
1

Keyword-driven SPARQL Query Generation
Leveraging Background Knowledge
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Abstract—The search for information on the Web of Data
is becoming increasingly difficult due to its dramatic growth.
Especially novice users need to acquire both knowledge about
the underlying ontology structure and proficiency in formulating
formal queries (e. g. SPARQL queries) to retrieve information
from Linked Data sources. So as to simplify and automate the
querying and retrieval of information from such sources, we
present in this paper a novel approach for constructing SPARQL
queries based on user-supplied keywords. Our approach utilizes
a set of predefined basic graph pattern templates for generating
adequate interpretations of user queries. This is achieved by
obtaining ranked lists of candidate resource identifiers for the
supplied keywords and then injecting these identifiers into
suitable positions in the graph pattern templates. The main
advantages of our approach are that it is completely agnostic
of the underlying knowledge base and ontology schema, that it
scales to large knowledge bases and is simple to use. We evaluate
17 possible valid graph pattern templates by measuring their
precision and recall on 53 queries against DBpedia. Our results
show that 8 of these basic graph pattern templates return results
with a precision above 70%. Our approach is implemented as
a Web search interface and performs sufficiently fast to return
instant answers to the user even with large knowledge bases.
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I. INTRODUCTION

With the dramatic growth of the Linked Data Web (currently
amounting to 27 Billion triples1) it is increasingly difficult
for end users to find the information they are looking for.
Services such as Sindice [23], Sig.ma [22], Swoogle [5]
or Watson [4] offer simple search services2, but are either
restricted to the retrieval of single RDF documents or in
the case of Sig.ma to the retrieval of information about a
single entity from different sources. Some services (such
as e. g. http://lod.openlinksw.com) on the other hand load
the complete Data Web into a large triple store cluster and
enable issuing SPARQL queries on top of it. However, in
order to express their information needs in terms of SPARQL
queries, users have to (a) understand the SPARQL concepts,
(b) understand the SPARQL syntax (in absence of a a visual
query builder) and (c) know what information structures are
actually available in order to formulate queries that also return
results. To enable lay users to access the Data Web, it becomes
necessary to simplify the access to the Data Web by providing

1http://www4.wiwiss.fu-berlin.de/lodcloud/state/ (March 4th, 2011)
2These systems are available at: http://sindice.com, http://sig.ma, http://swoogle.

umbc.edu, http://kmi-web05.open.ac.uk/WatsonWUI

search interfaces that resemble the search interfaces commonly
used on the document-oriented Web. However, because queries
based on natural language (NL) are inherently ambiguous,
their precise interpretation is extremely challenging. While
SPARQL queries permit to express unambiguously which
entities and relations are relevant for the query, keyword-based
search as implemented in current web search engines does not
permit the explicit expression of relations. Services such as
Poweraqua3[16] demand from the user to enter a question in
natural language, but this is often inconvenient because most
users prefer to obtain information by the lowest number of
keywords4. Another obstacle to the realization of this approach
lies in the sheer size of the Data Web, which requires very
efficient and scalable query processing algorithms.

In this paper, we propose a novel approach for generating
SPARQL queries based on user-supplied keywords. Our ap-
proach presupposes the availability of background knowledge
in the form of a set of Linked Data sources upon which the
user wants her search to be carried out. Based on a set of
user-supplied keywords, we first compute a list of candidate
IRIs (Internationalized Resource Identifier) for each of the
keywords issued by the user. In a second step, we restrict the
set of valid IRIs to those which are related to each other via a
link in the background knowledge. Finally, we use the filtered
set of IRIs to generate SPARQL queries that aim to encompass
the semantics of the query supplied by the user. We currently
use DBpedia as background knowledge, but the approach is
easily transferable to the whole Data Web. Since the approach
is based on simple operations, it can generate and execute
SPARQL queries very efficiently. Another advantage of this
approach is that it is completely agnostic of the underlying
knowledge base as well as its ontology schema.

