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ABSTRACT
A typical recommender setting is based on two kinds of re-
lations: similarity between users (or between objects) and
the taste of users towards certain objects. In environments
such as online dating websites, these two relations are diffi-
cult to separate, as the users can be similar to each other,
but also have preferences towards other users, i.e., rate other
users. In this paper, we present a novel and unified way to
model this duality of the relations by using split-complex
numbers, a number system related to the complex numbers
that is used in mathematics, physics and other fields. We
show that this unified representation is capable of modeling
both notions of relations between users in a joint expression
and apply it for recommending potential partners. In exper-
iments with the Czech dating website Libimseti.cz we show
that our modeling approach leads to an improvement over
baseline recommendation methods in this scenario.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Theory, Experimentation, Algorithms

Keywords
Recommender system, online dating, split-complex numbers

1. INTRODUCTION
Recommender systems typically come in two flavors: users

receive recommendations for objects or they receive recom-
mendations for other users. The recommendation of objects
occurs, for instance, in online shops where a user receives
suggestions for other interesting products based on his con-
text. In this case the world of recommendations is asym-
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Figure 1: The four kinds of relationships modeled
in our approach: Like, dislike, similarity and dissim-
ilarity.

metric and clearly divided into those who receive a recom-
mendation (the user) and that what is recommended (the
product). The recommendation then corresponds to pre-
dicting a relation of type taste between a subject and an
object. The alternative setting of recommending users to a
user, instead, is a typical application that can be found in
classical social networks. Here, a user receives suggestions
for people he might know based on his social context. In
this case the setting is symmetric, as there is no distinction
between the type of the object that is recommended and
the one that receives the recommendation (both are users).
If we consider homophily among the users as an important
factor, the recommendation in this scenario corresponds to
predicting a relation of the type similar between two sub-
jects.

There are however settings which lie at the intersection
of those two scenarios. Take, for instance, classical dating
websites, where users are interested in getting to know other
users. At first look, this seems to be a homophily setting and
it seems advisable to make recommendations based on the
relation of type similar. However, in the classical setting the
users might be more interested in getting to know people of
the respective other gender. Thus, we have an asymmetry in
the scenario as we typically would not recommend women to
women nor men to men. Hence, we are also dealing with the
prediction of relation of type taste between different types
of users (i.e., men and women).

Figure 1 shows the four kinds of relationships encoun-
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tered in dating sites: like, dislike, similarity and dissimi-
larity. While it would be possible to model these four re-
lationships as two asymmetric recommendation scenarios
(recommending men to women and recommending women
to men), in this paper we propose a novel and integrated
model to address this task based on split-complex numbers.
The split-complex numbers are a number system related to
the complex numbers. Whereas the complex numbers are
defined by introducing a non-real number i with the prop-
erty i2 = −1, the split-complex are defined by introducing
a non-real number  with the property 2 = +1. We show
that split-complex numbers provide a natural way to model
the particularities of online dating sites. Furthermore, our
modeling approach allows for reducing the problem of dating
recommendations to a link prediction problem – a problem
that has been analyzed well in research on recommender
systems.

In the rest of this paper, we proceed as follows: In the
next section we give a brief introduction to related work in
the field of recommender systems for online dating websites.
Then, we describe the typical approach to model this sce-
nario based on real numbers in Section 3, before developing
the representation based on split-complex numbers in Sec-
tion 4. We proceed in Section 5 with a description of the
complete algorithm and evaluate the method in Section 6.
We conclude the paper in Section 7.

2. BACKGROUND
Dating sites present a special case for recommender sys-

tems. While in ordinary recommender systems, an item is
recommended to a person, dating sites try to recommend
two people to each other, based on the tastes of both users.
Thus, dating recommender systems combine the character-
istics of social recommender systems, in which users are rec-
ommended to each other, but in which friendships are usu-
ally undirected, and item recommender systems, in which
the rating graph is bipartite. Thus, a dating recommender
system must possess two properties:

• It must be reciprocal, i.e., find pairs of users that are
both likely to like each other.

