AFin and CFin := COpi o9CFin(d) if (4) and (6) hold, then (4) holds forAInit := AInit o9AOpi and CInit := CInit o9COpi(e) if (6) holds, then it also holds for any se-quene of two operations, i.e.,8 i; j : I � COpi o9COpj o9T � T o9AOpi o9AOpj(f) if (6) and (5) hold, then (5) holds forAFin := AOpi o9AFin and CFin := COpi o9CFin+ 21

+ +
Answer:
(a) CInit o9COpi� fby (1)gAInit o9R o9COpi� fby (3)gAInit o9AOpi o9R
(b) R o9COpi o9COpj� fby (3)gAOpi o9R o9COpj� fby (3)gAOpi o9COpj o9R
+ 22

+ +
() R o9COpi o9CFin� fby (3)gAOpi o9R o9CFin� fby (2)gAOpi o9AFin
Show the following:Theorem 2 (Soundness of simulations) If anupward or downward simulation exists betweenonformal data types A and C, then C is adata re�nement of A.By indution on the (omplete) programs, byproving a base ase, and using Theorem 1(a)/(d) as the indution step.
+ 23

+ +
(in)CompletenessHowever, neither downward simulation nor up-ward simulation is omplete on their own.Example of ADTs whih are related by datare�nement where no downward simulation ex-ists are as follows:Let G = 0::4, whih ats as the global stateand one of the loal states; the other loalstate is YS = f0;1;3;4g. De�neX = (G; Init; fXOp1;XOp2g; idG),Y = (YS; Init; fYOp1;YOp2; g; idYS), whereInit = fx : G � (x;0)g;XOp1 = f(0;1); (0;2); (1;1); (2;2); (3;3); (4;4)g;XOp2 = f(0;0); (1;3); (2;4); (3;3); (4;4)g;YOp1 = f(0;1); (1;1); (3;3); (4;4)g;YOp2 = f(0;0); (1;3); (1;4); (3;3); (4;4)g:
+ 24

29

+ +-
-
0 -�������R

1 -32 -0 -1 -�������R
3
4
4XOp1

YOp1
XOp2
YOp2Init

Init

A program here is a �nite sequene over thenumbers 1 and 2. The �nalisation is the iden-tity, so the �nal state is the only observableoutome of a program.
� Any program whih does not inlude op-eration 1 (inluding the empty program)will end in state 0.
� Any program ontaining operation 1 butnot 2 after it will end in state 1 or 2 forX, and in state 1 for Y.+ 25

� Any other program (i.e., ontaining at leastoperation 1 followed by 2 sometime later)ould end in either state 3 or 4 for bothX and Y.
As the outomes for Y are always inluded inthose for X, data re�nement holds.

+ +Assume we have a downward simulation Rfrom G to YS.From the �nalisation ondition (2) we getR � idYS.From initialisation and re�nement for the �rstoperation we then get that (1;1) 2 R.The re�nement ondition for the seond op-eration then gives us:R o9YOp2 � XOp2 o9R) f(1;1) 2 R; transitivity of �gf(1;3); (1;4)g � XOp2 o9R�f(1;3); (1;4)g � f(1;3)g o9R) fo9g(3;4) 2 Rwhih ontradits that R is ontained in theidentity relation.Thus, no suh R an exist.+ 26

+ +
Exerise:Show that it an be proved that f(0;0); (1;1);(1;2); (3;3); (4;4)g does onstitute an upwardsimulation in this ase.Exerise:Construt a similar example where the ab-strat and onrete data type are swappedand f(1;2); (2;1)g added to both �nalisationsto show a data re�nement where no upwardsimulation exists.Theorem 3 Upward and downward simula-tion are jointly omplete, i.e., any data re-�nement an be proved by a ombination ofsimulations.
+ 27

30

+ +
PartialityNot all operations are total, the meaning ofan operation Op spei�ed as a partial relationis:
� Op behaves as spei�ed when used withinits preondition (domain);
� outside its preondition, anything may hap-pen.

We model this by totalising relations, i.e., addinga distinguished element ?, denoting unde�ned-ness.Two ways to do this: ontrat vs behavioural.
+ 28

+ +In the \ontrat" approah, the domain (pre-ondition) of an operation desribes the areawithin whih the operation should be guaran-teed to deliver a well-de�ned result, as spei-�ed by the relation.Outside that domain, the operation may beapplied, but may return any value, even an un-de�ned one (modelling, e.g., non-termination).In the \behavioural" approah, operations maynot be applied outside their preondition; do-ing so anyway leads to an unde�ned result.In either ase, in both approahes the simu-lation rules for partial operations are derivedfrom those for total operations:partial relations on a set S are modelled as to-tal relations on a set S?, whih is S extendedwith a distinguished value ? not in S.+ 29

+ +E.g., in the behavioural approah, values out-side the domain are linked to ? only.

r
r
r
r

r
r
r
r0

1
2
?

0
1
2
?-

-HHHHHHHHHHHHHjHHHHHHHHHHHHHj
j

De�nition 6 (Totalisation)For a partial relation Op on State, its totalisa-tion is a total relation dOp on State?, de�nedin the \ontrat" approah to ADTs bydOp == Op [fx; y : State? j x 62 domOp � (x; y)gor in the behavioural approah to ADTs bydOp == Op [fx : State? j x 62 domOp � (x;?)gTotalisations of initialisation and �nalisationare de�ned analogously. 2+ 30

+ +

De�nition 7 (Extension)A relation R between AState and CState isextended to a relation gR between AState? andCState?, de�ned in the ontrat approah bygR == R [(f?AStateg �CState?)and in the behavioural approah bygR == R [f(?AState;?CState)g 2

+ 31
31

+ +Extrating the partialityThe simulation rules are de�ned in terms oftotalised relations. We an extrat the under-lying rules for the original operations.Thus our goal is to apply the simulation rulesto the totalised versions of these data types,and then to remove all ourrenes of e, band ? in the rules.For initialisation we have:dCInit � dAInit o9 gR�CInit [f(?G;?CState)g�(AInit [f(?G;?AState)g) o9 (R [f(?AState;?CState)g)�CInit [f(?G;?CState)g � AInit o9R [f(?G;?CState)g�CInit � AInit o9R+ 32

+ +We use the following abbreviation:X6 == (domX)?For the operations we get the following:gR o9 dCOp � dAOp o9 gR� : : :R o9COp � AOp o9R^(R o9 (COp6� f?CStateg)) � (AOp6� f?CStateg)The seond onjunt an be further simpli-�ed. As the ranges of both relations are f?CStateg,only their domains are relevant. Removingalso the omplements, we getran(domAOpCR) � domCOpFor �nalisation, using analogous steps:gR o9 dCFin � dAFin�R o9CFin � AFin^ran(domAFinCR) � domCFin+ 33

+ +
De�nition 8Let A = (AState;AInit; fAOpigi2I;AFin) and C =(CState;CInit; fCOpigi2I;CFin) be data typeswhere the operations may be partial.A downward simulation is a relation R fromAState to CState satisfying, in the ontratinterpretationCInit � AInit o9RR o9CFin � AFinran(domAFinCR) � domCFin8 i : I � ran(domAOpi CR) � domCOpi8 i : I � (domAOpi CR) o9COpi � AOpi o9RThe �ve onditions are ommonly referred toas initialisation, �nalisation, �nalisation ap-pliability, appliability and orretness. Inthe behavioural interpretation, orretness isstrengthened to:8 i : I � R o9COpi � AOpi o9R+ 34

+ +Upward SimulationsdCInit o9 gT � dAInit simpli�es to CInit o9T � AInit.For operations, we get:dCOp o9 gT � gT o9 dAOp� : : :COp o9T � T o9AOp^domCOp � dom(T�B domAOp)
For �nalisation, as with downward simulation,we obtain an appliability ondition ompara-ble to that for operations8 : CState � (j T j) � domAFin) 2 domCFinplus the \undeorated" version of the originalonditionCFin � T o9AFin+ 35

32

+ +De�nition 9 (Upward simulation)Let A = (AState;AInit; fAOpigi2I;AFin) and C =(CState;CInit; fCOpigi2I;CFin) be data typeswhere the operations may be partial.An upward simulation is a relation T fromCState to AState satisfying, in the ontratinterpretationCInit o9T � AInitCFin � T o9AFin8 : CState � (j T j) � domAFin) 2 domCFin8 i : I � domCOpi � dom(T�B domAOpi)8 i : I � dom(T�B domAOpi)�CCOpi o9T � T o9AOpiIn the behavioural interpretation, orretnessis strengthened to:8 i : I � COpi o9T � T o9AOpiTheorem 4 (Upward simulations are total)When the onrete �nalisation is total, theupward simulation T from CState to AStateis total on CState.+ 36

+ +Transforming into ZThese rules an be written in the Z shemaalulus, where they beome:
� 8CState 0 � CInit) 9AState 0 � AInit ^R 0
� 8AState; CState �preAOp ^R =) preCOp
� 8AState; CState; CState 0 �preAOp^R^COp =) 9AState 0 � R 0^AOp

These are the three onditions you need toprove to verify a re�nement. You have toprove the 2nd and 3rd onditions for all oper-ations.Finalisation has disappeared beause outputappears at eah operation step, rather thanwaiting to the end.We now explore these issues.+ 37

+ +Re�nement in ZTo derive simulation rules in Z, interpretinitialisation, operations et as appropriaterelations:Init piks a suitable initial state and opiesover the sequene of inputs from the globalstate. Opi onsumes an input, produes anoutput and the state is transformed aordingto the operation:Init is (is ;os) 7! (is ; hi; �State 0)Opi is (h�?Opiia is;os; �State) 7!(is ;os a h�!Opii; �State 0)Finalisation just makes all outputs visible:Fin is (is ;os ; �State) 7! (hi;os)
Given this embedding, we an translate thedownward and upward simulation onditionsinto the Z shema alulus.+ 38

+ +
Example - without input or output.The standard Z ADT (B; Init; fOn;O� g) whereBb : BInitB 0b0

On�B:b ^ b0O��Bb ^ :b0is interpreted as the relational data type(B; Init; fOn;O�g;Fin) whereB == fhj b == true ji; hj b == false jigInit == f� 7! hj b == true jigOn == fhj b == false ji 7! hj b == true jigO� == fhj b == true ji 7! hj b == false jigFin == fhj b == true ji 7! �; hj b == false ji 7! �g
+ 39

33

+ +
A retrieve relation R between AState and CStatemust be embedded in the relational settingsimilarly to how we embedded operations:R == fR � �AState 7! �CStateg
The retrieve relation R between B in and N d=[x : f0; 1g ℄ given byRB; Nb = (x = 1)is represented by the relationR == fhj b == true ji 7! hj x == 1 ji;hj b == false ji 7! hj x == 0 jig
+ 40

+ +Deriving Downward Simulation in ZGiven the embedding above, we an translatethe relational re�nement onditions of simu-lations into re�nement onditions for Z.Initialisation:CInit � AInit o9R� f de�nition of � g8g; 0 � (g; 0) 2 CInit) (g; 0) 2 AInit o9R� f de�nition of o9 g8g; 0 � (g; 0) 2 CInit) 9a0 � (g;a0) 2 AInit ^ (a0; 0) 2 R� f interpretation of Init and R 0; g = �g8 0 � 0 2 fCInit � �CState 0g)9a0 � a0 2 fAInit � �AState 0g^ (a0; 0) 2 fR 0 � �AState 0 7! �CState 0g� f use shema quanti�ation g8CState 0 � CInit) 9AState 0 � AInit ^R 0
+ 41

+ +
For �nalisation:R o9CFin � AFin� f de�nition of � g8g;a � (a;g) 2 R o9CFin) (a;g) 2 AFin� f de�nition of AFin g8g;a � (a;g) 2 R o9CFin) (a 2 AState ^ g = �)� f ranCFin = f�g, domR � AState gtrue
andran(domAFinCR) � domCFin� f domCFin = CState gtrue
+ 42

+ +
Appliability:ran(domAOpi CR) � domCOpi�8CState; AState � R ^ preAOpi) preCOpi
Corretness:(domAOpi CR) o9COpi � AOpi o9R�8AState; CState; CState 0 �R ^ preAOpi ^COpi) 9AState 0 � AOpi ^R 0
Together, these onditions make up the rulesfor downward simulation for Z shemas in sys-tems without input or output.
+ 43

34

+ +The relation R on AState^CState is a down-ward simulation from A to C if8CState 0 � CInit) 9AState 0 � AInit ^R 0and for all i 2 I :8AState; CState �preAOpi ^R) preCOpi8AState; CState; CState 0 �preAOpi ^R ^COpi) 9AState 0 � R 0 ^AOpi
In the behavioural interpretation, the rule fororretness beomes8AState; CState; CState 0 �R ^COpi) 9AState 0 � R 0 ^AOpiWhen this behavioural orretness onditionholds, the appliability ondition above is equiv-alent to8AState; CState � R) (preAOpi , preCOpi)+ 44

+ +
Deriving Upward SimulationIn a similar fashion:CInit o9T � AInit�8AState 0; CState 0 � CInit ^T 0) AInit
Finalisation produes an important ondition:CFin � T o9AFin�8CState � 9AState � T
Appliability gives:domCOpi � dom(T�B domAOpi)�8CState � (8AState � T) preAOpi)) preCOpi
+ 45

+ +For orretness, we have:dom(T�B domAOpi)�CCOpi o9T � T o9AOpi�8AState 0; CState; CState 0 �(8AState � T) preAOpi)) (COpi ^T 0) 9AState � T ^AOpi)
Together these beome:The relation T on AState ^CState is an up-ward simulation from A to C if8CState � 9AState � T8AState 0; CState 0 � CInit ^T 0) AInitand for all i 2 I :8CState � (8AState � T) preAOpi)) preCOpi8AState 0; CState; CState 0 �(8AState � T) preAOpi)) (COpi ^T 0) 9AState � T ^AOpi)+ 46

+ +
Under the assumption of totality of T , theappliability ondition an be written8CState � 9AState � T ^ (preAOpi) preCOpi)
In the behavioural interpretation, the rule fororretness beomes8AState 0; CState; CState 0 �(COpi ^T 0)) 9AState � T ^AOpi
Downward and upward simulations allow thesame sort of hanges in a re�nement: preon-ditions an be weakened and non-determinismin postonditions resolved.But ... downward simulations do not allowpostponement of non-deterministi hoie.
+ 47

35

+ +In a downward simulation a onrete programis simulated starting in the initial state, andeah onrete step is then mathed by an ab-strat one. They are sometimes alled for-ward simulations.In an upward simulation an arbitrary point in aonrete program is piked and the simulationworks bakwards to see if it ould be simu-lated from some abstrat initialisation. Theyare sometimes alled bakward simulations.This also explains why upward simulations needto be total.Totality is needed beause the upward simu-lation begins at an arbitrary point in the on-rete program, and we need to be sure thatfrom any suh point we an simulate bak-wards.Beause downward simulations begin at theinitialisation totality is not neessary for theirretrieve relations.+ 48

+ +Embedding Inputs and OutputsHow to apply to operations with input andoutput?
Op-State -State 0??Op 6!Op Op-State -State 0? 6 -!Op-?Op

Add input and output information to the globaland loal state:G == seq Input� seqOutputState == seq Input� seqOutput� State
Init piks a suitable initial state and opiesover the sequene of inputs from the globalstate.Init is (is ;os) 7! (is ; hi; �State 0)+ 49

+ +
Finalisation just makes all outputs visible:Fin is (is ;os ; �State) 7! (hi;os)
Opi onsumes an input, produes an outputand the state is transformed aording to theoperation:Opi is (h�?Opiia is;os; �State) 7!(is ;os a h�!Opii; �State 0)

