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There is growing evidence of a strong association between the compromised
autonomic nervous system and sudden cardiac death. Heart rate variability (HRV)
measures are widely used to measure alterations in the autonomic nervous system.
Several studies with cardiac patients show that decreased HRV as well as
baroreceptor dysfunction are more powerful predictors for sudden cardiac death
than established clinical predictors such as left ventricular ejection fraction.
One-third of all postoperative complications and more than half of the deaths are
due to cardiac complications. Several risk indices are useful for immediate
perioperative short-term, but not for long-term outcome risk stratification of an
individual patient. Currently, there are no clinically assimilated methods for
long-term postoperative risk assessment. Recently, few studies have shown that
preoperatively decreased HRV can independently predict postoperative long-term
mortality. Further studies with surgical patients are needed to establish a possible
predictive value of preoperative baroreceptor dysfunction, alone and combined
with HRV, for short- and long-term postoperative outcome.
(Anesth Analg 2007;105:1548–60)

About 30 million patients undergo noncardiac sur-
gery in the United States each year, and more than 1
million of them will have a severe cardiovascular
complication (e.g., perioperative myocardial infarction
(MI), cardiac death) (1,2). One-third of all postopera-
tive complications and more than half of the deaths
are due to cardiac complications. In the aging popu-
lation worldwide, the number of complex comorbid
patients will increase. Although the problem of peri-
operative MI has been recognized over the past 50 yr,
it remains a major perioperative threat (1,2).

Recommendations of American College of Cardiology/
American Heart Association, Revised Cardiac Risk
Index, and several other risk indices have been vali-
dated and are useful for immediate perioperative
short-term risk stratification. These indices have also
been successfully used to identify patients who can be
recommended to undergo more detailed cardiac test-
ing. However, the risk indices cannot be used to
predict the long-term outcome of an individual patient
(i.e., patients who survive the first 30 days after
surgery) although mortality peaks during the follow-
ing months and years (3–11). Currently, there are no

clinically assimilated methods for long-term postop-
erative risk assessment.

Evidence from numerous studies indicates a strong
association between compromised autonomic nervous
system (ANS) (e.g., decreased vagal activity or in-
creased sympathetic activity), sudden cardiac death
(SCD) and non-SCD (12–24). In addition, increased
sympathetic activity elicited by acute MI may play a
pivotal triggering role leading to SCD (12,18,25). Vari-
ous measures of heart rate variability (HRV) are
widely used to measure alterations in ANS. Several
studies with cardiac patients suggest that decreased
HRV as well as baroreceptor dysfunction are more
powerful predictors for cardiovascular mortality, in-
cluding SCD, than established clinical predictors, such
as left ventricular ejection fraction (LVEF) and ventric-
ular premature complexes (VPC) (15–21,26,27). Sev-
eral studies have shown that perioperative HRV is a
powerful predictor for postoperative morbidity and
for long-term mortality as well (28–32). In addition,
nonlinear measures capable of calculating short-term
correlation properties seem to have superior predic-
tive value over time- and frequency-domain measures
of HRV (19–21,28–31). The purpose of this article is to
overview HRV measures and to discuss their incre-
mental value in perioperative risk stratification, espe-
cially for long-term outcome.

TIME AND FREQUENCY DOMAIN MEASURES OF HRV
Time Domain

HRV has been traditionally analyzed by time-
domain measures. The simplest and most often used
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are the instantaneous heart rate (HR), intervals be-
tween normal successive sinus beats (i.e., intervals
between normal-to-normal QRS complexes, usually
referred with the abbreviation NN), average HR,
mean NN interval, and the difference between the
longest and shortest NN interval.

Other time domain calculations include variables
derived from direct measurements of the NN intervals
or instantaneous HR, such as the standard deviation of
the NN intervals (SDNN), and variables derived from
the differences between NN intervals, such as the
square root of the mean of the sum of the squares of
differences between adjacent NN intervals (RMSSD),
the number of pairs of adjacent NN intervals differing
by more than 50 ms in the recording period (NN50),
and the proportion derived by dividing NN50 by the
total number of NN intervals (pNN50) (33).

Frequency Domain
Akselrod et al. (34) applied spectral analysis by

calculating the frequency domain of power spectral
analysis. All rhythmic HR oscillations can be viewed
with the total power of spectral analysis, which is
often divided into four spectral components by inte-
gration over the corresponding frequency intervals.
The power spectrum is quantified by measuring the
areas in the following frequency bands: ultra-low
frequency (ULF) power �0.0033 Hz (i.e., �5 h cycle
length), very low frequency (VLF) power from 0.0033
to 0.04 Hz (i.e., �25 s cycle length), low frequency (LF)
power from 0.04 to 0.15 Hz (i.e., �6 s cycle length),
and high frequency (HF) power from 0.15 to 0.4 Hz
(i.e., 2.5–6 s cycle length) as has been suggested by the
Task Force (33). Typical examples of spectral analyses
can be seen in Figures 1–3.

