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Abstract—This work investigates the optimality of compress-
and-forward (CF) type relaying in wireless networks when the
relay does not know the codebooks used by the sources. The relay
is called oblivious for this reason. The relay-destination links are
assumed to be out-of-band with finite capacity. We study two
multi-source relay networks, namely the multiple access relay
channel (MARC) and the interference relay channel (IFRC), both
with an oblivious relay. For the MARC with an oblivious relay,
we derive a new outerbound and show that the capacity region
can be established using a generalized CF (GCF) scheme, where
the destinations jointly decode the compression indices and the
source messages. In particular, we observe that, for multi-source
relay networks, GCF scheme achieves higher individual rates
than the conventional CF scheme with sequential decoding of
compression indices and source messages. For the IFRC with
an oblivious relay, we focus on the case where the destinations
know all the codebooks used by the sources. We establish a
new strong interference condition, under which we derive a new
outerbound and show that it is achievable using GCF scheme,
thus establishing the capacity region of IFRC with an oblivious
relay.

I. INTRODUCTION

Relaying is a fundamental operation in a wireless network.

The simplest channel that models this operation is the classical

relay channel with one source, one destination and one relay, in

the context of which various relaying strategies have been pro-

posed [1], [2]. The capacity of the relay channel is known for

special cases, e.g. [1] and [2], where the optimality of decode-

and-forward (DF), hash-and-forward (HF) and compress-and-

forward (CF) is established respectively. For multi-user relay

networks, the multiple access relay channel (MARC) and

interference relay channel (IFRC) have been studied in [3]–

[6]. The capacity for MARC and IFRC are also only known

under special conditions using DF [3], [5].

A default assumption for analysis of the models above is

that all codebooks used by the sources are known at the relay.

In future wireless networks, the wireless devices for different

applications may co-exist in the same area sharing the same

resources, and the mobility can cause frequent changes in

the distribution of the wireless devices. Exchanging codebook

information could then lead to excessive overhead. It is thus

interesting to investigate the fundamental performance limits

of a network when the relay nodes do not have the codebook

information.

To model the uncertainty about the codebook information at

the relay, i.e., an oblivious relay, reference [7] has proposed a

model which uses randomized encoding at the source, and the

source shares some common randomness about the encoding

function, i.e., the codebook information, with the destination.

We can model the uncertainty about the codebook information

at the relay by not informing relay the common randomness of

the codebook. This idea is further developed in [8], which has

established the capacity of the primitive relay channel with an

oblivious relay using CF relaying, where the term primitive

refers to the relay-destination links being out-of-band and of

finite-capacity [2].

When the uncertainty of codebook information is incorpo-

rated in the model, the decoding operation of IFRC is further

classified as interference-aware decoding and interference-
oblivious decoding in reference [8]. For the primitive IFRC

(PIFRC) with interference-oblivious decoding, reference [8]

established the capacity region using CF relaying and treating

interference as noise at the destinations. This work also

investigated the PIFRC with interference-aware decoding, and

the sum capacity is established using CF relaying when the

destinations have the same statistics in their received signals,

which reduces the channel to primitive MARC (PMARC) with

an oblivious relay. However, the optimality of CF scheme with

respect to the individual rates for PMARC with an oblivious

relay is still unknown. In addition, the capacity region of the

general PIFRC with an oblivious relay under interference-

aware decoding is unknown.

In this paper, we make progress towards understanding the

optimal relaying strategies under oblivious relaying frame-

work. Specifically, we establish the optimality of a generalized

CF (GCF) scheme, where the destinations jointly decode the

compression index and source messages, in contrast with the

CF scheme, where the destinations decode compression index

and source messages in a sequential manner. For the PMARC

with an oblivious relay, we derive new outerbounds and show

that GCF indeed achieves the entire capacity region. We also

show that the GCF can outperform CF in terms of individual

rate. We then focus on the PIFRC with an oblivious relay

under interference-aware decoding. We demonstrate a new

strong interference condition, under which we derive new

outerbounds and show that the capacity region of the PIFRC
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with an oblivious relay can be established using GCF.