Op-State -State 0? 6 -!Op-?Op append -hdtl-seq Input -seqOutput
-

+ 50

+ +
We an now derive the simulation rules again,the result is essentially the same set of rulesexept that we have to quantify over inputsand outputs.The given �nalisation is total, so the applia-bility ondition for �nalisation holds. We alsohave:R o9CF � AF� f de�nition of � g8 is ;os ;a; is 0;os 0 � ((is ;os ;a); (is 0;os 0)) 2 R o9CF)((is ;os ;a); (is 0;os 0)) 2 AF� f g8 is ;os ;a � ((is ;os ;a); (hi;os) 2 R o9CF)((is ;os ;a); (hi;os) 2 AF(f prediate alulus g8 is ;os ;a � ((is ;os ;a); (hi;os) 2 AF� f de�nition of AF gtrue+ 51

36

+ +

Downward simulations - Operation re�ne-mentWhen the retrieve relation is the identity, e.g.,when we use the same state spae in abstratand onrete, the rules are simpli�ed:
� 8State 0 � CInit) AInit
� 8State � preAOp =) preCOp
� 8State; State 0 � preAOp ^COp =) AOp

+ 52

+ +
Examples1. Initialisation onditionTimeHMhrs : 0::23mins : 0::59TimeHMInitTimeHM0 CTimeHMInitTimeHM0hrs 0 = 0 ^mins 0 = 0
Then (TimeHM, CTimeHMInit) is a re�ne-ment of (TimeHM, CTimeHMInit).We need to show that:8TimeHM0 � TimeHMInit) TimeHMInit8hrs 0 : 0::23; mins 0 : 0::59 �hrs 0 = 0 ^mins 0 = 0) true+ 53

+ +
2. Reduing non-determinism in after-stateStatex : NAOp�Statex 0 2 f0; 1g COp�Statex 0 2 f0g
We need to show that:8State � preAOp =) preCOp8State; State 0 � preAOp ^COp =) AOp
latter is (why?):8 x ; x 0 � x 0 2 f0g =) x 0 2 f0; 1g
+ 54

+ +
3. Reduing non-determinism in outputStatex : N InitState 0x 0 = 1AOp�Staten! : Nn! 2 f0; 1g

COp�Staten! : Nn! 2 f0g
We need to show that (+ initialisation ondi-tion):8State � preAOp =) preCOp8State; State 0 � preAOp ^COp =) AOp
latter is:8 x ; x 0; n! � n! 2 f0g =) n! 2 f0; 1g
+ 55

37

+ +
4. Widening the pre-onditionStatex : N InitState 0x 0 = 1AOp�Staten! : Nx = 1 ^ n! 2 f0; 1g

COp�Staten! : N(x = 1 ^ n! 2 f0g)_(x = 2 ^ n! = 2)
We need to show that (+ initialisation ondi-tion):8State � preAOp =) preCOp8State; State 0 � preAOp ^COp =) AOp
What is preAOp and preCOp?
+ 56

+ +Data re�nement1. Changing variable namesAStatex : N AInitAState 0x 0 = 1AOp�AStaten! : Nx = 1 ^ n! 2 f0; 1g
Re�nement is:CStatey : N CInitCState 0y 0 = 1COp�CStaten! : Ny = 1 ^ n! 2 f0; 1g+ 57

+ +
Retrieve relation:RAStateCState: : :
Conditions are:
� 8CState 0 � CInit) 9AState 0 � AInit ^R 0
� 8AState; CState �preAOp ^R =) preCOp
� 8AState; CState; CState 0 �preAOp^R^COp =) 9AState 0 � R 0^AOp

+ 58

+ +
2. Wath exampleTimeHMhrs : 0::23mins : 0::59 TimeHMInitTimeHM0

ShowTime�TimeHMhrs ! : 0::23mins ! : 0::59hrs = hrs !mins = mins !
ResetTime�TimeHMhrs? : 0::23mins? : 0::59hrs 0 = hrs?mins 0 = mins?

Re�ne this to:CTimeHMtime : N � N CTimeHMInitCTimeHM0time 0 = (0; 0)
+ 59

38

+ +CShowTime�CTimeHMhrs ! : 0::23mins ! : 0::59time:1 = hrs !time:2 = mins !
CResetTime�CTimeHMhrs? : 0::23mins? : 0::59time 0 = (hrs?;mins?)

Retrieve relation:RTimeHMCTimeHM: : :8CTimeHM0 � CTimeHMInit)9TimeHM0 � TimeHMInit ^R 08TimeHM; CTimeHM �preShowTime ^R =) preCShowTime8TimeHM; CTimeHM; CTimeHM0 �preShowTime ^R ^CShowTime =)9TimeHM0 � R 0 ^ ShowTimeet+ 60

+ +
3. Changing sets into sequenes[Person℄AStated : P Person#d �Max AInitAState 0d 0 = ?AEnter�AStatep? : Person#d < Maxp? 62 dd 0 = d [fp?g

ALeave�AStatep? : Personp? 2 dd 0 = d n fp?g
Re�nement uses sequenes instead of sets toreord the people in the lass:CStatel : iseqPerson#l �Max CInitCState 0l 0 = h i
+ 61

+ +

CEnter�CStatep? : Person#l < Maxp? 62 ran ll 0 = l a hp?i
CLeave�CStatep? : Personp? 2 ran lran l 0 = ran l n fp?g

What is R?What are the onditions we have to prove?

+ 62

+ +
ExampleThe abstrat spei�ation evaluates the meanof a set of real numbers in a bag.AStateb : bag R AInitAState 0b0 = [[℄℄EnterA�AStater? : Rb0 = b ℄ [[r?℄℄

MeanA�AStatem! : Rb 6= [[℄℄ ^m! = (Pb)=#b
The onrete spei�ation only maintains arunning sum and a ount of the items in thebag.CStates : Rn : N CInitCState 0s 0 = 0 ^ n0 = 0
+ 63

39

+ +

EnterC�CStater? : Rs 0 = s + r?n0 = n + 1
MeanC�CStatem! : Rn 6= 0 ^m! = s=n

The required retrieve relation isRAStateCStates = Pb ^ n = #b

+ 64

+ +

Unifying Conurrent and Relational Re-�nementWhy is a proess algebra blessed with amultitude of re�nement relations, whereasa language like Z only has one notion ofre�nement?How an one use Z to speify onurrentsystems?What is the di�erene between failures-divergenes re�nement and aninput/output model?
+ 65

+ +Other approahes to re�nementIn proess algebras there are a range of re�ne-ment relations, eah with di�erent strengths.These inlude trae and failure-divergene re-�nement, plus equivalenes suh as weak andstrong bisimulation.Trae re�nementTrae re�nement heks that safety proper-ties are preserved.These are haraterised by saying 'nothingbad happens'.If nothing bad happens in the abstrat spe-i�ation, then nothing bad should happen ina re�nement.This is ahieved by asking for trae subset-ting.+ 66

+ +A trae is a sequene of events that an hap-pen in the proess.E.g., for P = a; b; stop the following are allvalid traes of P:�; hai; ha;bi
We normally write ha;bi as ab.The set of traes of a spei�ation (or pro-ess) P is denoted Traes(P).Trae re�nement is de�ned by saying P0 isre�ned by P1 (written P0 vtr P1) whenever:Traes(P1) � Traes(P0)
Examples:a; b; stop vtr a; stopa; b; stop vtr stop+ 67

40

+ +But:a; b; ; stop 6vtr a; ; stopa; b; ; stop 6vtr a; b; ; d ; stopTrae re�nement fails to distinguish betweenproesses that we would naturally think of asdi�erent (tehnially - be able to onstruttests that distinguish them).For example, we an't distinguish betweena; (b; stop[℄ ; stop)and(a; b; stop)[℄(a; ; stop)
Failures reord more information. A failure isa pair (tr ;X) where tr is a trae of the proess,and X is a refusal set.A refusal set is a reord of events that theproess would refuse after that trae.+ 68

+ +Failures(P) is the set of all failures of the pro-ess P.E.g., for P = a; b; stop the following are fail-ures of P:(�; fbg); (a; fag); (ab; fa;bg)
Failures re�nement asks for subsetting of fail-ure sets:P1 is a failures re�nement of P0 if:Failures(P1) � Failures(P0)
We an now distinguish betweena; (b; stop[℄ ; stop)and(a; b; stop)[℄(a; ; stop)
Why? Calulate their failures.+ 69

+ +
Failures-divergenes re�nementThe traes of events are reorded as opposedto an input/output relation.For example, in failures-divergenes re�nementa proess is modelled by the triple (A;F ;D)where A is its alphabet, F is its failures andD is its divergenes.The failures of a proess are pairs (t;X) wheret is a �nite sequene of events that theproess may undergo and X is a set of eventsthe proess may refuse to perform afterundergoing t.A proess Q is a re�nement of a proess P iffailures Q � failures Pdivergenes Q � divergenes P
+ 70

+ +Di�erenesRelational re�nement is only onerned withthe relation between input and output, sinethat is all that is observed in the global state.In a proess algebra the event names havean importane not attributed to them in therelational setting.Relational re�nement looks at redution ofnon-determinism visible in the global state asgiven by programs.Failures-divergenes re�nement is not justonerned with traes but also with refusalsand divergenes.The relationship between these two views isnot immediately obvious.f. Work of Bolton and Davies shows thatfailures-divergenes re�nement is not the sameas relational re�nement as in Z.+ 71
41

+ +
Adding refusals to relational re�nementThe basi observations the relational modelmakes are thus very weak:
� make more observations,
� the only way we an do this is to inreasethe expressitivity of the �nalisation.

Generalise �nalisation from being(is ;os ; �State) 7! (hi;os)to beoming(is ;os ; �State) 7! (hi;os ;E)
What goes in E depends on what we want toobserve.+ 72

+ +
Example - no input or outputBb : BInitB 0b0

On�B:b ^ b0O��Bb ^ :b0
Make E refusals, �nalisation hanges fromFin == f hj b == true ji 7! �; : : :gtoFin == f hj b == true ji 7! fOng;hj b == true ji 7! ?;hj b == false ji 7! fOffg;hj b == false ji 7! ?g
+ 73

+ +Simulation rules - no input or output1. Downward simulationR o9CFin � AFinbeomes8R � (fi : I j :preCOpig � fi : I j :preAOpig)This plaes no extra onditions on adownward simulation.2. Upward simulationCFin � T o9AFinbeomes8CState � 9AState � T^(fi : I j :preCOpig � fi : I j :preAOpig)This is,8CState � 9AState � 8 i : I � : : :instead of8 i : I � 8CState � 9AState � : : :+ 74

+ +
NotesWe have extended our observations beyondaeptane of traes and now reord refusals.This appears in the simulation rules via thequanti�ation over i that ours within thesope of the quanti�ation over AState andCState.Although we began by embedding refusals in a�nalisation, the onditions an be unwound tobe expressed in terms of the shema alulusdiretly.The onditions extrated from this �nalisationrequirement work with both the bloking andthe non-bloking model of preonditions.
+ 75

42

+ +The orrespondene withfailures-divergenes re�nementThis relational re�nement orresponds in somesense to failures-divergenes re�nement.In some sense means it is modulo anenoding of the spei�ation as a set of events,however, this enoding is natural andunontroversial.Theorem 5 In the bloking model, relationalre�nement with extended �nalisationsorresponds to failures-divergenes re�nement.In the non-bloking model the enoding isslightly di�erent, e.g., there are divergenes,but no refusals beyond those after adivergene.Theorem 6 In the non-bloking model, rela-tional re�nement with extended �nalisationsorresponds to failures-divergenes re�nement.+ 76

+ +
Dealing with input and output (blokingmodel)
� Desribe the orret orrespondingproess and its failures and divergenes,
� De�ne the �nalisation,
� Prove that relational re�nement is the sameas failures-divergenes re�nement, and
� Extrat simulation rules from the relationalre�nement, expressing them in the shemaalulus.

+ 77

+ +Refusals of an event with output:
� Demoni - the environment annotinuene the output, and there arerefusals due to a partiular output beinghosen, or
� Angeli - the environment an inuenethe output, and there are no suh refusals.

Finalisation inludes these refusals.+ 78

+ +The simulation rules1. Downward simulation in the demoni modelTheorem 7 The ondition R o9CFin � AFin inthe demoni model is subsumed by the normalappliability and orretness rules.2. Upward simulation in the demoni modelExample 1A and C are not failures-divergenes equiva-lent.A has failure (hBi; fTVF ;ESFg) whih is notpresent in CTo reover failures-divergenes re�nement inthe bloking model one needs to add the strength-ened appliability ondition:8CState � 9AState � 8 i : I �T ^ (preAOpi) preCOpi)+ 79
43

+ +

Example 2This example shows that we need an addi-tional ondition on refusal sets due to outputsas well.Now the strengthened appliability onditionholds- eah state simple, luxury , tv and ensuitehave operations HasES and HasTV enabled -so this does not pik up the di�erent refusalinformation due to the outputs.
+ 80

+ +
Simulation rulesBased on maximal refusal sets.Sim = (I � Input) 7!OutputE : Sim represents:domE disabled;domE enabled, outputs in E hosenenoded as Maxref (E ;State)The �nalisation ondition is:8CState; E : Sim �Maxref (E ;CState)) 9AState; E 0 � E � T ^MaxRef (E 0;AState)
Simpler for the angeli model of outputs.
+ 81

+ +Downward simulations - summaryOutputs: none Demoni AngeliInit InitApp App -Corr CorrBlokFin - FinAng
Init 8CState 0 � CInit) 9AState 0 � AInit ^R 0
App 8R; i : I ; Input � preAOpi) preCOpiCorrBlok 8 i : I ; Input ; Output ; R; CState 0 �COpi) 9AState 0 � R 0 ^AOpiFinAng 8R; i : I ; Input ; Output �Pre AOpi) Pre COpiwhere in angeli rules we alter the de�nitionof preOp to inlude existential quanti�ationof the after state only, i.e.,Pre Op d= 9State 0 �Op.+ 82

+ +Upward simulations - summaryOutputs: none Demoni AngeliInit InitApp -Corr CorrBlokFin FinRef FinDem FinAng
Init 8T 0 � CInit) AInit
CorrBlok 8 i : I ; Input ; Output ; T 0; CState �COpi) 9AState � T ^AOpi
FinRef 8CState � 9AState � T^8 i : I ; Input �preAOpi) preCOpi
FinDem 8CState; E : Sim �Maxref (E ;CState)) : : :
FinAng 8CState � 9AState � T^8 Input ; Output ; i : I � Pre AOpi) Pre COpi+ 83

44

Relations for Specifying the Invariant Behavior
of Object Collaborations

Stephanie Balzer

ETH Zurich (Swiss Federal Institute of Technology)
Department of Computer Science

CH-8092 Zürich, Switzerland
stephanie.balzer@inf.ethz.ch

Abstract. The missing first-class support of object collaborations in
class-based object-oriented programming languages is increasingly criti-
cized as it results in distributing the information about such collabora-
tions across multiple classes. In response, the introduction of first-class
relationships is proposed. Relationships are the programming language
abstractions that encapsulate the collaborations that emerge from the
interacting objects. With first-class support, relationships exist in addi-
tion to classes and can — like classes — define their own members, such
as attributes and methods. Our work enriches the concept of first-class
relationships with the notion of structural invariants. Structural invari-
ants specify the invariant behavior of object collaborations. They restrict
the participation of objects in relationships and are expressed in terms
of mathematical relations.

1 Introduction

Common class-based object-oriented programming languages do not provide the
necessary abstractions to reflect object collaborations. Object collaborations are
implemented using (unidirectional) references. This approximation results in the
loss of a global view as the information about a given collaboration may be
distributed across multiple classes [1]. In response, numerous authors propose
to preserve collaborations from the design to the implementation stage [2–4, 1,
5]. Whereas Noble and Grundy [4] stay within the limits of the programming
language and represent collaborations explicitly using separate classes, Rum-
baugh [2], Albano et al. [3], and Bierman and Wren [1] go further and extend
the programming language to include relationships, the abstractions necessary
to encapsulate these object collaborations. Relationships together with classes
then constitute the first-class notions of the programming language. Like classes,
relationships can also declare attributes and methods.