The two main methods used for computation of
power spectrum are nonparametric fast Fourier transfor-
mation and parametric autoregressive modeling (35).
The spectral estimate provided by fast Fourier transfor-
mation and autoregressive modeling, especially with the
fixed model order, is similar in practice (36).

The spectrum of normal RR-interval time series is
inversely related to frequency over a wide frequency
range of 0.00003 to 0.1 Hz (from 10 h to 10 s) (37,38).
This spectral power-law relationship of RR-interval
variability differs from the conventional frequency
domain measures in that it characterizes the shape of
the RR-interval spectrum, whereas the conventional
measures reflect the magnitude of HRV on various
frequency bands. The spectral power-law relationship
of RR-interval variability is calculated for slow HR
fluctuations from the frequency range of 10�4 to 10�2

Hz. A robust line-fitting algorithm of log (spectral
power) on log (frequency) is applied to the power
spectrum between 10�4 and 10�2 and the slope of this
line (�-exponent) is calculated (39) (bottom panel of
Fig. 3).

DYNAMIC MEASURES OF HRV
The sinus rhythm seems to exhibit fractal properties,

which is especially characteristic in complex systems
(40–47). In fractal system, a subunit of the RR-interval
time series resembles the larger time scale. The degrada-
tion of this multiscale nonlinear complexity toward
behavior resembling either random fluctuations with no
correlation between interbeat intervals (i.e., white noise),
or toward less random behavior (i.e., Brownian noise)
appear in disease and with aging, and may lead to a
reduced adaptive capacity. It has been suggested that
self-similarity (i.e., fractal) may be a central organizing
principle of physiologic structure and function, and that
the breakdown of this organization may be physiologi-
cally deleterious (40,43,48).

HRV is modulated by multiple factors, both endog-
enous and exogenous, forming a complex and fractal
system, which is not detectable with traditional time-
and frequency-domain measures. Goldberger et al.
(42,49) introduced analysis methods of HRV, which
are based on statistical physics and fractal mathemat-
ics. These nonlinear HRV methods (i.e., dynamical
measures) have been intensively developed to detect
and quantify the correlation properties of physiologi-
cal time series, as well as the presence of chaos, and to
deal with the ubiquity of nonstationarity (i.e., statisti-
cal properties change with time).

Poincaré Plot
The Poincaré plot is a return map in which each

RR-interval is plotted as a function of the previous
one. The Poincaré plot belongs to a category of geomet-
ric HRV methods (33). Both visual analysis of the graphic

Figure 1. An example of RR-interval spectral analysis during
supine—head-up tilt test in a healthy volunteer. The normal
and thick lines represent the spectrum during supine and
during head-up position, respectively. The power spectrum
during supine position demonstrates a typical peak in the
high frequency range reflecting respiration-driven vagal
modulation of sinus arrhythmia (respiratory sinus arrhyth-
mia). The low frequency power (i.e., 0.1 Hz oscillation)
during head-up position is accentuated reflecting an acute
sympathetic drive.
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display and quantitative analysis of the plots can be used
for describing RR-interval dynamics (Fig. 4).

Approximate Entropy
Approximate entropy (ApEn) is a measure and

parameter that quantifies the regularity or predictabil-
ity of time series data. It measures the logarithmic
likelihood that runs of patterns which are close to each
other will remain close in the next incremental com-
parisons. A greater likelihood of remaining close (high
regularity) produces smaller ApEn values (approxi-
mately 0.7–1.0) and, conversely, random data pro-
duces higher values (close to 2) (50–53).

ApEn is heavily dependent on the record length
and is uniformly lower than expected for short
records. It also lacks relative consistency. That is, if
ApEn of one data set is higher than that of another, it
should, but does not, remain higher for all conditions
tested. Sample entropy is an alternative approach to
calculate the entropy (54). In contrast to ApEn, sample
entropy is largely independent of record length, and
displays relative consistency under circumstances
where ApEn does not.