II. SYSTEM MODEL

We consider a general primitive multiuser network with M
sources and K destinations assisted by an oblivious relay.

The model is then specified into MARC and IFRC in the

subsequent sections. We define M = {1, 2, · · · ,M} as the

index set of the sources and K = {1, 2, · · · ,K} as the index

set of the destinations. We define the message set at source i
as Wi = {1, 2, · · · , 2nRi}, and the alphabet for source i as Xi.

We also define the set of codebooks at source i as all possible

combinations of length n codewords for each message, where

the codewords consist of symbols chosen from the alphabet.

The number of codebooks is thus |Xi|n2nRi
for source i.

We define an index set of all the codebooks for source i as

Fi = {1, 2, · · · , |Xi|n2nRi }.

Definition of the source encoder: We follow the definition

in [8] to allow time sharing. We define a (n,R1, R2, · · · , RM )
code for the M -source K-destination channel assisted by an

oblivious relay with time-sharing as (PFi|Qn , φn
i ) (i ∈ M),

where PFi|Qn(fi|qn) is the probability of choosing the code-

book fi ∈ Fi conditioned on the time sharing sequence qn ∈
Qn. φn

i is the encoding function such that xn
i = φn

i (wi, fi),
where wi ∈ Wi. The probability of selecting the codebook fi
for source i conditioned on qn is

PFi|Qn(fi|qn) =
2nRi∏
wi=1

PXn
i |Qn(φn

i (wi, fi)|qn) (1)

where PXn
i |Qn(xn

i |qn) =
∏n

t=1 PXi|Q(xi,t|qt).
Note that the codebook and message are selected indepen-

dently, i.e.,

PFiWi|Qn(fi, wi|qn) = PFi|Qn(fi|qn) · 2−nRi . (2)

Based on this formulation, we have

PXn
i |Qn(xn

i |qn) =
n∏

j=1

PXi|Q(xi,j |qj), (3)

PY n
i |Qn(yni |qn) =

n∏
j=1

PYi|Q(yi,j |qj), (4)

i.e., without the codebook information, the destination sees

the transmitted sequence from the source and its received

sequence as generated independently. This relation can be

derived following Lemma 1 in [7]. Note that the randomized

selection of the codebook is only to model the uncertainty of

the codebook at oblivious nodes, and it does not represent the

actual communication scenario. More detailed explanation on

the system model can be found in [7] and Remark 2-4 in [8].

Definition of the channel: The channel is discrete memo-

ryless, and consists of M input alphabets and K + 1 output

alphabets, a channel transition probability, and K out-of-band

finite capacity links from the relay to the destinations, i.e.,

XM, p(y1y2 · · · yKyR|x1x2 · · ·xM ),YK,YR, CK. (5)

1S

2S

R DC

Fig. 1. Primitive multiple access relay channel with an oblivious relay.

Definition of the relay encoder: The relay does not know the

codebooks used by the sources. It communicates to each des-

tination with an out-of-band finite capacity link. The messages

are generated according to an encoding function

φn
R : Yn

R ×Qn → S1 × S2 · · · SK (6)

with Sk = {1, 2, · · · , 2nCk}, k ∈ K. We denote

(S1, S2, · · · , SK) = φn
R(Y

n
R |qn) as the messages generated

by the relay.

Definition of the decoder: We assume that the destinations

know all the codebooks used by the sources. We consider both

multicast (MC) and unicast (UC) transmissions. For multicast

transmission, i.e., each source wishes to transmit a message to

all destinations, we define the decoding function at destination

j ∈ K as

gMC
j : Qn×F1×F2 · · · FM ×Sj ×Yn

j → W1×W2 · · ·WM .
(7)

A set of rates (R1, R2, · · · , RM ) is achievable if there

exists (PFi|Qn , φn
i ) for all i ∈ K such that (Ŵ i

1, · · · , Ŵ i
M ) =

gMC
i (Qn, F1, · · · , FM , Si, Y

n
i ), and Pr{∪M

i=1 ∪K
j=1 Ŵ j

i �=
Wi} → 0 as n → ∞.