• It must distinguish between the like/dislike relation-
ships and the similar/dissimilar relationships.

The first requirement, reciprocity, has been addressed in
previous dating recommender systems. The second require-
ment however, has not yet been considered. To build a dat-
ing recommender system that fulfills this second require-
ment, this paper introduces a model of dating networks
based on split-complex networks.

Recommender systems for online dating are related to the
more general problem of social matching [19], such as the
user model and recommendation systems for matchmaking
for private discussions in [1], and a system for recommending
workers in a distributed workplace environment [6]. For rec-
ommender systems with people on both sides of the recom-
mendation, i.e., the subject and object of a recommendation,
bidirectional or reciprocal recommendations match between
people according to preferences of both sides. Bilateral rec-
ommendations are used for matching between people and
jobs [12], following the argumentation that a globally opti-
mal matching needs to consider preferences of both sides.

Other reciprocal recommenders for online dating are pro-
posed in [2] and [16].

In previous work on dating recommender systems, reci-
procity has played a dominant role. In short, it is essen-
tial that recommendations occur if both people like each
other. The recommendation considers personal profile in-
formation and follows the observation and study in [5] that
matching with respect to similar personal preferences leads
to higher matching quality. However, as mentioned in [14]
personal profiles lack information and therefore limit recom-
mendation potential, while implicit user preferences might
compensate this. As in our work, recommendations take im-
plicit user preferences into account, i.e., preferences that are
derived from user’s rating behavior (cf. [15]).

3. USING THE REAL NUMBERS FOR
RECOMMENDATION

Our recommender approach is based on the social graph
between users, i.e., on ratings of users by other users. This
approach is similar to the social recommendation problem,
for instance that of recommending friends on Facebook. In
fact, our proposed method can be derived from social rec-
ommender algorithms by replacing the use of real numbers
by the use of split-complex numbers. Therefore, we will first
describe social recommenders that use the real numbers in
this section, and then generalize them to split-complex num-
bers in later sections.

3.1 Recommending Friendship
Let us assume that in a social graph, the only possible

relationship is that of friend. Then, the social recommen-
dation problem consists of recommending new friends based
on existing friendships. The main tool used for this purpose
is the principle of triangle closing : people who have (maybe
many) common friends might be friends themselves. Fig-
ure 2 illustrates the principle of triangle closing.

Friend Friend

Friend · Friend = Friend‌

Figure 2: Triangle closing in a network with only
the friend relationship. Two adjacent friend edges
let us predict a new friend edge.

In this model, there is only one relationship type (friend-
ship), and thus all predicted edges are of this type. If how-
ever a network contains multiple relationship types, then a
rule must be defined for combining two known edges into
a third one. One example for this case are networks which
model enemies in addition to friends.

3.2 Recommending Friendship and Enmity
In some social networks such as that of the technology

news website Slashdot, people can tag each other as friends
and foes [11]. The resulting social graph contains positive
and negative edges. In such a social network, the principle
of triangle closing can be generalized to the multiplication
rule using +1 for friendship and−1 for enmity. The resulting
recommender will follow the adage“The enemy of my enemy
is my friend”, due to the relation −1 · −1 = +1. Figure 3
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illustrates the principle of triangle closing in networks with
negative edges.

Foe Foe

Foe · Foe = Friend‌

Figure 3: Triangle closing in a network with friend
and foe relationships. In such a network, new edges
can be predicted using the multiplication rule that
for instance states that “The enemy of my enemy is
my friend”.

Accordingly, recommender systems for signed social net-
works will take into account the multiplication rule of real
numbers.

4. OUR MODEL: THE SPLIT-COMPLEX
NUMBERS

In this section, we present our model of the profile rating
graph, using the split-complex numbers. The split-complex
numbers are an extension of the real numbers similar to the
complex numbers [17]. Instead of including an imaginary
number i such that i2 = −1, the split-complex numbers
include an imaginary number  such that 2 = +1. Using
split-complex numbers, we can represent the like and dislike
relationships using the numbers + and −, and the similar
and dissimilar relationships using the real numbers +1 and
−1. Figure 4 shows this assignment of these four relations
to unit split-complex numbers.

