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An Optimal Polygonal Boundary Encoding
Scheme In the Rate Distortion Sense

Guido M. Schuster and Aggelos K. KatsaggelBsllow, IEEE

Abstract—In this paper, we present fast and efficient methods of the successive vertices is achieved with a chain code-like
for the lossy encoding of object boundaries that are given as scheme.

eight-connect chain codes. We approximate the boundary by a _enli ; _
polygon, and consider the problem of finding the polygon which In [3], B-spline curves are used to approximate a bound

leads to the smallest distortion for a given number of bits. We &Y. An optimization procedure is formulated for _flr!d!ng
also address the dual problem of finding the polygon which leads the optimal locations of the control points by minimizing
to the smallest bit rate for a given distortion. We consider two the mean squared error (MSE) between the boundary and
different classes of distortion measures. The first class is basedipe approximation. This is an appropriate objective when

on the maximum operator and the second class is based on the . . .
summation operator. For the first class, we derive a fast and the smoothing of the boundary is the main problem. When,

optimal scheme that is based on a shortest path algorithm for a however, the resulting control points need to be encoded,
weighted directed acyclic graph. For the second class we proposethe tradeoff between the encoding cost and the resulting

a solution approach that is based on the Lagrange multiplier distortion needs to be considered. By selecting the MSE as the

method, which uses the above-mentioned shortest path algorithm. i« tion measure and allowing for the location of the control
Since the Lagrange multiplier method can only find solutions

on the convex hull of the operational rate distortion function, POINts to be anywhere on the plane, the resulting optimization
we also propose a tree-pruning-based algorithm that can find all problem is continuous and convex and can be solved easily.
the optimal solutions. Finally, we present results of the proposed In order to encode the positions of the resulting control points
schemes using objects from the Miss America sequence. efficiently, however, one needs to quantize them, and therefore
Index Terms—Boundary encoding, dynamic programming, the optimality of the solution is lost. It is well known that the
min-max  optimization, object-oriented video compression, optimal solution to a discrete optimization problem (quantized
operational rate distortion theory, shape encoding, tree pruning. locations) does not have to be close to the solution of the
corresponding continuous problem.
|. INTRODUCTION In [2], a boundary is approximated by a combination of

HE ENCODING of planar curves is an important problerﬁplines and_polygon;, where the distortion measure e.mployed
T in many different fields, such as CAD, object recognitio N the. maximum d|stan(;e between. the approximation and
object oriented video coding, etc. This research is motivatedgg quglnal boundary. First the vert|ces_ of the polygon are
object-oriented video coding, but the developed algorithms c url_st|cally found, e}nd then these vertices are used to find
also be used for other applications. A major problem in obje&— spline reprgsentaﬂon of the boundary. For every Segf“e”t
oriented video coding [1], [2] is the efficient encoding of objecNere the spline representation does not exceed the maximum
boundaries. There are two main approaches for encoding ﬂ@ance from the original boundary, 'Fhe spline representation
segmentation information: a lossy approach, which is basgused instead of the polygon. This leads to a smoother
on a spline approximation of the boundary [2], [3], and gpprOX|mat|on. Agam', 'the approach is well swtgd for the
lossless approach, which is based on chain codes [4]. THBoOthing of the original boundary and there is also an
proposed boundary-encoding scheme is a lossy scheme tRBgrent control over the maximum distance between the
can be considered a combination of the spline and the ch&pProximation and the original boundary, but the resulting
code approaches, since the boundary is approximated bya@ is not taken explicitly into account. If each control point
polygon and its vertices are encoded relative to each othr.encoded using a fixed-length codeword, then minimizing
The approximation of the boundary by a polygon is simildhe number of control points is equivalent to minimizing
to the spline approximation approach, whereas the encodff§ resulting bit rate. On the other hand, if the control
points are along a natural boundary, there exists a high

; A § ) correlation between the location of two consecutive points, and
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that is based on a rectangular grid superimposed on a platier polygon that requires the smallest bit rate for a given
curve. The curve is quantized using the grid intersectiatistortion. We show how the Lagrange multiplier method can
scheme [4] and the quantized curve is represented usindpea employed to transform this constrained problem into a
string of increments. Since the planar curve is assumed series of unconstrained problems that can be solved using
be continuous, the increments between grid points are limitdtk shortest path algorithm introduced earlier. Like every
to the eight grid neighbors, and hence an increment can lbegrangian-based approach, the proposed scheme results only
represented by 3 b. There have been many extensionsineolutions that belong to the convex hull of the operational
this basic scheme, such as the generalized chain codes {&fe distortion function. Hence, we also propose a second
where the coding efficiency has been improved by using linkégorithm, based on a tree pruning scheme, that can find
of different length and different angular resolution. In [8], @ll optimal solutions. Since both of these algorithms are
scheme is presented that utilizes patterns in a chain code stdggmetric in the rate and the distortion, the dual problem, that
to increase the coding efficiency and in [9], differential chaiaf finding the polygon that results in the smallest distortion for
codes are presented, which employ the statistical dependeacgiven bit rate, can also be solved by the same algorithms.
between successive links. There has also been interest inlthésection V, we extend the results for the jointly optimal
theoretical performance of chain codes. In [6], the performanescoding of multiple boundaries. In Section VI, we introduce
of different quantization schemes is compared, whereas drvertex encoding scheme that is based on an eight-connect
[7], the rate distortion characteristics of certain chain codebain code and run-length coding. In Section VII, we present
are studied. In this paper, we are not concerned with thesults of the proposed algorithms and in Section VIII, we
guantization of the continuous curve, since we assume tisstmmarize the paper and present our conclusions.
the object boundaries are given with pixel accuracy.