Multiscale Entropy
Unlike the dynamics of healthy systems, diseased

systems typically show reduced entropy values. How-
ever, some cardiac pathology, e.g., atrial fibrillation, is
associated with highly erratic fluctuations, with statisti-
cal properties similar to uncorrelated noise. Traditional
algorithms, like approximate and sample entropy, will
yield an increase in entropy values for such noisy
pathologic time series when compared with healthy
dynamics, even though the latter represents more physi-
cally complex states. This obvious inconsistency may be
related to the fact that the entropy measures used are
based on single-scale analysis without considering the
complex temporal fluctuations of a healthy physiological
control system. Instead of computing one single-scale
entropy measure for the time series, the signal can be
analyzed using a multi-scale approach. The mathemati-
cal details have been described elsewhere (55).

Detrended Fluctuation Analysis
Long-range correlations between RR-intervals charac-

terize fractal-like HR time series; i.e., the interbeat inter-
val at every point is partially dependent on the interval

Figure 2. A typical 24-h power spectrum in a
healthy volunteer (a) compared with a spec-
trum in a heart failure patient (b) with a left
ventricular ejection fraction �35% showing
reduced low frequency power despite of a
chronic sympathetic stimulation.

Figure 3. Examples of power spectral
analyses (top), short-term correlation
property (�1) (middle) and power-law
slopes (bottom) in the same patient before
coronary artery bypass graft (CABG) sur-
gery (left), and 6 wk (middle) and 1 yr
(right) after CABG surgery with unevent-
ful perioperative course. The top panel
shows that the least recovery occurred in
the range of low frequency power. The
fractal scaling exponent �1 was at signifi-
cantly lower level 6 wk after CABG than
preoperatively, but recovered to the pre-
operative level 6 mo after the operation
(117).
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at all previous points (40,46,47). Detrended fluctuation
analysis (DFA) has been created to quantify such fractal-
like correlation properties of time-series data (45,56)
(middle panel of Fig. 3). The mathematical details of this
method have been described elsewhere (56). Briefly, in
DFA, the deviations of each RR-interval from the aver-
age RR-interval are integrated. Then the integrated time-
series is divided into smaller windows (time scales) and
a least squares line fit is applied to the data in each
window. This produces a “local” trend, which is sub-
tracted from the overall integrated time series, produc-
ing a detrended time series. Then a root mean square
fluctuation is calculated from this integrated and de-
trended time series. This procedure is repeated using
different time scales. Typically, there is a linear relation-
ship between the logarithm of the fluctuation and the
logarithm of the size of the time scale, indicating the
presence of scaling (self-similarity), i.e., fluctuation in
smaller time windows is related to fluctuations in larger
time windows in a power-law fashion. The fractal scal-
ing exponent � represents the slope of this line, which

relates (log) fluctuation (y axis) to (log) window size (x
axis) (Fig. 3). Short-term (�1) and long-term (�2) fractal
correlation properties can be calculated using short and
long time scales, respectively. DFA can detect the pres-
ence of random, fractal, or Brownian dynamics in HRV.
In a normal healthy HR time series, � � 1. The scaling
exponent � is 0.5 for random and 1.5 for Brownian HR
dynamics (40,46,47,56).

Other Measures
HR turbulence characterizes fluctuations of sinus-

rhythm cycle length after a single ventricular prema-
ture beat. In practice, the turbulence onset variable is
defined as a difference between the mean of the first
two sinus RR intervals after the premature beat and
the last two sinus RR intervals before the premature
beat, normalized by the mean of the last two sinus RR
intervals (26). Another measure, the turbulence slope,
is defined as the maximum positive slope of a regres-
sion line assessed over any sequence of five subse-
quent sinus-rhythm RR intervals within the first 20

Figure 4. Examples of Poincaré plots (A–D), analyzed from more than 100,000 consecutive beats of 24 h. In quantitative
analysis, the length of the longitudinal line (axis 2) describes the continuous long-term variability of the data (SD2). It is
defined as the standard deviation (SD) of the plot data in the direction of axis 2. This has a moderate positive correlation with
low frequency power of spectrum analysis at rest (r � 0.70). The length of the transverse line is defined as the SD of the plot
data in a perpendicular direction (axis 1). This measure describes the instantaneous beat-to-beat variability of the data (SD1).
This correlates strongly with high frequency power at rest (r � 0.94). Also the SD1/SD2 ratio may be calculated. A comet (A)
and a torpedo-shaped (B) pattern of Poincaré plot in the same patient before (A) and after (B) coronary artery bypass graft
(CABG) surgery with no ischemia pre- or postoperatively. A comet-shaped pattern is also typically seen in healthy subjects.
(C) A complex pattern in a patient before CABG surgery with postoperative ischemia, myocardial infarction (MI), and
prolonged intensive care unit (ICU) time of 7 days. (D) A complex pattern of the first postoperative day in another CABG
patient with postoperative ischemia, MI and prolonged ICU time of 8 days.
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sinus-rhythm intervals after a premature beat. Both
variables have been shown to be good predictors of
mortality after acute MI (26). Because a premature beat
always also generates a sudden decrease in arterial
blood pressure, it has been suggested that the turbulence
variables are linked to baroreflex function. This method
is inapplicable to patients without VPCs (26).