For unicast transmission, we assume that M = K, i.e.,

each source only wishes to transmit a message to its intended

destination, we define the decoding function at destination j ∈
M as

gUC
j : Qn ×F1 ×F2 · · · FM × Sj × Yn

j → Wj . (8)

A set of rates (R1, R2, · · · , RM ) is achievable if there

exists (PFi|Qn , φn
i ) for all i ∈ K such that Ŵi =

gUC
i (Qn, F1, · · · , FM , Si, Y

n
i ), and Pr{∪M

i=1Ŵi �= Wi} → 0
as n → ∞.

III. CAPACITY REGION FOR THE MULTIPLE ACCESS

CHANNEL WITH AN OBLIVIOUS RELAY

In this section, we study the primitive multiple access

channel (PMARC) with an oblivious relay, i.e., M = 2,K = 1
for multicast transmission, which is shown in Figure 1. The

relay-destination link is out-of-band with finite capacity C,

and we denote the message transmitted from relay to the

destination as S.
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A. Main Result

Theorem 1: The following rate region is the capacity region

of PMARC with oblivious relaying:

R1 < I(X1; ŶRY |X2Q) (9)

R1 < I(X1;Y |X2Q) + C − I(YR; ŶR|X1X2Y Q) (10)

R2 < I(X2; ŶRY |X1Q) (11)

R2 < I(X2;Y |X1Q) + C − I(YR; ŶR|X1X2Y Q) (12)

R1 +R2 < I(X1X2; ŶRY |Q) (13)

R1 +R2 < I(X1X2;Y |Q) + C − I(YR; ŶR|X1X2Y Q)
(14)

for all distributions

p(q)p(x1|q)p(x2|q)p(ŷR|yRq) (15)

Proof: The achievability can be proved by using the GCF

relaying, which is first proposed in [9] for the relay channel

and then generalized to multiuser networks in [6]. The detailed

scheme for PMARC can be found in [10]. For outerbounds,

we need to utilize the property (3) and appropriately define

the random variable ŶR. To illustrate the proof approach with

clarity, we only provide the proof of the individual rates. The

sum rate upperbounds can be derived in the same fashion and

thus are omitted. For details, see [10]. For the individual rate

R1, we have

nR1 = H(W1) (16)

= H(W1|Q′) (17)

≤ I(W1;Y
nSF1F2|Q′W2) + nεn (18)

= I(W1;F1F2|Q′W2) + I(W1;Y
nS|Q′W2F2F1) + nεn

(19)

≤ I(F1W1;Y
nS|Q′W2F2) + nεn (20)

≤ I(Xn
1 ;Y

nS|Q′Xn
2 ) + nεn (21)

where Q′ = Qn, εn → 0 as n → ∞ and (19) follows from

the independence between W1 and F1F2. Due to properties

(3) and (4), we have that the symbols from source sequences

are independent for each instance i conditioned on Q′ without

conditioning on the codebook information. When we combine

this property and the memoryless property of the channel,

together with the definition of relay encoder, we have the

Markov chain between the random variables illustrated in

Figure 2.

We can further bound (21) with two different methods.

I(Xn
1 ;Y

nS|Q′Xn
2 ) (22)

= H(Xn
1 |Q′Xn

2 )−H(Xn
1 |Y nSQ′Xn

2 ) (23)

=
n∑

i=1

H(X1i|X2iQ
′)−

n∑
i=1

H(X1i|Y nSQ′Xn
2 X

i−1
1 ) (24)

≤
n∑

i=1

H(X1i|X2iQ
′)−

n∑
i=1

H(X1i|ŶRiX2iYiQ
′) (25)

=
n∑

i=1

I(X1i; ŶRiYi|X2iQ
′) (26)

Q′

1
1
iX −

1
2
iX −

1,iX

2,iX

1, 1
n
iX +

2, 1
n

iX +

1
1
iY − 1

R
iY −

1,iY ,R iY

1, 1
n
iY + , 1

n
R iY +

1
1
iY −

1
R
iY −

1,iY

,R iY

1, 1
n
iY +

, 1
n

R iY +

S

Fig. 2. Markov chain between random variables.