When users rate the profile of other users on a dating
site, we get directed edges denoting like and dislike. Let
us imagine two men A and B that like the same woman C.
Then, by triangle closing, we may predict an edge between A
and B. This new edge however will not denote a like. Instead,
it will denote similarity. Therefore, we really need two kinds
of relationships in this network: like and similar. Let us
represent these two possible values by elike and esimilar. Now,
remember that in the triangle closing model of Section 3,
we multiply the weights of two adjacent edges to generate a
new edge. In the case of a dating site, we can formulate the
following natural triangle closing rules shown in Figure 5.

These rules can be expressed mathematically in the fol-
lowing way:

elike · elike = esimilar

esimilar · esimilar = esimilar

elike · esimilar = elike

We thus have to find values of elike and esimilar that solve
these equations, and in which both constants are nonzero.
A trivial solution is given by elike = esimilar = 1. However,
this trivial solution is not satisfactory, since we want the
relationships like and similar to be different. From the sec-
ond and third equations, we can derive that esimilar = 1.
Therefore, elike is a number different from zero and from 1
that squares to 1. Since no real number has these proper-
ties, we have to introduce a non-real value for elike such that
e2like = 1. This construction corresponds to the split-complex
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Figure 4: The split-complex number plane used in
our model. The four unit split-complex numbers +1,
−1, + and − are used to represent the four rela-
tionship types similar, dissimilar, like and dislike.

Like Like

Like · Like = Similar‌

Similar Similar

Similar · Similar = Similar‌

Similar Like

Similar · Like = Like‌

Figure 5: Triangle closing in a dating network.
These multiplication rules lead to the assignment
of the value + to the like relationship and of the
value +1 to the similar relationship.

numbers, where the imaginary unit  squares to one:

elike = 

esimilar = 1

Our three requirements then correspond to the identities
 ·  = 1, 1 ·1 = 1 and  ·1 =  that hold for the split-complex
numbers. Analogous multiplication rules with dislike and
dissimilar can then be derived by multiplying both sides
with −1. For instance, the equation + · −1 = − states
that a like combined with a dissimilar results in a dislike.

4.1 Formal Definition
The split-complex numbers were introduced in 1848 by

James Cockle as a special case of the tessarines and were
thus called real tessarines [4]. They can be defined formally
as the set Cs = {a+b | a, b ∈ R}, together with the rule 2 =
+1. From this, the following addition and multiplication
rules can be derived:

(a+ b) + (c+ d) = (a+ c) + (b+ d)

(a+ b)(c+ d) = (ac+ bd) + (ad+ bc)

Note the similarity to the corresponding rules for the com-
plex numbers, which differ only by a single sign change.
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Unlike the complex numbers, Cs is not a field. Instead, Cs

is a commutative ring, i.e., all field axioms are valid except
for the existence of the multiplicative inverse, which does not
exist for numbers of the form a ± a. As a result, products
of two nonzero numbers can be zero, e.g., (1 + )(1− ) = 0.
Due to these defects, the split-complex are used much less
than complex numbers.

The split-complex numbers are often studied together with
number systems such as the quaternions, for instance by
William Clifford in 1873 [3]. Split-complex numbers are also
called hyperbolic complex numbers because they can repre-
sent hyperbolic angles [7]. In the context of special relativity
for instance, numbers of the form a+ b with a2− b2 = 1 are
used to model Lorentz boosts. Other applications of hyper-
bolic angles are squeeze mappings in geometry, giving them
the alternative name hyperbolic numbers [18]. Other names
are tessarines, countercomplex numbers, anormal-complex
numbers and Lorentz numbers.

5. PROPOSED ALGORITHM
In the model derived in the previous section, we estab-

lished than like edges should be represented by the split-
complex weight + and dislike edges by the split-complex
weight = −. We will now use this model to derive a dating
recommendation algorithm.

