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Cognitive Radio Network Duality and
Algorithms for Utility Maximization

Liang Zheng and Chee Wei Tan, Senior Member, IEEE

Abstract—We study a utility maximization framework for
spectrum sharing among cognitive secondary users and licensed
primary users in cognitive radio networks. All the users maximize
the network utility by adapting their signal-to-interference-plus-
noise ratio (SINR) assignment and transmit power subject to
power budget constraints and additional interference tempera-
ture constraint for the secondary users. The utility maximization
problem is challenging to solve optimally in a distributed manner
due to the nonconvexity and the tight coupling between the
power budget and interference temperature constraint sets. We
first study a special case where egalitarian SINR fairness is the
utility, and a tuning-free distributed algorithm with a geometric
convergence rate is developed to solve it optimally. Then, we
answer the general utility maximization question by developing a
cognitive radio network duality to decouple the SINR assignment,
the transmit power and the interference temperature allocation.
This leads to a utility maximization algorithm that leverages the
egalitarian fairness power control as a submodule to maintain
a desirable separability in the SINR assignment between the
secondary and primary users. This algorithm has the advantage
that it can be distributively implemented, and the method
converges relatively fast. Numerical results are presented to
show that our proposed algorithms are theoretically sound and
practically implementable.

Index Terms—Optimization, network utility maximization,
cognitive radio networks, spectrum allocation.

I. INTRODUCTION

WE CONSIDER wireless cognitive radio networks with
multiple users transmitting simultaneously on a shared

spectrum, where the link transmission qualities are signifi-
cantly influenced by multiuser interference. This interference,
if uncontrolled or inadequately controlled, can degrade the
utility of a user transmission and lead to adverse network
operating points. In a cognitive radio network environment,
the users are further governed by temperature constraints that
must be satisfied in order to mitigate the interference coming
from the cognitive secondary users from over-spilling into the
licensed primary users. Thus, the total attainable utility of all
the users depends on a joint Signal-to-Interference-plus-Noise
Radio (SINR) assignment, the transmit power and the tolerable
interference level (interference temperature), which in other
words rely on the resource allocation policy. An optimal
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resource allocation can maximize the overall network utility
without the cognitive secondary users causing overwhelming
interference to the primary users. Secondary users should
have a minimal impact on the operation of the primary users
[1], which can be controlled by imposing an interference
temperature constraint on the received interference at the
primary users.
Given a set of power budget and interference temperature

constraints, the SINR assignment of all users must be jointly
coordinated, but there are two major hurdles that need to
be overcome. First, algorithms that adapt the transmit power
and interference temperature based on allocated SINR targets
assume that the SINR targets are within the feasibility region,
which however requires a centralized admission controller.
Second, the algorithms have to be decentralized, practical to
deploy and be fast enough with minimal or, preferably, no
parameter tuning. This is especially important since secondary
users can arrive and depart in a dynamic setting, and so
resources have to be adapted fast enough to converge to a
new optimal operating point whenever the network conditions
change. This however is challenging due to the tight coupling
between primary and secondary users in the SINR assignment.
It is desirable that the resource allocation for primary and
secondary users be distributed with minimal overhead.
There are several works that partially address these two

challenges in the literature. The authors in [2] study the SINR
assignment in the context of wireless cellular networks by a
re-parameterization of the feasible SINR region, and propose
a load and spillage algorithm that jointly updates the SINR
assignment and power. This algorithm however confines the
optimality by considering a reduced feasible SINR region.
The authors in [3] propose algorithms to coordinate the
secondary users by sensing a feedback signal from the primary
users’ interference temperature condition to reduce outage,
but do not address the joint optimal SINR assignment and
power allocation. The authors in [4] propose a cognitive radio
admission control and scheduling policy, which however does
not handle the interference temperature constraint. To coor-
dinate the interference temperature by controlling the SINR
assignment, the authors in [5] propose a belief propagation
framework by wireless scheduling to solve a nonconvex utility
maximization problem. Utility maximization algorithms using
fractional frequency reuse have been proposed in [6], [7] for
wireless cellular networks. The authors in [8] consider a joint
SINR assignment and power control to maximize the worst-
case SINR with an interference temperature constraint.
To overcome these two challenges, we propose and analyze

distributed algorithms for jointly optimal SINR assignment,
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Fig. 1. An illustration of the cognitive radio network duality. It shows that the link directions are reversed in the primal network and the dual network. (a)
The primal network. (b) The dual network.

power and interference temperature control. Our algorithms
are based on a novel cognitive radio network duality that
decouples SINR assignment, power and interference temper-
ature. Network duality is a fundamental concept in multiuser
communication [9], [10]. Network dualities for wireless cel-
lular and ad-hoc networks were investigated in [11], [12]
for a total power minimization problem (a convex problem)
using linear programming duality. A network duality was later
developed for a max-min weighted SINR problem (a noncon-
vex problem) in [13]–[15] using nonnegative matrix theory
and geometric programming duality. These network dualities
(including the one in this paper) assert that two different
networks, respectively a primal network and a dual network,
can be construed to attain an identical SINR performance.
In particular, the dual network reverses the link directions
in the primal network, as illustrated in Figure 1. Hence, a
feasible SINR for one is also feasible for the other. Further,
the power and interference temperature in the primal and
the dual networks are jointly optimized to solve the utility
maximization problem formulated for the primal network
subject to the power budget and interference temperature
constraints.

The main contributions of this paper are summarized as
follows.

• We present an equivalent reformulation of the utility max-
imization problems as an optimization problem involving
spectral radius constraint sets. We then characterize the
global optimality by expressing the optimal solution
analytically and the feasible SINR region. A special case
that maximizes the egalitarian fairness of all the SINRs
as the utility is solved optimally using a tuning-free
geometrically fast convergent algorithm.

• We develop the cognitive radio network duality and
characterize analytically the power and interference tem-

perature of the primal and dual networks. The relationship
between them and the gradients of the spectral radius
constraints in the utility maximization problem is estab-
lished.

• The utility maximization problem is solved using an
optimization technique that can be interpreted as itera-
tively minimizing the interference load in the network.
In particular, the egalitarian fairness SINR problem is
adapted iteratively to solve the general utility maximiza-
tion problem, which can further be solved distributively
by leveraging the cognitive radio network duality.

• Our algorithms can be practically implemented in to-
day’s wireless networks (3GPP systems) as they reuse a
power control submodule already widely implemented.
Numerical evaluations show that our algorithms have
good performance, often yielding the optimal solution in
tens of iterations even for a large number of users.

The rest of this paper is organized as follows. We present
the system model in Section II. In Section III, we reformu-
late our utility maximization problem in the SINR domain
with spectral radius constraints. Then, using the nonlinear
Perron-Frobenius theory, we first solve a special case of the
utility maximization problem, the weighted max-min SINR,
in Section IV. Next, using nonnegative matrix theory, we
present the cognitive radio network duality that we use to
design a distributed algorithm to solve the utility maximization
problem. We evaluate the performance of our algorithms
numerically in Section V. Finally, we conclude the paper in
Section VI. All the proofs can be found in the Appendix.

We refer the readers to Figure 2 for an overview of the
connection between the three key optimization problems in the
paper. The following notation is used in our paper. Column
vectors and matrices are denoted by boldfaced lowercase and
uppercase respectively. Let ρ(F) denote the Perron-Frobenius
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Fig. 2. Overview of the connection between the three optimization problems
studied in this paper.

eigenvalue of an irreducible nonnegative matrix F, and x(F)
and y(F) denote the Perron right and left eigenvectors of
F associated with ρ(F). From the Perron-Frobenius Theo-
rem (cf. [16]), the Perron-Frobenius eigenvalue is the largest
positive eigenvalue of an irreducible nonnegative matrix, and
the corresponding Perron right and left eigenvectors are both
entry-wise positive. We let el denote the lth unit coordinate
vector and I denote the identity matrix. The super-scripts
(·)� denotes transpose. We denote x ◦ y as a Schur product
of x and y, i.e., x ◦ y = [x1y1, . . . , xLyL]

�
, and denote

x/y as the component-wise division between x and y, i.e.,
x/y = [x1/y1, . . . , xL/yL]

�
. Let 1 = [1, . . . , 1]� ∈ R

L. For
a vector x = [x1, . . . , xL]

�
, diag(x) is its diagonal matrix

diag(x1, . . . , xL). Let ex denote ex = (ex1 , . . . , exL)�, and
logx denote logx = (log x1, . . . , log xL). An equality involv-
ing eigenvectors is true up to a scaling constant.