This paper is organized as follows: In Section II we present
the background definitions and an overview of the approach
along with our method for choosing candidate IRIs. The
subsequent Section III introduces all possible graph pattern
templates for pairs of IRIs. In Section IV we describe our
approach to the construction of SPARQL queries based on
graph pattern templates. We elaborate on our experimental
setup and the selection of graph patterns, as well as analyze
our results in Section V. The related work is reviewed in
Section VI. We close with concluding remarks and an outlook

3http://poweraqua.open.ac.uk:8080/poweraqua2
4http://www.keyworddiscovery.com/keyword-stats.html

http://lod.openlinksw.com
http://www4.wiwiss.fu-berlin.de/lodcloud/state/
http://sindice.com
http://sig.ma
http://swoogle.umbc.edu
http://swoogle.umbc.edu
http://kmi-web05.open.ac.uk/WatsonWUI
http://poweraqua.open.ac.uk:8080/poweraqua2
http://www.keyworddiscovery.com/keyword-stats.html
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on future work in the last section.

II. APPROACH

A. Preliminaries

The basic assumption underlying our approach is that nat-
ural language queries cannot always be converted into formal
queries automatically. This is due to the meaning of some
of the query elements being either unknown, ambiguous, or
implicit. For example, in the query ’Which are the islands in
Germany?’, the relation between Germany and islands is indi-
cated by are, but the precise relationship is are located in. The
problem of mapping a user query to a formal query gets even
more complex when the user uses keywords instead complete
natural language queries, because even more information is
omitted. In addition, experience with classical search engines
shows that users prefer to enter the lowest possible number of
keywords in order to retrieve information related to their query.
For example, the query mentioned above would be naturally
expressed with the keywords Germany and islands.

In the context of the Semantic Web, the expected answer
to a query is usually a set of RDF resources linked by certain
relations (representing a connected graph). Consequently, the
second assumption underlying our approach is that user-
supplied keywords must play the role of anchors points (i.e.,
nodes or edges of the RDF graph) that are to be used to retrieve
knowledge from the background knowledge via some form of
bootstrapping. We illustrate the difficulties of the bootstrapping
processing with the following example:

Example 1. Consider two keywords ”Germany” and ”island”
used with the intention to search for the list of Germany’s
islands. The suitable SPARQL query is:

SELECT * WHERE {
?island a dbo:Island .
?island ?p dbp:Germany .

}

Some desired answers to be retrieved are:

1: db:Rettbergsaue a dbo:Island .
db:Rettbergsaue dbp:country dbr:Germany .

2: db:Sylt a dbo:Island .
db:Sylt dbp:country dbr:Germany .

3: db:Vilm a dbo:Island .
db:Vilm dbp:country dbr:Germany .

4: db:Mainau a dbo:Island .
db:Mainau dbp:country dbr:Germany .

Here, we encounter two issues. First, we need to find a set
of IRIs corresponding to each keyword. Second, we have to
construct suitable triple patterns based on the anchor points
extracted previously so as to retrieve appropriate data. These
goals are achieved by the approach presented in the following.

B. Terminology and Definitions

We call an IRI matching to a keyword an anchor point.
The process of selecting a relevant neighborhood for each of
the anchor points is called induction (also known as relation
discovery). Note, that most semantic search approaches (e.g.
[16, 11, 18, 24, 17]) perform induction first on the ontology

level to extract appropriate graph pattern templates, and then
apply those templates to the instance level. We, however, do
not separate induction in the ontology level from the instance
level since ontology statements are usually available either in
the knowledge base or via Linked Data de-referencing as RDF
triples. Consequently, instances and ontology statements are
connected based on rdf:type properties, allowing our in-
duction not to have to separate between ontology and instance
knowledge.

Formally, we base our approach on the following defini-
tions:

Definition 1 (Keyword set). We define the set of user-supplied
keywords as K = {K1,K2, ...,Kn}.

Definition 2 (Knowledge base signature). The knowledge
base signature KBS is represented by KBS = (C, I, P ) ,
where C denotes the set of classes, I denotes the instances
of these classes and P denotes the set of properties used in
the relationships between classes or instances (also including
datatype properties).

Definition 3 (Connected query result). A single connected
query result denoted R = {(s, p, o)|(s, p, o) a triple}, consists
of a set of triples which are connected through common
subjects or objects, i.e.:

(|R| ≤ 1) ∨ (∀(s1, p1, o1) ∈ R : ∃(s2, p2, o2)|

(s2 = s1 ∨ s2 = o1 ∨ o2 = o1 ∨ o2 = s1))

These sets of triples express sentences which represent a sort
of integrated information around the user keywords.