5.1 Algebraic Graph Theory
In unweighted networks, it is a well-known result that the

number of paths connecting two nodes can be computed us-
ing powers of matrices. Let G = (V,E) be an unweighted
and undirected network. Its adjacency matrix is then de-
fined as the matrix A ∈ R|V |×|V | given by

Aij =

{
1 when {i, j} ∈ E,
0 when {i, j} /∈ E.

The adjacency matrix A is square and symmetric. Given
two nodes i, j ∈ V , the number of common neighbors of i
and j is given by the square of the adjacency matrix:

CN(i, j) = (A2)ij

Equivalently, the number of common neighbors of i and j
can be interpreted as the number of paths of length two
between i and j. This characterization can be generalized
to paths of any length: The entry (Ak)ij equals the number
of paths of length k from node i to node j.

Thus, the powers of the adjacency matrix A can be used to
implement a social recommender based on triangle closing:

• A2 implements the basic triangle closing recommender,
i.e., counting the number of triangles that can be closed.

• Higher powers Ak generalize triangle closing to the
closing of longer paths.

An example of such a social recommendation algorithm com-
bining these results is the matrix exponential:

exp(A) = I + A +
1

2
A2 +

1

6
A3 + . . .

This function is suitable as a social recommendation func-
tion since it takes all paths between two nodes into account
(containing all powers of A), and because short paths are
given preference over long paths (the weights of the powers
are decreasing).

We will now generalize this method to networks with mul-
tiple relationship types. In networks with friend and foe
links for instance, powers of A can also be used, as they
automatically implement the multiplication rule.

Let G = (V,E, σ) be a signed graph, i.e., a graph with
positive and negative edges, in which σ is the sign function.
The sign function σ is a function from the set of edges E to
{+1,−1} giving the sign of all edges. The adjacency matrix
of G is then defined as

Aij =

 +1 when {i, j} ∈ E and σ({i, j}) = +1,
−1 when {i, j} ∈ E and σ({i, j}) = −1,

0 when {i, j} /∈ E.

The square of A then gives, for each pair (i, j), the number
of common neighbors of i and j connected by the same edge
weight minus the number of common neighbors connected
by different edge weights. Thus, (A2)ij is a link prediction
function that implements the multiplication rule illustrated
by the phrase “The enemy of my enemy is my friend”.

Analogously to the unsigned case, higher powers Ak rep-
resent a count of all paths of length k between two nodes,
weighted positively if the path is positive (i.e., the prod-
uct of edge weights is positive) and negatively if the path
is negative (i.e., the product of edge weights is negative).
Thus, the matrix exponential exp(A) can be used as a rec-
ommendation algorithm in networks with positive and neg-
ative edges, giving a recommender that takes all paths be-
tween two nodes into account, weighted by the sign of the
path.

The case of networks with positive and negative edges thus
shows that the rule “The enemy of my enemy is my friend”
corresponds to the multiplication rule of the real numbers
{+1,−1}, and thus positive and negative edges can be rep-
resented by +1 and −1 when defining the adjacency matrix
of the network. In the next section, we will generalize this
technique to dating networks with like, dislike, similar, and
dissimilar edges.

5.2 Split-complex Path Counting
Let G = (V,E,w) be the directed and signed rating net-

work, in which V is the set of users and E is the set of
directed edges. Each edge (i, j) ∈ E is given a weight by
the weight function w, with the weight w((i, j, )) being any
nonzero real number. A positive number denotes a like re-
lationship and a negative number denotes a dislike relation-
ship. Using these definitions, we will define the real adja-
cency matrix A as

Aij =

{
w((i, j)) when (i, j) ∈ E,
0 when (i, j) /∈ E.

Thus, the split-complex adjacency matrix of the network is

As = A ∈ C|V |×|V |s .
Based on the multiplication rules of the split-complex num-

bers described in Section 4, the powers of As implement our
model of likes and similarities. The weighted path count for
paths of length k is then given by

Ak
s = kAk,

and thus the interpretation of a path of length k depends on
whether k is even or odd:

k =

{
1 when n is even
 when n is odd
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Thus, any sum of the powers of As can be split into even
and odd components, giving a real and imaginary part of
the result. Let

p(X) = aI + bX + cX2 + dX4 + . . .

be a power sum of the matrix X. As an example, p(X) could
be the matrix exponential. This power sum can be applied
to As giving

p(As) = aI + bA + cA2 + dA3 + . . .