II. SYSTEM MODEL

We consider a cognitive radio network with a collection of
primary users and secondary users, which we call the primal
network. Assume that there are L secondary users (trans-
mitter/receiver pairs) communicating simultaneously over a
common frequency-flat fading channel. As illustrated in Figure
1(a), let G = [Glk]

L
l,k=1 > 0L×L represent the channel gain,

where Glk is the channel gain from the kth transmitter to the
lth receiver, and n = [n1, . . . , nL]

�
> 0, where nl is the

noise power at the lth user. The vector p = [p1, . . . , pL]
�

is the transmit power vector. The Signal-to-Interference-and-
Noise Ratio (SINR) for the lth receiver is defined as the ratio
of the received signal power to the sum of interference signal
power and additive noise power. Now, the SINR of the lth
user in the primal network can be given in terms of p:

SINRP
l (p) =

plGll∑
k �=l

pkGlk + nl

. (1)

We also define a nonnegative matrix F with entries:

Flk =

{
0, if l = k

Glk, if l �= k
(2)

and the vector

v =

(
1

G11
,

1

G22
, . . . ,

1

GLL

)�

. (3)

Moreover, we assume that F is irreducible, i.e., each link has
at least an interferer. For brevity, we denote vector γ as the
SINR for all users. In this paper, we use the equivalent form
of the SINR as:

γl =
pl(

diag(v)(Fp + n)
)
l

, (4)

where we use F and v in (2) and (3) respectively.
Next, let q denote the vector containing the normalized total

interference and noise for each user given by:

ql =

L∑
k=1

pk
Flk

Gll
+

nl

Gll
. (5)

In this paper, for ease of presentation, we call q the in-
terference temperature instead of the total interference plus
noise. With the above notation, we have γl = pl/ql. Since
p = diag(γ)q and q = diag(v)(Fp + n), the power and
interference temperature can be written, respectively, as

p = diag(γ ◦ v)(Fp + n) (6)
and

q = diag(v)
(
F diag(γ)q+ n

)
. (7)

Furthermore, from (6) and (7), we can obtain a one-to-one
mapping between γ and p and also one between γ and q,
given by:

p(γ) =
(
I− diag(γ ◦ v)F)−1

diag(γ ◦ v)n (8)
and

q(γ) =
(
I− diag(v)F diag(γ)

)−1
diag(v)n, (9)

respectively. Hence, given a feasible SINR assignment, a
feasible power and interference temperature can be computed
using (8) and (9) respectively.

III. UTILITY MAXIMIZATION

In the following, we study a cognitive radio network utility
maximization problem. Let us denote U(γ) as the network
utility, which is a network-wide quality-of-service (QoS) mea-
sure: for example, the max-min SINR fairness utility and the
α-fair utility [2], [17]. By appropriately choosing the utility
objective function subject to a set of resource constraints
(upper bounds on the power and interference temperature), we
maximize the network utility for both primary and secondary
users. In a cognitive radio network, secondary users are
allowed access to the network and share the spectrum with
primary users. This can lead to significant interference to the
primary users. Thus, it is important to avoid overwhelming
interference from secondary users, i.e., constrain each primary
user’s interference temperature below a tolerable upper bound.
Thus, the optimal utility has to be achieved subject to an
additional interference management in the network [18]. In
particular, the users are subject to a set of weighted power
constraints and individual interference temperature constraints.
We consider the optimization of the utility in a feasible

SINR domain subject to both the available power budget
and the interference temperature constraints. Let us denote
the upper bounds for the power budget and interference
temperature constraints as p̄ and q̄ respectively. The general
utility maximization problem is then given as:
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maximize U(γ)
subject to wl

�p ≤ p̄l, l = 1, . . . , L,
el

�q ≤ q̄l, l = 1, . . . , L,
q = diag(v)(Fp + n),
γl = pl/ql, l = 1, . . . , L,

variables: γ,p,q,

(10)

where wl is a nonnegative vector to model the lth power
budget constraint. Obviously, we must have q̄l > nlvl for all l
for feasibility. The constraint set in (10) is general enough to
model the primary and the secondary users, i.e., each index l
can represent either a primary user or a secondary user. For
example, for a primary user, we can set q̄l to some finite value.
For a secondary user, we can set q̄l to infinity. Also, as special
cases, whenwl = el, we have the individual power constraints
pl ≤ p̄l for all l that model a cellular uplink system, and when
wl = 1, we have a total power constraint that models a cellular
downlink system. Since wl can be chosen as any positive
vector associated with the power allocation, the nonnegative
vectorwl is general enough to model a wide range of practical
power budget constraints. However, adding the interference
temperature constraint to (10) imposes further limitations that
make the problem in (10) more challenging to solve.
In general, (10) is nonconvex (due to the nonconvex con-

straint set) and thus may be difficult to solve. Denote the
optimal p and q in (10) as p� and q�. Next, we reformulate
(10) as an equivalent optimization problem in the SINR
domain with a set of spectral radius constraints that only have
γ as the only variable. This is given by the following result.
Theorem 1: The optimal value in (10) is equal to the

optimal value of the following problem:

maximize U(γ)
subject to ρ

(
diag(γ ◦ v)(F + (1/p̄l)nw

�
l )

) ≤ 1,
l = 1, . . . , L,

ρ
(
diag(v)(F diag(γ) + (1/q̄l)ne

�
l )

) ≤ 1,
l = 1, . . . , L,

variables: γ.
(11)

Furthermore, γ� is an optimal solution to (11) if and only if
p(γ�) in (8) and q(γ�) in (9) is an optimal solution to (10),
i.e., p(γ�) = p� and q(γ�) = q�. In addition, we have

ρ
(
diag(γ� ◦ v)(F + (1/p̄i)nw

�
i )

)
= 1, (12)

where
i = arg max

l=1,...,L
ρ
(
diag(γ� ◦ v)(F + (1/p̄l)nw

�
l )

)
(13)

or
ρ
(
diag(v)(F diag(γ�) + (1/q̄j)ne

�
j )

)
= 1, (14)

where
j = arg max

l=1,...,L
ρ
(
diag(v)(F diag(γ�)+(1/q̄l)ne

�
l )

)
. (15)

Remark 1: Note that (12) and (14) imply that the optimal
solution of (10) is such that w�

i p
� = p̄i for some i, or q�j =

q̄j for some j respectively in (10) (cf. proof of Theorem 1).
Moreover, the power p� and interference temperature q� are
the Perron right eigenvectors of the nonnegative matrices in
(12) and (14) respectively.
Theorem 1 indicates that the mappings that relate the SINR

domain with the power and interference temperature domain
in (8) and (9) respectively can be used to compute the optimal

p� and q� respectively by using the optimal γ� in (11),
but, more interestingly, it reveals that the optimal power and
interference temperature can be regarded as eigenvectors of
suitably constructed matrices that are functions of γ�, which
govern the resource allocation behavior.
Furthermore, using a logarithmic mapping of variable, (11)

can be transformed to an optimization problem with a convex
constraint set. For γ = (γ1, . . . , γL)

� > 0, let
γ̃l = log γl, l = 1, . . . , L,

i.e., γ = eγ̃ . Then, (11) is equivalent to:

maximize U(eγ̃)

subject to log ρ(diag(eγ̃ ◦ v)(F + (1/p̄l)nw
�
l )) ≤ 0,
l = 1, . . . , L,

log ρ
(
diag(v)(F diag(eγ̃) + (1/q̄l)ne

�
l )

) ≤ 0,
l = 1, . . . , L,

variables: γ̃.
(16)

Let us denote the optimal solution of (16) by γ̃�. Note that
γ̃� = log γ� for all l.
Remark 2: For an irreducible nonnegative matrix F ∈

R
L×L
+ , log ρ(diag(eγ̃)F) is a convex function [19], due to

the log-convexity property of the Perron-Frobenius eigenvalue
[20]. Therefore, the constraint set in (16) is convex.
In general, depending on U(γ), (16) is nonconvex in γ̃.

However, we will study in the following interesting special
cases of (16), equivalently (10), that can be solved optimally
in a distributed manner. This is achieved by the cognitive radio
network duality developed in the following.

IV. COGNITIVE RADIO NETWORK DUALITY AND

ALGORITHMS

In this section, we consider (16) for both smooth and non-
smooth utility functions. In particular, in Section IV-B, a max-
min weighted SINR problem (for egalitarian SINR fairness)
will be first solved using a nonlinear Perron-Frobenius theory.1

This is then used together with the cognitive radio network
duality in Section IV-C to solve (16). It will be shown
that the transmit power and interference temperature can be
analytically expressed as the Perron right eigenvectors of the
specially constructed matrices associated with the spectral
radius constraints in (16). This leads to the development of
a cognitive radio network duality involving a dual network
as illustrated in Figure 1(b), which enables a distributed
algorithm to maximize the primal network utility.