C. Overview

Fig. 1. Overview of the proposed method.

Figure 1 shows an overview of our approach. Our approach
firstly retrieves relevant IRIs related to each user-supplied key-
word from the underlying knowledge base and secondly injects
them to a series of graph pattern templates for constructing
formal queries. So as to find these relevant IRIs, the following
two steps are carried out:

1) Mapping keywords to IRIs: The goal of this function
is the retrieval of entities that match with the user-supplied
keywords. Matching entities and keywords is carried out by
applying a string similarity function on the keywords and the
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label properties of all entities in the knowledge base. This
similarity evaluation is carried out on all types of entities
(i.e., classes, properties and instances). As a result, for each
keyword, we retrieve a list of IRI candidates, i.e. anchor
points.

Definition 4 (Mapping function). Let K be the set of user-
supplied keywords. The mapping function M : K → 2C∪I∪P

applies the sub-string similarity measure on each Ki ∈ K and
on the rdfs:label of all IRIs in our underlying knowledge
base and returns the set APKi ⊆ C ∪ I ∪P (where C, I and
P are the sets of classes, instances and properties contained
in the knowledge base respectively), whose labels contain Ki

as a sub-string or are equivalent to Ki.

2) Ranking and Selecting Anchor Points: This step aims
at excluding anchor points which are probably unrelated to
any interpretation of the user keyword; thereby reducing the
potentially high number of anchor points to a minimum. This
reduction is carried out by applying a ranking method over
the string similarity score and the connectivity degree of the
previously detected IRIs in each APKi

. For each u ∈ APKi

a specificity score, denoted by S, is defined based on two
parameters, i. e. a string similarity score and a connectivity
degree.

The string similarity score σ calculates the similarity of
the rdfs:label of u ∈ APKi and of the keyword Ki by
measuring the normalized edit distance between urdfs:label and
Ki. As the query we use for retrieving IRIs guarantees that Ki

is a substring of ulabel, computing the edit distance between
these two strings is equivalent to computing the difference
in their length. We normalize the string similarity score of
each label by using the max-min normalization method to
compute similarity values between 0 and 1. Consequently,
σ(ulabel,Ki) = 1 means that the two strings are equal.
Formally,

σ(ulabel,Ki) = 1−
|ulabel| − min

v∈AP (Ki)
|vlabel|

max
v∈AP (Ki)

|vlabel| − |Ki|
(1)

We also compute a simplified approximation of the connec-
tivity degree CD(u) for each u ∈ APKi by counting how often
u occurs in the triples of the knowledge base. It is important to
note that IRIs with type class and property have higher
CD values. In DBpedia, for example, classes have an average
connectivity degree of 14,022, while properties have in average
1,243 and instances 37.

The specificity S for each u ∈ AP (Ki) is finally calculated
as follows:

S(u) = σ(ulabel,Ki)× log(CD(u)) (2)

Definition 5 (Ranking and selection function). The ranking
and selection function RS maps APKi

to the set UKi
as top-

10 of the IRIs contained in APKi
sorted in descending order

based on S(u) where u ∈ APKi
.

III. GRAPH PATTERN TEMPLATES

Throughout the paper, we use the standard notions of the
RDF 5 and SPARQL 6 specifications, such as graph pattern,
triple pattern and RDF graph. The SPARQL queries generated
with our approach are a restricted kind of SPARQL queries,
since they use only basic graph patterns without blank nodes.
We analysed 1,000 distinct queries from the query log of the
public DBpedia endpoint7 and learned that the number of IRIs
is usually larger than the number of triple patterns occurring
in the query. As a consequence of this finding we decided to
assume graph patterns for generating SPARQL queries for two
user-supplied keywords to consist of either one or two triple
patterns.

Definition 6 (Graph pattern template). Let H be a set of
placeholders and V be a set of variable identifiers being
disjoint from each other and from C ∪ I ∪P . A graph pattern
template is defined as GPT = {(s, p, o)|(s ∈ V ∪H) ∧ (p ∈
V ∪H)∧(o ∈ V ∪H)} that contains exactly two placeholders.
Two triple patterns being part of the same graph pattern
template have to share a common subject or object. In our
triple pattern templates, a placeholder can stand either for
a property (when occurring in the predicate position), an
instance (when occurring at subject or object position) or a
class (when occurring at the object position) depending on its
position. After replacing the placeholders in a graph pattern
template with the detected IRIs, a graph pattern with triple
patterns of the form (V ∪ I) × (V ∪ P ) × (V ∪ C ∪ I) is
obtained.