Our work relies on the foundations of previous work on first-class relation-
ships. However, we significantly differ from existing approaches in that we include
invariants to allow reasoning about programs with classes and relationships. The
application of invariants to class-based object-oriented programming and spec-
ification languages [6–10] has already proved viable to express the consistency

conditions of the instances of a class. We want to exploit the benefits of in-
variants also to specify the invariant behavior of object collaborations. We thus
introduce the concepts of value-based and structural invariants [11]. Unlike tra-
ditional class-based invariants, relationship invariants are specified on the collab-
orating classes. Due to a shortage of space, we only discuss structural invariants
in this paper.

An important contribution of our work is the observation that structural
invariants can be expressed by means of mathematical relations. Using relations,
we have the full mathematical expressiveness at our disposal when restricting
relationship participation. The mathematical basis further allows us to reason
on the interdependences between structural invariants and any operations that
change relationship participation.

The remainder of this paper is structured as follows: Section 2 provides a short
introduction to the modeling of object collaborations. Section 3 discusses the
concept of structural invariants and shows their application to the specification
of object collaborations. Section 4 describes future work and Section 5 concludes
this paper.

2 Example

Figure 1 depicts an Entity-Relationship (ER) diagram [12] modeling parts of a
person information system, which serves as the running example of this paper.
The example illustrates the different collaborations a person can take part in. For
example, a person can be a writer and thus become the author of books. Addi-
tionally (or alternatively) a person can be a member of a golf club. Figure 1 also
displays the cardinality and participation constraints [13] of the relationships. In
the case of the author relationship, for example, these constraints specify that
every book needs to have at least one author.

KOOB

BULC_FLOG LATIPSOH

NOSREP TNEITAP

ROHTUA

REBMEM

)n ,0(

)n ,1(

)n ,0()n ,0(

)n ,1()n ,1(

EGAIRRAM

)1 ,0()1 ,0(

Fig. 1. Person Information System (ER)

Modeling the person information system (see Figure 1) using first-class re-
lationships results in the classes Person, Book, GolfClub, and Hospital and the
relationships Author, Member, Patient, and Marriage.

46

3 Structural Invariants

Structural invariants restrict the participation of objects in relationships based
on the occurrence of objects. A possible restriction is, for example, to require
that a particular object participates with at most one other object in a specific
relationship. We use mathematical relations1 to express structural invariants.
Using relations, we have the full mathematical expressiveness and rigor at our
disposal for defining participation restriction. The mathematical basis of our
work is also the distinguishing feature that separates structural invariants from
related concepts, such as the cardinality and participation constraints of rela-
tional databases [13] and the multiplicities as proposed by Bierman and Wren [1].

Applying structural invariants to the person information system results in
surjective relations for Author, Member, and Patient and a symmetric, irreflexive
partial injection for Marriage.

Figure 2 illustrates the concepts introduced so far on the basis of the Author

relationship, using a Java-like notation. The relationship has the participant
classes Person and Book. We use role names to denote the role of a participant
in a relationship. For instance, a person plays the role of a writer, and a book
the one of the author’s work. Roles are particularly helpful when a relationship
involves instances of the same class. The relationship further declares the at-
tribute submissionDate, which records the date the manuscript was submitted.
The structural invariant of the Author relationship is introduced by the keyword
invariant and specifies a surjective relation.

relationship Author {

participants(Person writer, Book work);

//structural invariant

invariant

surjectiveRelation(writer, work)

//attribute of relationship Author

Date submissionDate;

}

Fig. 2. Relationship Author

An illustration of the structural invariant of the Author relationship is given
in Figure 3. The figure depicts several illustration forms: mathematical relations

1 To clarify the terminology, note that we use the term relationship to refer to the
abstraction that encapsulates object collaborations and use the mathematical term
relation to denote the set of participant pairs of relationships.

47

in the upper right corner, and a VEN diagram-like representation of relations
in the lower right corner. If expressible in terms of cardinality and participation
constraints, the respective ER diagram representation is provided additionally.
Especially the VEN diagram-like representation nicely illustrates the surjectivity
of the relation: every book is connected to a person at least through one line,
but not every person is connected to a book.

12

Mathematical Relations

PERSON

BOOK

AUTHOR

(1, n)

(0, n)

AUTHOR: PERSON BOOK

PERSON BOOK

1

n

0

n

surjective relation

Fig. 3. Illustrations of Structural Invariants

4 Future Work

Structural invariants clearly must hold over the entire lifespan of relationships.
Any programming language together with its supportive system implementing
the concepts introduced in this paper thus has to provide means, preferably
static ones, to maintain those invariants.

Before starting out implementing a particular invariant monitoring mecha-
nism, we specify the semantics of structural invariants. Our current work thus
involves the modeling of the interdependences between structural invariants and
any operations that change relationship participation. We use Event-B [14] for
this purpose, a methodology to model software systems based on discrete math-
ematics and refinement. The resulting model will define the semantics of struc-
tural invariants by indicating the invariant-maintaining actions for every kind of
relation and operation applied.

5 Concluding Remarks

We have presented in this paper our ongoing work on the specification of ob-
ject collaborations. The approach we describe relies on the concept of first-class
relationships, the programming language abstraction to encapsulate the collab-
orations that emerge from the interacting instances of classes. The main contri-
bution of our work is to include structural invariants to allow the specification

48

of the invariant behavior of object collaborations. Structural invariants are ex-
pressed in terms of mathematical relations, which in turn facilitate the definition
of the semantics of structural invariants.

References

1. Bierman, G.M., Wren, A.: First-class relationships in an object-oriented language.
In Black, A.P., ed.: ECOOP. Volume 3586 of Lecture Notes in Computer Science.,
Springer-Verlag GmbH (2005) 262–286

2. Rumbaugh, J.: Relations as semantic constructs in an object-oriented language. In:
OOPSLA ’87: Conference proceedings on Object-oriented programming systems,
languages and applications, New York, NY, USA, ACM Press (1987) 466–481

3. Albano, A., Ghelli, G., Orsini, R.: A relationship mechanism for a strongly typed
object-oriented database programming language. In: VLDB. (1991) 565–575

4. Noble, J., Grundy, J.: Explicit relationships in object-oriented development. In
Meyer, B., ed.: TOOLS’95: Conference proceedings on the Technology of Object-
Oriented Languages and Systems, Prentice-Hall (1995) 211–226

5. Thomas, D.A.: On the next move in programming. Journal of Object Technology
5 (2006) 7–11

6. Meyer, B.: Object-Oriented Software Construction. Second edn. Prentice Hall
Professional Technical Reference (1997)

7. Meyer, B.: Eiffel: The Language. Prentice Hall Professional Technical Reference
(1991)

8. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In Barthe, G., Burdy, L., Huisman, M., Lanet, J.L., Muntean, T., eds.:
Construction and Analysis of Safe, Secure, and Interoperable Smart Devices: In-
ternational Workshop, CASSIS 2004. Volume 3362 of Lecture Notes in Computer
Science., Springer-Verlag GmbH (2005) 49–69

9. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for java. Technical Report 98-06-rev29, Iowa State
University (2006)

10. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of jml tools and applications. STTT’05: Interna-
tional Journal on Software Tools for Technology Transfer 7 (2005) 212–232

11. Balzer, S., Eugster, P., Gross, T.R.: Value-based and structural invariants for
object relationships. Technical report, ETH Zurich (2006)

12. Chen, P.P.: The entity-relationship model - toward a unified view of data. ACM
Trans. Database Syst. 1 (1976) 9–36

13. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 2nd Edition.
Second edn. Benjamin/Cummings (1994)

14. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (1996)

49

RelAPS: A Proof System for Relational
Categories

Joel Glanfield and Michael Winter?

Department of Computer Science,
Brock University,

St. Catharines, Ontario, Canada, L2S 3A1
{jg00de|mwinter}@brocku.ca

Abstract. This paper provides a short introduction to the RelAPS sys-
tem – an interactive system assisting in proving relation-algebraic theo-
rems.

1 Introduction

In the past thirty years relational methods have become of fundamental impor-
tance in computer science. Especially, theories of relations based on category
theory are used as a tool to describe programs and their behavior. Therefore,
proving relation-algebraic theorems has become a part of certain areas of com-
puter science. These proofs usually follow a specific style, e.g., they might be
based on chains of inclusions. Since theorem-proving by hand can be rather
error-prone and tedious we developed a system that would aid in the imita-
tion of typical relation-algebraic proofs while eliminating some of the negative
aspects.

The aim of the RelAPS system is to provide a graphical environment where a
user may prove various theorems, within the context of the category of relations,
as if the proof were being done by hand [4]. It should be noted that automatic
theorem-proving is not a goal of the system, i.e., RelAPS is not a theorem-prover.

Contrary to the RALF system [5, 6] RelAPS is text-based and does not use
a tree representation of the corresponding formula/term object. It should be
mentioned that RelAPS focuses on a subset of the formulae, and is, therefore,
not as general as RALF. However, future extensions of RelAPS aim in a different
direction (see Section 5), which motivates this restriction.

2 Relational Preliminaries

Throughout this paper, we use the following notation. To indicate that a mor-
phism R of a category R has source A and target B we write R : A → B. The

? The author gratefully acknowledges support from the Natural Sciences and Engi-
neering Research Council of Canada.

collection of all morphisms R : A → B is denoted by R[A,B] and the compo-
sition of a morphism R : A → B followed by a morphism S : B → C by R;S.
Last but not least, the identity morphism on A is denoted by IA.

We recall briefly the notion of a Schröder category introduced in [7]. Similar
approaches were taken in [2, 8, 9]. Within the numerous equivalent definitions of
Schröder categories we have chosen the following axiomatization:

Definition 1. A Schröder category R is a category satisfying the following:

1. For all objects A and B the collection R[A,B] is a Boolean algebra. Meet,
join, negation, least and greatest element and the induced ordering are de-
noted by u,t, , ⊥⊥AB , >>AB and v, respectively. The morphisms are also
called relations.

2. There is a unary operation ` (called converse) mapping a relation R : A→
B to a relation R` : B → A.

3. For all relations Q : A → B,R : B → C and S : A → C the modular law
Q;R u S v Q; (R uQ`;S) holds.

4. There is a binary operation \ (called right residual) defined by Q;R v S ⇐⇒
R v Q\S for all Q : A→ B, R : B → C and S : A→ C.

Notice, that we may define an operation / (called left residual) by S/R =
(R`\S`)`. This operation is characterized by Q;R v S ⇐⇒ Q v S/R for all
Q : A→ B, R : B → C and S : A→ C. However, both residuals can be defined
in terms of the other operations, i.e., we have S/R = S;R` and Q\S = Q`;S.

The RelAPS system uses a formal language introduced in [10]. The language
is based on two kinds of entities - objects and relations. Relational variables are
typed by object variables, and consequently, there are quantifiers for each kind
of variable. For details we refer to [10].

Since the system is currently limited to the use of ASCII characters, it was
necessary to develop a grammar (using ASCII characters) that would represent
the language described in [10]. For example, the user may wish to enter formulae
requiring the use of any of the symbols mentioned in Definition 1, but alternate
representations would be required within this environment. Table 1 displays the
translation of the necessary symbols into related ASCII character-tokens.

Expanding all definitions used we finally end up with the following set of
axioms provided in the language of RelAPS:

(A1) forall a forall b forall Q:a->b forall R:a->b forall S:a->b
(Q&R)&S=Q&(R&S)

(A2) forall a forall b forall Q:a->b forall R:a->b forall S:a->b
(Q|R)|S=Q|(R|S)

(A3) forall a forall b forall Q:a->b forall R:a->b Q&R=R&Q
(A4) forall a forall b forall Q:a->b forall R:a->b Q|R=R|Q
(A5) forall a forall b forall Q:a->b forall R:a->b Q|(Q&R)=Q
(A6) forall a forall b forall Q:a->b forall R:a->b Q&(Q|R)=Q
(A7) forall a forall b forall Q:a->b forall R:a->b

Q<=R <=> Q&R=Q

51

Table 1. RelAPS Tokens

Token ASCII

∀ forall

∃ exists

u &

t |
−

⊥⊥ ab Oab

>> ab Lab

Ia Ia

v <=
` ˆ

; ;

\ \
⇐⇒ <=>

=⇒ =>

R : A → B R:A->B

(A8) forall a forall b forall Q:a->b forall R:a->b forall S:a->b
Q&(R|S)=(Q&R)|(Q&S)

(A9) forall a forall b forall Q:a->b Q&Oab = Oab
(A10) forall a forall b forall Q:a->b Q|Oab = Q
(A11) forall a forall b forall Q:a->b Q&Lab = Q
(A12) forall a forall b forall Q:a->b Q|Lab = Lab
(A13) forall a forall b forall Q:a->b Q&-Q = Oab
(A14) forall a forall b forall Q:a->b Q|-Q = Lab
(A15) forall a forall b forall c forall d

forall Q:a->b forall R:b->c forall S:c->d
(Q;R);S=Q;(R;S)

(A16) forall a forall b forall Q:a->b Ia;Q=Q
(A17) forall a forall b forall Q:a->b Q;Ib=Q
(A18) forall a forall b forall c

forall Q:a->b forall R:b->c forall S:a->c
Q;R&S<=Q;(R^&Q;S)

(A19) forall a forall b forall c
forall Q:a->b forall R:a->c forall X:b->c

X<=Q\R <=> Q;X<=R

3 The System

The RelAPS system is designed in such a manner to allow the greatest amount
of flexibility with respect to the style of proving different theorems. The sys-
tem accepts Horn-style formulae as input, using the notation explained in the
previous section. The current version of RelAPS accept formulae of the style

52

[quantifiers][(A1,1 ∧ ... ∧A1,N1 ⇒ B1) ∧ . . . ∧ (AM,1 ∧ ... ∧AM,NM
⇒ BM)]

where [quantifiers] is a list of universal quantifiers with object and/or relational
variables, and A1,1, . . . , AM,NM

and B1 . . . BM are arbitrary atomic formulae.
Notice that the system also allows A ⇔ B in the mantissa for atomic formulae
A and B since this is equivalent to (A⇒ B) ∧ (B ⇒ A).

The interface itself is divided into different ‘windows’ or areas where the
user can work with different aspects of a single formula. It is this concept that
increases flexibility with respect to proof-styles. For example, the interface has
areas for dealing with assumptions and assertions respectively, and another area
designated as the working area where the user performs derivations. Within
the assumption and assertions areas, the user may select different subterms or
subformulae, move them to the working area, perform some derivation, and then
apply the result to the original assumption or assertion. Hence, the metalogical
rules, i.e., the rules of the sequence calculus restricted to the subset of formulae
used in the system, are actually handled by the layout of the interface.

Other beneficial aspects of the system include, but are not limited to, the
options to prove monotonicity, associativity, and commutativity - in order to
allow the automatic use of these rules without having to continually specify
when to use them.

4 Example

As an example, we will describe how a proof of the formula

Q v R ⇐⇒ Q uR = ⊥⊥ ab

would be completed using RelAPS. First of all, the formula is entered into the
system (with the appropriate typing) as

forall a forall b forall Q:a->b forall R:a->b Q<=R <=> Q&-R=Oab

We then specify that the equivalence will be proven by separating the related
implications. Both statements are to be proven separately. Starting with the first
implication

Q v R =⇒ Q uR = ⊥⊥ ab,

we first use the deduction theorem by moving the assumption into the respective
assumption window. Working with the assertion, we select QuR with the mouse,
and move the term to the working area. We then perform a derivation by selecting
subterms and applying appropriate axioms giving

Q uR v R uR = ⊥⊥ ab,

which concludes this proof.