= (aI + cA2 + . . .) + (bA + dA3 + . . .).

We thus see that the even part of the power sum can be
used to find similar persons, and the odd part to find liked
persons. We see that to predict like edges, only paths of odd
lengths should be used, and that all paths of even length lead
to predictions of similarity instead.

5.3 Representation as 2× 2 Matrices
Any split complex number can be represented as a 2 × 2

matrix in the following way:

a+ b ≡
[
a b
b a

]
.

In this representation, the addition and multiplication of
split-complex numbers corresponds to the addition and mul-
tiplication of 2 × 2 matrices. The units 1 and  then corre-
spond to

1 ≡
[

1 0
0 1

]
,

 ≡
[

0 1
1 0

]
.

Using this representation, the split-complex adjacency ma-
trix As can be represented by the real matrix Ab:

As ≡ Ab =

[
0 A

AT 0

]
.

By computing the powers of Ab, we recover the property by
which paths of even and odd length are separated:

A2k
b =

[
(AAT)k 0

0 (ATA)k

]
A2k+1

b =

[
0 (AAT)kA

(ATA)kAT 0

]
5.4 Representation as the Bipartite Double

Cover
There is another equivalent way to recover the property

that paths of odd length are needed for predicting like edges.
This method is based on the bipartite double cover of the
network. The bipartite double cover of a directed graph
is an undirected graph with twice the number of nodes and
the same number of edges. The construction of the bipartite
double cover is illustrated in Figure 6.

In the bipartite double cover, each node i gives two nodes
iout and iin, and each directed edge (i, j) gives the undirected
edge {iout, jin}. Thus, the bipartite double cover splits each
node into a node that keeps all the outlinks and one that
keeps all the inlinks. The resulting graph is bipartite, since
every edge connects an out node with an in node. The bi-
partite double cover of a graph G is denoted G×K2 since it

G G £ K2

Figure 6: The construction of the bipartite double
cover of a directed graph: Each node is separated
into two nodes, one which inherits all outlinks, and
one which inherits all inlinks.

also corresponds of the tensor product of G with the com-
plete graph on two nodes K2.

The equivalence of the bipartite double cover with the
split-complex adjacency matrix can be seen by considering
the relation between the two resulting adjacency matrices:
If the graph G has the real adjacency matrix A, then its
bipartite double cover has the adjacency matrix

Ab =

[
0 A

AT 0

]
.

This is exactly the alternative representation of the split-
complex adjacency matrix As, and thus their powers are
equivalent. This shows that counting paths in a graph with
edge weights ± is equivalent to counting paths in the bi-
partite double cover of the graph with edge weights ±1.

5.5 Reduction to the Singular Value Decom-
position

In the previous section, we showed that computing pow-
ers of the split-complex adjacency matrix As is equivalent to
computing powers of the bipartite adjacency matrix Ab =
[0A; AT0]. To compute powers or power sums of a symmet-
ric matrix, we can use its eigenvalue decomposition in the
way described in this section.

The eigenvalue decomposition of a real symmetric matrix
M is given by an orthogonal matrix U and a diagonal Λ
such that

M = UΛUT.

The singular value decomposition of any rectangular or
square real matrix M is given by orthogonal matrices U
and V and a diagonal matrix Σ of the same size as M such
that

M = UΣVT.