Note that our notion of graph pattern templates is a slight
restriction of the SPARQL basic graph patterns in the general
case, since our definition does not consider blank nodes and
restricts the set of possible IRIs at a certain position in the
triple pattern. Definition 6 leads to the 17 possible graph
pattern templates as shown in Table I. In this table, we
subdivided the patterns in different categories, depending on
whether they map instances to instances, classes to instances
etc. Symbols preceded by question marks denote variables
while symbols without question marks are placeholders which
will be replaced by IRIs referring to the identified anchor
points.

Example 2. After applying mapping and ranking functions
on the user keywords (from Example 1), we obtain two
identified IRIs, i.e. http://dbpedia.org/ontology/ Island with the
type class and http://dbpedia.org/resource/Germany with the
type instance. The possible graph pattern templates for these
two IRIs are:

1) (?island, a, dbo:Island), (?island, ?p, dbr:Germany)
2) (?island, a, dbo:Island), (dbr:Germany, ?p, ?island)

As detailed in Section V, we performed an accuracy study
on all combinatorial possible graph pattern templates. This
study showed that the patterns contained in Table II limit the

5http://www.w3.org/TR/rdf-schema/
6http://www.w3.org/TR/rdf-sparql-query/
7The DBpedia SPARQL endpoint is available at: http://dbpedia.org/sparql/

and the query log excerpt at: ftp://download.openlinksw.com/support/dbpedia/.

http://dbpedia.org/ontology/Island
http://dbpedia.org/resource/Germany
http://dbpedia.org/sparql/
ftp://download.openlinksw.com/support/dbpedia/
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Category Possible Patterns Pattern Schema

Instance-Property (IP)

IP.P1 (s, p, ?o)
IP.P2 (?s, p, o)
IP.P3 (?s1, ?p1, o1)(?s1, p2, ?o2)
IP.P4 (?s1, ?p1, o1)(?o2, p2, ?s1)
IP.P5 (s1, ?p1, ?o1)(?s2, p2, ?o1)
IP.P6 (s1, ?p1, ?o1)(?o1, p2, ?o2)

Class-Instance (CI) CI.P7 (?s1, a, c)(?s1, ?p1, o1)
CI.P8 (?s1, a, c)(s2, ?p1, ?s1)

Instance-Instance (II)

II.P9 (s, ?p, o)
II.P10 (s, ?p1, ?x)(?x, ?p2, o)
II.P11 (s1, ?p1, ?x)(s2, ?p2, ?x)
II.P12 (?s, ?p1, o1)(?s, ?p2, o2)

Class-Property (CP) CP.P13 (?s, a, c)(?s, p, ?o)
CP.P14 (?s, a, c)(?x, p, ?s)

Property-Property (PP)
PP.P15 (?s, p1, ?x)(?x, p2, ?o)
PP.P16 (?s1, p1, ?o)(?s2, p2, ?o)
PP.P17 (?s, p1, ?o1)(?s, p2, ?o2)

TABLE I
CATEGORIZATION OF ALL POSSIBLE GRAPH PATTERN TEMPLATES FOR

EACH TYPED PAIR OF PLACEHOLDERS.

Category Possible Patterns Pattern Schema

Instance-Property(IP) IP.P1 (s, p, ?o)
IP.P4 (?s1, ?p1, o1)(?o2, p2, ?s1)
IP.P6 (s1, ?p1, ?o1)(?o1, p2, ?o2)

Class-Instance(CI) CI.P7 (?s1, a, c)(?s1, ?p1, o1)
CI.P8 (?s1, a, c)(s2, ?p1, ?s1)

Instance-Instance(II) II.P9 (s, ?p, o)
II.P10 (s, ?p1, ?x)(?x, ?p2, o)

Class-Property(CP) CP.P14 (?s, a, c)(?x, p, ?s)
Property-Property(PP) - -

TABLE II
APPROPRIATE IDENTIFIED GRAPH PATTERN TEMPLATES.

search space (thus leading to more efficiency) without reducing
the accuracy of our approach significantly. Consequently, we
only considered these patterns during the SPARQL-query
generation process described below.

