
T3: Rapid Prototyping of High-Resolution and Mixed-Presence Tabletop
Applications

Philip Tuddenham and Peter Robinson
University of Cambridge Computer Laboratory

15 JJ Thomson Avenue, Cambridge CB3 0FD, UK
{firstname}.{lastname}@cl.cam.ac.uk

Abstract

Multi-person tabletop applications that require a high
display resolution, such as collaborative web-browsing, are
currently very difficult to create. Tabletop applications that
support mixed-presence collaboration, whereby some col-
laborators are remote, are also hard to build. As a con-
sequence, there has been little investigation of important
tabletop applications, despite promising early results. In
this paper, we present T3, a software toolkit that addresses
these challenges. T3 allows researchers to rapidly create
high-resolution multi-person tabletop applications for co-
located or remote collaborators. It uses multiple projectors
to create a single seamless high-resolution tabletop display,
and allows multiple tabletops to be connected together to
support mixed-presence collaboration. This engineering is
hidden behind a simple, flexible API that can be used to
implement the vast majority of today’s tabletop applica-
tions. T3 also supports existing user interface components,
including buttons, web-browsers and spreadsheets, allow-
ing the rapid creation of complex tabletop applications. We
show how we have used T3 to create five novel tabletop ap-
plications that would previously have been very difficult to
build.

1. Introduction

In recent years, interactive tabletop interfaces have
emerged as a key tool for co-located collaboration over digi-
tal artifacts. Yet, in spite of much promising research, there
has been little investigation of tabletop interfaces to sup-
port the collaborative tasks for which people currently use
their desktop computers, such as collaborative web brows-
ing, spreadsheets and document review. These are com-
pelling applications to which tabletop interfaces may bring
significant benefits. However, this area remains largely un-
explored because, with very few exceptions, the display res-

olution of today’s tabletop interfaces is too low to support
such applications.

A further area that remains largely unexplored is the ex-
tension of tabletop interfaces to remote groups of collabo-
rators. In this mixed-presence setting, each remote group
would sit at their own tabletop. As shown in Figure 1, all
the tabletops would then be linked together to provide a
shared workspace for collaboration in which collaborators
could interact with, position and orientate digital artifacts.
All the tabletops would show the same artifacts, along with
remote embodiments (such as arm shadows) of the partici-
pants. Such a system could well offer remote collaborators
some of the benefits of tabletop interaction, such as a greater
awareness of each others’ actions, and space to explore both
personal and group work [13], both longstanding problems
in conventional groupware. However, despite promising
early results, investigation of these mixed-presence systems
has been rather limited [16, 7, 3].

The significance of these two gaps in the research should
not be underestimated. If we are truly to believe that these
interfaces will be adopted then we must begin to explore
real-world tasks, and the benefits that tabletop interfaces can
offer over and above conventional physical tabletops.

Recent tabletop research has been fuelled by software
toolkits that address the core engineering involved, allowing
researchers to concentrate on interaction techniques and ap-
plications. As we shall show, the reason for these two gaps
in the research is that these kinds of systems pose unique
engineering challenges that cannot easily be solved using
today’s toolkits. From our own experiences, and from dis-
cussions at a workshop [17], we know that it is presently
very difficult for tabletop researchers to overcome these is-
sues.

In this paper we present T3, a software toolkit that we
have implemented to address these problems. It uses mul-
tiple projectors to create a single seamless high-resolution
tabletop display, and allows multiple tabletops to be con-
nected together. T3 allows researchers to rapidly prototype
high-resolution tabletop interfaces for applications such as

1

collaborative spreadsheets and collaborative web-browsing,
both for co-located and mixed-presence collaboration. It is
freely available for academic research and will allow rapid
exploration of this field. Furthermore, through our experi-
ences, we have been able to investigate the challenges in
creating these interfaces.

In the next section, we review recent work to identify the
challenges in engineering these applications and establish
design goals for our work. We then present T3, showing
how it meets these goals, and outline a simple worked ex-
ample. We illustrate its utility through five novel research
projects, discuss its limitations and conclude with recom-
mendations for further exploration of the field.

2. Background and Design Goals

2.1. Tabletop Collaboration

A great number of projects have investigated various
aspects of tabletop interfaces for co-located collaboration
[e.g. 15]. Much of the work has been possible because of
reusable software toolkits, notably DiamondSpin [14], and
the more recent Buffer Framework [5], that handle the core
engineering such as:

• Allowing collaborators to arbitrarily position and ori-
ent digital artifacts, and groups of digital artifacts.