53

Next, we prove the converse implication in a similar manner, namely, by first
separating the assumption and assertion. Then we select the entire assertion and
move it into the working area. Using axiom (A7) (an equivalence) we modify the
assertion getting QuR = Q. We replace the assertion by the modified one, select
the term Q u R, move it to the working area, and finish the proof equationally
similar to the first proof.

Since both implications have been derived appropriately, the system consid-
ers the proof of the original equivalence to be complete. The theorem is then
automatically appended to the system’s collection of theorems.

5 Future Work

Although there are many possible extensions to the RelAPS system, the next
phases will involve implementation of modules to consider decidable fragments
of relational theory, and to generate LATEX2ε output of completed derivations.

As for the first, it has been shown in [1] that binary operations including〈
u, ; , `

〉
are decidable. As for the second, having a LATEX2ε generator will allow

the user to conveniently generate proof-text that may be included in publications
with little or no modification.

References

1. Dougherty D., Gutiérrez C.: Normal Forms and Reduction for Theories of Binary
Relations. LNCS 1833 (2000), 95-109.

2. Furusawa H., Kahl W.: A Study on Symmetric Quotients. Technical Report 1998-
06, University of the Federal Armed Forces Munich (1998)

3. Freyd P., Scedrov A.: Categories, Allegories. North-Holland (1990).
4. Glanfield J.: ReWiRe – Reasoning With Relations. COSC 4F90 Computing

Project, Brock University (2006)
5. Hattensperger C., Berghammer R., Schmidt G.: RALF - A Relation-Algebraic

Formula Manipulation System and Proof Checker. Algebraic Methodology and
Software Technology (AMAST ’93), Springer (1993), 405-406.

6. Hattensperger C., Kempf P.: Towards a Formal Framework for Heterogeneous Re-
lation Algebra. Inf. Sci. 119(3-4) (1999), 193-203.

7. Olivier J.P., Serrato D.: Catégories de Dedekind. Morphismes dans les Catégories
de Schröder. C.R. Acad. Sci. Paris 290 (1980), 939-941.

8. Schmidt G., Ströhlein T.: Relationen und Graphen. Springer (1989); English ver-
sion: Relations and Graphs. Discrete Mathematics for Computer Scientists, EATCS
Monographs on Theoret. Comput. Sci., Springer (1993).

9. Winter M.: Strukturtheorie heterogener Relationenalgebren mit Anwendung auf
Nichtdetermismus in Programmiersprachen. Dissertationsverlag NG Kopierladen
GmbH, München (1998)

10. Winter M.: A new Algebraic Approach to L-Fuzzy Relations Convenient to Study
Crispness. INS Information Science 139, 233-252 (2001).

54

f-Generated Kleene Algebra

Peter Höfner

Institut für Informatik, Universität Augsburg
D-86135 Augsburg, Germany

hoefner@informatik.uni-augsburg.de

Abstract. When describing iterations or loops it is well known and
common to use the Kleene star. We first show an example for iteration,
where the star operation is not adequate, since it just iterate and do not
modify the iterated element. Therefore we introduce, as a generalisation
of Kleene algebra, the structure of f -generated Kleene algebra, that have
an iteration operation which depends on a function f and modify the
iterated element in each step.

1 Introduction and Motivation

The use of Kleene star for describing iterations or loops is well known and
common (see e.g. [3, 5]). From a theoretical point of view, a∗ is the least fixed
point of λx.1 + a · x and therefore characterises finite iteration. Nevertheless, as
we will see, in some situations it is useful to have an additional function, which
modifies an iterated element a in each step; i.e., instead of calculating a ·a · . . .·a,
we want to get a · f(a) · . . . · fn−1(a). More precisely, λx.1 + a · x is replaced by
λx.1+a ·f(x). As far as we know this generalisation of Kleene star has not been
discussed before. Let us motivate our idea by a concrete example.

Example 1.1 In [4] we presented an algebra of hybrid systems, which is based
on (lazy) Kleene algebra and uses sets of trajectories as elements.1 A trajectory
t is a pair (d, g), where d ∈ IR+

0 and g : [0, d] → V , where d is the duration of the
trajectory and V a set of (possible) values . We define composition of trajectories
(d1, g1) and (d2, g2) as

(d1, g1) · (d2, g2) =df

{

(d1 + d2, g) if g1(d1) = g2(0)
undefined otherwise

with g(x) = g1(x) for all x ∈ [0, d1] and g(x + d1) = g2(x) for all x ∈ [0, d2].
Since the algebra uses sets of trajectories as elements, the composition is lifted
pointwise to those sets.

1 For lack of space, we only recapitulate the definition and composition of trajectories
and not the whole algebra. Furthermore, we restrict the set of durations to IR+

0 ,
which simplifies the structure and excludes trajectories with infinite length.

0 2π

Sketch of tsin

We assume the set, which only includes the trajectory
(2π, sin x

5x
). This single set is called tsin. It describes a single

swing of a pendulum. The element t∗sin describes sequences
of swings, but does not consider the fact that the pendu-
lum gets slower by gravity, friction and so on. ⊓⊔

2 f -Generated Kleene Algebra

Motivated by the previous example, we now define an iteration operator w.r.t.
to a function f . In the remainder we will use a, b, c . . . for arbitrary elements of
an idempotent semiring S.

Definition 2.1 Let f : S → S be a homomorphism w.r.t. addition and mul-
tiplication, i.e., f(a + b) = f(a) + f(b), f(0) = 0 and f(a · b) = f(a) · f(b),
f(1) = 1.2 An f -generated Kleene algebra is a structure (S, +, ·, 0, 1,f∗), such
that (S, +, ·, 0, 1) is an idempotent semiring and f∗ satisfies

1 + a · f(af∗) ≤ af∗ (f1) 1 + a · f(b) ≤ b ⇒ af∗ ≤ b (f2)

Similarly to the Kleene star, f∗ is the least prefixed point of the function λx.1+a·

f(x) and (f1) can be strengthened to an equation. But in contrast to the Kleene
star, we do not postulate the symmetrical laws of (f1) and (f2), since this would
imply a · af∗ = af∗ · a. Using fixpoint iteration, we calculate for λx.1 + a · f(x):

x0 = 0
x1 = 1 + a · f(x0) = 1
x2 = 1 + a · f(x1) = 1 + a

x3 = 1 + a · f(x2) = 1 + a + a · f(a)
x4 = 1 + a · f(x3) = 1 + a + a · f(a) + a · f(a) · f(f(a))

In general, we get

xn = 1 + a · f(xn−1) =
n−1
∑

i=0

i−1
∏

j=0

f j(a) , (1)

where, as usual,
−1
∏

i=0

x = 1. Before returning to our example of Section 1, we give

some other simple examples, which illustrate that there are more applications of
the theory than trajectories.

Example 2.2

1. The standard Kleene star is subsumed by f∗ when choosing f as identity.
2. Using infinite lists, the f -generated Kleene star corresponds to

sum scan [1, a, f(a), f2(a), . . .]

in functional programming, which is discussed by Bird in [1]. ⊓⊔

2 In the setting of semirings (monoids) f(0) = 0 does not follow from f(a + b) =
f(a) + f(b); this implication only holds in groups, rings,

56

Example 1.1 continued By setting f((d, g)) =df (d, g

2
), we are able to illus-

trate the difference between t∗sin and t
f∗
sin. A characteristic element of t∗sin just

repeats tsin for a finite number of times; whereas a characteristic element of t
f∗
sin

repeats and modifies tsin.

0 2nπ

Sketch of an element of t∗sin

0 2nπ

Sketch of an element of t
f∗
sin

Therefore we are able to describe a pendulum considering changes in time,
like gravity, without changing the trajectory itself. Of course the function of our
example as well as the trajectory are freely chosen and do not reflect reality.
If one wants to describe a real pendulum, the trajectory and the function will
getting much more complex; but do not change the idea of f∗. ⊓⊔

Of course, it is also possible to change the duration using another homomorphism
f ; e.g., to simulate Zeno effects one can set the function f((d, g(x))) = (d

2
, g(x

2
)).

3 Properties

In this section we discuss some properties of f∗. Since the Kleene star is a very
special f -generated star, we cannot expect to get all the (well-known) properties
of star in our setting. Therefore we also discuss those properties, which hold for
Kleene star but not for the f -generated one.

First we give some useful properties of homomorphisms.

Lemma 3.1 Let (M, +, 0) be a monoid and f : M → M be a homomorphism
w.r.t. addition.

1. f preserves idempotency.
2. f is isotone, i.e, a ≤ b ⇒ f(a) ≤ f(b).

Following Kozen’s approach to Kleene algebra with tests [5], we say that a f -
generated Kleene algebra with tests is a f -generated Kleene algebra S with a
distinguished Boolean subalgebra test(S) of [0, 1] with greatest element 1 and
least element 0. Using tests yields an interesting result concerning f which follows
directly from the homomorphism properties.

Lemma 3.2 If test(S) is maximal, i.e., there is no Boolean subalgebra B of
[0, 1] with test(S) ⊂ B, then f(p) ∈ test(S) for all p ∈ test(S).

In the remainder of the section we discuss some properties of f∗. First, we get
immediately from (f1) by lattice algebra

1 ≤ af∗ and a · f(af∗) ≤ af∗ . (2)

Furthermore, we get laws similar to the standard Kleene star.

57

Lemma 3.3

1.
n
∏

j=0

f j(a) ≤ af∗ for all n ∈ IN,

2. af∗ ≤ af∗ · af∗,
3. a ≤ 1 ⇒ af∗ = 1,
4. a ≤ b ⇒ af∗ ≤ bf∗,
5. af∗ ≤ (af∗)f∗.

Proof.

1. By (1) we get
n−1
∏

j=0

f j(a) ≤ xn and xn−1 ≤ xn. Then the claim follows by

induction.
2. By (2) and isotony, we get 1 ≤ af∗ ⇒ af∗ ≤ af∗ · af∗.
3. By lattice algebra, homomorphism and (f2), we get

a ≤ 1 ⇔ 1 + a ≤ 1 ⇔ 1 + a · f(1) ≤ 1 ⇒ af∗ ≤ 1.

The other direction is by (2).
4. By (f2), assumption, isotony and (f1)

af∗ ≤ bf∗ ⇐ 1 + a · f(bf∗) ≤ bf∗ ⇐ 1 + b · f(bf∗) ≤ bf∗ ⇔ true.

5. By 4., homomorphism and (2) (twice), we get
af∗ ≤ (af∗)f∗ ⇐ a ≤ af∗ ⇔ a · f(1) ≤ af∗ ⇐ a · f(af∗) ≤ af∗ ⇐ true.

⊓⊔

Due to Example 2.2.1 the definition of f∗ is a generalisation of the standard
Kleene star. Therefore we cannot expect that all properties of ∗, like leapfrog,
hold for it. More precisely, we have

Lemma 3.4

1. af∗ · af∗ 6≤ af∗.
2. (af∗)f∗ 6≤ af∗.
3. af∗ · (b · af∗)f∗ 6≤ (a + b)f∗ and (a + b)f∗ 6≤ af∗ · (b · af∗)f∗.
4. a · (b · a)f∗ 6≤ (a · b)f∗ · a and (a · b)f∗ · a 6≤ a · (b · a)f∗.

The proof is straightforward by choosing explicit elements. E.g., a·a ≤ af∗ ·af∗

and a · a 6≤ af∗ implies the first item.
Since the function f often simulates physical behaviours, it will explicitly oc-

cur in algebraic expressions. Therefore we briefly discuss the interaction between
f and f∗.

Lemma 3.5 Assume a f -generated Kleene algebra. Then f(a)f∗ ≤ f(af∗). If f

is even universally disjunctive, then

f(a)f∗ = f(af∗).

Proof. The first claim (f(a)f∗ ≤ f(af∗)) is immediate by induction (f2) and the
assumed properties of f . Using µ-fusion together with af∗ = µx(1 + a · f(x))
and f(a)f∗ = µx(1 + f(a) · f(x)), we get

f(1 + a · f(x)) ≤ 1 + f(a) · f(f(x)) ⇒ f(af∗) ≤ af∗.

The antecedent holds since f is a homomorphism. ⊓⊔

58

4 Conclusion and Outlook

Sumarising, we have showed that the Kleene star is not the best in some situa-
tions. Therefore we introduced an f -generated Kleene star, which modifies the
iterated element in each step. The new operator can be used e.g. in describ-
ing physical behaviours like a pendulum. We have also presented some basic
properties of f∗.

Since this research is still ongoing, there is a lot of further work. First it
will be interesting to find more properties of the homomorphism f and the f -
generated Kleene star. Especially the interaction of both should be discussed
in more detail. Also the connection to functional programming (Example 2.2.2)
will help to find more useful properties. This will lead to a better understanding
of f -generated Kleene algebras.

In the paper we showed how to weaken the finite iteration operator of a
Kleene algebra. But in the same way it should easily be possible to weaken the
finite iteration of lazy Kleene algebra [6], the infinite iteration operator of omega
algebras [2, 6] and the strong iteration of refinement algebra [7].

Additionally, as already mentioned, we give an algebra for hybrid systems,
which is based on lazy Kleene algebra [4]. Using this approach the homomor-
phism f can be interpreted as changing behaviours in (continuous) time. There-
fore the operator f∗ fits well in the development, specification and analysis of
hybrid systems. As a first step, a case study will be done.

Acknowledgements. I am very grateful to Bernhard Möller and Kim Solin for
valuable and fruitful discussions.

References

1. R. Bird. Lectures on constructive functional programming. In B. Manfred, editor,
Constructive Methods in Computing, Science, volume F55 of NATO ASI Series,
pages 151–216, 1989.

2. E. Cohen. Seperation and Reduction. In R. Backhouse and J. Olivera, editors,
Mathematics of Program Construction, Lecture Notes in Computer Science 1837,
pages 45–59, 2000.

3. J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.
4. P. Höfner and B. Möller. Towards an Algebra of Hybrid Systems. In W. MacCaull,

M. Winter, and I. Duentsch, editors, Relational Methods in Computer Science, Lec-
ture Notes in Computer Science 3929, pages 121–133, 2006. (in press).

5. D. Kozen. Kleene Algebra with Tests. Transactions on Programming Languages

and Systems, 19(3):427–443, 1997.
6. B. Möller. Kleene getting lazy. Science of Computer Programming, Special issue on

MPC 2004, 2006. (to appear)
Previous version: B. Möller: Lazy Kleene algebra. In D. Kozen (ed.): Mathematics
of program construction. LNCS 3125. Springer 2004, 252–273.

7. J. von Wright. From Kleene Algebra to Refinement Algebra. In E. Boiten and
B. Möller, editors, Proc. of 6th Int. Conf. on Mathematics of Program Construction,

MPC 2002, Lecture Notes in Computer Science 2386, pages 233–262, 2002.

59

Nomadic Time
(Extended Abstract)

Andrew Hughes1

Department of Computer Science, University of She�eld,
Regent Court, 211 Portobello Street, She�eld S1 4DP, UK.

e-mail: a.hughes@dcs.shef.ac.uk

1 Introduction

CCS [1] is commonly used for modelling synchronous communication between
two processes, where one sends a signal and the other receives it at the same
time (a concept referred to as local synchronization). However, it cannot directly
represent systems involving synchronization of a sender with an arbitrary num-
ber of recipient processes (known as global synchronization) in a compositional

manner. Crucially, the semantics of a broadcast agent cannot suitably be rep-
resented using CCS. If the agent is de�ned as transmitting a signal to each of
the recipients sequentially, through multiple local synchronizations, then its se-
mantics will become non-compositional, because such behaviour depends upon
the number of recipients. Each time a new recipient is introduced, or one of the
existing ones is removed, the semantics will have to be changed.