IV. SPARQL QUERY GENERATION

Algorithm 1 outlines the procedure for generating SPARQL
queries based on the graph pattern templates shown in Table II.
After selecting the top ranked IRIs based on Definition 5,
according to the type of each pair of IRIs issued from the
cross-product of UKi

, a set of suitable graph pattern templates
is selected from Table II for generating SPARQL queries.

Example 3. For the pair of IRIs http://dbpedia.org/resource/
Germany and http://dbpedia.org/ontology/ Island, our algo-
rithm would generate the following two queries:

1) SELECT * WHERE {
?island a dbo:Island .
?island ?p dbr:Germany . }

2) SELECT * WHERE {
?island a dbo:Island .
dbr:Germany ?p ?island . }

The results of this algorithm are the output of our approach.
To validate the approach, we implemented it as a Java Web
application which is publicly available at: http://lod-query.
aksw.org. A screenshot of the search results is shown in
Figure 2. The whole query interpretation and processing is
performed typically on average in 15 seconds (while first
results are already obtained after one second) when using
DBpedia as knowledge base.

Data: K Keyword Set, knowledge base KB
Result: A set of connected query results
foreach keyword Ki do

retrieve APKi
;

sort APKi
;

RS(APKi) = top-10 ranked IRIs from APKi ;
end
foreach u ∈ RS(APKi

) & u′ ∈ RS(APKj
) do

switch Category of u, u′ do
case Instance-Property

query(IP.P1,u, u′);
query(IP.P4,u, u′);
query(IP.P6,u, u′);

case Class-Instance
query(CI.P7,u, u′);
query(CI.P8,u, u′);

case Class-Property
query(CP.P14,u, u′);

case Instance-Instance
query(II.P9,u, u′);
query(II.P10,u, u′);

endsw
end

Algorithm 1: Query generation algorithm. The function
query constructs the query based on the query pattern
given as first argument and the entity identifier to placeholder
mapping supplied as 2nd and 3rd argument.

Fig. 2. Example query in GUI available at lod-query.aksw.org for the search
keywords germany and island.

Table III shows some samples of keywords for which the ap-
plication is capable to retrieve suitable results. These keywords
were categorized based on the type of queries which they can
answer in three categories, i.e. similar instances, characteristics
of an instance and associations between instances.

V. EVALUATION

This section is divided to three parts. First, we introduce
the accuracy metrics used for evaluation. Second, we outline
the results of an accuracy study on all valid graph pattern

http://dbpedia.org/resource/Germany
http://dbpedia.org/resource/Germany
http://dbpedia.org/ontology/Island
http://lod-query.aksw.org
http://lod-query.aksw.org
lod-query.aksw.org


5

Keywords Answers
Instance characteristics.

Kidman spouse d:Kidman dp:spouse Keith Urban .
Iran language d:Iran dp:Language d:Persian_language .
Titanic length d:RMS_Titanic dp:Length 268.8336 .
Capital China d:Republic_of_China dp:capital Beijing .

Michelangelo death 1. d:Michelangelo dp:deathDate "1564-02-18" .
2. d:Michelangelo dp:deathPlace "Rome, Italy" .

Associations between instances.
Obama Clinton d:Obama dp:predecessor d:Bush . d:Bush dp:predecessor d:Clinton .
Volkswagen Porsche d:Volkswagen_Group dp:subsidiary d:Volkswagen .

Similar instances.
Facebook Person d:Facebook dp:keyperson d:Sheryl Sandberg . d:Sheryl Sandberg a d:Person .

Germany Island

1. d:Germany dp:Islands d:Rgen . d:Rgen a do:Island .
2. d:Germany dp:Islands d:Fhr . d:Fhr a do:Island .
3. d:Germany dp:Islands d:Sylt . d:Sylt a do:Island .

Lost Episode

1. d:Raised_by_Another dp:series dbp:Lost . d:Raised_by_Another a do:TVEpisode .
2. d:Homecoming dp:series dbp:Lost . d:Homecoming a do:TVEpisode .
3. d:Outlaws dp:series dbp:Lost . d:Outlaws a do:TVEpisode .