Most boundaries contain many straight lines or lines with a [I. PROBLEM FORMULATION
very small curvature, which result in runs of the same incre-

Th in idea behind th i -
ment. Therefore, a run-length encoding scheme can be u € main idea benin e proposed approach is to approx

. . - gte a given boundary by a polygon, and to encode the
to encode the eight-connect chain COdEf‘ even more efficien lygons vertices instead of the original boundary. Since we
Clearl_y, the larger the_ r_lumber of_stra|ght lines a bounda sume that the original boundary is represented with pixel
contains, the more eﬁ'c'?”t a chain code/run-l_ength Scherg&uracy, it can be losslessly encoded by an eight-connect
is. This is the idea behind some preprocessing algOr'thQ':‘ﬁain—code. We propose to approximate the boundary with a

[10] that are used to “straighten” the boundary, i.e., the?@w-order polygon that can be encoded efficiently.
algorithms lead to a new boundary that can be encoded MOorg o following notation will be used. LetB

efficiently. Clearly, such a scheme is a lossy chain code/ru o, -+, by,_1} denote the connected boundary, which
length encoding scheme since this preprocessing introducesad,, o dered set whei is the jth point of B and A}B is
error in the boundary representation. The introduction of @0 toial number of points iB. Note that in the case of a
error is usually permissible, as long as the visual distortiqf) qaq boundarybo = by,_1. Let P = {po, -+, pxp_1}

is considereq insignificant.. The main proplem with thes&enote the polygon used to approximate which is also an
approaches is that there is at best an indirect control OV&Hered set, withy, the kth vertex of P, Ny the total number

the rehs.ulting rate distortion 'Itradgr?ﬁ. h h of vertices inP and thekth edge starts gt;—; and ends at
In this paper, we present algorithms where the preprocessing i e p js an ordered set, the ordering rule and the set

step and the eight-connect chain code/run-length encodigg, e rtices uniquely define the polygon. We will elaborate on
are combined into an optimal lossy segmentation encodlﬂ% fact that the polygon is an ordered set later on

scheme. The proposed approach offers compléete control 0Vejye assyme that the vertices of the polygon are encoded dif-
'the trgdeoﬁ petween 'd|stort|0n.and bit r‘r,ﬂe' 'Note tha!t_thf@rentially, which is an efficient method for natural boundaries,

IS ach'leved in an optimal fashion, resulting in an efficientince the location of the current vertex is strongly correlated
encoding scheme. with the location of the previous one. We denote the required

In Section II, we define the problem and introduce thgy rate for the differential encoding of vertgy, given vertex
required notation. In Section I, we focus on a first class _1 by r(pr_1, pr). Hence, the bit rateR(po, -, pxp—1)
C— c— L c ) ’ ’ ’ ' p—

distortion measures that are based_ on the mgximum OPerafgf.the entire polygon is
such as the maximum absolute distance. First, we consider

the problem of finding the polygon that requires the smallest

bit rate for a given distortion. We solve this problem by Rlpo; -+, pnp-1) = Z (Pr—1; Pr) (1)
introducing a scheme that is based on a shortest path algorithm k=0

for a weighted directed acyclic graph. We then consider theherer(p_1, po) is set equal to the number of bits needed to
dual problem, that of finding the polygon with the smallestncode the absolute position of the first vertex. For a closed
distortion for a given bit rate. We derive an iterative schemmundary, i.e., the first vertex is identical to the last one, the
which employs the shortest path algorithm and prove thatter(pxn._2, pn,.—1) IS Set to zero since the last vertex does
this scheme converges to the global optimum. In Sectioot need to be encoded. Note that this rate depends on the
IV, we focus on a second class of distortion measures thsecific vertex encoding scheme. We present one such scheme
are based on the summation operator, such as the m#éaat is a combination of an eight-chain code and a run-length
squared distance. Again, we consider the problem of findisgheme in Section VI.

Np—1
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In general, the polygon used to approximate the boundaryThe second class of distortion measures is based on the
could be permitted to place its vertices anywhere on the plasemmation operator is of the following form:
In this paper, we restrict the vertices to belong to the original
boundary §; € B), so that we can employ a fast polygon
selection algorithm. This restriction results in the following D(po; -+, pNp-1) = Z d(pr—1, Pr) 6)
fact, which we employ to derive low complexity optimization k=0

algorithms. Thekth polygon edge which connects two consegyhere againi(p_1, po) is set equal to zero. We will refer to
utive verticespy—1 andpy, is an approximation to the partiala|| distortion measures based on the above definition as class
boundary{b; = px—1, bj41, -+, b4 = px}, Which contains two distortion measures.
! +1 boundary points. Therefore, we can measure the qualityThe main motivation for considering these two classes of
of this approximation by an edge distortion measure whi@istortion measures stems from the popularity of the maximum
we denote byd(py_1, px). The polygon distortion measureabsolute distance distortion measure, which is a class one
can then be expressed as the sum or the maximum of all edggasure, and the mean squared distance distortion measure,
distortion measures. which is a class two measure. If we select the maximum
There are several different distortion measures that can dissolute distance as the polygon distortion measure, then
employed. One popular distortion measure for curve approye have to use (3) for the edge distortion and (5) for
imations is the maximum absolute distance, which has algfe polygon distortion. On the other hand, if we select the
been employed in [2], [6], [7], and [11]. Besides its perceptughean squared distance as the distortion measure, then we
relevance, this distortion measure has the advantage thadie to use (4) for the edge distortion and (6) for the
can be computed efficiently. Le(px—1, px, t) be the shortest polygon distortion. Note that there are many other polygon
distance between the line which goes thropgh; andp; and distortion measures that fit into this framework, such as the
an arbitrary point. This distance can be expressed as shovébsolute area or the total number of error pixels between the
in (2), at the bottom of the page, where the subscriptxd boundary and the polygon. As we mentioned above, one of
y indicate ther andy coordinates of a particular point. Thenthe big advantages of restricting the vertices of the polygon
the maximum absolute distance between the partial boundgésybelong to the original boundary is the ability to express