• Allowing multiple users to interact concurrently.
• Supporting direct interaction using bare-hands or sty-

lus.

DiamondSpin is particularly useful because it allows re-
searchers to rapidly prototype complex tabletop applica-
tions by reusing existing Java Swing user interface com-
ponents, such as buttons and file choosers. This feature is
essential if we are to investigate complex applications such
as collaborative spreadsheets or web-browsing, because it is

Tabletops are connected via the Internet

Figure 1: Mixed-presence collaboration. The
tabletop provides a shared visual workspace
both for the co-located participants and the re-
mote participants.

not within the scope of a research project to engineer such
applications from scratch.

By contrast, the Buffer Framework provides good per-
formance when hundreds or thousands of digital artifacts
appear on the tabletop, but does not allow the reuse of ex-
isting user interface components, and so creating new appli-
cations is difficult. To our knowledge, it has thus far been
used only to create an application for moving and grouping
photos.

2.2. Higher-Resolution Displays

The key problem in supporting applications such as col-
laborative web-browsing or spreadsheets, is in creating a
display surface with a sufficiently high resolution. In or-
der to use the unique affordances of tabletop collaboration,
we wish each web-page or spreadsheet to appear no larger
than an ordinary sheet of paper, so that they can be passed
between collaborators as one might with paper documents.
However, to accomplish this, we need to be able to legibly
display small text and user interface components, which is
impossible on most of today’s tabletop displays.

We aimed to display 12pt text legibly (i.e. text that
appears the same size as 12pt text that comes out of the
printer). We have found that this requires a resolution of at
least 60dpi, so that a fairly modest 85cm × 85cm table re-
quires a 4 Megapixel display. By contrast, almost all today’s
tabletop displays provide at most 2.6 Megapixels using at
most two projectors.

Higher-resolution projectors are extremely expensive
and unsuitable. By far the easiest way to create a higher-
resolution display using is to tile multiple projectors.
For example, we have tiled 6 projectors to create a 4.7
Megapixel display using modest, inexpensive equipment.
Such multi-projector designs are commonplace in the dis-
play walls used in visualisation research. However, they
introduce further problems. Firstly, the huge number of
pixels can lead to unresponsive applications. Secondly, it
is impossible to align the projectors to the degree of pre-
cision required to make a perfect seamless display, and so
these displays can suffer from small overlaps, mismatches
and keystoning. To compensate, small adjustment trans-
formations and blending masks must be applied to each
frame before it is sent to the projectors.These solutions are
well-known and employed in the software toolkits that are
widely used to create large multi-projector display walls
[9, 20, 18, 1]. However, these toolkits are not designed to
afford tabletop interaction or rapid prototyping; they typi-
cally do not, for example, support rotation of artifacts.

The DiamondSpin toolkit cannot easily be extended to a
multi-projector tiled display because of its rendering mech-
anism, whereas the Buffer Framework performed well on a
4 projector tiled display.

2.3. Mixed-Presence Collaboration

We also wish to investigate mixed-presence collabora-
tion, whereby two geographically-separated tabletops are
linked together to allow two remote groups to collaborate
as though co-located around the same tabletop. Prior re-
search in this area has investigated mixed-presence drawing
surfaces [e.g. 16] and tangible interfaces [e.g. 2, 19].

There has, however, been little mixed-presence investi-
gation of applications in which collaborators interact with,
position and orientate digital artifacts like spreadsheets or
text documents. TIDL [7] and RemoteDT [3] both al-
low mixed-presence collaborators to position and interact
with digital artifacts on large horizontal displays (much as
GroupKit [10] does for remote collaborators on conven-
tional desktop computer interfaces). However, none of these
systems allow collaborators to reorient artifacts. Orienta-
tion serves several important roles in co-located tabletop
collaboration, such as allowing transitions between personal
and group work [13, 8], and it should not be overlooked
when designing mixed-presence tabletop systems.

Creating a mixed presence system that allows partici-
pants to reorient artifacts is desirable but technically dif-
ficult: firstly because standard remote display protocols are
not designed to handle artifact rotation; and also because the
existing tabletop toolkits, DiamondSpin and Buffer Frame-
work, cannot easily be extended to support mixed-presence
collaboration.