A. Smooth and Non-smooth Utility

The reformulation introduced in Section III allows us to
decompose the utility maximization problem in (10) into first
optimizing γ, i.e., optimizing the SINR assignment, and then
optimizing the power p and interference temperature q. In this
section, we discuss the assumption for the objective function,
which will also be useful in our proposed distributed algorithm

1There are several extensions to the classical (linear) Perron-Frobenius
theorem in nonnegative matrix theory for classes of nonlinear maps. We use
the finite dimensional nonlinear Perron-Frobenius theory developed in [21].
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in Section IV-E to solve (10) for both smooth and non-smooth
utility functions.
Assumption 1: The utility function U(γ) is concave in

log γl for all l.
For example, α-fairness utility [17] satisfies Assumption 1,

given by:

U(γ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L∑
l=1

log γl, if α = 1,

L∑
l=1

(1− α)−1γ1−α
l , if α > 1.

Note that (16) includes the sum rate maximization problem
studied in [22], [23], when U(γ) =

∑L
l=1 log(1 + γl), but

this objective function does not satisfy Assumption 1, and
henceforth it is a nonconvex problem that requires global
optimization techniques, e.g., those studied in [22], [23].
If U(γ) is differentiable and separable, i.e., U(γ) =∑L
l=1 Ul(γl), let ∇Ul(γl) = ∂Ul/∂γl and ∇2Ul(γl) =

∂2Ul/∂
2γl denote the first-order and second-order derivative

of Ul(γl) with respect to γl respectively. Then, Ul(γl) is
concave in log γl if and only if the curvature is sufficiently
large [2]:

∇2Ul(γl) ≤ −∇Ul(γl)

γl
. (17)

In the general case (when U(γ) can be non-smooth), we
consider the subgradient of U(γ), whose definition is given
as follows.
Definition 1 (cf. [24]): The subgradient g ∈ R

L of U(γ)
at γ̂ satisfies

U(γ) ≤ U(γ̂) + g�(γ − γ̂)
for any feasible γ. If U(γ) is concave and differentiable
at γ, the subgradient is unique and is given by its gradient
g = ∇U(γ). On the other hand, if U(γ) is concave but not
differentiable, its subgradient is in the set:⋂

{g | U(γ) ≤ U(γ̂) + g�(γ − γ̂)}
for any feasible γ.

B. Non-smooth Special Case: U(γ) = min
l=1,...,L

γl
βl

In this section, let us consider the max-min weighted SINR
problem (for egalitarian SINR fairness), which is a special case
of (11) that has a non-smooth concave objective function:

maximize min
l=1,...,L

γl
βl

subject to ρ
(
diag(γ ◦ v)(F + (1/p̄l)nw

�
l )

) ≤ 1,
l = 1, . . . , L,

ρ
(
diag(v)(F diag(γ) + (1/q̄l)ne

�
l )

) ≤ 1,
l = 1, . . . , L,

variables: γ,
(18)

where β is a positive vector with the entry βl used to reflect a
priority of the lth link. A larger βl indicates a higher priority.
Let us define the following set of nonnegative matrices:

Bl = diag(v)(F +
1

p̄l
nw�

l ), l = 1, . . . , L, (19)

Dl =
(
I+

1

q̄l − nlvl
diag(v)ne�l

)
diag(v)F, l = 1, . . . , L.

(20)

By applying the nonnegative matrix theory and the nonlinear
Perron-Frobenius theory, we obtain a closed form solution to
(18) as well as the corresponding optimal solution in (10),
which is unique.
Lemma 1: The optimal value of (18) is given by

1

max
l=1,...,L

{ρ(diag(β)Bl), ρ(Dl diag(β))} . (21)

The optimal solution to (18) γ� is a vector with γ�
l /βl equal

to a common value
γ�
m/βm = 1/ max

l=1,...,L
{ρ(diag(β)Bl), ρ(Dl diag(β))}

for all l, where
m = arg max

l=1,...,L

{
ρ
(
diag(β)Bl

)
, ρ
(
Dl diag(β)

)}
. (22)

If the optimal value is 1/ρ(diag(β)Bm) for m in (22),
the optimal power and interference temperature in (10) is,
respectively, given by

p� =
p̄m

w�
mx

(
diag(β)Bm

)x( diag(β)Bm

)
(23)

and

q� = diag(γ�)−1p�,

and if the optimal value is 1/ρ(Dm diag(β)) for m in (22),
the optimal interference temperature and power in (10) is,
respectively, given by

q� =
q̄m

e�mx
(
Dm diag(β)

)x(Dm diag(β)
)

(24)

and

p� = diag(γ�)q�.

We next give an intriguingly simple algorithm to compute
the analytical solution in Lemma 1. In particular, by applying
the nonlinear Perron-Frobenius theory in [21], the following
algorithm computes p� given in Lemma 1.

Algorithm 1 (Max-min weighted SINR Algorithm):

Initialize p(0).

1) Each lth user updates its power pl(k + 1) as follows:

pl(k + 1) =
βl

SINRP
l (p(k))

pl(k).

2) Normalize p(k + 1):
p(k + 1)←

p(k + 1)

max
l=1,...,L

{w�
l p(k + 1)

p̄l
,
e�l diag(v)Fp(k + 1)

q̄l − nlvl

} .

Theorem 2: Starting from any initial point p(0), p(k) con-
verges geometrically fast to the power p� given in Lemma
1.
Remark 3: At Step 1, the Foschini-Miljanic power control

algorithm update in [25] (a power control submodule widely
implemented in 3GPP systems) is used. At Step 2, the compu-
tation of w�

l p(k+1) and the normalization of p(k+1) can be
computed by a gossip algorithm in a distributed manner [26].
Notice that e�l diag(v)(Fp(k+1)+n) and nl are respectively
the interference and the noise power at lth receiver, which
can be measured from the interference temperature. Thus,
e�l diag(v)Fp(k + 1) can be locally obtained.
Interestingly, using the Friedland-Karlin inequalities in [23],

[27], (18) is equivalent to (11) with a smooth objective
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function given by

U(γ) =

L∑
l=1

(
x(Ω) ◦ y(Ω)

)
l
log γl, (25)

whereΩ ∈ {diag(β)Bl,Dl diag(β)} is the matrix defined for
themth user withm given in (22): If the optimal value for (18)
is 1/ρ(diag(β)Bm) for m in (22), then Ω = diag(β)Bm; If
the optimal value for (18) is 1/ρ(Dm diag(β)) for m in (22),
then Ω = Dm diag(β).

C. Cognitive Radio Network Duality

In this section, we develop a cognitive radio dual network
that achieves an identical SINR performance as the primal
network but with all the link directions reversed. The dual
network is constructed using the same topology as the primal
network but with the links reversed. Thus, we use F� as
the channel fading matrix in the dual network (due to the
reversed link directions). As shown in Figure 1(b), the dual
network reverses the link direction of the primal network, i.e.,
the channel gain from the kth transmitter to the lth receiver
is Gkl in the dual network. The primal and dual networks are
used for the development of a cognitive radio network duality
that is used for distributed algorithm design.
After establishing this network duality, we will turn to solve

(16) for general utility functions that satisfy Assumption 1
using a projected subgradient method [24]. Interestingly, this
method can be made distributed by connecting the gradients
of the spectral radius functions in (16) with the power and
the interference temperature in both the primal and the dual
networks (cf. Figure 1). This is achieved by applying the
cognitive radio network duality that exploits the structure of
the spectral radius functions in (16).
Recall that we have already defined the nonnegative ma-

trices Bl and Dl given in (19) and (20) respectively. The
gradients g ∈ R

L of log ρ(diag(γ)Bl) and log ρ(Dl diag(γ))
at γ are given respectively by [23], [27]:

g = x
(
diag(γ)Bl

) ◦ y( diag(γ)Bl

)
(26)

and
g = x

(
Dl diag(γ)