English Country
1. d:Ghana dp:officialLang d:English_language . d:Ghana a do:Country .
2. d:Cameroon dp:officialLang d:English_language . d:Cameroon a do:Country .
3. d:UK dp:officialLang d:English_language . d:UK a do:Country .

TABLE III
SAMPLES OF KEYWORDS AND RESULTS.

templates introduced in Table I with the aim of selecting those
templates that lead to a high accuracy. Finally, we evaluate
our whole application by using the metrics presented in the
following subsection.

A. Accuracy Metrics

In this section we first motivate and explain the metrics that
are fundamental to our evaluation. Since the user’s intention in
keyword-based search is ambiguous, judging the correctness
of the retrieved answers is a challenging task. Let us consider
the following example:

Example 4. Given the keywords France and President the
following RDF graphs (i.e. answers) are presented to the user:

1. Nicolas_Sarkozy nationality France .
Nicolas_Sarkozy a President .

2. Felix_Faure birthplace France .
Felix_Faure a President .

3. Yasser_Arafat deathplace France .
Yasser_Arafat a President .

...

The input of the user can be interpreted in at least two
ways: 1. Who is the current president of France? 2. Who
are the people that have ever been presidents of France?
Depending on the meaning intended by the users, these
patterns can be considered as being accurate or not. If the
second interpretation is correct, then Felix Faure, who was the
president of France from 1895 to 1899, is a correct answer,
else it is not. We only consider those answers correct that meet
our original intention whereas all other ones are considered
incorrect. According to this criterion the correct answers are
(1) and (2). However, among the correct answers note the
difference in the involved predicates, namely birthplace and
nationality. An observation is that we can draw a distinction
between whether an answer contains statements relevant to our
search intention and whether these statements are the preferred
ones. We will measure the preference of an answer based on

the occurring RDF terms. RDF terms (short terms) comprise
each individual subject, object or predicate in the triples of the
answer. In our example, we prefer nationality over birthplace
because theoretically a person born in one country may be
president in a different one, however, it is very unlikely that
a president has a different nationality than the country he is
president in.

Therefore, besides distinguishing between answers related
to different interpretations, we should also differentiate be-
tween pure answers (just containing preferred terms) and
those which contain some impurity. In fact, the correctness
of an answer is not a bivalent value but based on the user’s
perception. As such it may vary between completely irrelevant
and exactly correct. In essence for evaluation, we investigate
two questions: 1) For how many of the keyword queries do
the templates yield answers at all with respect to the original
intention? 2) If answers are returned, how correct are they?

Therefore, we introduce the Correctness Rate (CR) as a
measure for the preference of certain RDF terms. This metric
allows a user to rate the correctness of each individual answer
based on its own perception.

Definition 7 (Correctness rate). For an individual answer a
for a query q, we define CRq(a) as the fraction of correct
(preferred) RDF terms occurring in it.

CRq(a) =
|correct terms|
|total terms|

Based on the CR for individual answers, we can derive the
average CR (ACR) for a set of answers:

Definition 8 (Average CR). For a given set of answers A of
a query q, we define ACRq(A) as the arithmetic mean of the
CRs of its individual answers.

ACRq(A) =
1

|A|
∗
∑
a∈A

CRq(a)

The ACR is the basis for the fuzzy precision metric (FP),
which measures the overall correctness of a template’s corre-
sponding answers Aq with respect to a set of keyword queries
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Fig. 3. Accuracy of each categorized graph pattern.

Q.

FP =

∑
q∈QACRq(Aq)

|queries with answers|
By using the fuzzy precision, we can now measure the

quality of the results returned by each individual graph pattern
template. The rationale between our measurements is that a
template is not required to contribute answers to the set of
all answers (as other templates of the same corresponding
category may compensate for that. However, if answers are
provided, they are subject to correctness evaluation.