2.4. Design Goals

Having reviewed the literature, we now establish several
design goals. The system should:

• provide abstractions to support the core tabletop inter-
action functionality provided by other tabletop toolk-
its, such as rotation of artifacts. Such requirements
have been discussed in prior work [11, 14], and in Sec-
tion 2.1 we have enumerated the most salient given the
space available.

• allow creation of higher-resolution tabletops by sup-
porting multiple projectors in a tiled array, applying
small transformations and masks to create the illusion
of a seamless display.

• allow geographically-separated tabletops to be con-
nected together to create a shared workspace for in-
vestigation of mixed-presence applications, in which
collaborators interact with, position and orientate dig-
ital artifacts.

• allow researchers to rapidly create complex tabletop
applications like spreadsheets by reusing existing user
interface components.

Table 1 summarises our design goals and the limitations
of existing tools.

D
ia

m
on

d
Sp

in

B
uf

fe
r

F’
w

or
k

D
is

pl
ay

w
al

ls

T
ID

L
/

R
em

ot
eD

T

T
3

Tabletop interaction X X X
(e.g. rotation, etc.)
Higher-resolution X X X

Two linked surfaces Some X X
(mixed-presence)
Reuse existing UI X X X X

components

Table 1: Comparing tools and design goals.

3. The T3 Toolkit

3.1. Overview

Having established these design goals, we now provide
a brief overview of the T3 architecture, followed by a de-
scription of each component, example applications, and a
discussion of the implementation.

Figure 2 outlines the T3 architecture. Applications are
created using a simple, well-documented Java API. The API
is based around the notion of a single seamless large display,
in which the application programmer can create rectangular
tiles to represent interactive draggable digital artifacts such
as spreadsheets or web-pages. The application programmer
uses T3 to arbitrarily position and orient the tiles within a
single large coordinate space.

Importantly, tiles can be filled with existing Java Swing
user interface components, which function as expected
without any extra code required on the part of the applica-
tions programmer. This includes buttons and text boxes, and
even third-party components such as spreadsheets and web-
browsers, allowing rapid creation of complex applications.
T3 works behind the scenes to ensure that the application
programmer is never required to consider the effects of tile
rotation or scale, nor how to distribute the information to
multiple tabletops, nor multi-projector blending techniques,
nor simultaneous input event streams.

Each multi-projector tabletop display is controlled by a
local computer running a T3 client. This client commu-
nictes with the application, receiving tile updates and send-
ing back user input events. If desired, multiple clients can
connect to the same application via the Internet to allow
mixed-presence collaboration, as proposed in the Introduc-
tion. The client automatically creates the correct images to
send to each of the projectors in the multi-projector display.
It positions and orients the tiles, applying small warps and
masks to correct for projector misalignment and create the
illusion of a single seamless display.

Java/OpenGL
Paint each
projector output
Apply small
transformations
and blend

Multi-user input

T3 Client

T3 Client

T3 API
Application creates
tiles representing
digtal artifacts.
Each tile can contain
existing Java Swing
user interface
components.
The T3 API handles
repainting, coordinate
transforms, multi-user
event dispatch, and
multiple tabletops.

A T3
application

Tile movements and
content updates

Multi-user input

Further display connected via Internet for mixed
presence collaboration

Figure 2: T3 system architecture to support multi-projector tabletops and mixed-presence collaboration.

3.2. Physical Apparatus

T3 is easily configurable to support any number of pro-
jectors connected to a single PC. We have created three
tabletop displays:

• Six projectors and a single PC with three dual-head
graphics cards to create a 4.7 Megapixel display.

• Four projectors and a single PC with two dual-head
graphics cards to create a 5.7 Megapixel display.

• One projector to create a 0.8 Megapixel display.

All the components are available off-the-shelf, and nei-
ther multi-projector display cost more than $13,000, includ-
ing mountings. We have tested the toolkit using 3 brands
of graphics cards. For multi-user input, we use standard
graphics tablet styluses and Anoto streaming styluses, and
the system will also extend to multi-touch surfaces.

3.3. API and Swing Applications

The application programmer creates tiles by instantiat-
ing T3’s tile class. The programmer specifies how each tile
should be positioned, rotated and scaled on the tabletop by
specifying coordinates and dimensions in millimetres, and
an angle in radians. Collaborators move tiles around the dis-
play surface by dragging with their stylus (or their finger, if
a multi-touch surface is used) using Rotate ’N’ Translate
[8]. The application programmer determines which tiles are
draggable and can group tiles so that they are then dragged
together, allowing creation of mobile container elements
like Storage Bins [12].