) ◦ y(Dl diag(γ)
)
, (27)

normalized such that 1�g = 1. We already know from the
reformulation in Section III that the Perron right eigenvectors
of the matrices in (12) and (14) are the optimal transmit power
p� and the optimal interference temperature q� of the primal
network respectively, which also appear in (26) for l = i in
(13) and (27) for l = j in (15) respectively. Observe that the
gradient for the spectral radius function is the Schur product
of the Perron right and left eigenvectors (recall that the Schur
product is the component-wise product of two vectors). This
interesting characterization leads naturally to the development
of a dual network, where a physical interpretation can be given
to the Perron left eigenvectors of the matrices in (12) and (14).
This interesting fact enables a distributed method to compute
g in (26) and (27).
Definition 2: Let the power s and the interference temper-

ature t in the dual network be given respectively by
s = diag(γ)t (28)

and
t = diag(v)(F�s+wι), (29)

where the weight vector wι for the transmit power constraint
in the primal network is assumed to be a virtual received noise
in the dual network, and the index ι corresponds to either i
in (13) or j in (15), which indicates the power or interference
temperature constraint that is tight at optimality of (16). Now,
the SINR of the lth user in the dual network can be given in
terms of s:

SINRD
l (s) =

sl(
diag(v)(F�s+wι)

)
l

. (30)

Observe that the channel matrix in (1) is replaced by its
transpose in (30). However, this dual network must achieve all
possible SINR values that are feasible in the primal network.
Combining (28) and (29), we have

s = diag(γ ◦ v)(F�s+wι) (31)
and

t = diag(v)
(
F� diag(γ)t+wι

)
. (32)

Similar to the derivation of (8) and (9), we can also write
(31) and (32), respectively, as functions of γ:

s(γ) = (I− diag(γ ◦ v)F�)−1 diag(γ ◦ v)wι (33)
and

t(γ) = (I− diag(v)F� diag(γ))−1 diag(v)wι. (34)
Now, (33) and (34) can be used as one-to-one mappings
between γ� and s� as well as between γ� and t� respectively.
Corresponding to the primal network power and interference

temperature constraints, the dual network power and interfer-
ence temperature constraints can be given respectively by (note
the use of ι, where ι can be i in (13) or ι can be j in (15)):

n�s ≤ p̄ι,
and

n�t ≤ q̄ι.

Moreover, it is still true that either the dual network
power constraint or the dual network interference temperature
constraint is tight at optimality. We then have the following
result that connects the transmit powers and interference
temperatures of both the primal and dual networks, which is
used in a distributed algorithm design in Section IV-E.
Lemma 2: The Perron right and left eigenvector of the

nonnegative matrix diag(γ�)Bi, where Bi is given in (19)
with i in (13), satisfy

x
(
diag(γ�)Bi

)
= p� (35)

and

y
(
diag(γ�)Bi

)
= diag(γ� ◦ v)−1s�, (36)

respectively. The Perron right and left eigenvector of the
nonnegative matrix Dj diag(γ

�), where Dj is given in (20)
with j in (15), satisfy, respectively,

x
(
Dj diag(γ

�)
)
= q� (37)

and

y
(
Dj diag(γ

�)
)
= diag(γ�/v)t�. (38)

Finally, Figure 3 summarizes the cognitive radio network
duality that characterizes the transmit power and interference
temperature in the primal and the dual networks as the
Perron right and left eigenvectors of appropriately constructed
nonnegative matrices.
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Cognitive Radio Network Duality
Primal network Dual network

Power
Budget
Constraint

⎧⎨
⎩

p� = x
(
diag(γ� ◦ v)(F + (1/p̄i)nw

�
i )

)
=

(
I− diag(γ� ◦ v)F)−1

diag(γ� ◦ v)n
w�

i p
� ≤ p̄i

↔

↔

s� = diag(γ� ◦ v)y( diag(γ� ◦ v)(F + (1/p̄i)nw
�
i )

)
=

(
I− diag(γ� ◦ v)F�)−1

diag(γ� ◦ v)wi

n�s� ≤ p̄i

Interference
Temperature
Constraint

⎧⎨
⎩

q� = x
(
(I+

1

q̄j − njvj
diag(v)ne�j ) diag(v)F diag(γ�)

)
=

(
I− diag(v)F diag(γ�)

)−1
diag(v)n

e�j q
� ≤ q̄j

↔

↔

t� = diag(γ�/v)−1y
(
(I+

1

q̄j − njvj
diag(v)ne�j ) diag(v)F diag(γ�)

)
=

(
I− diag(v)F� diag(γ�)

)−1
diag(v)wj

n�t� ≤ q̄j

Fig. 3. The cognitive radio network duality illustrates the connection between the primal and the dual networks in terms of both the Perron right and left
eigenvectors of the nonnegative matrices associated with the spectral radius constraints in (16).

D. Interference Load Minimization

In Section III, the constraints of the utility maximization
problem in (10) can be succinctly reformulated as spec-
tral radius constraints, i.e., ρ

(
diag(γ)Bl

) ≤ 1 ∀ l and
ρ
(
Dl diag(γ)

) ≤ 1 ∀ l, where Bl and Dl are given in
(19) and (20) respectively. These spectral radius functions
capture the effect of interference on the feasibility of SINR
assignment. The spectral radius thus plays the role of a useful
measure for interference, which we call the interference load.
This means that a smaller ρ

(
diag(γ)Bl

)
or ρ

(
Dl diag(γ)

)
indicates a smaller interference load on the network, which
leads to a larger feasible SINR region that can be optimized.
On the other hand, the interference load increases with in-
terference and therefore reduces the feasible SINR region.
This connection between the interference load and our utility
maximization problem in Section III will be made precise in
the following. By leveraging both the cognitive radio network
duality in Section IV-C and the interference load minimization
problem (to be introduced below), a distributed algorithm is
then proposed to solve the utility maximization problem in
(11).
First, let us consider the following convex optimization

problem given by:
maximize α�γ̃
subject to ρ

(
diag(eγ̃)Bl

) ≤ 1, l = 1, . . . , L,
ρ
(
Dl diag(e

γ̃)
) ≤ 1, l = 1, . . . , L,

variables: γ̃,

(39)

where Bl and Dl are given in (19) and (20) respectively, γ̃ is
the logarithmic mapping by γ̃ = logγ, and α ∈ R

L
+ is a given

probability vector that is used to approximate U(eγ̃) using its
Taylor series approximation up to the first order terms (cf.
proof of Theorem 3).
Below, it is fruitful to consider the interference load mini-

mization problem that is intimately related to (39) and instead
minimizes a spectral radius function subject to a single linear
constraint:

minimize max
l=1,...,L

{ρ(diag(eη̃)Bl), ρ(Dl diag(e
η̃))}

subject to α�η̃ ≥ 0,
variables: η̃,

(40)

where η̃ is the logarithmic transformation: η̃ = logη. The
following result connects (39) and (40).
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ω
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lo

g
γ

2

γ
�

α =
∇U(γ�)

1�∇U(γ�)

boundary of the feasible
region for Problem (39)

boundary of the feasible
region for Problem (40)

Fig. 4. Illustration of the connection between (39) and (40). Achievable
region for a 2-user example with objective function

∑
l ωl log γl. The channel

gains are given by G11 = 0.69, G12 = 0.12, G21 = 0.13, G22 = 0.70
and the weight is ω = [0.40, 0.60]�. The maximum power and interference
temperature for users are p̄ = [1.50, 1.00]� W and q̄ = [2.50, 3.00]� W
respectively. The noise powers for both users are 1 W. The intersection point
of the direction α and achievable region is the optimal solution. Moreover,
the minimization of (40) also intersects with the optimal solution of (39) at
the boundary of the feasible region.

Lemma 3: Let γ� and η� be the optimal solution of (39)
and (40) respectively, and let ξ� and ζ� be the optimal value
of (39) and (40) respectively. Then, γ� and η� satisfy

γ� =
1

ζ�
η�. (41)

Furthermore, since α is a probability vector, ξ� and ζ�

satisfy
ξ� = − log ζ�.

The formulation of (40) that minimizes the interference
load thus provides a connection (by choosing α to be propor-
tional to the subgradient of the utility function) between the
general utility maximization problem in (10) and its special
case of egalitarian SINR fairness optimization in (18). An
interesting interpretation of Lemma 3 is that the optimal SINR
in the general utility maximization can be scaled relative
to the optimal SINR achieved under the egalitarian SINR
fairness. Figure 4 illustrates the geometric interpretation of
the connection between (39) and (40) by an example using
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(37)
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(8)

(9)

(36)

(38)

(28)

(33)

(34)

(41)

x(diag(γ�)Bi)

x(Dj diag(γ�))

y(diag(γ�)Bi)

y(Dj diag(γ�))

Fig. 5. A summary of the transformation and mapping between the optimal primal power p�, the optimal primal interference temperature q�, the optimal
dual power s�, the optimal dual interference temperature t�, the optimal SINR assignment γ� and the optimal SINR scaling η�. The index i and j are given
in (13) and (15) respectively.