Np—1

{bj = pr—1, bjy1, -+, bj = pi} and the edgépr—1, pr) the polygon distortion as the sum or the maximum of the
is given by edges distortions. We will employ this fact later on to derive
fast polygon selection algorithms. These fast algorithms are
d(pr—1, pr) = max d(pr—1, Pr, 1) - - -
te{b;=pro1 a1y sbiri=pr} necessary since the number of possible polygons is extremely

(3) high. If we define the smallest possible polygon as a single
point, then, given the degree of the polygaN), there are
Another popular distortion measure is the mean squared d B) = Np!/(Ng — Np)!- Np! different selections ofVp

tance (error), which has been used in [3] and [12] and is gértices from the original boundary. Since we have defined

the following form: the polygon to be an ordered set, the set of vertices uniquely
1 specifies a polygon. The degree of the polygdfr] is also
d(pr—1, pr) = Ne Z a variable, therefore the total number of possible polygons is
B te{br=piribiin, o biri=pi) equal to
~d(pr-1, pr, 1) (4) No
Np!
So far, we have only discussed the edge distortion measures, Z (Ng — k) - k! (7)

i.e., the measures that judge the approximation of a certain k=1

partial boundary by a given polygon edge. In general, we aBtearly, an exhaustive search is not a feasible approach.
interested in a polygon distortion measure that can be used ton the remainder of the paper we introduce fast and efficient
determine the quality of approximation of an entire polygoralgorithms for both classes of polygon distortion measures that
We will treat two different classes of polygon distortiorsolve the following constrained optimization problem
measures. The first class is based on the maximum operator (or

equivalently, on the minimum operator) and is of the following . “I.r;irvlp ) D(po, -+, pnp-1)

form: e

subject to
D(po, R pNP—l) = max d(pk—b pk)7 (5) J

kc[0,---,Np—1]
i § i R(p07 Ty pr—l) S Rma.x (8)
whered(p_1, po) is defined to be zero. We will refer to all
distortion measures based on the above definition as class where R, is the maximum bit rate permitted for the encod-
distortion measures. ing of the boundary. We also present algorithms that solve the

d _ |(t,; - pk—l,w) ' (pk,y - pk—l,y) - (ty —pk—l,y) : (pk,ac - pk—l,x)| 2
(Pr—1, Pr, ) = 5 > (2
VPrz = Pr—1,2)? + Phy — Pr-1,9)
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dual problem we want to use this recursion to derive a fast algorithm,
we need to fix the first vertex, even for a closed boundary.
poy}fg&_l R(po; -5 pNp-1); Therefore, the found solution is optimal, given the constraint
of the predetermined first vertex. Clearly, we can drop this
subject to constraint by finding all optimal approximations using each
boundary point as a starting vertex and then selecting the
D(po, -+, PNp—1) < Diax (9) overall best solution. This exhaustive search with respect
) _ ) ) ) to the initial vertex is computationally quite expensive. We,
where Dy is the maximum distortion permitted. Note thatnerefore, propose to select the point with the highest curvature
there is an inherent tradeoff between the rate and the distortigfne first vertex, since it is the most likely point to be included
in the sense that a small distortion requires a high rate, Wherﬁggny polygonal approximation. This heuristic almost always
a small rate results in a high distortion. As we will see, thgygyts in the best possible selection of the initial vertex and
solution approaches for problems (8) and (9) are related jimot, the performance difference is negligible.
the sense that the algorithms are symmetric with respect o=y future convenience, we relabel the boundary so that the
the rate and the distortion or the algorithm developed to sol¥gst vertex of the polygom, coincides with the first point of

problem (9) is used iteratively to solve problem (8). the boundary,. Besides fixing the first vertex of the polygon,
we also require that the last vertgx,._; is equal to the last
lll. DISTORTION MEASURES BASED point of the boundary, 1. This leads to a closed polygonal
ON THE MAXIMUM OPERATOR approximation for a closed boundary. For a boundary which is

In this section, we introduce two algorithms to solve thBOt closed, this condition, together with the starting condition,
problems stated in (8) and (9) for class one distortion measur@§kes sure that the approximation starts and ends at the same

such as the maximum absolute distance. points as the boundary. .
Using (10), the problem stated in (9) can be formulated

as a shortest path problem in a weighted directed graph

) i o ) G = (V, E), whereV is the sets of graph vertices arfd
First, we consider the minimum rate case stated in (9). The the set of edges (see Fig. 1). LBt = B since every

goal of the proposed algorithm is to find the polygon whosg, ndary point can be a polygon vertex. Note that there are

vertices can be encoded with the smallest number of bits. TRj%, kind of vertices polygon vertices and graph vertices.