A solution to this de�ciency lies in providing a way of determining when
all possible synchronizations have taken place. With this facility available, the
broadcast agent can recurse, transmitting signals, until this condition holds. The
family of abstract timed process calculi (including TPL[2] and CaSE[3]) allow
this by extending CCS with abstract clocks. These don't represent real time, with
units such as minutes and seconds, but are instead used to form synchronous
cycles of internal actions followed by clock ticks. A concept known as maximal

progress enforces the precedence of internal actions over clock ticks, allowing the
possible synchronizations to be monitored. When a synchronization takes place,
it appears to the system as an internal action. Thus, with maximal progress,
synchronizations prevent the clock from ticking, and a result, the occurrence of
a clock tick also indicates that there are no possible synchronizations.

However, the timed calculi mentioned above lack any notion of distribution
or mobility. Thus, while they can adequately represent large static systems, in-
volving both local and global synchronization, they fail to model more mobile
systems, where the location of a process can change during execution. In con-
trast, the ambient calculus [4] includes both distribution (via structures known
as ambients) and mobility (by allowing these structures to be moved, along
with their constituent processes, during execution). But, it su�ers from similar
de�ciencies to CCS when modelling global synchronization.

This extended abstract presents the calculus of Typed Nomadic Time (TNT),
which combines the abstract timed calculus, CaSE, with notions of distribu-
tion and mobility from the ambient calculus and its variants ([5,6]). This allows

the creation of a compositional semantics for mobile component-based systems,
which utilise the notion of communication between arbitrary numbers of pro-
cesses within a mobile framework. To extend the example of a broadcast agent
given above, this extension allow broadcasts to be localised to a particular group
of processes, which can change during execution. Section 2 provides a simple
example, illustrating the use of the calculus, while section 3 concludes with a
discussion of future work.

2 A Simple Example

Consider the familiar children's game of musical chairs. The conduct of the game
can be divided into the following stages:

1. The players begin the game standing. The number of players is initially equal
to the number of chairs.

2. The music starts.
3. A chair is removed from the game.
4. The music stops.
5. Each player attempts to obtain a chair.
6. Players that fail to obtain a chair are out of the game.
7. The music restarts. Any players who are still in the game leave their chairs

and the next round begins (from stage three).

The winner is the last player left in the game. A model of this game can be
created using the TNT process calculus.

The game environment is represented using named locations (commonly
known as localities in the literature). These localities can be nested within each
other and form a forest structure (due to the possibility of multiple localities
occurring at the top level). In the musical chairs scenario, each chair is repre-
sented by a locality, as is the `sin bin', to which players are moved when they
are no longer in the game. These localities are all nested inside a further local-
ity which represents the room itself. This is not a necessity, but makes for a
cleaner solution; it allows multiple instances of the system to be nested inside
some larger system, each performing its own internal interactions and entering
into the synchronization cycle of the larger system.

The locality structure is represented in the calculus by the expression shown
below. The room locality contains multiple chair localities, each of which con-
tains 0, a process with no explicit behaviour1. The | operator connecting the
chair localities denotes parallel composition; each locality and its constituent
processes runs concurrently. CB and the σ and ω symbols will be explained
shortly.

room[chair[0]CB
∅ | chair[0]CB

∅]ω{σ}. (1)

1 It does exhibit contextual behaviour, due to transitions created by clock ticks.

61

The players themselves are represented by processes. This allows them both
to interact and to move between localities. A gamesmaster process is also in-
troduced. This doesn't play an active role in the game itself, but is instead
responsible for performing the administrative duties of removing chairs from the
game and controlling player movement. The process de�nitions are summarised
in Table 1, along with the derived syntax used in this example.

Table 1. Summary of Processes and Derived Syntax for Musical Chairs

ω
def
= µX.(in.X + out.X + open.X) (2)

σ.P
def
=d0eσ(P) (3)

CB
def
= µX.(in.out.X + open) (4)

SB
def
= µX.in.X (5)

GM2
def
= σ.GM3 (6)

GM3
def
= open chair.GM5 (7)

GM5
def
= µX.(din chair sit.Xeσ(GM6)) (8)

GM6
def
= µX.(din sinbin leave.Xeσ(GM2)) (9)

Player
def
=dsit.P InChaireσ(Loser) (10)

PInChair
def
= σ.(out chair stand.0|stand.P layer) (11)

Loser
def
= leave.0 (12)

The presence of music is signi�ed by the ticks of a clock σ. A tick from σ
is also used to represent the implicit acknowledgement that everyone who can
obtain a chair has done so, and that the remaining player left in the room has
lost. σ appears as part of a set of clocks on the bottom right of the locality
de�nition to signify that its ticks are visible within the locality (including any
nested localities), but not outside. Instead, ticks appear as silent actions outside
the location boundaries.

The top right of a locality is used to specify a further property of the locality,
the bouncer. This is essentially a process with a very limited choice of available
actions. It has no real behaviour of its own, but instead performs the job of
managing the locality. It dictates whether processes or other localities may enter
or exit the locality, and whether the locality may be destroyed by a process in
the parent locality. Within the musical chairs model, such protection is irrelevant
for the room itself (a bouncer, ω (2), is used which ensures that all possible
movements are allowed), but is essential for the chairs (4) and the sin bin (5).

62

It is the chair bouncer that enforces the implicit predicate that only one player
may inhabit a chair at any one time, while the sin bin bouncer prevents players
leaving the sin bin once in there.

To model stage one of the game, n player processes and n chair locations
are placed in the room. The advantage of using TNT for this model is that the
actual number of players or chairs is irrelevant. They only have to be equal at
the start to accurately model the game. The calculus allows the creation of a
compositional semantics, as discussed in section 1, which work with any n.

For the purposes of demonstration, n is assumed to be two to give the fol-
lowing starting state:

room[chair[0]CB
∅ | chair[0]CB

∅ | σ.σ.P layer | σ.σ.P layer | GM2]ωσ . (13)

The room and chairs appear as shown earlier. The processes of the form σ.σ.P layer
simply wait until two clock cycles have passed, the end of each being signalled by
a tick from σ. The intermittent period between the ticks (the second clock cycle)
represents the playing of the music. This syntactic form, denoted more generally
by σ.P (P being some arbitrary process), is derived from the core syntax of TNT
as shown in (3). Like most of the model, it relies on the stable timeout operator,
dEeσ(F), where F acts if E times out on the clock, σ. In this case, E, being 0,
will always time out as it has no actions to perform.

The gamesmaster (GM2 (6)) also waits for the �rst clock tick (the music
starting), but then evolves to GM3 (7) and uses the second cycle, prior to the
music stopping, to remove a chair from the game. Maximal progress, as explained
in section 1, ensures that this occurs before the next clock tick, as the removal
emits a silent action.

The most interesting part of the model lies in the interaction with the chairs,
which forms part of stages �ve to seven. The aim of stage �ve is to get as
many player processes as possible inside chair localities. This is handled by again
relying on maximal progress to essentially perform a form of broadcast that
centres on mobile actions. Rather than sending a signal to a number of recipients,
a request to move into a chair (see (8) and (10)) is delivered instead.

If a chair is available, then a player process will enter it (the actual chair and
player chosen is non-deterministic). This will cause an internal action to occur,
as illustrated by (14), and this will take precedence over the clock tick. Thus,
when the clock eventually does tick, it is clear that no more players can enter
chairs. Using clocks in this manner makes the system compositional ; in contrast
to other models, players and chairs can be added without requiring changes to
the process de�nitions.

GM5 | Player | chair[0]CB
∅

τ−→ GM5 | chair[0 | PInChair]out.CB
∅

(14)

Stages six and seven proceed in a similar way. Stage six sees essentially the
same broadcasting behaviour applied to the losing players (see (9) and (12)).

63

The di�erence is that stage six demonstrates something which wouldn't be pos-
sible without mobility: the broadcast is limited to those player processes which
remain in the room. Communication between processes in di�erent localities is
disallowed in TNT, causing an implicit scoping of the broadcast. The broadcast
is again terminated by a tick from σ, which, in this case, also signi�es the music
starting up again. The remaining players leave their chairs (11), and the system
essentially returns to stage three, with n− 1 chairs and n− 1 players.

3 Conclusions and Future Work

This extended abstract outlines a calculus which provides a novel combination
of features, allowing arbitrary numbers of agents both to synchronize with other
agents and move around a dynamic topology, constructed from nested localities.
Current work on this calculus focuses on the formalisation of an operational
semantics and the creation of a type system to allow additional validity and
security checks to be performed. The existing equivalence theory for CaSE will
also require extension in order to encompass the new features found in TNT.
In the longer term, further case studies will be considered, which go beyond the
simple example presented here. In particular, the modelling of quorum sensing
bacteria is of interest.

Acknowledgements

This work is supported by a grant from the Engineering and Physical Sciences
Research Council (EPSRC). I would also like to thank my supervisor, Mike Stan-
nett, as well as Simon Foster and Georg Struth, for their insightful discussions
and support.

References

1. Milner, R.: Communication and Concurrency. Prentice-Hall, London (1989)
2. Hennessy, M., Regan, T.: A process algebra for timed systems. Information and

Computation 117(2) (1995) 221�239
3. Norton, B., Lüttgen, G., Mendler, M.: A compositional semantic theory for syn-

chronous component-based design. In: Proceedings of the 14th International Con-
ference on Concurrency Theory (CONCUR '03). Number 2761 in Lecture Notes in
Computer Science, Springer-Verlag (2003) 461�476

4. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Proceedings of the 1st International
Conference on Foundations of Software Science and Computation Structures (FoS-
SaCS '98). Volume 1378 of Lecture Notes in Computer Science., Springer-Verlag
(1998) 140�155

5. Levi, F., Sangiorgi, D.: Mobile safe ambients. ACM Transactions on Programming
Languages and Systems (TOPLAS) 25(1) (2003) 1�69

6. Teller, D., Zimmer, P., Hirschko�, D.: Using ambients to control resources. In Brim,
L., Janar, P., Ketinsky, M., Kuera, A., eds.: Proceedings of the 13th International
Conference on Concurrency Theory (CONCUR '02). Number 2421 in Lecture Notes
in Computer Science, Springer-Verlag (2002) 288�303

64

Combining Relational Methods and Evolutionary
Algorithms

Britta Kehden

Christian-Albrechts University of Kiel, 24098 Kiel, Germany
bk@informatik.uni-kiel.de

Abstract. We take a relation-algebraic view on the formulation of evolutionary
algorithms in discrete search spaces. We show how individuals and populations
can be represented as relations and how important moduls of evolutionary algo-
rithms can be implemented using relational algebra. For many important prob-
lems, the evaluation of a population with respect to certain constraints is the most
costly step in one generation of an evolutionary algorithm. We show that the eval-
uation process for a given population can be sped up by using relational methods.

1 Introduction

Evolutionary algorithms (EAs) have become quite popular in solving problems from
combinatorial optimization in the recent years. The representation of possible solutions
for a given problem has been widely discussed (see e.g. [1] and [2]) We study the ques-
tion whether representations using relations can be useful. Another impotant issue in
the area of evolutionary computation is hybridization, where one combines evolution-
ary algorithms with other approaches in order to get better results. We think that it may
be useful to combine evolutionary algorithms with relational methods. A first step in-
top this direction was made in [3]. We consider evolutionary algorithms for the search
space {0, 1}n and examine how the most important modules of an evolutionary algo-
rithm can be implemented on the basis of relational operations. Relational algebra has
been widely used in computer science. Especially in the case of NP-hard combinatorial
optimization problems on graphs, a lot of algorithms have been developed. Relational
algebra has a small, but efficiently to implement, set of operations and it allows a for-
mal development of algorithms and expressions starting usually with a predicate logic
description of the problem.
We represent a population, which is a set of search points, as one single relation and
evaluate this population using relational algebra. It turns out that this approach can be
implemented in a way that mainly relies on the relation-algebraic formulation of the
specific modules. Considering the evaluation of a given population we show that this
process can be made more efficient using relational algebra. After giving a brief in-
troduction into evolutionary algorithms and relational algebra in sections 2 and 3, we
discuss the relation-algebraic formulation of important modules of evolutionary algo-
rithms in Section 4. After that we consider three well-known NP-hard combinatorial
optimization problems, namely minimum vertex covers, maximum cliques, and max-
imum independent sets, and show how the whole population can be evaluated using

relational algebra. It turns out that using this approach can reduce the runtime from
Θ(n3) to O(n2.376) for a population of size n compared with a standard approach. A
more detailed presentation of these results can be found in [4].

2 Evolutionary Algorithms

Evolutionary Algorithms (see e.g [5]) are randomized search heuristics that follow Dar-
win’s principle of evolution, the survival of the fittest. Given a fitness function to be
maximized (or minmized), a set of search points, called population, is evolved w.r.t the
function until a stopping criterium is fulfilled. For example the algorithm stops after a
given number of iterations or if the best individual in the population has not been im-
proved for a certain number of generations. In each step, a parent population randomly
generates an offspring population by applying different variation operators. Then a sub-
set of individuals of both populations is selected for the next parent generation, so that
the fitness of the population is increased in each step. Possible variation operators are
mutation, where each parent individual generates one child, and crossover, where two
individuals of the parent population create one child. The selection of the individuals
for the next generation can be done in different ways. One can choose a subset of a
certain size consisting the best individuals of both populations, i.e, the elements with
the highest fitness values, or build tournaments of each one parent and one child and
choose the better one for the next generation.

3 Representing populations as relations

We consider evolutionary algorithms working in the search space {0, 1}n. We want to
represent each population as a relation P where each individual of P is stored in one
single column. As we want to show how to use relational algebra in an evolutionary
algorithm we have to start with some basic definitions. For a more detailed description
of relational algebra see [6]. We write R : X ↔ Y if R is a relation with domain X
and range Y , i.e. a subset of X ×Y . In the case of finite carrier sets, we may consider a
relation as a Boolean matrix. Since this Boolean matrix interpretation is well suited for
many purposes, we often use matrix terminology and matrix notation in the following.
Especially, we speak of the rows, columns and entries of R and write Rxy instead of
(x, y) ∈ R. The basic operations on relations are R> (transposition), R (negation),
R ∪ S (union), R ∩ S (intersection), RS (composition), the special relations O (empty
relation), L (universal relation), and I (identity relation). A relation v : X ↔ 1 is called
vector, where 1 = {⊥} is a specific singleton set. We omit in such cases the second
subscript, i.e. write vi instead of vi⊥. Such a vector can be considered as a Boolean
matrix with exactly one column and describes the subset {x ∈ X : vx} of X . Note,
that one search point of the considered search space can be represented as a vector of
length n. A set of k subsets of X can be represented as a relation P : X ↔ [1..k] with k
columns. For i ∈ [1..k] let P (i) be the i-th column of P . More formally, every column
P (i) is a vector of the type X ↔ 1 with P

(i)
x ⇐⇒ Pxi. We assume that we are always

working with populations that have exactly n individuals, i.e., the relation P has exactly

66

n rows and n columns. Under the assumption that we work with n × n relations, the
operations transposition, negation, union and intersection can be implemented in time
O(n2). The standard implementation for the composition needs time Θ(n3). Using the
algorithm proposed by Coppersmith and Winograd (see [7]) for the multiplication of
two n× n matrices we can reduce the runtime for the composition to O(n2.376).

4 Relation-algebraic formulation of important modules

Variation operators are important to construct new solutions for a given problem. We
assume that the current population is represented by a relation P and present a relation-
algebraic formulation for some well-known variation-operators. In addition we formu-
late an important selection method based on relational algebra. It turns out that the run-
times for our general framework are of the same magnitude as in a standard approach.

4.1 Mutation

An evolutionary algorithm that uses only mutation as variation operator usually flips
each bit of each individual with a certain probability p. To model the mutation operator
with relational algebra, we assume that we have constructed a relation M randomly,
that gives the mask which entries are flipped in the next step. In this case each entry of
M is set to 1 with probability p. Then we can construct the relation C for the children
of P using the symmetric difference of P and M .