U(γ) =
∑L

l=1 ωl log γl with a positive ω. The relationship
between the various transformation and mappings of the
optimization variables are shown in Figure 5.

E. Utility Maximization Algorithm

In (40), we have shown that it is possible to find a scaling
factor that connects the SINR assignment in (39) (which is
related to (16) through a Taylor’s series first order approxi-
mation) with the egalitarian SINR fairness. This means that
(39) can be first solved by considering (40) to find the scaling
factor, and then to scale the optimal solution of (40) to finally
obtain the solution of (16).
We use the projected subgradient method to solve (40). The

parameter α in (40) is updated iteratively. In particular, at the
(k+1)th iteration, we updateα(k) as the subgradient of U(eγ̃)
at γ̃(k). Thus, instead of solving (16) directly, we replace
the objective function of (16) in a neighborhood of a feasible
point γ̃(k) by its Taylor series approximation (cf. proof of
Theorem 3), which is a successive convex approximation
technique. Meanwhile, the algorithm iterates according to the
subgradient of both the objective function and the constraint
functions. However, computing the gradient of the spectral
radius functions, i.e., the Schur product of the Perron right and
left eigenvectors, requires centralized computation in general.
However, by exploiting the cognitive radio network duality,

this task can be made distributed. Making use of the results
in Section IV-C, we can then obtain a distributed algorithm to
solve (16). Observe that the gradient g ∈ R

L of ρ
(
diag(η)Bl

)
and ρ

(
Dl diag(η)

)
in terms of p, q, s and t are, respectively,

given by (cf. Lemma 2):
g = p ◦ (diag(η ◦ v)−1s

)
(42)

and
g = q ◦ ( diag(η/v)t), (43)

normalized such that 1�g = 1. Furthermore, (42) and (43)
can be rewritten, respectively, as:

gl = pl

( 1

ηlvl

)
sl (44)

and
gl = ql

(ηl
vl

)
tl. (45)

Now, in (44) and (45), the respective variables pl, ql, sl,
tl and ηl can be locally obtained, thus making the gradient
computation distributed. We next use (44) and (45) to obtain
a distributed algorithm based on the projected subgradient
method to solve (10).

Algorithm 2 (Utility Maximization Algorithm):

Initialize η(0), set the step size ν(0) ∈ (0, 1).

1) Compute the weight α(k):
if U(η) is smooth,

α(k) =
∇U(η(k))

1�∇U(η(k))
,

else

α(k) =
ĝ

1�ĝ
, where ĝ satisfies

U(η) ≤ U(η(k)) + ĝ�(η − η(k)) for any feasible η.
end if

2) In the primal network, set the power and interference
temperature output of Algorithm 1 with β = η(k),
which upon its convergence solves the primal network
optimization problem:

maximize min
l=1,...,L

SINRP
l (p)

ηl(k)
subject to w�

l p ≤ p̄l, l = 1, . . . , L,
e�l q ≤ q̄l, l = 1, . . . , L,
q = diag(v)(Fp + n),

variables: p,q

(46)

as p(k) and q(k) respectively.
The computation of this step also provides in addition
the value of ιk, i.e., the ikth power or jkth interfer-
ence temperature constraint that is tight in (46), where
ik = arg max

l=1,...,L
ρ
(
diag(η(k) ◦ v)(F + (1/p̄l)nw

�
l )

)
and jk = arg max

l=1,...,L
ρ
(
diag(v)(F diag(η(k)) +

(1/q̄l)ne
�
l )

)
.

In the dual network, set the power and interference
temperature output of Algorithm 1 with β = η(k) and
with SINRP (p) replaced by SINRD(s) at Algorithm
1’s Step 1 and the normalization at Step 2 of Algo-
rithm 1 max

l=1,...,L
{w�

l p(k + 1)/p̄l, e
�
l diag(v)Fp(k +

1)/(q̄l − nlvl)} replaced by max{n�s(k + 1)/p̄ιk ,
n� diag(v)F�s(k+1)/(q̄ιk−n� diag(v)wιk)}, which
upon its convergence solves the dual network optimiza-
tion problem:

maximize min
l=1,...,L

SINRD
l (s)

ηl(k)
subject to n�s ≤ p̄ιk ,

n�t ≤ q̄ιk ,
t = diag(v)(F�s+wιk),

variables: s, t

(47)
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Fig. 6. Illustration of the convergence of Algorithm 1 with randomly chosen
initial p(0). We plot the trajectory of power for each of the three users in (a),
and plot the trajectory of interference temperature for each of the three users
in (b). We can observe from the figures that the convergence of Algorithm 1
is geometrically fast.

as s(k) and t(k) respectively.
3) Each lth user updates its gradient gl(k) as follows:

if α(k)� logη(k) < 0
gl(k) = αl(k),

else
if ιk = ik
gl(k) = pl(k)sl(k)/(ηl(k)vl), l = 1, . . . , L,

if ιk = jk
gl(k) = ql(k)tl(k)ηl(k)/vl, l = 1, . . . , L.

end if
4) Update η(k + 1):

η(k + 1)← η(k)e−ν(k)(g(k)/1�g(k)).
5) Update ν(k+1) according to Theorem 3 below and go
to Step 1.

Theorem 3: Starting from any initial point η(0), if the step
size ν(k) satisfies

∑∞
k=0 ν(k) =∞,

∑∞
k=0(ν(k))

2 <∞, then
p(k) and q(k) in Algorithm 2 converge to the optimal solution
p� and q� of (10) respectively.
Furthermore, if a constant step size is used in Step 4,

Algorithm 2 is guaranteed to converge to a neighborhood of
the optimal solution.
Remark 4: If U(γ) is smooth, Algorithm 2 solves (40) with

α given by ∇U(γ�)
1�∇U(γ�) , where γ

� is the optimal solution to (10)
(cf. Figure 4).
Remark 5: Since we run Algorithm 1 at each iteration of

Algorithm 2 as an inner loop, Algorithm 2 is a two time-scale
algorithm. At Step 2, we obtain the primal network power
p(k) and the primal network interference temperature q(k)
from the output of Algorithm 1 by using the input weight
parameter η(k). Similarly, we can also obtain the dual network
power s(k) and the dual network interference temperature t(k)
in the same way. This means that p(k), q(k), s(k), and t(k)
are the optimal solutions of Algorithm 1 for a given η(k). The
computation of 1�∇U(η(k)), α(k)� logη(k) and 1�g(k)
can be made distributed by a gossip algorithm [26]. Practical
stopping criterions for solving (46) and (47) can be |pl(k +
1)− pl(k)| ≤ ε and |sl(k + 1)− sl(k)| ≤ ε respectively for a
given small ε.

V. NUMERICAL EXAMPLES

In this section, we provide numerical examples to illustrate
the performance of Algorithm 1 in Section IV-B and Algo-
rithm 2 in Section IV-E, illustrating the convergence properties
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Fig. 7. Illustration of the convergence of Algorithm 2 with randomly chosen
initial η(0). Algorithm 2 is a distributed algorithm. p(k) and q(k) are
obtained from Step 2, which terminates when ε = 10−13 . The number of
iterations in the figure corresponds to the outer loop (slower time-scale). We
plot the trajectory of power for each of the three users in (a), and plot the
trajectory of interference temperature for each of the three users in (b).
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Fig. 8. An illustration of Algorithm 2. All the other parameters are the same
as Figure 7 except that ε = 10−3.

of Algorithms 1 and 2. Recall that an optimization problem
having two different utility functions can be constructed to
yield the same optimal solution for egalitarian SINR fairness
(cf. (25) in Section IV-B). By setting the weight of (25) appro-
priately, and applying Algorithm 1 and Algorithm 2 to solve
the max-min SINR and the weighted sum of logarithmic SINR
utility respectively, we evaluate the numerical convergence of
the power and interference temperature iterates.
We use the following channel gain matrix:

G =

⎡
⎣ 0.69 0.12 0.14

0.13 0.70 0.13
0.14 0.15 0.75

⎤
⎦ ,

and the following weights for the power constraints:
w1 = [ 0.8491 0.9340 0.6781 ]�

w2 = [ 0.7577 0.7431 0.3922 ]�

w3 = [ 0.6555 0.1712 0.7060 ]�.
We set p̄ = [1.50 1.00 1.20]�W and q̄ = [2.50 3.00 2.20]�

W. The noise power of each user is 1 W.
Figure 6 plots the evolution of the power and interference

temperature for three users that run Algorithm 1 with β equal
to 1. We set the initial power vector to p(0) = [0.5 0.5 0.5]�

W, and run Algorithm 1 for 10 iterations before it terminates.
Figure 6 shows that Algorithm 1 converges geometrically fast
to the optimal solution (verifying Theorem 2). The optimal γ�

is [0.3273 0.3273 0.3273]� (verifying Lemma 1).
Figure 7 plots the evolution of the power and interference

temperature for three users that run Algorithm 2. The objective
function that we use in this numerical example is U(γ) =∑L

l=1 ωl log γl, where ω is [0.23 0.41 0.36]�. The sum of
weighted logarithmic SINR satisfies Assumption 1. We set
the initial η to η(0) = [0.82 0.90 1.11]�, and run Algorithm



ZHENG and TAN: COGNITIVE RADIO NETWORK DUALITY AND ALGORITHMS FOR UTILITY MAXIMIZATION 509

500 1000 1500 2000 2500 3000
0.05

0.1

0.15

0.2

0.25

iteration

P
ow

er
 (

W
)

Evolution of Power

User1(Algo. 2)
User2(Algo. 2)
User3(Algo. 2)
User4(Algo. 2)
User5(Algo. 2)

500 1000 1500 2000 2500 3000

1.8

2

2.2

2.4

iteration

In
te

rf
er

en
ce

 (
W

)

Evolution of Interference

User1(Algo. 2)
User2(Algo. 2)
User3(Algo. 2)
User4(Algo. 2)
User5(Algo. 2)

(a) (b)

Fig. 9. An illustration of Algorithm 1 for 30 users. In this figure, we show
the power and interference temperature evolution for only 5 users.

2 for 700 iterations and run Algorithm 1 as an inner loop.
The stopping criterion for the inner loop is ε = 10−13. We
use a constant step size, i.e., ν(k) = 0.04 for all k. Figure
7 shows that Algorithm 7 converges to the optimal solution
(verifying Theorem 3). The optimal p� is [0.31 0.57 0.86]�

W and the optimal q� is [1.72 1.65 1.51]� W so that w�
2 p

�

is equal to p̄2 (verifying Theorem 1). We also adjust the value
of ε to verify the robustness of our algorithm. Figure 8 shows
the evolution of the power and interference temperature when
the inner loop of Algorithm 2, i.e., Algorithm 1, terminates
with ε = 10−3 keeping all the other parameters the same as
those used in Figure 7. Furthermore, we also run Algorithm 2
with a suitably large number of primary and secondary users.
Figure 9 shows the evolution of the power and interference
temperature for five users out of thirty users.
Next, we compare the convergence of the power and inter-

ference temperature in two different problems that have the
same optimal solution. From the second numerical example,
we already know in advance that the second power constraint
is tight at optimality. Thus, we can set U(γ) =

∑L
l=1

(
x(B2)◦

y(B2)
)
l
log γl. Although the solution of these two different

problems are the same, Figure 10 shows that Algorithm 1
converges faster than Algorithm 2.

VI. CONCLUSION

We studied the network utility maximization in a cogni-
tive radio network with both power budget constraints and
interference temperature constraints in this paper. We first
reformulated the problem as one in the SINR domain that
has appropriately constructed spectral radius constraints. The
advantages of our reformulation were that, firstly, it captured
the entire feasible SINR region and, secondly, it decoupled
the SINR assignment for primary and secondary users from
power and interference temperature control. We also studied
a special case of egalitarian fairness utility, which is the
max-min weighted SINR problem using the nonlinear Perron-
Frobenius theory, and a geometrically fast convergent (with
no parameter tuning) algorithm was proposed to solve the
egalitarian fairness problem. We developed a cognitive radio
network duality for the general utility maximization problem
that can be used to decouple the SINR assignment, the
transmit power and the interference temperature allocation.
We leveraged this cognitive radio network duality together
with an interference load minimization problem that is related
to the egalitarian fairness problem to develop a distributed
algorithm to solve the utility maximization problem. Extensive
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Fig. 10. Performance comparison of Algorithm 1 and Algorithm 2 by solving
two equivalent problems, namely (18) and (11) with a utility given by (25).
The plots in (a) and (b) show the trajectories of the power and the interference
temperature iterates respectively for User 1. The number of iterations in the
figure corresponds to the inner loop (faster time-scale). With the weight ω
chosen as in (25), these two algorithms converge to the same solution. As
shown, Algorithm 1 converges much faster than Algorithm 2.

numerical examples demonstrated the good performance of
our algorithms, particularly the flexibility, the fast convergence
time and the robustness to different numbers of primary and
secondary users.

APPENDIX

A. Proof of Theorem 1

Proof: Our proof is based on the Perron-Frobenius theo-
rem [16]. The inequality constraint set in (10) can be written
as:

(1/p̄l)w
�
l p ≤ 1, l = 1, . . . , L (48)

and
(1/q̄l)e

�
l q ≤ 1, l = 1, . . . , L. (49)

Combining (48) and (6) yields
diag(γ ◦ v)(F + (1/p̄l)nw

�
l )p ≤ p, l = 1, . . . , L. (50)

Likewise, combining (49) and (7) yields
diag(v)(F diag(γ)+(1/q̄l)ne

�
l )q ≤ q, l = 1, . . . , L. (51)

We now state the following lemma:
Lemma 4 (The Subinvariance Theorem [16]): Let A be an

irreducible nonnegative matrix, Λ be a positive number, and
υ be a nonnegative vector satisfying

Aυ ≤ Λυ.
Then υ > 0 and Λ > ρ(A). Moreover, Λ = ρ(A) if and only
if Aυ = Λυ.
Letting Λ = 1, A = diag(γ ◦ v)(F+ (1/p̄l)nw

�
l ) or A =

diag(v)(F diag(γ)+(1/q̄l)ne
�
l ) in Lemma 4, the inequalities

(50) and (51) can be written as, respectively,
ρ
(
diag(γ ◦ v)(F + (1/p̄l)nw

�
l )

) ≤ 1, l = 1, . . . , L (52)
and
ρ
(
diag(v)(F diag(γ) + (1/q̄l)ne

�
l )

) ≤ 1, l = 1, . . . , L,
(53)

which form the constraint set in (11). The optimal p� and q�

can simply be obtained from (8) and (9) respectively.
Next, we show that at least one of the constraints in (52)

and (53) become tight at optimality. Observe that the spectral
radius functions in (52) and (53) are monotonically increasing
functions of γ. Since the utility function is increasing in γ,
maximizing the utility function in (11) leads to at least one of
the constraints in (52) and (53) becoming tight at optimality.
This means that the corresponding constraints in (48) and (49)
become tight, i.e., the tight constraint in (48) has the index i
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given in (13), and the tight constraint in (49) has the index j
given in (15).

Furthermore, the optimal solutions of (11) and (10) are both
found at the boundary of the constraint set. This can be verified
as follows. If we have ρ

(
diag(γ� ◦v)(F+(1/p̄i)nw

�
i )

)
= 1

at the optimality of (11), it can be rewritten as
(
diag(γ� ◦

v)(F+(1/p̄i)nw
�
i )

)
p� = p�. By substituting (6), we obtain(

diag(γ�◦v)(F+(1/p̄i)nw
�
i )

)
p� = diag(γ�◦v)(Fp�+n).

Thus, we have w�
i p

� = p̄i.

B. Proof of Lemma 1

Proof: We first rewrite (51) as (I −
1
q̄l
diag(v)ne�l )

−1 diag(v)F diag(γ)q ≤ q, and then
show that this is equivalent to Dl diag(γ)q ≤ q, where

Dl = (I+
1

q̄l − nlvl
diag(v)ne�l ) diag(v)F.

Note that (diag(v)ne�l )
n = nlvl(diag(v)ne

�
l )

n−1, where
n is a positive integer. Applying this recursively, we have
(diag(v)ne�l )

n = (nlvl)
n−1

(
diag(v)ne�l

)
.

Next, we use the von Neumann’s series expansion to obtain(
I− 1

q̄l
diag(v)ne�l

)−1

= I+ lim
N→∞

N∑
n=1

( 1

q̄l
diag(v)ne�l

)n

= I+ lim
N→∞

N∑
n=1

1

q̄l

(nlvl
q̄l

)n−1

diag(v)ne�l

= I+ lim
N→∞

1

q̄l

(1− (nlvl/q̄l)
N−1

1− nlvl/q̄l

)
diag(v)ne�l ,

where we use the geometric series formula in the last equality.