selection is constrained by the fact that the selected polygnine proposed formulation, each graph vertex represents a

must result in a distortion smaller or equal to the maXimu'ﬁbssible polygon vertex and, henceforth, we will drop the

distortion. _ o o distinction between these two entities. The edges between the
The key observation for deriving an efficient search is thgrices represent the line segments of the polygon. A directed

fact that given a certain vertex of a polygém.—1) and the eqge is denoted by the ordered pair v) € E, which implies

rate which is required to code the polygon up to and includingat the edge starts at vertexand ends at vertex. Since

this vertex (Ri_1(pk-1)), the selection of the next verteXeyery combination of different boundary points can represent

Pk IS mdependent pf the S(_alectlon of the previous vertices|ine segment of a valid polygon, the edge &ets defined

Po, 5 Pk—2- This Is true since the rate can be expressed iollows: E — {(b:, b;) € B%: Vi # j} (see Fig. 1). A

recursively as a function of the segment rat@s. 1, px) @nd  nath of orderk from vertexu to a vertexu/ is an ordered set

A. The Minimum Rate Case

the segment distortions(px_1, px). That is, {wo, -+, vi } such thaty = vy, v’ = vx and(vy_1, v) € E
_ for k = 1, ..., K. The order of the path is the number of
Ri(pr) = Rp—1(pr—1) + w(pr—1, pr 10 A . :
w(Pi) e (pi-) (Pi—r p1) (10) edges in the path. The length of a path is defined as follows:

where K

ool d(pk—lv pk) > Dmax Z w(Uk_l, Uk) (12)
w(pr—1, P) = {7’(pk—17 i) d(Pr—1, Pr) < Dimax k=1

(11)

where w(u, v): £ — R is a weight function defined in
This recursion needs to be initialized by settify,(p_,) &ccordance with (11) as follows:

equal to zero. Note that by the definition of(py_1, pr), 50 d(u, v) > D

the rate for a polygon that does not satisfy the maximum w(u, v) = {7’(U v): d(u’ v) < Dmax- (13)
distortion constraint is infinite. ClearlyRy,_1(pnp_1) = T P e

R(po, -+, pnr—1), the rate for the entire polygon. Again, note that the above definition of the weight function

As indicated above, we need to start the search for &ads to a length of infinity for every path (polygon), which
optimal polygon at a given vertex. If the boundary is nancludes a line segment resulting in an approximation error
closed, the first boundary poiit, has to be selected as thdarger thanD,, ... Therefore, a shortest path algorithm will
first vertex pg. For a closed boundary, the selection of thaot select these paths. Every path that starts at vexeand
first vertex is less obvious. Ideally, the algorithm should findnds at vertexsy,_; and does not result in a path length
all the optimal vertices, including the first one. Unfortunatelgf infinity, results in a path length equal to the rate of the
the above recursion requires a starting vertex. Hence, simm@ygon it represents. Therefore, the shortest of all those paths
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Fig. 1. Interpretation of the boundary and the polygon approximation asy @ weighted directed graph. Note that the set of all edgesquals

fully connected weighted directed graph. Note that the set of all erﬂ@es{ (;“ I;J)) ee BE; .\17‘ ; 4]}}'ar;r(‘j'v?b)rfgeszh)taé“’gfuéjse;s8"}“9 displayed: (a)
equals{(b;, b;) € B?: i # j}. Two representative subsets are displayed: (a{) 4: V5 “VJ 8> Vj PV :

{(bs, b;) € B%:Vj # 4} and (b){(bs, b;) € B> : Vj # 8}.
resulting graph is a weightedirected acyclic graph(DAG).
Switc For a DAG, there exists an algorithm for finding a single-
T Order source shortest-path, which is even faster than Dijkstra’s
% . algorithm. Following the notation in [13], we call this the
1]

[10

i DAG-shortest-path algorithmThe time complexity for the
E ! DAG-shortest-path algorithm i®(|V| + |E|), which means
_ & \l s ! that the asymptotic lower bourld(|V| + | E|) is equal to the
e N - asymptotic upper bound®(|V| + |E|).

w Let R*(b;) represent the minimum rate to reach the bound-
) DM ary pointb; from the source vertey, = by via a polygon
approximation. ClearlyR*(bx,—1) is the solution to problem

@ ®) (9). Letq(b;) be a back pointer which is used to remember the

Fig. 2. Examples of polygons with rapid changes in direction.  gptimal path. Then the proposed algorithm works as follows.

corresponds to the polygon with the smallest bit rate, which 1) R*(po) = r(p—-1, po);

is the solution to the problem in (9). 2) fori=1,...,Ng—1,

The classical algorithm for solving such a single-source 3) {
shortest-path problem, where all the weights are nonnegative, 4) R*(b;) = oc;
is Dijkstra’s algorithm [13] with time complexityD(|V|? + 5 }
|E]). This is a significant reduction compared to the time 6) fori=0,..., Ng—2;
complexity of exhaustive search. Recall that we defined the 7) {
polygon as an ordered set for reasons that will now become 8) forj=i+1,..., Ng =1
apparent. We can further simplify the algorithm by observing 9) {
that it is very unlikely for the optimal path to select a boundary 10) calculate edge distortiod(b;, b;);
pointb, as a vertex when the last selected vertex yawhere 11) look up edge rate(b;, b;);
i > j. In general, we cannot guarantee that the optimal path 12) assignuw(b;, b;) based on definition (13);
will not do this, since the selection process depends on the 13) if (R*(bi) +w(bi, bj) < R*(b;));
vertex encoding scheme, which we have not specified yet. On 14)
the other hand, a polygon where successive vertices are not 19) R (bj) = B (bi) + w(bi, by);
assigned to boundary points in increasing order can exhibit 16) q(b;) = bi;
rapid direction changes, even when the original boundary is t
quite smooth (see Fig. 2). Therefore, we add the restriction 13; )