C = (P ∩M) ∪ (P ∩M).

4.2 Crossover

A crossover operator for the current population P takes two individuals of P to produce
one child. To create the population of children C by this process, we assume that we
have in addition created a relation P ′ by permuting the columns of P . Then we can
decide which entry to use for the relation C by using a mask M .

C = (M ∩ P) ∪ (M ∩ P ′)

To implement different crossover operators we have to use different masks in this ex-
pression.

4.3 Selection

We focus on tournament selection, and assume that we have a parent population P and
a child population C both of size n. To establish n tournaments of size 2 we use a
random bijective mapping that assigns each individual of P to an individual of C. This
can be done by permuting the columns of C randomly. Due to the evaluation process we
assume that we have a decision vector d that tells us to take the individual of P or the
individual of C for the new population N . Let P,C : X ↔ [1..n] and d : [1..n] ↔ 1,
where we assume that the columns of C have already been permuted randomly. We

67

want to construct a new population N , such that for each i ∈ [1..n] either P (i) or C(i)

is the i-th column of N . The vector d specifies which columns should be adopted in the
new population N .

di ⇐⇒ P (i) should be adopted and di ⇐⇒ C(i) should be adopted.

The new population N is determined by

N = (P ∩ Ld>) ∪ (C ∩ Ld>).

It is easy to see that the presented determinations can be done in time O(n2), which is
the same magnitude as in a standard approach. In the following section we will give an
example to show how the decision vector d can be determined.

5 Testing properties of solutions for some graph problems

Assume that we have a relation P that represents a population. One important issue is
to test which of the individuals of the population fulfill given constraints which means
that they are feasible solutions. Given a graph G = (V,E) with n vertices represented
as an adjacency relation R we want to test each individual to fulfill a given property.
We concentrate on the constraints for some well-known combinatorial optimization
problems for graphs, namely minimum vertex covers, maximum cliques, and maximum
independent sets. A vertex cover of a given graph is a set of vertices V ′ ⊆ V such that
e ∩ V ′ 6= ∅ holds for each e ∈ E. For a clique C ⊆ V the property that Ruv for all
u, v ∈ C with u 6= v has to be fulfilled and in an independent set I ⊆ V , Ruv has
to hold for all u, v ∈ I with u 6= v. It is well known that computing a vertex cover
of minimum cardinality or cliques and independent sets of maximal cadinality are NP-
hard optimization problems (see e.g.[8]). It is easy to see that it affords a runtime of
Θ(n2) to test whether one individual fulfills one of the stated properties with a standard
approach. Working with a population of size n this means that we need time Θ(n3) for
evaluating each of these properties. We want to show that the runtime for evaluating a
population that is represented as a relation can be substantially smaller using relation-
algebraic expressions. Note, that the size of the solutions, which means the number of
ones in the associated column, can be determined for the whole population P in time
O(n2) . Therefore, the most costly part of the evaluation process for the three mentioned
problems seems to be the test whether the given constraints are fulfilled. Given the two
relations R and P we can compute a vector that marks all individuals of the population
that are vertex covers. The i−th column in P represents a vertex cover, if the following
condition holds.

∀u, v : Ruv → (P (i)
u ∨ P (i)

v).
This predicate logic expression can be transformed into a relation-algebraic expression
and we achieve the vector

L(RP ∩ P)
>

that specifies all vertex cover in P . For the case of independent sets we can use the fact
that P (i) is an independent set iff P

(i)
is a vertex cover. We obtain the vector

L(RP ∩ P)
>

68

that represents all independent sets in the population. Since a set of vertices is a clique
of G if and only if it is an independent set of the complement graph with adjacency
relation R ∩ I, we can determine the vector

L((I ∪R)P ∩ P)
>

that specifies all columns of P that represent cliques of R. Considering the different
expressions, the most costly operation that has to be performed is the composition of
two n × n relations. Therefore the evaluation process for a given population P and a
relation R can be implemented in time O(n2.376) by adapting the algorithm of Copper-
smith and Winograd (see [7]) for the multiplication of two n× n matrices to relations,
which beats the lower bound of Ω(n3) for the standard implementation.

6 Conclusions

We have taken a relation-algebraic view on evolutionary algorithms for some graph
problems. It turns out that the evaluation of a population can be sped up by using
relation-algebraic expressions to test whether the solutions of the population fulfill
given constraints. In the case of the three considered graph problems the computation
time for one generation can be reduced from Θ(n3) to O(n2.376).

References

1. Michalewicz, Z. (2004). How to solve it: Modern heuristics. 2nd edition, Springer-Verlag,
Berlin.

2. Raidl, G.R. and Julstrom, B.A. (2003). Edge sets: an effective evolutionary coding of spanning
trees. IEEE Trans. on Evolutionary Computation 7, 225–239.

3. Kehden B., Neumann F., Berghammer R. (2005): Relational Implementation of Simple Paral-
lel Evolutionary Algorithms In: Proc. of the 8th International Conference on Relational Meth-
ods in Computer Science (RelMiCS 8), LNCS 3929, Springer, Berlin, Germany

4. Kehden, B., Neumann F. (2006): A Relation-Algebraic View on Evolutionary Algorithms for
Some Graph Problems In: Gottlieb and Raidl (Eds.): EvoCop 2006, LNCS 3906, Springer,
Berlin, pages 147 - 158.

5. Eiben, A.E., Smith, J.E.(2003). Introduction to Evolutionary Computing. Springer
6. Schmidt, G., and Ströhlein, T. (1993). Relations and graphs. Discrete mathematics for com-

puter scientists, EATCS Monographs on Theoret. Comp. Sci., Springer.
7. Coppersmith, D., and Winograd, S. (1990). Matrix multiplication via arithmetic progressions.

Journal of Symbolic Computation, 9:251–280.
8. Garey, M. R., Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of

NP-completeness. Freeman, New York.

69

A topographical analysis of event structures

José Juan Palacios Pérez?

The University of Manchester

Abstract In the thesis [PP06] we introduce the notion of a topographical
space to carry out an analysis of event structures, which is a model for
concurrent computation. We show how the notion of a topographical
space produces a clear and uniform presentation of several kinds of event
structures and related structures in the literature.

1 Introduction

In the field of mathematical models of concurrent computation, the model known
as an event structure has a distinguished rôle. Introduced by Nielsen, Plotkin
and Winskel in [NWP81] and later extended by Winskel in [Win85,Win89], event
structures are based in the following basic ideas.

1. The behaviour of a concurrent process is expressed by the occurrence of
events. An event is an atomic entity, on the same level of abstraction as that
of a point in geometry.

2. There is a notion of consistency among events, that is, whether it is the
case that two (or more) events can occur without any conflict. The notion
of consistency is related to the notion of non-determinism which pervades
concurrent computation.

3. The occurrence of an event may causally depend on the occurrence of previ-
ous events. Such a relation of causal dependency can be given by a preorder
on events or something more elaborated which is sometimes called an en-
abling relation.

A state or configuration of a concurrent system is defined as a coherent set of
(the occurrence of) events which is closed under the causal dependency relation.
If two events inside a configuration are independent of each other, then they can
occur simultaneously (that is, in parallel).

A number of relations between event structures and several models of con-
currency, such as Petri nets, labelled transition systems and trace languages
has been accomplished [WN95]. Event structures first appeared about 25 years
ago. Since then they have re-appeared in various forms, sometimes using differ-
ent terminology, and sometimes with the same terminology meaning something

? Thanks to Dr. Andrea Schalk my supervisor, and Dr. Harold Simmons, my adviser
for their guidance and support.

different. Part of the aim of the thesis is to clarify and generalise the relation-
ships between these various notions, hence providing a clearer and more uniform
account of these various patterns.

First, we review the original definition of event structures and point out the
importance of the family of configurations. Then, we introduce the notion of
topographical spaces and describe some properties as well as different kinds of
topographies, each one associated with a particular class of event structure.

2 Topographies from configurations

The following definition is taken from [Win86].

Definition 1. An event structure S is a triple (S,S•,−) which consists of

– a set S of events, its carrier,
– a non-empty family S• of finite subsets of S, called the consistency predicate,

which satisfies being downwards closed under inclusion, that is if X ∈ S• and
Y ⊆ X then Y ∈ S•,

– an enabling relation −⊆ S• × S, which is upwards closed under inclusion,
that is if Y − s and Y ⊆ X then X − s (for X, Y ⊆f S).

Example 1. Consider the event structure S1 = (S,S•,−) with carrier S = {a, b, c, d},
consistency predicate given by S• = Pf − {{a, b}, {a, b, c}, {a, b, c, d}, {a, b, d}}
and − given by ∅ − a, b, d, {a} − c, and {b} − c. The first sentence of the
enabling says that events a, b, d are independent each other, the second sentence
says that event c depends on the occurrence of either event a or b1. Note that
the events a, b are incompatible each other.

In Figure 1 we show the family of configurations (S,⊆) of S1, which forms
a partial order under inclusion.

HHHH��
��
��

 HHH
������

!!!!!!

J
J
J
J
J""

"
"

⊥

{d}{b}{a}

{a, c} {b, c}

{d, a} {b, d}

Figure1. Family of configurations of the event structure S1.

It is precisely the family of configurations of an event structure that models a
concurrent system. Such family of configurations forms a special kind of domain
1 Nothing forbid us to have something like {a, d, c} − c or {b, d} − b.

71

(that is, a poset with certain completeness properties), and is naturally described
in terms of topographical spaces.

Definition 2. Let S be a set. A topography on S is a family S of subsets with
the following properties.

(i) ∅ ∈ S (ii)
⋃

S = S
(iii) For each subfamily X ⊆ S which is locally bounded2 in S, we have

⋃
X ∈ S.

A topographical space (S, S) is a set S equipped with a topography S. A region
of the space is a set X ∈ S. For each region X ∈ S the family SX = {Y ∈ S

∣∣
Y ⊆ X} is the down family below X in S.

Indeed, a region of a topographical space captures a configuration of an event
structure. It is easy to show that the poset (S,⊆) associated to the family of
configurations of the event structure from Example 1 is a topographical space.
As the name suggest, this is related to the standard notion of a topological space,
but more suited to our investigation3.

A topographical space (S, S) is locally topological if for all regions X ∈ S, we
have Y,Z ∈ SX =⇒ Y ∩ Z ∈ SX. In particular, the space is locally Alexandroff
if for each region X ∈ S the family SX is closed under arbitrary intersections.
The space is locally discrete if SX = PX.

Each topographical space induces two kinds of comparison, a global and a
local comparison. Both are important in describing properties among and inside
regions, respectively.

Each topography S has a associated a canonical family, its cover given by
X ∈ C(S) ⇐⇒ (∀Y ⊆f X)(∃Z ∈ S)[Y ⊆ Z] (for X ⊆ S). Such a family is the
smallest topography that contains S and is downwards closed under inclusion.

In the following section we consider

Capital Country Commonwealth

spaces, each of which generates a topography which is at least locally topological.

3 From capitals to commonwealth

We think of S• as a consistency predicate in the small, since it deals only with
finite sets. In contrast, a consistency predicate in the large deals with arbitrary
sets. Hence the name capital.

Definition 3. A Consistency Predicate in the Large (capital) on a set S is a
family S of subsets of S with the following properties.

(i) ∅ ∈ S (ii)
⋃
S = S

2 In any poset (S,≤) a subset X ⊆ S is locally bounded iff every finite set Y ⊆f X is
bounded in S.

3 In fact, each topological space gives an example of a topographical space.

72

(iii) For each subfamily X ⊆ S which is directed, we have
⋃
X ∈ S.

(iv) The family S is downwards closed under inclusion, that is Y ⊆ X ∈ S=⇒Y ∈
S for subsets X, Y of S.

A capital space (S,S) is a set S equipped with a capital S.

It is immediate to show that each consistency predicate S• is isomorphic to
its capital S. Intuitively, a capital space can be seen as an event structure where
all events are independent to each other, that is, the causality relation is just
equality. Note that the cover C(S) of a topography S forms a capital space
(S, C(S)), and for any other capital S we have C(S) ⊆ S. That is, the cover is
the minimal capital associated to the parent topography.

Each capital space produces a locally discrete topography. Capital spaces
have appeared in the literature as qualitative domains and coherence spaces
(the latter using a binary conflict relation).

We now consider the case when the causality relation is given by a partial
order.

Definition 4. Let (S,≤) be a poset. A capital S on S is compatible with the
carried comparison ≤ if for all X ∈ PS we have X ∈ S =⇒ ↓X ∈ S. A country
space

(S,S,≤)

is a poset with a compatible capital.

The topography S of a country space (S,S,≤) is given as

S = S ∩ LS

that is, each region X ∈ S is a consistent lower section. Such topographies are
locally separated, locally Alexandroff, the partial order ≤ coincides with the
comparison induced by S, and C(S) = S. For each region X ∈ S we have
x ≤X y =⇒ x ≤ y (for all x, y ∈ S). As consequence, for Y ∈ LXX we have
Y = ↓Y ∩X for each region X ∈ S.

For practical purposes, one can assume that each event in a country space can
occur once a number of events have occurred. A special kind of country spaces
are Winskel’s prime event structures (S,S•,≤) [Win86] where the occurrence of
each event is dependent only on a finite number of events.

In a country space each event depends on (at most) a set of events. We extend
the causal dependency relation by allowing an event to depend of several sets.
For this we replace the partial order of a country space by a tree.

Definition 5. (a) Let S be a set, let S be a capital on S and let S be a tree over
S. We say (S, S) is a compatible pair if

u ∈ S =⇒ buc ∈ S•

That is, if for each node of S its underlying set is in the finite part of the
capital.

73

(b) A commonwealth space is a structure

S = (S,S, S)

where (S,S) is a capital space and S is a tree over S such that the pair (S, S)
is compatible.

From an event structure S = (S,S•,−) it is easy to obtain a commonwealth
kS = (S,S, S) by constructing the tree S over S as follows.

L0 = {⊥}
L1 = {⊥s

∣∣ ∅ − s}
Li+1 = {us

∣∣ u ∈ Li, buc − s, s 6∈ buc}
for all s ∈ S. Each Li denotes the tree S up to level i. The converse is also
immediate.

We now define the topography S induced by a commonwealth S = (S,S, S).
For each s ∈ X ⊆ S we say that the membership s ∈ X is witnessed by the node
u ∈ S if s ∈ buc ⊆ X.

The harvest HS of S is the family

X ∈ HS ⇐⇒ (∀s ∈ X)(∃u ∈ S)[s ∈ buc ⊆ X]

for X ⊆ S.
The harvest HS is indeed a topography on S, but is not necessarily closed

under intersections. We define the topography S of the commonwealth S as
follows

S = S ∩HS
which is the family of those X ∈ S such that each member s ∈ X is witnessed
by a node of S. Such topography is locally separated with very finite character.

For any commonwealth S = (S,S, S) with topography S the pair (C(S), S)
is compatible and induces S.

References

[NWP81] Mogens Nielsen, Glynn Winskel, and Gordon Plotkin. Petri nets, Event
structures and Domains, part 1. Theoretical Computer Science, 13:85–108,
1981.

[PP06] José Juan Palacios-Pérez. The categorical analysis of Event structures. PhD
thesis, Computer Science, The University of Manchester, 2006.

[Win85] Glynn Winskel. Petri Nets, Algebras and Morphisms. Technical Report 79,
Univ. of Cambridge Computer Laboratory, 1985.

[Win86] Glynn Winskel. Event structures : Lecture notes for the Advanced course on
Petri nets. Technical Report UCAM-CL-TR-95, University of Cambridge,
1986.

[Win89] G. Winskel. An introduction to event structures. Lecture Notes in Com-
puter Science: Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency., 354:364–397, 1989. NewsletterInfo: 34.