Each tile functions as a Java Swing window in which ex-
isting user interface components can be used without any

modification required, as we illustrate later with a worked
example (Section 4). Multiple collaborators can interact si-
multaneously to drag these tiles and manipulate the compo-
nents within, using stylus or bare hand input, depending on
the hardware available. The vast majority of Swing com-
ponents work as expected without any modification, though
components that use popup windows currently require spe-
cial attention.

This mechanism works by opening the necessary Swing
windows off-screen. Swing repaint events are then trapped
by the T3 toolkit which renders the windows into images
that are sent to the T3 clients. Similarly, user input events
received from the T3 clients are translated into Swing in-
put events and dispatched to the appropriate Swing window.
T3 uses geometric transforms to determine the tile immedi-
ately “underneath” the event on the tabletop and then trans-
forms the event from tabletop coordinates (in millimetres)
into Swing window coordinates, “undoing” the effects of
tile rotation, translation and scaling, similar to Diamond-
Spin’s transformation engine. The resulting Swing event
objects are also augmented with extra fields representing
the absolute coordinates in millimetres and the person who
caused the event so that applications can use this informa-
tion.

T3 also provides an alternative API to support more
customised applications that avoid the constraints of Java
Swing. This allows implementation of more complex de-
signs like Storage Bins [12] or Interface Currents [6], and
both APIs can be mixed within the same application to pro-
duce, for example, an Interface Currents design that sup-
ports web browsing using a Java Swing web browser com-
ponent. In this alternative API, the application programmer
simply overrides a paint routine and an input event process-

Tile

Framebuffer A Tabletop surface,
showing outlines of
projectors A and B.

TTile to framebuffer for projector
B, using hardware acceleration.

TTile to framebuffer for projector
A, using hardware acceleration.

Framebuffer B

TFramebuffer to surface for projector B,
determined by projector position.

TFramebuffer to surface for projector A,
determined by projector position.

TTile to surface positions and rotates the tile onto the table surface as desired by the application.

Figure 3: Transformations between coordinate spaces in the T3 client.

ing routine for each tile.
T3 uses a multi-threaded architecture to handle the si-

multaneous input event streams from multiple users and
multiple tabletops. This provides responsive performance
and allows multiple collaborators to interact simultaneously
to drag or manipulate tiles. The multi-threading and object
locking is handled automatically by the toolkit.

Tiles are rectangular by default, but other shapes can be
created by painting parts of the tile with transparent pixels.
An ordering for the tiles determines occlusion when tiles
overlap. T3 also provides a mechanism to smoothly animate
groups of tiles between two specified positions and orienta-
tions, which can be used, for example, to zoom out to a
thumbnail overview. Again, T3 handles the multi-threading
and object locking. A further mechanism allows the cre-
ation of translucent lines that join different tiles, which can
be used, for example, to illustrate dependencies between ar-
tifacts.

3.4. Display Management

Each multi-projector display is controlled by a local T3
client, which receives tile information from the application,
via the Internet if necessary, and performs the actual ren-
dering. The client uses OpenGL (via the JOGL library) to
exploit hardware-accelerated rendering provided by mod-
ern graphics cards and, for the applications described in this
paper, we achieved a frame rate of 60fps at all times, using
fairly modest graphics hardware.

Tile images are stored in the texture memory within each
graphics card. The client then renders each frame for each
projector by transforming tile images into the framebuffer.
Figure 3 illustrates the transformations between the tile co-
ordinate space, the frame buffer, and the display surface.
The transformation, TTile to framebuffer consists of two
parts:

TTile to framebuffer = T−1
Framebuffer to surface·TTile to surface

The first part, TTile to surface, positions, scales and ro-
tates the tile onto the display surface as desired by the ap-
plication. The second part, T−1

Framebuffer to surface, is a
small transformation that compensates for projector mis-
alignment. It is obtained using a short calibration proce-
dure, which calculates the relationship between points in
the framebuffer and points on the display surface, and then
performs a matrix inversion. As described previously, the
misalignment problem is virtually impossible to solve me-
chanically for high-resolution displays, and such software
solutions are well understood in the display-wall commu-
nity.