But, lim
N→∞

(
nlvl
q̄l

)N−1

= 0, thus(
I− 1

q̄l
diag(v)ne�l

)−1

= I+
1

q̄l − nlvl
diag(v)ne�l .

Hence, by the Subinvariance Theorem (Lemma 4 in the
proof of Theorem 1), Dl diag(γ)q ≤ q ∀l implies that
ρ(Dl diag(γ)) ≤ 1 ∀l. We thus have the following refor-
mulation of (18) given by:
maximize min

l=1,...,L

γl
βl

subject to log ρ
(
diag(γ)Bl

) ≤ 0, l = 1, . . . , L,
log ρ

(
Dl diag(γ)

) ≤ 0, l = 1, . . . , L,
variables: γ.

(54)

Using a logarithmic mapping of variable, i.e., γ̃ = logγ,
we write the epigraph form of (54) as:
maximize τ
subject to τ ≤ eγ̃l/βl ∀l,

log ρ
(
diag(eγ̃)Bl

) ≤ 0, l = 1, . . . , L,
log ρ

(
Dl diag(e

γ̃)
) ≤ 0, l = 1, . . . , L,

variables: γ̃, τ.

(55)

Let τ� be the optimal solution, equivalently the optimal
value, of (55). We form the full Lagrangian for (55) by
introducing the dual variables λ ∈ R

L
+ for the L inequality

constraints τ ≤ eγ̃l/βl ∀l, μ ∈ R
L
+ for the L inequality

constraints log ρ
(
diag(eγ̃)Bl

) ≤ 0 ∀ l, and ν ∈ R
L
+ for

the L inequality constraints log ρ
(
Dl diag(e

γ̃)
) ≤ 0 ∀ l to

obtain:
L(τ, γ̃,λ,μ,ν) = τ − λ�(τ1− diag(β)−1eγ̃)

−
L∑
l=1

μl log ρ(diag(e
γ̃)Bl)−

L∑
l=1

νl log ρ(Dl diag(e
γ̃)).

(56)
Taking the partial derivative of (56) with respect to γ̃, we have

∂L/∂γ̃ = (diag(β)−1λ) ◦ eγ̃

−
L∑
l=1

μl

(
x(diag(eγ̃)Bl) ◦ y(diag(eγ̃)Bl)

)

−
L∑
l=1

νl
(
x(Dl diag(e

γ̃)) ◦ y(Dl diag(e
γ̃))

)
,

and, setting it to zero, we have at optimality:
(diag(β)−1λ�) ◦ eγ̃�

=
L∑

l=1

μ�
l

(
x(diag(eγ̃

�

)Bl) ◦ y(diag(eγ̃�

)Bl)
)

+
L∑

l=1

ν�l
(
x(Dl diag(e

γ̃�

)) ◦ y(Dl diag(e
γ̃�

))
)
.

(57)
According to the Perron-Frobenius theorem, the Perron right
and left eigenvectors of an irreducible nonnegative matrix
are nonnegative [16]. Since at least one constraint is tight at
optimality and its corresponding dual variable μ�

l or ν�l is
positive for some l, we know from (57) that λ� is a positive
vector. Combining the fact that λ� > 0 with complementary
slackness, we have τ� = γ�

l /βl for all l. This means that
diag(β)−1γ� = τ�1. (58)

Then, (55) can be further written as
maximize τ
subject to τρ

(
diag(β)Bl

) ≤ 1, l = 1, . . . , L,
τρ

(
Dl diag(β)

) ≤ 1, l = 1, . . . , L,
variables: τ.

(59)

Using (58), the constraints in (59) can be further written as
τ� ≤ 1/ρ(diag(β)Bl) and τ� ≤ 1/ρ(Dl diag(β)) for all l.
As such, τ is maximal when τ = min

l=1,...,L
{1/ρ(diag(β)Bl),

1/ρ(Dl diag(β))}.
By the Perron-Frobenius theorem, if τ� = 1/ρ(diag(β)Bl)

for some l, i.e., diag(β)Blp
� = ρ(diag(β)Bl)p

� for some
l, then p� is the Perron right eigenvector of diag(β)Bl

that is normalized to be tight for the lth power constraint,
and q� can be computed in terms of p� and τ� as in
(23); Likewise, if τ� = 1/ρ(Dl diag(β)) for some l, i.e.,
Dl diag(β)q

� = ρ(Dl diag(β))q
� for some l, then q� is the

Perron right eigenvector of Dl diag(β) that is normalized to
be tight for this lth interference temperature constraint, and
p� can be computed in terms of q� and τ� as in (24).

C. Proof of Theorem 2

Proof: Combining diag(β)−1γ� = τ�1 in (58) and γ�
l =

p�l(
diag(v)(Fp� + n)

)
l

in (4), we have

(1/τ�)p� = diag(β ◦ v)(Fp� + n), (60)
Now, we will show that p� in (60) is further constrained
by a monotone norm. Let us rewrite the interference tem-
perature constraints in (49) as follows. By substituting q =
diag(v)(Fp + n) into e�l q ≤ q̄l, we have:

e�l diag(v)(Fp + n) ≤ q̄l, l = 1, . . . , L
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⇒ 1

ql − nlvl
e�l diag(v)Fp ≤ 1, l = 1, . . . , L.

Combining this with (48), p� must satisfy

max
l=1,...,L

{w�
l p

�

p̄l
,
e�l diag(v)Fp�

q̄l − nlvl

}
= 1, (61)

which is a monotone norm constraint in p�. Next, we state the
following nonlinear Perron-Frobenius theory result in [21].
Theorem 4 (Krause’s theorem [21]): Let ‖ · ‖ be a mono-

tone norm on R
L. For a concave mapping f : RL

+ → R
L
+

with f(z) > 0 for z ≥ 0, the following statements hold. The
conditional eigenvalue problem f(z) = λz, λ ∈ R, z ≥ 0,
‖z‖ = 1 has a unique solution (λ∗, z∗), where λ∗ > 0, z∗ > 0.
Furthermore, limk→∞ f̃(z(k)) converges geometrically fast to
z∗, where f̃(z) = f(z)/‖f(z)‖.
Let f(p) = diag(β◦v)(Fp+n), λ = 1/τ , and we constrain

p by the monotone norm ‖ · ‖ given on the lefthand side of
(61). Then, by Theorem 4, p� and τ� are unique, and the
convergence of the iteration

p(k + 1) =
diag(β ◦ v)(Fp(k) + n)

max
l=1,...,L

{w�
l p(k)

p̄l
,
e�l diag(v)Fp(k)

q̄l − nlvl

}
to the unique fixed point p� = f(p�)/‖f(p�)‖ is geometri-
cally fast, regardless of the initial point.

D. Proof of Lemma 2

Proof: From the proof of Theorem 1, we know that at
least one of the inequality constraints in (10) will be tight at
optimality. Thus, if one of the power constraints is tight, we
have equalities that wi

�p� = p̄i and v�s� = p̄i at optimality.
Now, wi

�p� = p̄i is equivalent to diag(γ�)Bip
� = p�. We

then have p� = x(diag(γ�)Bi) which yields (35).
Next, by combining (1/p̄i)v

�s� = 1 and (31), we have:
diag(γ� ◦ v)(F� + (1/p̄i)win

�)s� = s�

⇒ s��
(
F+ (1/p̄i)nw

�
i

)
= diag(γ� ◦ v)−1s��

⇒ (
diag(γ� ◦ v)−1s�

)�
diag(γ�)Bi

= (diag(γ� ◦ v)−1s�)�.
Thus, we have diag(γ� ◦ v)−1s� = y(diag(γ�)Bi) which
yields (36).
From Lemma 1, we know that e�j q

� = q̄j is equivalent

to
(
I+

1

q̄j − njvj
diag(v)ne�j

)
diag(v)F diag(γ�)q� = q�.

We then have q� = x
(
Dj diag(γ

�)
)
which yields (37).

Next, we develop the connection between t� and y
((

I +

1

q̄j − njvj
diag(v)ne�j

)
diag(v)F diag(γ�)

)
.

Set ϕ as the Perron left eigenvector of(
I +

1

q̄j − njvj
diag(v)ne�j

)
diag(v)F diag(γ�)

corresponding to the eigenvalue 1, i.e., ϕ =

y
((

I +
1

q̄j − njvj
diag(v)ne�j

)
diag(v)F diag(γ�)

)
.