Physiological Background
Alterations in interbeat intervals, i.e., HRV, are

mostly under the control of continuously altering and
interacting parasympathetic and sympathetic nervous
systems. ANS is modulated by the baroreceptors,
vasomotor center, respiratory center, arterial blood
pressure, and respiratory movements. Thus, HRV
reflects an outflow of this system to the heart, result-
ing in short- and long-term beat-to-beat fluctuations
via the sinoatrial node (57–59). Frequency domain
measures of HRV provide information on the degree
of autonomic modulations rather than of the level of
autonomic tone (59).

Generally, time domain measures are highly corre-
lated with the HF component of spectral analysis. The
HF component primarily reflects respiration-driven
vagal modulation of sinus arrhythmia (respiratory
sinus arrhythmia, Figs. 1 and 2), which is believed to
be generated by central coupling of the respiratory
oscillator with autonomic centers in the brainstem
(33,60). This notion is supported by a previous study
which showed that the firing of cardiac vagal mo-
toneurons in the nucleus ambiguus was modulated by
the central respiratory cycle (61). There is consensus
that vagal activity is the major modulator of the HF,
e.g., by showing that HF can be abolished by anticho-
linergic drugs such as atropine or by vagotomy
(33,62,63) (Fig. 5).

The physiological correlate of the LF (0.04–0.15 Hz)
component of HRV is not as clear. There are studies

showing that a normalized value of the LF component
is modulated by sympathetic efferent activity (64–67)
and some other studies demonstrating that the LF
power is modulated by both vagal and sympathetic
efferent activity (34,68–70). An acute sympathetic
stimulation during head-up tilt test can be demon-
strated with spectral analysis (Fig. 1). However, the LF
power is paradoxically often reduced or abolished in
patients with severe congestive heart failure (Fig. 2).
Strong evidence indicates that severe heart failure pa-
tients have a chronic resting sympathetic stimulation
provided by elevated levels of plasma catecholamines
(71). It is widely accepted that the absolute value of LF
power does not furnish an index of sympathetic modu-
lation (33,34,64–70). LF oscillation may reflect sympa-
thetic modulation originated from the central nervous
system (58,72). Pagani et al. (67) found that LF and HF
components of HRV and muscle sympathetic nerve
activity alter synchronously during different levels of
sympathetic drive. This suggests a common central
mechanism governing both parasympathetic and sym-
pathetic cardiovascular modulation. On the other hand,
there is evidence that the LF component of HR and
arterial blood pressure variability is substantially af-
fected by baroreflex gain (73,74). This is supported by
observations that the LF component is consistently re-
duced after baroreceptor deafferentation (74,75).

A diurnal fluctuation of ANS is a major modulator
of the ultra-band. The sympathetic nervous activity
especially exhibits a strong circadian rhythm. A para-
ventricular nucleus of hypothalamus is a pivotal me-
diator of the diurnal rhythm of ANS activity (60,76–78).
The paraventricular nucleus activity depends on cir-
cadian input of suprachiasmatic nuclei of hypothala-
mus, which is a major central oscillator triggering
day/night cycle (60). VLF band is suggested to be
modulated by temperature regulation and humoral

Figure 5. An example of high frequency
(HF) variability spectra of a healthy
male volunteer (age 28 yr) before, dur-
ing and after a 2 h infusion of glycopy-
rrolate (5 �g � kg�1 � h�1 administered
between 0 and 2 h). Parasympathetic
blockade abolished the HF variability: at
baseline, the HF power was 6175 ms2

and, at the end of the infusion, 5 ms2.
The fast Fourier transformation and
5-min windowing was used for the
spectrum analysis. During every third
5-min period, the breathing rate was
controlled (15/min), which produced
distinct respiratory arrhythmia peaks at
0.25 Hz. PSD � power spectral density.
(From Penttilä J, et al. Eur J Clin Phar-
macol 2005;61:559–65, © Springer Sci-
ence and Business Media, reproduced
by permission.)
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systems (e.g., thyroxine, reproductive hormones, the
rennin-angiotensin system, and steroids) (60).