3.5. Multiple Tabletops

The client and the application can run on the same
computer to create a single high-resolution multi-projector
tabletop interface. Alternatively, as described earlier, multi-
ple clients can connect to the application via the Internet, to
investigate mixed-presence tabletop collaboration. In this
case, the clients and the server use a protocol to commu-
nicate tile content updates, tile movement and user input
events.

This protocol is optimised so that the most frequent op-
erations, such as dragging tiles, use low bandwidth and pro-
vide reponsive performance. The system also uses a basic
adaptive scheme to avoid overwhelming lower-performing
clients. We have tested our system using both a high speed
LAN and a lower bandwidth wireless network, and it per-
formed responsively in both cases.

In mixed-presence collaboration, we display remote em-
bodiments on the tabletops in order to convey presence and
to allow remote participants to gesture to each other. We
currently use telepointer traces [4] that follow each partic-
ipant’s stylus (or hands, if using a bare-hand multi-touch
interaction surface). Traces are a starting point in our in-
vestigation of remote embodiments: they are easy to imple-
ment, allow rich gestures, and are robust to network jitter.

public static void main(String[] a) throws Exception {

// Create a new tabletop, d.
PortfolioServer d = new PortfolioServer(

new ServerSocket(2000),
new ServerSocket(2001), false);

// create a new tile of 500*500 pixels on d
SwingFramePortfolio myTile = new SwingFramePortfolio(

d, d.rootPortfolio, new RotateNTranslate(),
500,500);

// add a JSpreadsheet and menu bar to the tile
myTile.getFrame().add(new JSpreadsheet(80,40));
myTile.getFrame().setJMenuBar(menuBar);

// make the tile appear a physical size 200mm*200mm
myTile.setTileWidthAndHeightInPORT(200.0, 200.0);

// position the tile 300mm from the top and left of
// the tabletop, rotate it by 0.17 radians and set
// scale factor 1.00.
myTile.setPORTtoPPORT(300.0, 300.0, 0.17, 1.00);

// make the tile visible
myTile.setVisibleWhenParentVisible(true);

}

Figure 4: Complete sample code (top) to create
a tabletop spreadsheet application (bottom) us-
ing T3. The spreadsheet appears on the multi-
projector tabletop. It can be passed between col-
laborators using Rotate ’N’ Translate, and is ed-
itable.

They allow participants to convey shapes, routes and indi-
cate groupings. However, they may not convey presence as
well as alternative embodiments such as arm shadows [16].

4. T3 Applications

We now describe a range of projects that rely on T3 to ex-
plore new tabletop applications. The projects are all being
undertaken by five students in our Laboratory, and would
be very difficult to implement without the core functional-
ity that T3 provides.

Worked Example. Figure 4 illustrates a short program
that creates a tile and fills it with a third party Swing
JSpreadsheet component. The result is a working tabletop
spreadsheet application. The spreadsheet appears as a leg-
ible rectangular 20cm × 20cm tile on the table. It is suffi-
ciently small that multiple spreadsheets can be viewed si-
multaneously by collaborators around the table, and can be

Figure 5: Collaborative web-browsing using T3.
Web pages appear small yet legible. They can be
passed around the table (top) and browsed in a
tree (bottom).

passed between collaborators using the Rotate ’N’ Translate
technique. Columns and rows can be selected, and formulae
can be entered into cells. Further development of this basic
application will allow participants to collaborate over multi-
ple interdependent worksheets to perform different analyses
of the same data set.

Collaborative Web-Browsing. A second project inves-
tigates finding and sharing information from the web (Fig-
ure 5). The high-resolution capability of T3 allows web
pages to appear legible yet sufficiently small that multiple
collaborators can each read their own pages and pass them
around. T3 also allows us to reuse a third party Java Swing
web browser component for rapid development; the basic
tabletop web browsing application was implemented by a
student in 60 lines of Java in around 1 hour. Collaborators
can open web pages, follow links, and pass pages between
each other.

Remote Document Review Meetings. Our third project
investigates mixed-presence document review meetings, in
which remote collaborators discuss and collaboratively an-
notate draft text documents. Our interface allows multi-
page text documents to appear rather like an open book on
the tabletop (Figure 6). We use the high-resolution feature
of T3 to project legible text at size 12pt. The interface al-
lows remote collaborators to use styluses to pass documents
to each other, to browse within a document using a thumb-
nail view, and to annotate pages. T3 allowed us to rapidly

Figure 6: Remote review meetings using T3.
Documents containing size 12pt text can be
read (top-left), browsed (top-right), and used for
remote collaboration (bottom-left and bottom-
right).