where (24) follows from the independence between source

inputs and the property (3), and in (25), since conditioning

reduces entropy, we add some random variables in the condi-

tion of the second term to form ŶRi, which is defined as

ŶRi = SXi−1
1 Xn

1,i+1X
i−1
2 Xn

2,i+1Y
i−1Y n

i+1Y
i−1
R . (27)

We can also bound the term (21) in the following way:

I(Xn
1 ;Y

nS|Q′Xn
2 ) (28)

= I(Xn
1 ;Y

n|Q′Xn
2 ) + I(Xn

1 ;S|Q′Xn
2 Y

n) (29)

= H(Y n|Q′Xn
2 )−H(Y n|Q′Xn

2 X
n
1 ) +H(S|Q′Xn

2 Y
n)

−H(S|Q′Xn
1 X

n
2 Y

n) (30)

≤
n∑

i=1

H(Yi|X2iQ
′)−

n∑
i=1

H(Yi|X1iX2iQ
′) +H(S)

− (H(S|Q′Xn
1 X

n
2 Y

n)−H(S|Q′Xn
1 X

n
2 Y

nY n
R )) (31)

≤
n∑

i=1

I(X1i;Yi|X2iQ
′) + nC − I(S;Y n

R |Q′Xn
1 X

n
2 Y

n)

=
n∑

i=1

I(X1i;Yi|X2iQ
′) + nC

−
n∑

i=1

I(S;YRi|Q′Xn
1 X

n
2 Y

nY i−1
R ) (32)

=

n∑
i=1

I(X1i;Yi|X2iQ
′)−

n∑
i=1

(
H(YRi|Q′Xn

1 X
n
2 Y

nY i−1
R )

−H(YRi|SQ′Xn
1 X

n
2 Y

nY i−1
R )

)
+ nC (33)

=
n∑

i=1

I(X1i;Yi|X2iQ
′) + nC −

n∑
i=1

(
H(YRi|Q′X1iX2iYi)

−H(YRi|ŶRiX1iX2iYiQ
′)
)

(34)

=
n∑

i=1

I(X1i;Yi|X2iQ
′) + nC −

n∑
i=1

I(ŶRi;YRi|X1iX2iYiQ
′)

where (34) follows from the Markov chain in Figure 2 and

the way we define the random variable ŶRi. The result can be

obtained by introducing another time sharing random variable
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Q′′ ∼ U({1, 2, · · · , n}) and setting Q = (Q′′, Q′). The way

we define the random variable ŶRi implies the distribution

(15). The individual rate R2 can be obtained in a similar

fashion.

Remark 1: The result can be readily extended to M -user

MARC with an oblivious relay, or a multicast network with

M sources and K destinations.

B. Comparison between GCF and CF relaying

It is shown that GCF and CF achieve the same rate for

single source single destination channel with relays [9], [11].

For channels with multiple destination, it is shown that GCF

outperforms CF in [6]. For channels with two sources and

one destination, i.e., the MARC, it is interesting to further

investigate the performance between the two schemes. Note

that in the following analysis, we focus on the model where

the relay-destination link is out-of-band with finite capacity

for the clarity of illustration. The discussion on the achievable

rate region using GCF and CF holds regardless the relay is

oblivious or not.

The achievable rate region for PMARC due to the CF

strategy can be obtained as follows:

R1 < I(X1; ŶRY |X2Q) (35)

R2 < I(X2; ŶRY |X1Q) (36)

R1 +R2 < I(X1X2; ŶRY |Q) (37)

with

C ≥ I(YR; ŶR|Y Q) (38)

for all distributions

p(q)p(x1|q)p(x2|q)p(ŷR|yRq). (39)