Although the physiological background of the dy-
namical measures is still not fully established, a previous
study by Tulppo et al. (79) provided one plausible
explanation for the physiological background of fractal
HR dynamics. They used cold hand and cold face
immersion tests under controlled conditions. During
cold hand immersion, HF decreased significantly,
indicating a withdrawal of vagal activity, and muscle
sympathetic nervous activity from the peroneus nerve
increased, indicating reciprocally enhanced sympa-
thetic outflow. At the same time, the LF/HF ratio
increased. These reciprocal alterations in ANS caused
increased short-term fractal correlation properties of
HR dynamics, expressed as increased scaling expo-
nent �1. Similar increases in fractal correlation prop-
erties, as well as ApEn, have been shown during
light-intensity exercise, which can be related to an
increase of circulating epinephrine (80–82). The physi-
ology behind entropy measures is not known but they
are suggested to be affected by coupling interactions
of ANS (80,81). Fractal correlation properties also
increase during passive head-up tilt test and vagal
blockade by atropine or glycopyrrolate (81,83,84). The
cold face test increases both vagal and sympathetic
activity simultaneously (85). Tulppo et al. (79) showed
that HF power increased, HR decreased, and muscle
sympathetic nervous activity increased during the
cold face test in all healthy volunteers, indicating
increased activity of both parasympathetic and sym-
pathetic activation, respectively. At the same time, the
scaling exponent �1 and LF/HF ratio decreased. The
scaling exponent �1 has also been shown to decrease
and the HF component to increase progressively dur-
ing incremental doses of norepinephrine (83). These
results suggest that this breakdown of short-term
fractal correlation properties toward more random
HR dynamics occur during increased sympathetic
activation followed by simultaneous activation of
cardiac vagal outflow, also called “accentuated sym-
pathovagal interaction,” a concept first introduced
by Levy et al. (57,79,83,86). The physiological back-
ground of HRV has been discussed in detail in recent
reviews, e.g., by Stauss or Penttilä et al. (60,63).

HRV and Anesthesia
Anesthetic drugs alter HRV significantly. LF and

HF powers are decreased significantly by halothane,
isoflurane, desflurane, and xenon in healthy subjects,
suggesting reduction in efferent cardiac vagal and
sympathetic activity (87–96). Ishiguro et al. (95)
showed that xenon blunts baroreflex sensitivity and
decreases LF and HF more than isoflurane.

Several studies with and without controlled breathing
patterns have shown persistent LF power, decreased HF
power indicating decreased efferent cardiac vagal activ-
ity, and depressed baroreflex sensitivity during propofol

infusion in animals and in humans (89,97–101). How-
ever, previous studies showed that LF and HF powers
decreased significantly but that there were no significant
changes in baroreflex function during sevoflurane or
propofol anesthesia with or without N2O (102,103).

HRV and Surgery
Recent studies have shown that high LF/HF ratio

can identify patients with risk of developing severe
hypotension during spinal anesthesia for cesarean
delivery or for prostate gland procedures in ASA I or
II patients (104,105). Receiver operator curve analysis
revealed 85% sensitivity and 85% specificity of LF/HF
�2.5 to predict systolic blood pressure decrease of
more than 20% of baseline after spinal anesthesia
(105). The studies of the effect of spinal anesthesia on
HRV show controversial results, which also depend
on the level of the sensory block and on the patient
(104–109). Marsch et al. (108) showed decreased abso-
lute HF and LF powers in elderly patients for up to 5
days after elective hip arthroplasty. Tetzlaff et al. (109)
showed no change in LF and HF powers during low
spinal block for elective lumbar spine surgery. Hanss
et al. (105) showed decreased LF and increased HF
powers during spinal anesthesia with the sensory
block reaching the Th 8–9 � 2 level in ASA I-II
patients. In their studies, patients with significantly
higher LF/HF and lower HF at baseline demonstrated
severe hypotension during spinal anesthesia (104,105).
Earlier studies in patients with ANS dysfunction due
to diabetes mellitus scheduled for ophthalmologic
surgery, and in patients scheduled for day-surgery
have demonstrated that preoperatively impaired para-
sympathetic activity, reflected by HF power, indicated
a high risk of hemodynamic instability during general
anesthesia (110,111). It has been suggested that LF/HF
ratio could be used as a tool to guide prophylactic
therapy of patients at high risk for hypotension during
spinal anesthesia (112).