Figure 7: Mixed-presence command and control
interfaces using T3. Two co-located participants
(left) collaborate with a remote participant (right).

create the interface, which was implemented by a graduate
student in 650 lines of Java in around three days.

Command and Control Interfaces. A further student
project uses T3 to investigate map-based command and con-
trol tasks, comparing co-located collaboration to mixed-
presence collaboration (Figure 7). T3 has allowed us to
create a single interface and then switch easily between co-
located collaboration and mixed-presence collaboration to
conduct the study.

Large-Format Collaborative Programming Interfaces.
Students have used T3’s high-resolution capabilities to gen-
erate interactive tabletop UML diagrams annotated with
source code (Figure 8).

Figure 8: Interactive UML sequence diagrams
with annotations using T3.

5. Discussion

T3 addresses the core engineering required to use multi-
projector displays and to connect remote tabletops together.
However, it nevertheless provides a simple, flexible API that
allows researchers to rapidly prototype new tabletop appli-
cations, without having to consider the engineering realities
of multi-projector transformations or distributed rendering.

The ability to reuse existing Java Swing user interface
components, such as buttons and spreadsheets is not with-
out its limitations. The components are designed only for a
single user and so, for example, in our tabletop spreadsheets
it is not possible for two users to simultaneously select two
different columns within the same spreadsheet. Further-
more, we do not believe that applications designed for a
single user at a desktop PC are by themselves sufficient to
support tabletop collaboration. Nevertheless, the ability to
use existing components will undoubtably lead to rapid de-
velopment of more complex tabletop applications, such as
collaborative web-browsing. T3 also supports more radical
application designs by providing an alternative API that is
not constrained by Java Swing (Section 3.3).

T3 integrates recent research from co-located table-
top interfaces, high-resolution multi-projector display walls
and distributed groupware. The unique combination of
high-resolution applications, mixed-presence collaboration,
tabletop interaction techniques and rapid prototyping of
complex tabletop applications, will further tabletop re-
search in a way that has not previously been possible. For
example, the combination of high-resolution, tabletop in-
teraction and complex applications allows rapid prototyp-
ing of tabletop web browsing interfaces. Similarly, mixed-
presence collaboration and tabletop interaction permits in-
terfaces in which mixed-presence collaborators can reori-
ent artifacts, a behaviour which serves important awareness
roles in co-located collaboration.

6. Conclusions

Despite a great deal of successful research into table-
top collaboration, two important areas remain largely unex-
plored: applications that require higher-resolution displays,
such as collaborative web-browsing; and mixed-presence
collaboration, whereby tabletops provide a shared visual
workspace for geographically-separated collaborators. Our
analysis shows that such applications are particularly dif-
ficult for researchers to create, because they involve engi-
neering problems that are not addressed by existing tools.

In this paper, we presented the T3 software toolkit, which
addresses these problems. T3 allows researchers to rapidly
create higher-resolution tabletop applications for both co-
located and mixed-presence collaboration. It addresses
the engineering required to create seamless multi-projector
tabletop displays and to connect multiple tabletops together.
T3 presents a simple, flexible API that can be used to im-
plement the vast majority of today’s tabletop applications.
Existing Java Swing user interface components, including
buttons and spreadsheets, can be used without modification,
allowing researchers to rapidly create complex applications.
We illustrated the utility of T3 with five novel projects that
would be infeasible without it.

T3 is freely available to academic researchers, along with
documentation and example applications, at http://www.
cl.cam.ac.uk/users/pjt40/. We hope that it will enable
rapid exploration of these areas.

Acknowledgements

We gratefully acknowledge the support of Rowan Hill, Tom
Matthews, Richard Russell and Stephen Williams, who are under-
taking projects using T3; and Thales Research and Technology
(UK) and the EPSRC, who jointly funded this work.

References

[1] Ashdown, M., Flagg, M., Sukthankar, R., and Rehg, J. A
flexible projector-camera system for multi-planar displays.
In Proc. Conf. Computer Vision and Pattern Recognition
(CVPR) 2004, vol. 2, 165–172.

[2] Brave, S., Ishii, H., and Dahley, A. Tangible Interfaces for
Remote Collaboration and Communication In Proc. CSCW
1998, 169–178.