We also measured the recall as the fraction of keyword
queries for which answers were found:

Recall =
|queries with answers|

|total queries|
Finally, we use the following definition of the F-Score:

F = 2 ∗ FP ∗R
FP +R

B. Accuracy Evaluation of Possible Graph Pattern Templates

Since we are interested in using those graph pattern tem-
plates which typically result in precise answers with respect
to the user intention of keywords, we evaluated the accuracy
of each graph pattern template by running a SPARQL query
containing each individual graph pattern template introduced
in Table I by injecting a series of IRI pairs. We selected 53
natural language queries of TREC 9 from which we extracted
the two main keywords conveying the general meaning. For
example, the query ’How many people live in Chile?’ can be
expressed by the keywords Chile and population. Thereafter,
the mapping function was applied to these keywords and
from the retrieved IRIs, the most suitable ones were manually
selected and assigned to the related dataset with regard to
their type. We used DBpedia 3.5.1 [12] as the underlying
knowledge base. After preparing the datasets, we performed
a series of SPARQL queries for each single graph pattern

template over the corresponding dataset. The results of the
SPARQL queries along with the keywords were shown to two
evaluators to score the CR metric for each individual answer.
After rating CR for all retrieved answers related to a graph
pattern template, fuzzy precision, recall and F − score
were computed. Figure 3 shows the accuracy of each graph
pattern template based on these three metrics. In the category
Property-Property, the number of retrieved answers for all
graph pattern templates was zero.

Our results show that some pattern templates such as P1
in the Instance-Property category as well as P7 and P8 in the
Instance-Class category have a high fuzzy precision while their
recall is low. In the case of P11 from the Instance-Instance
category we have a high recall while the fuzzy precision is low.
Hence, this graph pattern template generates a large number
of irrelevant answers.

We discarded all templates with a fuzzy precision of less
than 0.5, resulting in an increase of the overall precision and
only a small loss in recall. We monitored the ACR for a
set of queries before and after the reduction of graph pattern
templates in the category IP and II, because most reductions
occurred there. In the category IP, all queries with ACR higher
than 0.4 and in the category II with ACR higher than 0.6 were
properly answered with the same accuracy. So, this reduction
maintained precise results (i.e. high ACR value).

As an interpretation of graph pattern templates, we present
different scenarios in which a user is interested in retrieving
different kinds of information. This categorization is based
on the matter of information which is retrieved from the
knowledge base.

Finding special characteristics of an instance: Datatype
properties which emanate from instances/classes to literals or
simple types and also some kinds of object properties state
characteristics of an entity and information around them. So, in
the simplest case of a query, a user intends to retrieve specific
information of an entity such as “Population of Canada” or
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“Language of Malaysia”. Since this information is explicit,
the simple graph patterns IP.P1, IP.P4 and IP.P6 can be used
for retrieving this kind of information.

Finding similar instances: In this case, the user asks
for a list of instances which have a specific characteristic in
common. Examples for these type of queries are: ”Germany
Island” or ”Countries with English as official language”. A
possible graph structure capturing potential answers for this
query type is depicted in Figure 4. It shows a set of instances
from the same class which have a certain property in common.
Graph pattern templates CI.P7, CI.P8, and CP.P14 retrieve this
kind of information.

Fig. 4. Similar instances with an instance in common.

Finding associations between instances: Associations be-
tween instances in knowledge bases are defined as a sequence
of properties and instances connecting two given instances
(cf. Figure 5). Therefore, each association contains a set of
instances and object properties connecting them which is
the purpose of the user query. As an example, the query
Volkswagen Porsche can be used to find associations between
the two car makers. The graph pattern templates II.P9 and
II.P10 extract these associations.

Fig. 5. Associations between two instances.

C. Application Evaluation

In this step, we evaluated the approach based on the three
previously defined metrics, i.e. fuzzy precision, recall and f-
score. The experimental setup consisted of giving a novice user
40 queries from TREC 9, and asking him to run each of the
queries against DBpedia using our prototype implementation.
Then, for each single answer of a query, he assigned CR
according to his own intention. Subsequently, fuzzy precision
and recall were computed based on the user’s ratings. Note,
that since hyperlinks among pages are inserted as wikilink
in DBpedia and they do not convey special meaning between
resources, we rempved all triples containing the IRIs http://
dbpedia.org/property/wikilink. Table IV shows the evaluation
results after running 40 queries against DBpedia. The overall
precision of our system is 0.72.

Essentially, the accuracy of this method, specifically recall,
does not depend on using suitable graph pattern templates,
because on the one hand, the mapping approach for choosing
relevant IRIs significantly influences the results, and on the

Category Recall Fuzzy precision F-score
General accuracy 0.625 0.724 0.670
Similar instances 0.700 0.735 0.717

Characteristics of an instance 0.625 0.700 0.660
Associations between instances 0.500 0.710 0.580

TABLE IV
ACCURACY RESULTS.

other hand the quality of the data in DBpedia severely affects
the accuracy. For example, the query “Greece population”
returns the correct answer while the similar query “Canada
population” led to no results.