Predictive Value of HRV for Postoperative Outcome
An association between mortality after MI and

decreased HRV was first shown by Kleiger et al. (15).
Decreased HRV has powerful long-term predictive
value in MI patients, and in elderly subjects, for
non-SCD and SCD (Table 1) (15–24,26,27). Several
studies with MI patients have shown that among
various HRV measures, especially short-term fractal
scaling exponent �1 as well as HR turbulence, are
better in risk stratification for cardiac mortality than
LVEF and VPC (15–21,26,27). This is also true for
scaling exponent �1 in surgical patients. The predic-
tive value of HR turbulence or baroreceptor function
alone or combined with HRV for adverse outcome in
surgical patients has not been studied. Notably, La
Rovere et al. (18) showed, in MI patients, that a
combination of low baroreceptor function and HRV
improved risk stratification over and beyond that
obtained from LVEF and VPC.
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Several studies have shown a significant decrease in
the time- and frequency-domain measures, and scaling
exponent �1 immediately after cardiac artery bypass
graft (CABG) surgery (30,31,113–115). The follow-up
studies of long-term alterations in HRV after CABG
surgery showed that the greatest reduction in the imme-
diate postoperative phase and the least recovery oc-
curred in the range of LF power 1 yr after surgery
(113,116,117) (Fig. 3). The short-term fractal scaling ex-
ponent �1 recovered to the preoperative level 6 mo after
surgery. ApEn tended to decrease during follow-up and
it was at a significantly lower level 12 mo after CABG
surgery (117). Furthermore, HR turbulence remained
low 1 yr after CABG indicating, along with decreased LF
power, impaired baroreflex sensitivity (73–75,116). These
studies suggest that there are some long-term changes in
the ANS after CABG. Unfortunately, the significance of
these findings remains unknown.

An association of perioperative HRV for postopera-
tive myocardial ischemia and for prolonged intensive
care unit (ICU) stay in CABG patients has been
studied (28,30). In these studies, multivariate logistic

regression analysis, including multiple confounding
variables, revealed that decreased scaling exponent �1
and increased SD1/SD2 ratio of the Poincaré plot of
the first postoperative day were the only independent
predictors for prolonged ICU stay (�48 h) and for
appearance of ischemia, respectively (Table 2). Pre-
and postoperative use of �-blockers, sympathomi-
metic inotropics and other vasoactive medications
were included in the multivariate analysis, and were
not found to be related to the length of ICU stay or
occurrence of ischemia. Also, the use of these medica-
tions had no influence on the HRV measures.

The predictive value of HRV for prolonged ICU
stay was later studied in 106 patients who underwent
abdominal aortic surgery and in 86 CABG patients
(31,32). In the study by Stein et al. (32), VLF was the
strongest predictor for prolonged (�7 days) ICU stay
but the scaling exponent �1 was not studied. In the
study by Wu et al. (31), ischemic preconditioning was
also studied. The short-term fractal organization re-
mained significantly more stable in the ischemic pre-
conditioning group. In addition, preoperative and

Table 1. Predictive Value of Various HRV Measures for Morbidity and Mortality in Patients After Myocardial Infarction

Disease state
and study

Primary end
points

Studied HRV
measures

No. of
patients Main result

MI patients
Kleiger 1987 (15) All-cause mortality over

4 yr
SDNN of time domain 808 SDNN � 50 ms; RR 2.7

Bigger 1992 (16) Cause specific and
all-cause mortality

Frequency domain 715 Decrease of ULF and VLF;
RR 2.1–2.5 for cause
specific and all-cause
mortality

Zuanetti 1996 (17) Cardiac and all-cause
mortality over 3 yr

Time domain 567 NN50� �200, cardiac and
all-cause death; RR 4.0

Bigger 1996 (39) Arrhythmic, cardiac and
all-cause mortality
�3 yr

Frequency domain
and nonlinear

715 �-slope and log(power) at
10–4 Hz for all-cause
mortality; RR 6.07

La Rovere 1998 (18) Cardiac mortality over
2 yr

SDNN and BRS 1284 Combination of SDNN
�70 ms and BRS
�3.0 ms/mm Hg; RR 7.3

Huikuri 2000 (19) Arrhythmic,
nonarrhythmic and
all-cause mortality

Time and frequency and
nonlinear

645 �1 �0.75 for primary end
points; RR 1.4, 2.6, 2.0,
respectively

Sensitivity 62%, Specificity
73%, PPA 46%, NPA
84% for all-cause death

Tapanainen 2002 (20) All-cause mortality Time and frequency and
nonlinear

697 �1 �0.65 RR 3.9 Sensitivity
43%, Specificity 89%,
PPA 23%, NPA95%, ROC
0.716

Mäkikallio 2005 (21) SCD and non-SCD with
modern treatment

Turbulence slope (TS), time
and frequency domain
and nonlinear

2130 TS �2.5 ms/RRI; HR 4.7
for SCD �1 �0.75; HR
2.7 for SCD

Sensitivity 57%, specificity
82%, PPA 5.5%, NPA
99% for TS �2.5 ms/RRI
in patients with EF �35%