that not every possible combination @f;, ;) represents a
valid edge but only the ones for which< j. Hence, the  The optimal path{p, -+, ply,_.} can be found by back-
edge set is redefined in the following wayt’ = {(b;, b;) € tracking the pointerg(b;) in the following recursive fashion
B?:i < j} (see Fig. 3). This restriction results in the fact thatoy definitionp,,._, = by,—1 andpj = bo):

a given vertex set uniquely specifies the polygon. We used this

fact before to derive the number of possible polygons in an pi_1 = q(p}), E=Np—1,---,2. (14)
exhaustive search approach.

By defining the edge sef in the above fashion, we The formal proof of the correctness of the DAG-shortest-path
achieve two goals simultaneously. First, the selected polygalyorithm, on which the above scheme is based, can be found
approximation has to follow the original boundary withouin [13]. We will reason more intuitively how this approach
rapid direction changes, and second and more important, therks. In line 1, the rate for encoding the starting point of the
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boundary is assigned to the minimum rate of the first polygon
vertex. In lines 2-5, the minimum rate for reaching any of A
the boundary points is set to infinity. The “for loop” in line R*®__
6 selects the boundary points in sequence as possible vertex ;
points from which a polygon edge starts and the “for loop” in = R - foees
line 8 selects possible vertex points where the polygon edgexmp*  y---f-----
ends. Hence, these two loops select each edge in the edge set ™ L'j
E exactly once. Therefore, the lines 9-18 are processed for

every edge. The lines 10-12 are used to calculate the weight of —g
the edgew(b;, b;). The most important part of this algorithm L
is the comparison in line 13. Here, we test if the new bit [_I

rate, R*(b;) + w(b;, b;), to reach boundary poiri;, given

that the last vertex was;, is smaller than the smallest bit >
rate used so far to readh), R*(b;). If this bit rate is indeed b
smaller, then it is assigned as the new smallest bit rate to reach ax

boundary pointbj, R* (bj) = R*(bi) + w(bi, bj)- We also Fig. 4. R*(Dmax) function, which is a nonincreasing function exhibiting
assign the back pointer @f;, ¢(b;) to point to; since this a staircase characteristic. The selecid. falls onto a discontinuity and,
is the previous vertex used to achiek&(b;). This algorithm g}e]rff‘(’}‘; th‘; ‘ﬂ)ﬁg‘a' solution is of the forf" (D7, ) < Rmax, instead
leads to the optimal solution because, as stated earlier, when ‘"~ " = 7%
the rate £*(b;)) of a vertex §;) is given, then the selection
of the future verticeslf, ¢ < j < Np) is independent of the Then, P is an admissible polygon for the optimization
selection of the past verticesy( 0 < k < 7). problem 2, sinceD.. < D?.. Since by assumption
The analysis of the above algorithm shows that there aRs (DL ,..) < R*(D2..), P is a better solution than
two nested loops, which results in a time complexity of», which is a contradiction, since we showed that the
O(N3). We use the number of edge distortion evaluations aslection algorithm employed to fin#, is optimal. Hence,
measure for the time complexity, since this is the most timé} . < D2 implies R*(D} ) > R*(D2..). ]
consuming operation. In the case where the edge distortion iddaving shown that?*(D,,.x) iS a nonincreasing function,
the maximum absolute distance, then another loop is required can use bisection [14] to find the optim@f, ., such that
because of the maximum operator in (3). Therefore, the tind& (D7 ..) = Rmax- Since this is a discrete optimization prob-
complexity of the maximum absolute distance algorithm iem, the functionk*(D,,.,) is not continuous and exhibits a
O(N3) with respect to the distance evaluations in (2). staircase characteristic (see Fig. 4). This implies that there
might not exist aD} .. such thatR*(D?,.) = Ruyax. IN

o _ _ that case, the proposed algorithm will still find the optimal
B. The Minimum Distortion Case solution, which is of the formR*(D?..) < Rumax, but

We now consider the minimum distortion case which i@nly after an infinite number of iterations. Therefore if we
stated in (8). The goal of the proposed algorithm is to find@ve not found aDy.x such thatR*(Diax) = Rumax after
the polygon with the smallest distortion for a given bit budgét given maximum number of iterations, we terminate the
for encoding its vertices. Sometimes this is calledrate algorithm.
constrained approachRecall that for class one distortion
measures the polygon distortion is defined as the maximum
of the edge distortions [see (5)]. Hence, in this section, IV. DISTORTION MEASURES BASED
we propose an efficient algorithm that finds the polygonal ON THE SUMMATION OPERATOR
approximation with the smallest maximum distortion for a In this section, we introduce two algorithms to solve the
given bit rate. problems stated in (8) and (9) for class two distortion mea-
We propose an iterative solution to this problem that sures, such as the mean squared distance. Both presented algo-
based on the fact that we can solve the dual problem statéims are symmetric in the rate and the distortion and, hence,
in (9) optimally. ConsiderD,,,.x in (9) to be a variable. We the same technique can be employed for the minimum distor-
derived in Section IlI-A an algorithm that finds the polygonation case (8) and the minimum rate case (9). We will, therefore,
approximation which results in the minimum rate for angnly solve the minimum distortion case, and the minimum rate
Dnax. We denote this optimal rate bit*(D,ax). We prove case can be solved be applying the following relabeling to the

below that the rateR*(D,,.x) iS @ nonincreasing function of function names:D(po, - -+, pnp—1) — R(po, -, PNp—1)
Dipax, Which means thabl . < D2 impliesR*(D} ) > andR(po, -+, pnp—1) < D(po, =+, PNp—_1)-
R*(D2..). The first algorithm we propose is based on the Lagrange