[WN95] G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, D. Gab-
bay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science.
Oxford University Press, 1995.

74

Relational Kleene Algebras and their
compilation to modular applicative transducers

Benôıt Razet

Université Paris 7 - INRIA Rocquencourt

1 Introduction

Finite-state methods are commonly used in computational linguistic and parti-
curlarly at the morphology level. Gérard Huet[8] uses those structures to treat
the sanskrit language segmentation problem which deals with the sandhi re-
lation inversion. The method uses a technology based on annotated lexicons
implemented in the Zen toolkit[6]. A more general transducer representation
method is inspired from this application and leads the introduction of aums[7].
We plan to study potential algebraic operators, inspired from Kleene algebras,
to describe rational relations useful in the natural language processing field.
In the following we suppose that the reader is familiar with rational languages
or relations, automata, transducers and regular expressions.

2 Modular transducers

Let remind that rational sets or rational relations are completely described with
Kleene algebra models. Basic Operators of the Kleene algebras like ·(concatenation),
+(union) and ∗(Kleene’s star) are often used to describe modular automata con-
structions. The automata constructions associated to thoses operations give no
guaranty to produce a deterministic or mininimal automaton. Since determiniza-
tion and miminization have exponentional costs, automata constructions must
not do those operations too frequently.

An originality of aums for representing automata or transducers is that they
are completely applicative data structures, loops are coded with a virtual ad-
dress system. The recognition or transduction is done using a reactive process
over aums. In [8] lexicons (finite sets of words) are coded as DAGs with maximal
sharing using aums data structure. A reactive engine is introduced to perform
the recognition of L∗ for a lexicon L, and it uses continuations to perform the
non-deterministic search. This engine is highly configurable since additional pa-
rameters could affect the search and then extensions can be made easily.

We have done one such extension for modular transducers[9]. Let now de-
scribe modular automata which is based on the aum technology, modular trans-
ducers are a direct extension from modular automata using decorated aums. Let
consider a finite set of lexicons indexed Li, one would like to modify the reactive
engine to perform the recognition of the language defined by a regular expression

over the Li which is still a rational language. Regular expressions are elements
of the following Kleene algebra :

regexp ::= 1
| Li

| regexp + regexp
| regexp · regexp
| regexp∗

As aums can code with the maximal sharing for lexicons, we do not want to
change those aums during the regular expression compilation. We choose to keep
separated lexicons from the geometry over those lexicons, the geometry refering
the regular expression. Let compile the regular expression into an automaton
over a new phase alphabet, each phase linked to an aum, we now have modular
automata description with two levels.
In the second version of the Zen toolkit, description of modular transducers is
possible using system’s of regular expressions. For example the definition of the
sanskrit word morphology could be expressed that way :

INVAR = prev.abso | unde
CONJUG = prev? . root
SUBST = iic* .noun | iic+ .ifc
VERBAL = CONJUG | iiv.auxi
WORD = SUBST | VERBAL | INVAR

WORD, CONJUG, SUBST, VERBAL and INVAR are names for equations. iiv, auxi,
noun, iic, ifc, prev, root, abso and unde are lexicons for sanskrit lexical cat-
egories.

The way such regular expressions are compiled using the Berry-Sethi algo-
rithm[2] into a modular transducers is described in [9]. In this article we in-
troduce modular transducers incrementally using three various reactive engines.
They differ from the way the power of aums are in use. Firstly aums code for
lexicons then for automata and finally for transducers. But the modularity no-
tion is the same for the three engines. And at the end of the article we present
the way it is compiled (using the Berry-Sethi algorithm) into a macro-generated
dispatching module used by the various reactive engines. The Berry-Sethi algo-
rithm is described in purely functional code guaranted having the theoretical
complexity.
More generally, the design of all those algorithms exploits and justifies the func-
tional programming methodology in which algreabric closure operations are eas-
ily described, formal proofs are amenable, concise expression of powerful control
paradigms is possible and the resulting tool is efficient for a concrete linguistic
application.

76

3 Ongoing work

We have used the Berry-Sethi algorithm because it produces efficiently a com-
pact non-deterministic automaton. Such an automaton has the property that for
every state, every edge pointing that state have the same label. This property
is due to a linearization step of the regular expression which leeds to the defini-
tion of a local language[5, 3]. This linearization cannot treat regular expressions
with additional useful operators like complement and intersection. Then we have
studied other automata constructions as defined by Brzozowski[4], Raymond[11]
and Antimirov[1]. As a short summary :

– Brzozowski’s algorithm treats regular expressions with additional operators
and produce a deterministic automaton, this construction is exponential but
practically possible.

– Raymond’s algorithm is very efficient since it produces a non-determnistic
with ε-transition automaton of the linear length of the regular expression
and in linear time. But it does not extend to additional operators and the
presence of ε-transitions could be problematic, looping the reactive engine.

– Antimirov’s algorithm produces a more compact non-deterministic au-
tomaton than the Berry-Sethi does, but the algorithm is not as efficient.
Antimirov also indicates as a possible further research the question if his
algorithm can be adapted to extended regular expressions.

We plan to extend our regular expression language in the same spirit of
Kaplan and Kay[10] which presented a way to define phonological rewriting
rules as rational relations adding some macro operators over the basic ones of
regular expressions. We then aim to present efficient algorithms to compile our
extended language, inspired from relational Kleene algebras, in a Zen style.

References

1. V. Antimirov. Partial derivatives of regular expressions and finite automaton con-
structions. Theor. Comput. Sci., 155(2):291–319, 1996.

2. G. Berry and R. Sethi. From regular expressions to deterministic automata. The-
oretical Computer Science, 48(1):117–126, 1986.

3. J. Berstel and J.-E. Pin. Local languages and the berry-sethi algorithm. Theor.
Comput. Sci., 155(2):439–446, 1996.

4. J. A. Brzozowski. Derivatives of regular expressions. J. Assoc. Comp. Mach.,
11(4):481–494, October 1964.

5. S. Eilenberg. Automata, Languages, and Machines, Volume A. Academic Press,
Inc., Orlando, FL, USA, 1974.

6. G. Huet. The zen computational linguistics toolkit. ESSLLI 2002 Lectures, Trento,
Italy, 2002.

7. G. Huet. Automata mista. verification: theory and practice: essays dedicated to zo-
har manna on the occasion of his 64th birthday. Springer-Verlag LNCS, 2772:359–
372, 2003.

8. G. Huet. A functional toolkit for morphological and phonological processing, ap-
plication to a Sanskrit tagger. J. Functional programming, 15, 2005.

77

9. G. Huet and B. Razet. the reactive engine for modular transducers. In Algebra,
Meaning and Computation, Festschrift in Honor of Prof. Joseph Goguen, to appear
2006.

10. R. M. Kaplan and M. Kay. Regular models of phonological rule systems. Compu-
tational Linguistics 20(3):331-378, 1994.

11. P. Raymond. Recognizing regular expressions by means of dataflows networks.
In 23rd International Colloquium on Automata, Languages, and Programming,
(ICALP’96), Paderborn, Germany, July 1996. LNCS 1099, Springer Verlag.

78

Resolution Based Natural Deduction For Modal
Logic

David Robinson

University Of Manchester

1 Introduction

In resolution based natural deduction (RND) [1], Andrzej Indrzejczak in-
troduces a system called RND that mixes some features of two of the most
well known systems, natural deduction and resolution. This combination
of the two methods gives a proof system that produces proofs that are
easily understood, unlike resolution proofs which can make little sense
to understand individual steps, and fairly straight forward to produce,
unlike some natural deduction proofs such as proof by contradicition.

The following will introduce and develop the system of RND for modal
logic and then introduce a method which makes it possible to automat-
ically generate RND proofs using resolution theorem provers. To save
space, only the rules and encodings required for an example will be pre-
sented.

2 Modal Logic and RND

The syntax and semantics of modal logic used is that of Goré [2].
In this section I will present the resolution based natural deduction

system, RND, introduced by Indrzejczak [1], but presented in a more
recognisable style as introduced in [3].

Figure 1 shows a selection of the rules of RND for modal logic K. The
α rules use the compact notation of Smullyan [4]. The [Sub] rule allows
the making and discharging of assumptions. Formulae enclosed in square
brackets are assumptions which are discharged when the rule is applied.
The α rules allow manipulation of connectives and the introduction and
elimination forms are the mirror of each other. The R’ rule is the resolu-
tion rule, and is used here instead of the less general resolution rule given
in the original presentation [1] for simplicity. It is easy to show that the
R’ resolution rule is derivable in the original system [1]. The � rules are
standard.

[Sub]

[s : ¬ϕ1] [...] [s : ¬ϕk]
...

s : γ

s : γ ∨ ϕ1 ∨ ... ∨ ϕk

(αI)
s : Γ ∨ α1 s : Γ ∨ α2

s : Γ ∨ α (�I)

[R(s, t)]
...

t : ϕ

s : �ϕ

(R′)
s : Γ ∨ ϕ s : ∆ ∨ ¬ϕ

s : Γ ∨∆ (αE)
s : Γ ∨ α

s : Γ ∨ α1 s : Γ ∨ α2
(�E)

s : �ϕ R(s, t)

t : ϕ

Fig. 1. RND rules for Modal Logic K

3 Encodings

Any formula can be structurally transformed using the transformations
shown in figure 2. These are applied to connectives present in the formula
in turn to get an equivalent set of clauses which are suitable for resolution.
The two tables show the encoding depending upon whether the connective
appears positively or negatively in the formula being encoded.

ϕ negative

ψ1 ∨ ψ2 Qϕ(x) ∨ ¬Qψ1(x)
Qϕ(x) ∨ ¬Qψ2(x)

ψ1 ∧ ψ2 Qϕ(x) ∨ ¬Qψ1(x) ∨ ¬Qψ2(x)

¬ψ Qϕ(x) ∨Qψ(x)

¬(ψ1 ∨ ψ2) Qϕ(x) ∨Qψ1(x) ∨Qψ2(x)

�ψ Qϕ(x) ∨R(x, f(x))
Qϕ(x) ∨ ¬Qψ(f(x))

♦ψ Qϕ(x) ∨ ¬R(x, y) ∨ ¬Qψ(y)

ϕ positive

ψ1 ∨ ψ2 ¬Qϕ(x) ∨Qψ1(x) ∨Qψ2(x)

ψ1 ∧ ψ2 ¬Qϕ(x) ∨Qψ1(x)
¬Qϕ(x) ∨Qψ2(x)

¬ψ ¬Qϕ(x) ∨ ¬Qψ(x)

¬(ψ1 ∨ ψ2) ¬Qϕ(x) ∨ ¬Qψ1(x)
¬Qϕ(x) ∨ ¬Qψ2(x)

�ψ ¬Qϕ(x) ∨ ¬R(x, y) ∨Qψ(y)

♦ψ ¬Qϕ(x) ∨R(x, f(x))
¬Qϕ(x) ∨Qψ(f(x))

Fig. 2. Structural Transformations for Connectives

Figure 3 shows encodings for some of the RND rules for modal logic
K. C,D represent sets of formulae, possibly empty. A clause containing
C or D will be called a derived clause, as it will be a clause that has
been derived from previous steps and does not form part of the encoding
of the original problem, except in the first application of a rule at the
beginning of a proof where C,D will be empty. The clause under the line
is the resolvent of the clauses above possibly with factoring performed.

80

(αE)

C ∨Qα(t)
¬Qα(x) ∨Qαi(x)

C ∨Qαi(t)
αI)

C ∨Qα1(t)
D ∨Qα2(t)
Qα(x) ∨ ¬Qα1(x) ∨ ¬Qα2(x)

C ∨D ∨Qα(t)

(�E)

C ∨Q�ϕ(s)
D ∨R(s, t)
¬Q�ϕ(x) ∨ ¬R(x, y) ∨Qϕ(y)

C ∨D ∨Qϕ(t)

(�I)

[q�(s) ∨R(s, t)]
...

C ∨ qR(s) ∨Qϕ(s)
Q�ϕ(x) ∨ ¬qR(x)
Q�ϕ(x) ∨ ¬Qϕ(f(x))

C ∨Q�ϕ(t)

[Sub]

C ∨ q¬βi(s) ∨Qβj (s)
¬q¬βi(x) ∨Qβi(x)
Qβ(x) ∨ ¬Qβi(x)
Qβ(x) ∨ ¬Qβj (x)

C ∨Qβ(x)

(Res)

C ∨Qψ(t) ∨Qθ(t)
D ∨ ¬Qθ(t) ∨Qϕ(t)

C ∨D ∨Qψ(t) ∨Qϕ(t)

Fig. 3. Encodings of RND Rules

All other clauses are definitional clauses that appear in the encoding of
the problem if the rule can be applied.

In �I the square brackets indicate a clause that is not used in the
rule application but is a clause that appears somewhere in the generation
of one of the derived clauses, and relates exactly to the subproof in the
RND �I rule.

The encoding will also include splitting on any positive clauses gener-
ated with q’s introduced into clauses generated by the splitting. These q’s
correspond to assumptions in the RND, and this can be seen in the struc-
tural encoding, where the only positive clauses generated are for � and ¬
formulae, corresponding to the two RND rules that require assumptions.

Theorem 1. It is possible to simulate any RND derivation using the
above structural transformation and rule encodings.

Conjecture 1. I strongly believe that it is possible to automatically gen-
erate any RND proof using the same encodings.

4 A Simple � Example

The simple example in figure 4 shows the resolution proof on the left hand
side, beside the RND proof on the right. The first 9 lines of the resolution
proof are the encoding of the formula, with the connective numberings
indicated at the top. Lines 10-13 are the result of splitting on positive

81

definitional clauses. The RND rule to which some of the resolution steps
relates is also indicated for some lines in brackets.

s : ¬�(ϕ ∧ ψ) ∨�ϕ
s : 2 4(5) 1 3

Resolution Proof
1 ¬Q1(s)
2 Q1(x) ∨ ¬Q2(x)
3 Q1(x) ∨ ¬Q3(x)
4 Q2(x) ∨Q4(x)
5 Q3(x) ∨R(x, f(x))
6 Q3(x) ∨ ¬Qϕ(f(x))
7 ¬Q4(x) ∨ ¬R(x, y) ∨Q5(y)
8 ¬Q5(x) ∨Qϕ(x)
9 ¬Q5(x) ∨Qψ(x)

10 q4(x) ∨Q4(x) Split 4
11 ¬q4(x) ∨Q2(x) Split 4
12 qR(x) ∨R(x, f(x)) Split 5
13 ¬qR(x) ∨Q3(x) Split 5

14 qR(x) ∨ q4(x) ∨Q5(f(x)) 12, 10, 7 (�E)
15 qR(x) ∨ q4(x) ∨Qϕ(f(x)) 14, 8 (αE)
15a qR(x) ∨ q4(x) ∨Qψ(f(x)) 14, 9 (αE)
16 q4(x) ∨Q3(x) ∨Qϕ(f(x)) 15, 13 (�I)
17 q4(x) ∨Q3(x) ∨Q3(x) 16, 6 (�I)
18 q4(x) ∨Q3(x) fact.
19 Q2(x) ∨Q3(x) 18, 11
20 Q1(x) ∨Q2(x) 19, 3
21 Q1(x) ∨Q1(x) 20, 2
22 Q1(x) fact.
23 ⊥ 22, 1

RND Proof
1 s : �(ϕ ∧ ψ) ass.
2 R(s, t) ass.
3 t : ϕ ∧ ψ �E 1

4 t : ϕ αE 3
4a t : ψ αE 3
5 s : �ϕ �I 2, 4
6 s : ¬�(ϕ ∧ ψ) ∨�ϕ [Sub] 1, 5

Fig. 4. A Simple � Example

Line 14 is the resolvent of lines 12, 10 and 7, using hyperresolution
which gives qR(x) ∨ q4(x) ∨Q5(f(x)). The corresponding inference steps
in the RND proof are steps 1-3. 1 is the assumption of s : �(ϕ∧ψ) which
corresponds to clause 10 in the resolution proof, 2 is the assumption of
R(s, t) which corresponds to clause 12. The derivation of t : ϕ∧ψ in step
3 using the �E rule (and 1 and 2) corresponds to the hyperresolution
step producing clause 14. We see that Q5(f(x)) corresponds to t : ϕ ∧ ψ
because 5 is the number of ϕ ∧ ψ in the original formula.