In addition to the overall evaluation, in order to make a
comparison between functionality of the approach for different
types of queries (i.e. finding special characteristics of an
instance, finding similar instances and finding associations
between instances) the employed queries were categorized
based on their type and a separate evaluation was computed for
each type. Our evaluation in Table IV shows the precision does
not differ significantly for different types of queries, while the
recall is type dependent. For instance, in the category “similar
instances” the recall is significantly higher rather than in the
category “association between instances”.

VI. RELATED WORK

With the advent of the Semantic Web, information retrieval
and question answering approaches were adapted for making
use of ontologies. We can roughly divide related work into
ontology-based information retrieval, ontology-based question
answering and keyword search on structured data.

Ontology-based information retrieval: Approaches
falling into this category annotate and index documents using
a background ontology. The retrieval process is subsequently
carried out by mapping user query terms onto these semantic
document annotations. The approaches described in [3, 8, 19]
are examples of this paradigm. All these approaches use
background knowledge to enhance the retrieval accuracy,
however, they do not utilize the background knowledge for
semantically answering user queries.

Ontology-based question answering: Approaches falling
into this category take a natural language question or a
keyword-based query and return matching knowledge frag-
ments drawn from the knowledge base as the answer. There
are two different methods: (1) Using linguistic approaches
for extracting complete triple-based patterns (including rela-
tions) from the user query and matching these triples to the
underlying ontology (e.g. AquaLog [16] and OntoNL [11]).
(2) Detecting just entities in the user query and discovering
relations between these entities by analysing the knowledge
base. Examples for this second group are KIM [18] and
OntoLook [13] and [20, 6, 24, 17]. In these two approaches
the RDF data is considered to be a directed graph and relations
among entities are found through sequences of links (e.g.
using graph traversal). Sheth [21] introduced the term semantic
association for describing meaningful and complex relations
between entities. Our work differs from these approaches,
since it is completely independent of the underlying schema.

http://dbpedia.org/property/wikilink
http://dbpedia.org/property/wikilink
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Furthermore, schema information is in our approach just im-
plicitly taken into account, so a complex induction procedure
is not required.

Keyword search on relational and XML data: With the
beginning of the millennium, research on keyword search on
relational and XML data attracted research interest. Meanwhile
there exist many approaches such as [1], [10], [9], [14] for
the relational domain and [7], [15], [2] for the XML domain.
Especially the relational domain is relevant to our work due to
the similarities to the RDF datamodel. All these approaches
are based on schema graphs (i.e. a graph where tables and
their primary-foreign key relations are represented as nodes
and edges, respectively). In our work, we do not rely on an
explicitly given schema, which is often missing for datasets on
the Web of Data. However, achieving sufficient performance
for instant query answering is more an issue in the RDF
case, which is why our approach is currently limited to two
keywords.

VII. CONCLUSION AND FUTURE WORK

We see this work as a first step towards the user-friendly
querying of the Data Web using rich semantic structures.
By tightly intertwining the keyword interpretation and query
generation with the available background knowledge we are
able to obtain results of relatively good quality. We applied a
number of techniques such as an thorough analysis of potential
graph pattern so as to limit the search space and enable instant
question answering. A problem, however, beyond our control
is the data quality and coverage. Currently our evaluation is
still limited to 150M facts comprised by DBpedia, but due to
the generic nature and efficiency of the approach we will be
able extend it quickly to the whole Data Web. For doing so,
we aim to apply some optimizations original to our approach,
since we currently use just a plain SPARQL interface. These
optimizations will, for example, comprise the pre-computation
of views and statistical summaries for each of our graph
pattern templates. A current limitation is the restriction to two
keywords. The rational behind this was to restrict the search
space of possible query interpretations, in order to return the
most meaningful results to the user quickly in a compact form.
There are a number of possible advancements: (a) to allow a
larger number of keywords or (b) to enable users to refine
obtained queries and to add additional constraints and (c) to
make more extensive use of linguistic features and techniques.
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