We can see that the maximization of the rates also depends

on the random variable ŶR satisfying (38). It is easy to see

that the maximum achievable individual rate for one user, i.e.,

the rate point (R1, 0) or (0, R2) and the maximum achievable

sum rate are the same for the two schemes, following an

argument similar to the one used in [9]. For the other rate

points on the border of the rate region, say the maximum

of rate R1 for some fixed R2, the rate due to GCF is

potentially larger than that of CF. To see this, the maxi-

mum of rate (35) is obtained with respect to all distribution

p(q)p(x1|q)p(x2|q)p(ŷR|yRq) such that (38) is satisfied. For

the rate of GCF, which is min ((9), (10)), we first constrain the

set of input distribution to the set which guarantees that (9)

is the minimum of the two individual rates. This constraint

on input distribution only reduces the maximum rate R1

of the GCF scheme. The maximum of (9) is then obtained

with respect to the distribution p(q)p(x1|q)p(x2|q)p(ŷR|yRq)
such that C ≥ I(YR; ŶR|Y X2Q). It is easy to see that

I(YR; ŶR|Y Q) ≥ I(YR; ŶR|Y X2Q). Thus the maximization

of (9) is potentially larger than (35) since the distribution can

be chosen from a larger set. The achievable rate region using

GCF is thus potentially larger than that of CF.

1S

2S

R

1D

1C

2D

2C

Fig. 3. Primitive interference relay channel with an oblivious relay.

IV. CAPACITY REGION FOR THE PRIMITIVE

INTERFERENCE RELAY CHANNEL WITH AN OBLIVIOUS

RELAY

In this section, we present a result for the primitive inter-

ference relay channel (PIFRC) with an oblivious relay, i.e.,

M = 2,K = 2 for unicast transmission. We assume that the

relay connects to destination 1 (2) with an out-of-band link

with capacity C1 (C2) and the destinations are assumed to be

interference-aware, which is shown in Figure 3.

Theorem 2: The following rate region is the capacity region

for the PIFRC with an oblivious relay:

R1 < I(X1; ŶR1Y1|X2Q) (40)

R1 < I(X1;Y1|X2Q) + C1 − I(YR; ŶR1|X1X2Y1Q) (41)

R2 < I(X2; ŶR2Y2|X1Q) (42)

R2 < I(X2;Y2|X1Q) + C2 − I(YR; ŶR2|X1X2Y2Q) (43)

R1 +R2 < I(X1X2; ŶR1Y1|Q) (44)

R1 +R2 < I(X1X2;Y1|Q) + C1 − I(YR; ŶR1|X1X2Y1Q)
(45)

R1 +R2 < I(X1X2; ŶR2Y2|Q) (46)

R1 +R2 < I(X1X2;Y2|Q) + C2 − I(YR; ŶR2|X1X2Y2Q)
(47)

under the condition that the channel transition probability

prompts the following strong interference conditions

I(X1;Y1YR|X2) ≤ I(X1;Y2|X2) (48)

I(X2;Y2YR|X1) ≤ I(X2;Y1|X1) (49)

for all distributions

p(q)p(x1|q)p(x2|q)p(ŷR1|yRq)p(ŷR2|yRq) (50)

Proof: The achievability follows from the GCF relaying,

which is similar to the one we used for Theorem 1. For

the outerbounds, we need to utilize the strong interference

condition (48) and (49). In fact, the conditions (48) and (49)

implies that (see [12] for details)

I(Xn
1 ;Y

n
1 Y n

R |Xn
2 Q) ≤ I(Xn

1 ;Y
n
2 |Xn

2 Q) (51)
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I(Xn
2 ;Y

n
2 Y n

R |Xn
1 Q) ≤ I(Xn

2 ;Y
n
1 |Xn

1 Q) (52)

Since S1 and S2 are functions of Y n
R , we have

I(Xn
1 ;Y

n
1 S1|Xn

2 Q) ≤ I(Xn
1 ;Y

n
1 Y n

R |Xn
2 Q)

≤ I(Xn
1 ;Y

n
2 |Xn

2 Q) ≤ I(Xn
1 ;Y

n
2 S2|Xn

2 Q) (53)

I(Xn
2 ;Y

n
2 S2|Xn

1 Q) ≤ I(Xn
2 ;Y

n
2 Y n

R |Xn
1 Q)

≤ I(Xn
2 ;Y

n
1 |Xn

1 Q) ≤ I(Xn
2 ;Y

n
1 S1|Xn

1 Q) (54)

due to the fact that (S1, S2) = f(Y n
R ).