Now, since the matrix Ab has the structure Ab = [0A; AT0]
its eigenvalue decomposition can be reduced to the singular
value decomposition of A [13]. Given the singular value de-
composition A = UΣVT, the eigenvalue decomposition of
Ab is given by

Ab =

[
Ū Ū
V̄ −V̄

] [
+Σ 0
0 −Σ

] [
Ū Ū
V̄ −V̄

]T
with Ū = U/

√
2 and V̄ = V/

√
2. In this decomposition,

each singular value σ corresponds to the eigenvalue pair
{±σ}. This form of the eigenvalue decomposition of Ab can
now be exploited to define dating recommender functions.
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5.6 Dating Recommender Functions
It follows that to compute the top-right component (cor-

responding to the like part) of a power of Ab, it is sufficient
to compute UΣVT. All even powers result in a top-right
component of 0. Thus, we can apply any recommendation
algorithm such as the matrix exponential to the dating sce-
nario by keeping only the odd powers of the power sum. In
the case of the matrix exponential, this leads to the matrix
hyperbolic sine:

sinh(A) = A +
1

6
A3 +

1

120
A5 + . . . .

We can now use this method to derive the following dating
recommendation algorithms.

Polynomials.
Any polynomial with only odd powers and nonnegative

weights can be used as a dating recommendation algorithm:

p(A) = aA + bA3 + cA5 + . . .

Rank Reduction.
Rank reduction consists in finding a matrix with maximal

rank r which is nearest to the given adjacency matrix. In the
resulting matrix, entries of zero which denote unconnected
node pairs are assigned nonzero values, which can be used
as a recommendation score. The reduction to rank r of the
matrix A can be computed from the singular value decom-
position of A by keeping the r largest singular values and
changing all other singular values to zero. Since the singular
value decomposition A is related to the eigenvalue decom-
position of Ab, it follows that the best rank-r approximation
to Ab is given by the truncation of Σ.

Hyperbolic sine.
As shown as an example above, the odd component of the

matrix exponential gives the matrix hyperbolic sine:

sinh(A) = A +
1

6
A3 +

1

120
A5 + . . .

Newman kernel.
The Newman kernel is given by the geometric (or New-

man) series

(I− αA)−1 = I + αA + α2A2 + α3A3 + . . .

in which the constant α must be smaller than the inverse of
the largest singular value of A. The restriction of the New-
man kernel to only odd powers results in the odd Newman
kernel

αA(I− α2A2)−1 = αA + α3A3 + α5A + . . .

Due to the equivalence with the bipartite case, these odd
kernels were previously used for link prediction in bipartite
networks [8].

6. EVALUATION
We perform an evaluation of the proposed model on an on-

line dating dataset from the Czech dating site Libimseti.cz.
We will perform two experiments, as follows: When evalu-

ating a dating recommender system, a straightforward opti-
mization can always be done by considering the gender of the

F
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n

c
y

LikeDislike

Figure 7: The distribution of rating values in the
Libimseti.cz dataset. Ratings in Libimseti.cz are on
a scale from 1 (dislike) to 10 (like).

people involved. In the Libimseti.cz dataset, the gender is
only known for a subset of all people. Thus, a recommender
for that site must be able to work without using gender in-
formation. For completeness, we will therefore perform two
experiments: The first consists of predicting likes and dis-
likes without taking into account the gender of people. In
the second experiment, we show that likes and dislikes can
be predicted also when the gender is known.

6.1 The Libimseti.cz Dataset
Libimseti.cz (from Czech Ĺıb́ım se ti, “Do you like me”)

is one of the largest Czech dating websites. Our dataset of
Libimseti.cz is a unipartite, directed network of users. Edges
in the network represent ratings on a scale from 1 (dislike)
to 10 (like) of a user by another user. As shown in Table 1,
the gender of most users is not known. Figure 7 shows the
distribution of ratings. The dataset is available online for
download1.

Since ratings are on a 10-point scale, we must first convert
them to positive and negative values. We will achieve this
by subtracting from every rating the overall mean rating µ.
For each connected pair of users (i, j), let rij ∈ {1, . . . , 10}
be the rating given on a 10-point scale. Let

µ = |E|−1
∑

(i,j)∈E

rij

be the overall mean rating. Then we define the real adja-
cency matrix A of the network as

Aij =

{
rij − µ when (i, j) ∈ E,
0 when (i, j) /∈ E.