Proof: (By contradiction): Let polygonP; and rate multiplier method. Like every Lagrangian-based approach the
R*(D} .. be the solutions to the minimum rate optimizatiomesulting solutions belong to the convex hull of the operational
problem 1. Let polygonP, and rate R*(D2,..) be the rate distortion function. For cases where the Lagrangian bound
solutions to the minimum rate optimization problem 2is not tight enough, we propose a tree-pruning-based scheme,

Assume thatDl . < D2 and R*(D}..) < R*(DZ%,.). which can find all optimal solutions.

max max
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A. Lagrange Multiplier Approach the distortion for the entire polygon anfly,_1(pn,—1) =

In this section, we derive a solution to problem (8) that i¢(Po; =+ Pxp—1), the Lagrangian cost function for the entire
based on the Lagrange multiplier method [15]-[17] and tHRP!YgON. o
shortest path algorithm presented in Section Ill-A. Lagrangian!n Section Ill-A, we have shown that an optimization
relaxation [18] is a well-known tool in operations researcHp_roblem that has the above-described structure can be solved

It is mainly used to relax constraints that make the solutidiPtimally by a DAG-shortest-path algorithm. To be able to
of an integer problem difficult. The relaxed integer prograffMPIoy the previously proposed shortest path algorithm, we
can then be solved more easily, which leads to an efficidfVe to redefine the weight function(u, v): £ — R as

method for certain problems. The Lagrange multiplier method wu, v) = d(u, v) + A7y, v). (20)

is closely related to Lagrangian relaxation, and it is extremely

useful for solving constrained resource allocation problems. fince the shortest path algorithm results in the polygon that
this application, we will use the Lagrange multiplier method tBinimizes the following sum:

relax the constraint, so that the relaxed problem can be solved Np—1
using the shortest path algorithm proposed in Section IlI-A. Z w(pr_1, Pr) (21)
We first define the Lagrangian cost function k=0
Ia(po, -+, PNp—1) =D(po, -+, PNp—1)+ this polygon is the optimal solution to the relaxed problem

A-R(po, > PNp— 15) of (16).
(o o) (19) Clearly, the time complexity of the Lagrangian approach

where ) is called the Lagrange multiplier. It has been showfbr a fixed \ is the same as for the shortest path algorithm.

in [15] and [16] that if there is &* such that The shortest path algorithm is invoked several times by the
* * — v : bisection algorithm to find the optimai* and, hence, the time
sty PNa_1f = Aar min In(poy -y PNp— DA g  HETILE, _
{75 Pip-1) 5 Po;PNp—1 x(po PNp-1) complexity is a function of the number of required iterations.

(16) As pointed out before, the Lagrangian approach finds optimal
solutions that belong to the convex hull of the operational rate
distortion curve. Clearly, there are other optimal solutions that
are above the convex hull. In the next section, we present a
teree-pruning algorithm that finds all optimal solutions.

and which leads toR(pg, -+, PNp—1) = Ruax, then
{ps, -+, Pn,_1} is also an optimal solution to (8). It is
well known that when)\ sweeps from zero to infinity, the
solution to problem (16) traces out the convex hull of th
operational rate distortion function, which is a nonincreasir]g
function. Hence, bisection [14] or the fast convex search wé
presented in [19] can be used to find. Therefore, if we  As before, for this algorithm we make use of the fact that
can find the optimal solution to the unconstrained probleihen the current vertex is selected and we know the rate and
(16), then we can find the optimal* and the convex hull the distortion used to encode the polygon up to and including
approximation to the constrained problem of (8). this vertex, the previous vertices do not influence the selection
The key observation for deriving an efficient search fo@f the future vertices. For a given boundary poiby) (under

the polygon that minimizes the unconstrained problem (16pnsideration to be chosen as a polygon vertex, every previous
is based on the fact that given a certain vertex of a polyg&gundary point,, 0 < k < 7) could have been the last vertex
(px—1) and the Lagrangian cost function that results by codiri¢ged for the polygon approximation. Therefore, the rate and
the polygon up to and including this vertéxX_; (px_1) = distortion for every previous boundary point are calculated
Dy_1(pr—1)+X-Ry_1(px_1)), the selection of the next vertexunder the assumption that the previous boundary point was
pr is independent of the selection of the previous verticésed as the previous vertex. These calculations lead to a set

Pruning Approach

Do, -+, pe—2. This is true since the rate and the distortio®f nodes, each representing the hypothesis that the current
can be expressed recursively as functions of the segment ré@gndary point is a vertex but with different boundary points
r(pr_1, pr) and segment distortiond(px_1, px) as previous vertices.
We introduce a pruning procedure to reduce the number of
By (pr) = By—1(p—1) + (-1, p1) (17)  nodes for each boundary point. If there are two nogesdi
and such thatD(j) > D(¢) and R(j) > R(:), whereD(n) is the
Di(pr) = Dr_1(pr_1) + d(pr_1, pr). (18) distortion andR(n) the rate up to and including nodg then