Line 15 and 15a are the resolvents of lines 14 and 8, and 14 and 9
respectively, giving qR(x)∨q4(x)∨αi for i ∈ 1, 2. The corresponding steps
in the RND proof are steps 4 and 4a. These two steps are the derivations
of the αi’s of t : ϕ ∧ ψ using the αE rule and are still dependent upon
the two assumptions s : �(ϕ ∧ ψ) and R(s, t). This corresponds to lines
15 and 15a which still contain the q’s indicating these lines still depend
on the assumptions, and which now contain Qψ(f(x)) and Qϕ(f(x)), the
two formulae derived in the RND proof.

82

Line 18 is the resolvent of line 15 with line 13 and 6 and with factoring
applied. This is done in a number of steps at lines 16, 17 and 18 for clarity
but could have been done in one hyperresolution step. The corresponding
step in the RND proof is step 5, the derivation of s : �ϕ using the �I
rule and discharging the assumption R(s, t). We see that qR(x) no longer
appears in the clause at line 18, and that Q3(x) corresponds to s : �ϕ
since 3 is the number of �ϕ in the original formula.

Line 22 of the proof is the resolvent of line 18 with 11,3 and 2. This
can again be combined into one single hyperresolution step, but the steps
are performed separately for clarity. The corresponding step in the RND
proof is step 6, the derivation of the initial formula by the [Sub] rule and
discharging the remaining assumption s : �(ϕ ∧ ψ). We again see that
q4(x) which corresponds to s : �(ϕ∧ψ) is no longer present in the clause
at line 22, and that Q1(x) corresponds to the initial formula to be proved.

Line 23 completes the resolution proof by deriving ⊥ as required.

5 Conclusion

The example in figure 4 shows that it is possible to simulate RND steps
using clauses from the encoding of the initial formula. It is also possible
to establish what information is required in the clauses in order that an
RND rule can be applied. The rule encodings given in figure 3 provide the
clauses that are required in order that the RND rules can be simulated,
and the clause that would be derived given this information. I believe
therefore that it is possible to generate an RND proof automatically,
using these encodings by only ever resolving clauses that map exactly to
an RND rule encoding. A proof of this type could then be generated using
modern resolution theorem provers, and could then easily be translated
into the corresponding RND proof.

This should give easily and automatically generated proofs which can
be easily read and understood by a human reader. I hope to have devel-
oped a proof of this before the conference.

References

1. Andrzej Indrzejczak. Resolution Based Natural Deduction. Bulletin of the Section
of Logic, pages 159–170, 2002.

2. Reiner Hahnle Marcello D’Agostino, Dov M. Gabbay and Joachim Posegga. Hand-
book of Tableau Methods. Kluwer Academic Publishers, 1999.

3. David Robinson. Resolution based natural deduction. Master’s thesis, Manchester
University, Mathematics, 2004.

4. Raymond M. Smullyan. First-Order Logic. Dover Publications, Inc., 1995.

83

Some Notes on Duality in Refinement Algebra

Kim Solin?

TUCS (Turku Centre for Computer Science)
Lemminkäinengatan 14 A, FIN-20520 Åbo, Finland

kim.solin@utu.fi

Abstract. We formulate a duality principle for refinement algebras. We
first consider the dual of Kleene star: angelic iteration. Angelic iteration
was introduced by Back, Mikhajlova and von Wright in a predicate-
transformer setting, here we propose an abstract-algebraic characterisa-
tion. This allows us to formulate the duality principle. We conclude by
considering iterative choice and by introducing the dual of action sys-
tems.

1 Introduction

Duality in different structures has often been used to simplify proofs, to give two-
in-one theorems and has inspired the conception of new and useful structures.
In the program refinement tradition, duality has proved a useful technical tool
and seems to have inspired new structures as well [1]. The purpose of this paper
is to cast the duality of some program-refinement concepts in the form of the
recent abstract refinement algebras.

Refinement algebras are abstract algebras (simply a set equipped with oper-
ators) for reasoning about program refinement [6, 7, 5, 4]. It can be argued that
by reasoning on a more abstract level one obtains a more perspicuous view than
provided by the classical model-theoretic frameworks: due to the abstraction
there are not so many details that clutter the view. Thanks to this perspicuity,
seeing common features amongst already established frameworks is also made
easier.

2 A refinement algebra with angelic iteration

In [2] Back, Mikhajlova and von Wright introduced the angelic iteration opera-
tor φ in a predicate-transformer setting. Angelic iteration can be seen as a finite
repetition of a program statement of any length determined by the user (as op-
posed to being determined by the system). It is not hard to consider angelic
iteration abstract-algebraically and this is what we shall do in this section of
the paper. An intuition and a model for the operators involved in the definition
below will be given in the next section. We shall introduce the operator into a

? Work done while visiting Institut für Informatik, Universität Augsburg.

refinement algebra having a signature containing all the operators that (as of
yet) have been considered. However, by varying the signature and/or by having
the conjunctivity condition to hold for all elements, we can get other refinement
algebras, such as the ones in [7] and [4], of which the later one also could harbour
angelic iteration.

A full refinement algebra is a structure over the signature (u,t,¬, ; ,∗ ,φ ,ω ,† ,
⊥,>, 1) such that (u,t,¬,⊥,>) is a Boolean algebra, (; , 1) is a monoid, and the
following equations hold (the operator ¬ binds stronger than the equally strong
∗,ω ,φ and †, which in turn bind stronger than ;, which, finally, binds stronger
than the equally strong u and t; x v y ⇔df x u y = x; and ; is left implicit):

¬xy = ¬(xy),
>x = >, ⊥x = ⊥,

(x u y)z = xz u yz and (x t y)z = xz t yz.

Moreover, if an element x satisfies y v z ⇒ xy v xz we say that x is isotone,
and if x and y are isotone, then

x∗ = xx∗ u 1, z v xz u y ⇒ z v x∗y,
xφ = xxφ t 1, xz t y v z ⇒ xφy v z,
xω = xxω u 1, xz u y v z ⇒ xωy v z,
x† = xx† t 1 and z v xz t y ⇒ z v x†y

hold. If x satisfies x(y u z) = xy u xz and x(y t z) = xy t xz we say that x is
conjunctive and disjunctive, respectively. Of course, conjunctivity or disjunctiv-
ity implies isotony. If an element is both conjunctive and disjunctive, then we
say that it is functional. If x and y are conjunctive, then ∗ and ω are assumed
to satisfy

xω = x∗ u xω> and z v zx u y ⇒ z v yx∗,

and if x and y are disjunctive then

x† = xφ t x†⊥ and zx t y v z ⇒ yxφ v z

are assumed to hold.1

Guards and assertions are special elements of the carrier set. An element g is
a guard if it is is functional, it has a complement ḡ satisfying gḡ = > and gu ḡ =
1, and for any g′ also satisfying the two first conditions it holds that gg′ = gtg′.
An element p is an assertion if it is functional, it has a complement p̄ satisfying
pp̄ = ⊥ and p t p̄ = 1, and for any p′ also satisfying the two first conditions it
holds that pp′ = pup′. If G is the set of guards and A is the set of assertions, then
(G,u, ; , ,̄ 1,>) and (A, ; ,t, ,̄⊥, 1) are Boolean algebras. We will use g, g1, g2, . . .
to denote guards and p, p1, p2, . . . to denote assertions.
1 Let C and D be the sets of conjunctive and disjunctive elements, respectively.

When the operators are interpreted as above, the structures (C, ; ,u,∗ ,⊥, 1) and
(D, ; ,t,φ ,>, 1) satisfy all the axioms of a Demonic Algebra [3] except right annihi-
lation for ⊥ and >, respectively.

85

The enabledness operator ε is a mapping from the set of isotone elements
to the set of guards defined by εx =df x⊥ t 1. The termination operator τ is a
mapping from isotone elements to the set of assertions defined by τx =df x>u1.

3 Intuition and a model

The elements of the carrier set can be seen as program statements. The operators
should be understood so that u is demonic choice (a choice we cannot affect,
a choice by the system), t is angelic choice (a choice we can affect, a choice
made by the user), ; is sequential composition, ¬x terminates from any state
where x would not terminate and the other way around. The constant ⊥ is
abort, an always aborting program statement; > is magic, a program statement
that establishes any postcondition; and 1 is skip. If y establishes anything that
x does and possibly more, then x is refined by y: x v y. Weak iteration ∗

(Kleene star) can be seen as an iteration of any finite length determined by
the system. The (weak) angelic iteration φ can be seen as a finite repetition of a
program statement in which the length of the iteration is determined by the user.
Strong iteration, ω, is an iteration that either terminates or goes on infinitely, in
which case it aborts, and †, the strong angelic iteration [4], is an iteration that
terminates or goes on infinitely, in which case a miracle occurs. The difference
between the operators can be displayed by the fact that 1∗ = 1, 1ω = ⊥, 1φ = 1
and 1† = >.

A conjunctive element can be seen as facilitating demonic nondeterminism,
but not angelic, whereas a disjunctive element can have angelic nondeterminism,
but not demonic. An isotone element permits both kinds of nondeterminism.

Guards should be thought of as programs that check if some predicate holds,
skip if that is the case, and otherwise a miracle occurs. Assertions are similar to
guards, but instead of performing a miracle when the predicate does not hold,
they abort. The enabledness operator maps any program to a guard that skips
in those states in which the program is enabled, that is, in those states from
which the program will not terminate miraculously. The termination operator
applied to a program denotes an assertion that skips in those states from which
the program is guaranteed to terminate, that is, states from which it will not
abort.

The operators, the guards and the assertions can all be given an interpreta-
tion such that the set of predicate transformers over a fixed state space forms a
full refinement algebra.

4 A duality principle

Given a statement Φ about a refinement algebra, we formulate the order-dual
statement Φ∂ by replacing occurrences of symbols according to the following
rules: v is replaced by w and vice versa, u is replaced by t and vice versa, ∗ is
replaced by φ and vice versa, ω is replaced by † and vice versa, > is replaced
by ⊥ and vice versa, any arbitrary guard g is replaced by an arbitrary assertion

86

p and vice versa, and ε is replaced by τ and vice versa. We assume that a given
signature that contains an opertor o also contains the dual operator o∂ (its
replacement operator according to the above). By this, we can now formulate
a duality principle for refinement algebras: Given statement Φ which holds true
in a refinement algebra, the dual statement Φ∂ also holds true in the refinement
algebra.

Note that although εx and τx are a guard and an assertion respectively, their
duality does not follow from that fact, but from the duality of their respective
definitions. Moreover, from the properties of Boolean algebra it directly follows
that u and t are de Morgan dual with respect to the negation.

5 Iterative choice and dual action systems

The iterative choice construct [1, 2], bo p1 :: x1〈〉 . . . 〈〉pn :: xn ob, can be seen as
an iteration done by the user and in every iteration step the user can choose either
to execute one of the statements x1, . . . , xn, provided the related assertion holds,
and continue the iteration – or choose to skip and end the iteration. The user
will be assumed to choose a statement for which the guard holds. The iterative
choice statement has been used to reason about interactive programs [2]. An
intuitive example of an iterative choice is an interactive dialog box (a menu).

By expressing iterative choice in an abstract refinement algebra we would
have the possibility to reason about interactive programs also on a more ab-
stract level – and, perhaps, to more easily see connections between different
frameworks intended for reasoning about interaction. It is easy to give iterative
choice an abstract formulation. In fact, in a concrete predicate-transformer al-
gebra it was formulated in [2], so the only thing we need to do is to translate
this into the abstract algebra: (p1x1 t . . .t pnxn)φ. By the duality principle and
known results for weak iteration and demonic choice, this directly yields useful
properties such as decomposition, (p1x1 t p2x2)φ = (p1x1)φ(p2x2(p1x1)φ)φ, and
leapfrog, (p1x1x2)φp1x1 v p1x1(x2p1x1)φ. In the concrete predicate-transformer
algebra, these and other results were noted to arise from duality already in [2].

In [4, 5] action systems were considered abstract-algebraically. We now con-
sider the dual of an action system. To the best of our knowledge, this structure
has not earlier appeared in the literature and constitutes an example of how
duality considerations can give rise to new interesting structures. A dual ac-
tion system bo x1〈〉 . . . 〈〉xn ob is abstract-algebraically defined by (x1 t . . . t
xn)†τx1 . . . τxn, where x1, . . . xn are disjunctive actions.

An intuition is that the user iterates and for every iteration the user should
choose one of the terminating actions. The user should choose to end the iteration
when none of the actions are any longer guaranteed to terminate. If the user
would end the iteration prematurely, the statement τx1 . . . τxn would ensure
that the dual action system would abort and if the user would continue to
iterate although no action would be guaranteed to terminate (by choosing a non-
terminating action), the dual action system would of course also abort. (One can
also look at it as if the iteration ends automatically when none of the actions

87

will terminate.) The user can also attempt to continue the iteration forever (e.g.
by in turn increasing and decreasing a value of variable). This kind of behaviour
could be called angelic nontermination or perpetuum mobile behaviour. If the user
succeeds in doing this, a miracle is brought about (so here we equal perpetuum
mobile behaviour and miraculous behaviour).

Many interesting properties of dual action systems follow from duality and
results on classical action systems. One such property is leapfrog for dual action
systems: (x1x2)†τ(x1x2)x1 v x1(x2x1)†τ(x2x1).

A more concrete example of a dual action system is a code lock consisting
of a numerical pad and an enter button. The lock works on a state space and
the numerical keys act on this space. Opening the lock corresponds to the ac-
tion system terminating, entering a wrong code and thus setting off the alarm
corresponds to the action system aborting, and being able to click the numbers
for ever corresponds to having found an evighetsmaskin. Entering a digit cor-
responds to choosing one of the actions, choosing the wrong digit might set off
the alarm. Hitting the enter button corresponds to ending the iteration. (One
can also look at it as if the iteration automatically ends when a correct code is
entered.) There are several codes – possibly of different length – that produce a
state so that none of the actions will terminate and thus open the lock.

6 Ending remarks

We considered angelic iteration abstract-algebraically which enabled us to for-
mulate a duality principle. The duality principle can be used for proving two-in-
one theorems and also inspires the conception of new structures, as exemplified
by the dual action-system construct. The dual action systems were here only
sketched and deserve further investigation to determine if they, in combination
with classical constructs, could be employed for reasoning about more elaborate
interactive systems.

Acknowledgements. Peter Höfner and Bernhard Möller both provided con-
structive critique that substantially improved the paper.

References

1. R.-J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer, 1998.

2. R.-J. Back, A. Mikhajlova and J. von Wright. Modeling Component Environments
and Interactive Programs Using Iterative Choice. Technical Report 200, TUCS, 1998.

3. J.-L. de Carufel and J. Desharnais. Demonic algebra with domain. Accepted to
RelMiCS/AKA 2006.

4. K. Solin. On Two Dually Nondeterministic Refinement Algebras. Accepted to
RelMiCS/AKA 2006.

5. K. Solin and J. von Wright. Refinement Algebra with Operators for Enabledness
and Termination. In Math. of Progr. Constr., vol. 4014 of LNCS, Springer, 2006.

6. J. von Wright. From Kleene Algebra to Refinement Algebra. In Math. of Prog.
Constr., vol. 2386 of LNCS, Springer, 2002.

7. J. von Wright. Towards a Refinement Algebra. Sci. of Comp. Prog., 51, 2004.

88