We have the following equations:⎧⎪⎪⎨
⎪⎪⎩

t� = diag(v)F� diag(γ�)t� +wj,

ϕ�=ϕ�
((

I+
1

q̄j − njvj
diag(v)ne�j

)
diag(v)F diag(γ�)

)
,

n�t� = q̄j .
(62)

From ϕ� = ϕ�
((

I+
1

q̄j − njvj
diag(v)ne�j

)
diag(v)F diag(γ�)

)

in (62), we can obtain:

ϕ =
(n� diag(v)ϕ

q̄j − njvj

)(
I− diag(γ�)F� diag(v)

)−1

ej ,

where
n� diag(v)ϕ

q̄j − njvj
is a scalar. Since ϕ is an eigenvector that

can be scaled, we have

ϕ =
(
I− diag(γ�)F� diag(v)

)−1

ej.

⇒ ϕ = diag(v)−1
(
diag(v)−1 − diag(γ�)F�

)−1

ej .

On the other hand, the expression for the dual network
power is

s� =
(
I− diag(γ� ◦ v)F�

)−1

diag(γ� ◦ v)wj

=
(
diag(v)−1 − diag(γ�)F�

)−1

diag(γ�)wj .

LettingM =
(
diag(v)−1−diag(γ�)F�)−1

, we then have:

s� =
∑
l �=j

M diag(γ� ◦wj)el + diag(v)ϕ

⇒
L∑

l=1

s� =

L∑
l=1

(∑
l �=j

M diag(γ� ◦wj)el + diag(v)ϕ
)

⇒ Ls� = (L− 1)s� + L diag(v)ϕ
⇒ s� = diag(v)ϕ.

Since, from (28), s = diag(γ)t, thus

ϕ = diag(γ�/v)t�. We thus obtain: y
((

I +

1

q̄j − njvj
diag(v)ne�j

)
diag(v)F diag(γ�)

)
=

diag(γ�/v)t� which yields (38).

E. Proof of Lemma 3

Proof: We first write (40) in the epigraph form as
minimize ζ
subject to log ρ(diag(eη̃)Bl) ≤ log ζ, l = 1, . . . , L,

log ρ(Dl diag(e
η̃)) ≤ log ζ, l = 1, . . . , L,

α�η̃ ≥ 0,
variables: ζ, η̃.

(63)

We use the Karush-Kuhn-Tucker (KKT) conditions to
connect the optimality conditions of (39) and (63). To form
the Lagrangian for (39) and (63), we introduce the dual
variables μ ∈ R

L
+, ν ∈ R

L
+ and λ ∈ R+. The Lagrangian for

(39) and (63) are, respectively,

L(γ̃,μ,ν) = −α�γ̃ +

L∑
l=1

μl log ρ
(
diag(eγ̃)Bl

)

+

L∑
l=1

νl log ρ
(
Dl diag(e

γ̃)
)
,

and

L(η̃, ζ, μ̂, ν̂, λ) = ζ +
L∑
l=1

μ̂l

(
log ρ

(
diag(eη̃)Bl

)− log ζ
)

+

L∑
l=1

ν̂l

(
log ρ

(
Dl diag(e

η̃)
)− log ζ

)
− λα�η̃.

Taking the first-order derivative of L(γ̃,μ,ν) and
L(η̃, ζ, μ̂, ν̂, λ) with respect to γ̃ and η̃ respectively and
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setting them to zero, we have respectively, at optimality:
L∑

l=1

μ�
l

(
x
(
diag(eγ̃

�

)Bl

) ◦ y( diag(eγ̃�

)Bl

))

+

L∑
l=1

ν�l

(
x
(
Dl diag(e

γ̃�

)
) ◦ y(Dl diag(e

γ̃�

)
))

= α,

(64)
and

L∑
l=1

μ̂�
l

(
x
(
diag(eη̃

�

)Bl

) ◦ y( diag(eη̃�

)Bl

))

+

L∑
l=1

ν̂�l

(
x
(
Dl diag(e

η̃�

)
) ◦ y(Dl diag(e

η̃�

)
))

= λ�α.

(65)
Taking the first-order derivative of L(η̃, ζ, μ̂, ν̂, λ) with

respect to ζ, we have at optimality:
∑L

l=1 μ̂
�
l +

∑L
l=1 ν̂

�
l = ζ�.

Since the Schur product of the Perron right and left
eigenvectors can be normalized as a probability vector, we
sum both the lefthand-side and righthand-side entries of
the vector equations in (64) and (65) to obtain respectively∑L

l=1 μ
�
l +

∑L
l=1 ν

�
l = 1 and

∑L
l=1 μ̂

�
l +

∑L
l=1 ν̂

�
l = λ�.

Thus, we have ζ� = λ� and ζ
(∑L

l=1 μ
�
l +

∑L
l=1 ν

�
l

)
=∑L

l=1 μ̂
�
l +

∑L
l=1 ν̂

�
l , respectively.

Leveraging the equations that x
(
diag(eη̃

�

)Bl

)
=

x
(
diag(ζ�eη̃

�

)Bl

)
, x

(
Dl diag(e

η̃�

)
)
= x

(
Dl diag(ζ

�eη̃
�

)
)
,

y
(
diag(eη̃

�

)Bl

)
= y

(
diag(ζ�eη̃

�

)Bl

)
, and

y
(
Dl diag(e

η̃�

)
)

= y
(
Dl diag(ζ

�eη̃
�

)
)
for all l, we

have eγ̃
�

= 1
ζ� e

η̃�

, i.e., γ� = 1
ζ�η

�.
Now, we prove the connection between the optimal value

of (39) and that of (40) by solving the following equations:

eγ̃
�

=
1

ζ�
eη̃

�

,α�γ̃� = ξ�,α�η̃� = 0,
L∑
l=1

αl = 1. We thus

deduce that ξ� = − log ζ�.

F. Proof of Theorem 3

Proof: Since, under Assumption 1, (16) is a convex
optimization problem, we can solve it by a successive convex
approximation technique. In particular, if U(eγ̃) is smooth,
we replace the objective function of (16) by its Taylor series
approximation (up to the first order terms):

U(eγ̃) ≈ U(eγ̂) +∇U(eγ̂)�(γ̃ − γ̂),
where γ̂ is any feasible point. At the (k + 1)th iteration,
we compute a feasible γ̃(k + 1) by solving the (k + 1)th
approximation problem:
minimize ∇U(eγ̂(k))�(γ̃ − γ̃(k))
subject to log ρ(diag(eγ̃)Bl) ≤ 0, l = 1, . . . , L,

log ρ(Dl diag(e
γ̃)) ≤ 0, l = 1, . . . , L,

variables: γ̃,

(66)

where γ̃(k) is the optimal solution of the kth approximation
problem. This (k+1)th approximation problem has a problem
structure similar to (39). We can then set α := α(k) to be
∇U(eγ̂(k)) in (39) and set the objective function in (39) as
α(k)�γ̃.
In addition, from Lemma 3, solving (39) is equivalent to

solving (40). An interpretation of Lemma 3 is as follows:
α� logη(k) gives the directional derivative of U(η(k)) at
logη(k) in the direction logη(k), which is orthogonal at the
optimal point. Therefore, we let the lower bound of α�η be

0. On the other hand, if U(eγ̃) is non-smooth, then α is its
subgradient according to Definition 1.
Next, by making use of the projected subgradient method

to solve (66), Algorithm 2 computes the gradient in a
distributed way. As stated in Lemma 2, by replacing γ�

with η(k), we have p(k) = x(diag(η(k))Bl), s(k) =
diag(η(k))y(diag(η(k))Bl), q(k) = x

(
Dl diag(η(k))

)
, and

t(k) = diag(η(k))−1y
(
Dl diag(η(k))

)
. We also have that

the gradient g ∈ R
L of the constraint set in (66) can

be given respectively by (42) and (43) in terms of p(k),
q(k), s(k) and t(k). Then the gradient can be written as
in Step 3 of Algorithm 2 as gl(k) = pl(k)sl(k)/(ηl(k)vl)
or gl(k) = ql(k)tl(k)ηl(k)/vl for the lth user if its power
(corresponding to the index ik) or interference temperature
constraints (corresponding to the index jk) are violated respec-
tively. After the gradient update, the scaling factor is updated
by η(k + 1) = eη̃(k+1) = η(k)e−ν(k)(g(k)/1�g(k)).
In particular, when we use a diminishing step size rule

in [24], i.e.,
∑∞

k=0 ν(k) = ∞,
∑∞

k=0(ν(k))
2 < ∞, the

projected subgradient method is guaranteed to converge to
the optimal solution of (40). This proves the convergence of
Algorithm 2.
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