6.2 Experiment: Recommendation with Un-
known Gender

The first experiment uses the full Libimseti.cz rating net-
work, in which we ignore the genders of users. The task we
evaluate is that of predicting like and dislike edges. Note
that in an actual dating recommender system, two persons
can only be matched if they are both predicted to like each
other. This is the requirement of reciprocity. However, this
requirement can be reduced to predicting a like in both di-
rections between the two users, and therefore any like/dislike
prediction algorithm can be used to implement a dating rec-
ommender. For this reason, we evaluate only the task of
like/dislike prediction.

We choose a random set containing 25% of all edges as the
test set. The rest of the network is used as the training set.

1konect.uni-koblenz.de/networks/libimseti
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Table 1: Demographics and distribution of ratings in Libimseti.cz.

Rating counts
Gender Count Unknown Male Female Total

Unknown 83,164 366,180 891,550 445,115 1,702,845
Male 76,441 937,684 682,710 3,232,064 4,852,458
Female 61,365 2,460,765 7,099,688 1,243,590 10,804,043

All 220,970 3,764,629 8,673,948 4,920,769 17,359,346

Poly RR Exp/Sinh New Extr
0.72

0.74

0.76

0.78
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Real numbers
Split−complex numbers

Figure 8: The average precision of all recommender
algorithms on the task of predicting likes and dis-
likes when the gender of users is unknown. Points
on the X axis represent different spectral transfor-
mations (i.e., graph kernels). The Y axis represents
the average precision.

In the resulting training set, we find the largest connected
component, and then keep only the users of that largest
connected component in both training and test set. This
is to avoid the situation that an edge in the test set would
connect two unconnected edges in the training set, which
would be effectively unpredictable for all algorithms.

Using this setup, we compute the following algorithms for
recommendation:

• (Poly) The best nonnegative polynomial

• (RR) Rank reduction

• (Exp/Sinh) The matrix exponential and hyperbolic sine

• (New) The (odd) Newman kernel

• (Extr) Spectral extrapolation

All methods are computed to a fixed rank of r = 30. The
first four recommenders are computed using the method de-
scribed in [10], and the last recommender using the method
from [9]. All methods are computed once for the real adja-
cency matrix and once for the split-complex adjacency ma-
trix (by proxy of the singular value decomposition of A).

The prediction accuracy is computed as the average pre-
cision by comparing the prediction scores from each recom-
mendation algorithm to the actual like/dislike edge weights.
The results of the experiment are shown in Fig. 8.
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Figure 9: The average precision of all recommender
algorithms on the task of predicting likes and dis-
likes when the gender of users is known. Points on
the X axis represent different spectral transforma-
tions (i.e., graph kernels). The Y axis represents the
average precision.

6.3 Experiment: Recommendation with
Known Gender

In this experiment, we use the same methodology as in the
previous experiment, but restrict the dataset to users with
a known gender, and to ratings between users of different
genders. Results are shown in Figure 9.

6.4 Discussion
We make the following observations:

• For all recommender systems, our model based on the
split-complex numbers performs better than the model
using only real numbers. This validates our model that
distinguishes the relationship types like, dislike, similar
and dissimilar.

• The description of our method has been restricted to
the case of heterosexual relationships, i.e., men liking
women and women liking men. However, the method
can in fact be generalized to homosexual relationships:
Our first experiment in which we ignored the gender
of the rater showed that the method is independent of
genders, and thus can be generalized to any types of
sexual relationships.

7. CONCLUSION
In this paper, we developed an integrated model to rep-

resent both types of relations that can occur among users
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in a recommender setting: similarity and taste. We showed
that split-complex numbers provide a natural way to de-
scribe how users with the comparable taste are similar to
each other and that similar users share the same taste. We
conducted thorough experiments on a dataset obtained from
an online dating website and showed an improvement in rec-
ommendations over the baseline approach.

As directions for future work, we can identify the usage
of other number systems for link prediction, such as the
complex numbers or the quaternions. In fact, we may state
the link prediction problem in a more general way by first
laying down requirements such as “A like and a dissimilarity
gives a dislike”, and then investigate number systems that
fulfill these identities. We hope that this study can serve as
an example for how to achieve this.
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