The outerbounds for individual rates can be obtained by

setting

ŶR1,i = S1X
i−1
1 Xn

1,i+1X
i−1
2 Xn

2,i+1Y
i−1
1 Y n

1,i+1Y
i−1
R , (55)

ŶR2,i = S2X
i−1
1 Xn

1,i+1X
i−1
2 Xn

2,i+1Y
i−1
2 Y n

2,i+1Y
i−1
R . (56)

using similar steps as in Theorem 1.

For the sum rate outerbounds, we have

n(R1 +R2)

= H(W1) +H(W2) (57)

= H(W1|Q) +H(W2|Q) (58)

≤ I(W1;Y
n
1 S1F1F2|W2Q) + I(W2;Y

n
2 S2F1F2|Q) + nεn

= I(W1;F1F2|QW2) + I(W1;Y
n
1 S1|QW2F1F2)

+ I(W2;F1F2|Q) + I(W2;Y
n
2 S2|QF1F2) + nεn (59)

≤ I(W1;Y
n
1 S1|QF2W2F1) + I(W2F2;Y

n
2 S2|QF1) + nεn

≤ I(Xn
1 ;Y

n
1 S1|QXn

2 F1) + I(Xn
2 ;Y

n
2 S2|QF1) + nεn (60)

≤ I(Xn
1 ;Y

n
2 S2|QXn

2 F1) + I(Xn
2 ;Y

n
2 S2|QF1) + nεn (61)

= I(Xn
1 X

n
2 ;Y

n
2 S2|Q) (62)

From this we can derive the bounds (46) and (47) following

from similar steps as in Theorem 1, and the bounds (44) and

(45) can be obtained using condition (49).

With the auxiliary random variables specified by (55) and

(56), the probability distribution is factorized as

p(q)p(x1|q)p(x2|q)p(ŷR1ŷR2|yRq)p(y1y2yR|x1x2) (63)

Note that the input distribution

p(q)p(x1|q)p(x2|q)p(ŷR1|yRq)p(ŷR2|yRq)p(y1y2yR|x1x2)
(64)

yields the same rate region as the one specified by (63). This is

because all the rates only depend on the marginal distribution

p(q)p(x1|q)p(x2|q)p(ŷR1|yRq)p(y1yR|x1x2), (65)

p(q)p(x1|q)p(x2|q)p(ŷR2|yRq)p(y2yR|x1x2). (66)

For each distribution factorized as (63), we can always find

a distribution factorized as (64) that yields the same marginal

distribution (65) and (66).

It then suffices to constrain the probability distribution to

the form of (63).

Discussion on the strong interference condition: To get

a more intuitive understanding of the strong interference

conditions, we further investigate the Gaussian channel

Y1 = h11X1 + h21X2 + Z1 (67)

Y2 = h12X1 + h22X2 + Z2 (68)

YR = h1RX1 + h2RX2 + ZR, (69)

where Z1, Z2, ZR ∼ N (0, 1).
It can be shown that an equivalent condition for the strong

interference condition (48) and (49) is

h2
12 ≥ h2

11 + h2
1R h2

21 ≥ h2
22 + h2

2R, (70)

i.e., the strength of the interference link is greater than the sum

of the direct link and the corresponding source-relay link.

V. CONCLUSION

In this work, we have established the merits of generalized

compress-and-forward (CF) type relaying when the relay is

oblivious. We have focused on primitive multi-user networks

with an oblivious relay where the relay-destination links

are out-of-band with finite capacity. We have established

the capacity region of the primitive multiple access channel

(PMARC) with an oblivious relay by deriving new outer-

bounds and using the generalized CF (GCF) relaying scheme

for achievability. Additionally, for the primitive interference

relay channel with an oblivious relay, we have established a

strong interference condition, under which the GCF scheme

achieves capacity region. The results obtained in this paper can

provide insights towards designing optimal relaying strategies

for practical wireless networks, where the codebook informa-

tion is not present at the relay nodes.
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