) o it is clear that nodg/ cannot belong to the optimal solution.
These recursions need to be initialized by setthigi(p-1) This is because node has a lower distortion and a lower
andD_,(p-1) equal to zero. Since the rate and the distortigRyte than node, but both represent the same boundary point
can be ca_lculated with a first-order recursion, the LagrangiaB the last selected vertex. Hence, ngde pruned from the
cost function can also be calculated recursively as follows: yecisjon tree. Since the pruned nodes need not be considered in
Je(pr) = Joet(prer) + {d(pr—s, pr) + A - 7(pr_1, pi)}.  the future of the optimization process, the more nodes pruned,
(19) the fast_er the algorithm b_ecc_)mes. A stral_ght_forward approach
to pruning has a quadratic time complexity in the number of
Clearly, Ry.—1(pnr—1) = R(po, ---, pnp—1), the rate for nodes to be pruned’. Since N depends on previous pruning
the entire polygon,Dn,._1(pnr—-1) = D(po, --+, pnp—1) results, the time complexity of the entire approach depends on
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Fig. 5. Pruned decision tree for the encoding of a boundary. The nodes are labeled as follows: “index/rate/distortion.”

the boundary, the distortion measure, and the vertex encodofgfuture vertices is independent of the selection made for
scheme. As with most integer programming algorithms, omeevious vertices. In Fig. 5, the boundary point index, the
can construct an example where the pruning scheme fadde and the distortion are indicated in the following fashion:
completely, which results in an exponential time complexityindex/rate/distortion.” In this example, the sum of the squared
Note that this exponential time complexity is still better thadistance between the boundary and the polygon is used as the
the time complexity of the exhaustive search, since we use tfistortion measure and the vertex encoding scheme proposed
fact about the independence of the future with respect to timeSection VI is employed (4 b is required for each transition
past. In general, though, the pruning is extremely efficient in this example).
cutting down the complexity of the algorithm and, in fact, this There are two possible transitions from a given node. The
scheme and the previously discussed Lagrangian approach tapeard transition, which indicates that this node is used as a
about the same amount of time for the experimental results wevious vertex, and the downward transition which indicates
will present in Section VII. If the complete set of optimal ratéhat this node is not used as a previous vertex. The downward
distortion points is not of interest, but only the problem ofransitions carry a weight of zero (rate O, distortion= 0),
(8) needs to be solved, additional pruning can be achieved iyt the upward transitions result in the addition-@brevious
removing all nodes that contain a rate higher tgn,.. This vertex, current vertex) to the rate anf{previous vertex,
leads effectively to all optimal rate distortion points below andurrent vertex) to the distortion. The epochs, which correspond
including the lineR(D) = Ryax. to the boundary points, are indicated at the bottom of the
Each of the remaining nodes represents a polygon which e=e. The boxes indicate the new nodes per boundary point
the current boundary point as its last vertex, but with differeaind, therefore, the pruning procedure is only applied to those
rate-distortion characteristics. In other words, the remainimgpdes.
nodes represent the set of all optimal solutions for the encodingConsider the box at epoch 3. There are two nodes (both
of the boundary up to and including the current boundary pointith description 3/8/0.5) that require the same rate and lead
These nodes make up the admissible nodes for this boundiarthe same distortion to reach boundary point 3. Therefore,
point, when this boundary point is considered as a previoase of the two can be pruned (indicated by an empty circle),
vertex in the future of the optimization process. since both will lead to the same collection of future paths. By
Fig. 5 shows a simple example of the algorithm. In thpruning a node, the collection of future paths gets reduced.
left upper corner is the boundary that must be encoded. TG&arly, the more nodes that can be pruned, the faster the
adjacent pixels are labeled 0, 1, 2, 3, and 4, and they simpligorithm is.
form a square of side length 1. Note that point 4 is the sameAt the last epoch, which corresponds to boundary point 4,
as point 0 and, therefore, it does not need to be transmittéitkee nodes can be pruned and only four final nodes remain,
but still a distortion occurs between the last vertex of thehich represent the four optimal solutions to the boundary
polygon and point 4 and it is, therefore, included in the closegpproximation. These four optimal solutions are also displayed
boundary. Fig. 5 shows the complete decision tree. This trag an operational rate distortion function in the lower left
reflects the fact that given the boundary point used as tberner of Fig. 5. The path (0,1,2,3,4) that leads to 12 b and
previous vertex, and the rate and the distortion for encoding distortion is the highest quality approximation which is
the polygon up to and including that vertex, the selectidmasically the chain code of the original boundary. The path
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(0,1,2,2,4) approximates the box by a triangle, which requirds Distortion Measures Based on the Maximum Operator
8 b ar!d leads to a distortion of O.5.lThe path (0,0,2,2,4) 1) The Minimum Rate CaseSince  the total rate
approximates the box by a diagonal line, which requires ﬁ(Po, ..., Py_1) is the sum of the individual rates
b and leads to a distortion of 1. Finally, the path (O,O,O,O,Aﬁ‘(p‘ 0, pi.ne—1), and the encoding of the different
. . . . . L4\ e, 0y » Pi, Np, —1/»

does not require any bits, since it approximates the box by §§nqaries is accomplished independently, the minimum total
starting point, but it leads to a maximum distortion of 4. 546 i5 equal to the sum of the minimum individual rates,