The relative risk (RR), odds ratio (OR), or hazard ratio (HR) for the best predictor is obtained after multivariate model (if available) with adjustment for other clinical risk factors.
AF � atriall fibrillation; BRS � baroreflex sensitivity; CABG � coronary artery bypass grafting; CAD � coronary artery disease; CHD � coronary heart disease; ICU � intensive care unit; LF/HF �
low frequency/high frequency ratio; MI � myocardial infarction; NPA � negative predictive accuracy; NN50� � the number of pairs of adjacent NN intervals (i.e. intervals between
normal-to-normal QRS complexes) differing by more than 50 ms in the recording period; pNN50 � the proportion derived by dividing NN50 by the total number of NN intervals; POD �
postoperative day; PPA � positive predictive accuracy; RCRI � revised cardiac risk index; ROC � receiver operator curve; SCD � sudden cardiac death; SDNN � standard deviation of the
NN intervals; SD1/SD2 � SD1/SD2 ratio of Poincaré plot; ULF � ultralow frequency; VLF � very low frequency.
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postoperative average value of �1 of 24 h was signifi-
cantly lower in patients with prolonged ICU stay (�24 h)
(31). Their results suggest and support an earlier
study by Laitio et al. (30), which found that less
random and more fractal HR behavior in CABG
patients resulted in better postoperative outcome
(i.e., less inotropic support, shorter respiratory
treatment and ICU stay, and less postoperative
atrial fibrillation). It seems that certain alterations in
HRV caused by compromised ANS occur several
hours before adverse events.

A relation between night-time HRV and postopera-
tive prolonged myocardial ischemia has been shown
(29). In this study with elderly hip fracture patients,
preoperative night-time (from 2 to 5 am) scaling
exponent �1 was significantly lower than the day-time
value (7–12 am) in patients with prolonged postopera-
tive ischemia. An increased preoperative difference
between night-time and day-time values of scaling
exponent �1 (i.e., negative value of night-day differ-
ence of �1) was the best predictor over other clinical
factors for postoperative prolonged myocardial (�10

Table 2. Predictive Value of Various HRV Measures for Morbidity and Mortality in Surgical Patients

Type of surgery
and study

Primary end
point(s) Parameters studied

No. of
patients Main results

Head trauma
Winchell 1997 (132) Hospital mortality Frequency domain 80 Decrease of total power

and increase of HF/
LF ratio: significant
association with
increased acute
mortality

Abdominal aortic
Stein 2001 (32) Prolonged ICU stay �7 d Time and frequency

domain, �-slope
106 VLF: RR 0.59

Peripheral vascular
Mamode 2001 (131) MI or cardiac death

within 30 d
Time domain (triangular

index)
297 Preoperative triangular

index �25.8; RR 6.0,
Thallium scanning;
RR 13.62

CABG
Laitio 2000 (30) Prolonged ICU stay

�48h
Time and frequency and

nonlinear
40 Postoperative decrease

of �1 of 1st POD; OR
0.103 for a change of
0.2 units

Laitio 2002 (28) Postoperative ischemia
during 2nd POD

Time and frequency and
nonlinear

40 Postoperative increase
of SD1/SD2 ratio of
1st POD; OR 3.0 for a
change of 0.15 units

Wu 2005 (31) Prolonged ICU stay
�24h; postoperative
AF

Time and frequency and
nonlinear

86 Preoperative decrease
of �1

Major noncardiac
Filipovic 2003 (10) All-cause mortality 1-yr Time and frequency

domain, Detsky score,
AHA clinical
predictors, RCRI

173 Preoperative LF/HF
�2, OR 16.2, ROC for
LF/HF 0.76 Tn-I
�2.0, OR 9.8, RCRI,
OR 6.2

Hip fracture
Laitio 2004 (29) Postoperative prolonged

(�10 min) ischemia
Time and frequency

domain and nonlinear
measures

32 OR 7.7 for an increase
of 0.16 units in
preoperative night
(2–5 am) to day (7–
12 am) difference of
�1

Sensitivity 92%,
Specificity 69%, PPA
69%, NPA92%, ROC
0.85 for negative
night–day difference
of preoperative �1