[3] Esenther, A., and Ryall, K., RemoteDT: Support for Multi-
Site Table Collaboration. In Proc. Int. Conf. Collaboration
Technologies (CollabTech), 2006.

[4] Gutwin, C. and Penner, R. Improving interpretation of re-
mote gestures with telepointer traces. In Proc. CSCW 2002,
49–57.

[5] Isenberg, T., Miede, A., and Carpendale, S. A buffer frame-
work for supporting responsive interaction in information vi-
sualization interfaces. In Proc. Int. Conf. Creating, Connect-

ing and Collaborating through Computing (C5’06), IEEE
Computer Society (2006), 262–269.

[6] Hinrichs, U., Carpendale, S., Scott, S.D., and Pattison, E. In-
terface currents: Supporting fluent collaboration on tabletop
displays. In Proc. Smart Graphics, 2005.

[7] Hutterer, P., Close, B. S., and Thomas, B. H. Support-
ing Mixed Presence Groupware in Tabletop Applications In
Proc. TABLETOP’06, 63–70.

[8] Kruger, R., Carpendale, S., Scott, S.D., and Tang, A. Fluid
integration of rotation and translation. In Proc. CHI 2005,
601–610.

[9] Li, K., Chen, H., Chen, Y., Clark, D.W., Cook, P., Dami-
anakis, S., Essl, G., Finkelstein, A., Funkhouser, T., Housel,
T., Klein, A., Liu, Z., Praun, E., Samanta, R., Shedd, B.,
Singh, J.P., Tzanetakis, G., and Zheng, J. Building and using
a scalable display wall system. IEEE Comp. Graphics and
Applications 20, 4 (2000), 29–37.

[10] Roseman, M. and Greenberg, S. Building Real Time Group-
ware with GroupKit, A Groupware Toolkit. ACM Trans.
Comp. Human Interaction 3, 1 (1996), 66–106.

[11] Scott, S., Grant, K., and Mandryk, R. System guidelines for
co-located collaborative work on a tabletop display. In Proc.
ECSCW 2003, 2003.

[12] Scott, S.D., Carpendale, M.S.T., and Habelski, S. Stor-
age bins: Mobile storage for collaborative tabletop displays.
IEEE Comp. Graphics and Applications 25, 4 (2005), 58–65.

[13] Scott, S.D., Sheelagh, M., Carpendale, T., and Inkpen, K.M.
Territoriality in collaborative tabletop workspaces. In Proc.
CSCW 2004, 294–303.

[14] Shen, C., Vernier, F.D., Forlines, C., and Ringel, M. Dia-
mondspin: an extensible toolkit for around-the-table interac-
tion. In Proc. CHI 2004, 167–174.

[15] Shen, C., Ryall, K., Forlines, C., Esenther, A., Vernier, F.D.,
Everitt, K., Wu, M., Wigdor, D., Ringel Morris, M., Han-
cock, M., and Tse, E. Informing the Design of Direct-Touch
Tabletops IEEE Comp. Graphics and Applications 26, 5
(2006), 36–46.

[16] Tang, A., Boyle, M., and Greenberg, S. Understanding and
mitigating display and presence disparity in mixed presence
groupware. J. Research and Practice in Information Tech-
nology 37, 2.

[17] Terrenghi, L., May, R., Baudisch, P., MacKay, W., Paterno,
F., Thomas, J., and Billinghurst, M. Information visualiza-
tion and interaction techniques for collaboration across mul-
tiple displays. In Ext. Abstr. CHI ’06, 1643–1646.

[18] Wallace, G., Anshus, O.J., Bi, P., Chen, H., Chen, Y., Clark,
D., Cook, P., Finkelstein, A., Funkhouser, T., Gupta, A., Hi-
bbs, M., Li, K., Liu, Z., Samanta, R., Sukthankar, R., and
Troyanskaya, O. Tools and applications for large-scale dis-
play walls. IEEE Comp. Graphics and Applications 25, 4
(2005), 24–33.

[19] Wilson, A. D., and Robbins, D. C. PlayTogether: Playing
Games across Multiple Interactive Tabletops IUI’07 work-
shop on Tangible Play.

[20] Yang, R., Gotz, D., Hensley, J., Towles, H., and Brown, M.S.
Pixelflex: a reconfigurable multi-projector display system.
In Proc. Visualization ’01, IEEE Computer Society, Wash-
ington, DC, USA (2001), 167–174.