Major noncardiac
Filipovic 2005 (11) Postoperative 1 mo to

2-yr all-cause mortality
Time and frequency

domain
167 Preoperative LF/HF

ratio �2; OR1 6.4
For abbreviations see Table 1.
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min) ischemia (Table 2). A plausible mechanism for
these cardiovascular autonomic changes can be pro-
posed. There is increasing evidence that sleep is not
devoid of cardiovascular risk (118–124). It has been
hypothesized that compromised dynamics of ANS,
especially increased sympathetic activity, during
rapid eye movement sleep could be involved in trig-
gering severe cardiovascular events during early
morning hours in cardiovascular patients, and in the
general population as well (118–120,122,125–130).
This is supported by the fact that the risk of sudden
death from cardiac causes in the general population
peaks during morning hours, and this period of the
day is associated with a higher than expected inci-
dence of MI and ischemic stroke (119,120,122–124).
The decreased night-time short-term fractal correlation
properties may also be a result of sympathoexcitation,
because most rapid eye movement sleep appears to be
between 2 and 5 am (118,119).

Previous studies have shown that preoperatively
decreased HRV is an independent predictor for post-
operative cardiac death or MI in patients after major
surgery and in trauma patients (10,11,116,131–133). A
prospective study by Filipovic et al. (11) evaluated
predictors of long-term outcome in patients with
documented or suspected coronary disease who sur-
vived major noncardiac surgery. Such patients are still
at increased risk of death after discharge from hospi-
tal, and they may benefit from further evaluation and
optimization of therapy. Notably, they excluded pa-
tients who died within 1 mo after surgery. Their
results showed that the LF/HF ratio �2 analyzed only
6 min before induction of anesthesia was the best
predictor for 2-yr all-cause mortality in 167 patients
(odds ratio, 6.4; confidence interval, 1.9–21; P � 0.002).
Other independent predictors were a history of con-
gestive heart failure and age �70. This study included
the risk scores described by Eagle et al. (3), and by
Detsky et al. (134) and the Revised Cardiac Risk Index
described by Lee et al. (4). These risk scores failed to
predict long-term morbidity. The reason for the failure
was most probably that the scores have been estab-
lished and validated to predict short-term outcome or
to identify patients with the need for further cardiac
testing (11).

As discussed earlier, a baroreceptor dysfunction is
characteristic in cardiovascular patients. Although this
feature increases the risk for SCD, inadequate com-
pensation of increased sympathetic activity by barore-
ceptors during sleep as well as during day-time could
be a triggering mechanism for acute perturbations in
vulnerable patients (18,123,125,130). In such patients,
the uncompensated sympathetic hyperactivity may
increase platelet aggregability, coronary vasoconstric-
tion, and left ventricular wall stress, predisposing the
heart to ischemic episodes and life-threatening ar-
rhythmias, a condition that often precipitates SCD
(12,18).

In other words, it is possible that uncompensated
sympathetic hyperactivity is a common denominator
for altered HRV, for prolonged ICU time, and for
postoperative ischemia and mortality as has been
suggested for cardiac nonsurgical patients (12,18).

Future Aspects
According to the evidence, low HRV is a major risk

factor for adverse cardiovascular events in nonsurgi-
cal patients. The low HRV also seems to have similar
characteristics in surgical patients. Preliminary results
of low HRV in performing as a prognostic test for
long-term cardiac morbidity and mortality in surgical
patients compare favorably with that of nonsurgical
patients (Tables 1 and 2) (10,19–21,29). Also, the study
by Filipovic et al. (11) is the only study that compared
the predictive value of HRV and other perioperative
risk scores. Their study suggests that HRV measures
could be used to stratify postoperative long-term
cardiac risk. There are two main reasons why HRV
has not been assimilated clinically in surgical or
nonsurgical patients during the past two decades can
be addressed. First, results are mainly achieved from
long-term electrocardiogram (ECG) recordings, i.e.,
24 h, which is not practical for clinical use. Second,
there is no method for automatic editing of the ECG
data. Currently, editing is performed manually to
ensure the sinus origin of the analyzed ECG data.
Therefore, a refinement of existing tools and technol-
ogy permitting near real-time editing and calculation
of the ECG data are needed. Also, the possible predic-
tive value of baroreceptor dysfunction and HR turbu-
lence, alone and combined with HRV, for short- and
long-term outcome needs to be studied in surgical
patients.
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19. Huikuri HV, Mäkikallio TH, Peng CK, Goldberger AL, Hintze
U, Møller M, for the DIAMOND Study Group. Fractal corre-
lation properties of R-R interval dynamics and mortality with
depressed left ventricular function after an acute myocardial
infarction. Circulation 2000;101:47–53

20. Tapanainen JM, Thomsen PEB, Køber L, Torp-Pedersen C,
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