Itis interesting to note that this pruning scheme can be easfly\ere the search for the minimum individual rates is also
modified to work with class one distortion measures, since tQgstrained by the maximum distortidh,,.... Therefore, the

additivity of the class two distortion measures has not beg)owing optimization problem is identical to the one in (22):
used in the derivation of this scheme. The only fact employed

is the independence of the future from the past, which is also min Ri(pio, -y Pi. Np.—1)
present for class one distortion measures. In general though, Pi0sm P Np; —1
the schemes preseqted for class one distortion measuressgﬁﬁect to
faster than the pruning approach.
Di(pi,07 crey D, sz.—l) S Dmaxv for i = 07 Ty M-1
V. MULTIPLE BOUNDARY ENCODING (27)

In this section, we extend the results of the previous sections. : .
for the encoding of multiple boundaries. Assume thdt Which shows that the optimal solution to problem (22) can be

) found by solving the optimization problems for the different

t f . . . .
the convention that a subscript indicates which boundar Q@oundarles independently using the algorithm developed in

Y S&ction 1lI-A
addressed, i.e5; is the third boundary/’, is the polygon 2) The Minimum Distortion CaseWe now consider the
used to approximate the fourth boundary, etc. Then, the . . . X
ah o minimum distortion case of (23). As in Section IlI-B, we
minimum rate optimization problem can be stated as follows; -
Use the fact that we can solve the minimum rate problem
min  R(Py, -+, Py_1) optimally, in order to solve the minimum distortion problem
To,o Par—1 by an iterative scheme. By definirgf* (D, ) of Section IlI-
B as the minimum total rate needed to encode Megiven
boundaries with a maximum error @, the derivation in
D(Py, -+, Py_1) < Dax (22) Section IlI-B still applies. Hence, the resulting algorithm is a
o _ _ _ ~ bisection search and at each iteration the optimization problem
whereas the minimum distortion problem is of the followingf (22) is solved optimally using the above proposed scheme.
form:

subject to

min  D(Po, -+, Prr_1) B. Distortion Measures Based on the Summation Operator

Py, Pr_q For class two distortion measures, we have introduced two
subject to different glgorithms, the Lagrange multipligr apprqach and the
tree-pruning scheme. As we pointed out in Section 1V, these
R(Fo, -+, Py—1) € Rinax- (23) algorithms are symmetric in the rate and the distortion and,
) ~ therefore, we will only discuss the minimum distortion case
The total rateR(Fy, - -+, Pp—1) in the above formulation is of (23).
defined as 1) Lagrange Multiplier Approach:We define the total La-
M-—1 grangian cost functio(Fo, ---, Py—1) as follows:
R(Po, -+, Py—1) = Y Ri(pi,o, +++, Pi,Ng, 1) (24) M1
=0
INFo, -5 Py—1) = Z {Di(pi,0, -+ pi, Np,—1)+
The total distortion measutB(Fy, -- -, Py—1) is defined for i=0
class one distortion measures by A Ri(pio, -, s, sz__l)}. (28)
D(Po, - Pu—1) = max  Di(pio, -+, pi,np,—1)  According to Section IV-A, if we can find the global minimum
P10, M o5 of the total Lagrangian cost function with respect to the
(25) approximation polygons
and for class two distortion measures by min  Jx(Po, -+, Pri1)
0,0 Par—1
= M-1
D(Py, -+, Pa—1) = Y Dilpio; *+*» PiNp,—1)-  (26) -
; Np; = min Di(pi,o, -+, Pi,Np, 1)+
i=0 Py, Prr1 ; (p:O Pi, Np, 1)

As we have seen in the previous sections, the two classes of
distortion measures require different algorithms. This is also ~ A-Ri(pi 0, -+, Pi, Np, -1) ¢ - (29)
true for the encoding of multiple boundaries.
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Then we can use an iterative search to solve the constrained

problem of (23) [ (. x/xi e ml @ f PY i

Since the different boundaries are independently encoded,i . o o i
the minimum of the total Lagrangian cost function can be - J —
found by minimizing each of the individual boundaries sepa- <” t/f 24
rately. In other words, this problem reduces to the ones studied G R S
in [16]. Hence, the following minimization is equivalent to the { o
one in (29): 1

p i In(Po, -+, Pr-1) . )
PUIEE o
= Z _ mi_n {Di(pi70, ceey Dy NPi_1)+ / e O | e 2 gy
=0 Pi,055Pi,Np, —1 W e{/,;) :z;: +
)\._Ri(pi7()7 v, Di, Ne, _1)}_ (30) \ 105 \\e 2t

Therefore, the multiple boundary encoding problem can be 916
solved with the Lagrange multiplier method using (30), which 1P|
states that the global minimum of the total Lagrangian cost 7 R s :iﬁz
function is the sum of the global minima of the Lagrangian cost " / e -
functions for each boundary. Since we derived in Section V- \ N e I
A an algorithm to find the minimum of a boundary Lagrangian N el
cost function, we can find the minimum of (30) and, hence, we i I I
can encode multiple objects using the Lagrangian relaxation —
scheme.

. . . Fig. 6. Pruned decision tree for the optimal encoding of three boundaries.
2) Pruning Approach: The tree-pruning approach proposegne nodes are labeled as follows: “rate/distortion.”

in Section IV-B results in the operational rate distortion
function (ORDF) for a given boundary. Again, since th(i)
boundaries are encoded independently, we first run the prunin
algorithm for each of the boundaries. This results in/

j) > D(i) and R(j) > R(t), then nodej cannot belong to
optimal solution. The pruned nodes are indicated with an
a%mpty circle and the black nodes represent the new combined

different ORDF’s. It is interesting to notice that the optim RDF. We then iteratively apply this merging and pruning of

bit allocation among independent quantizers (characterlzedw\x) ORDF's to create a combined ORDF, until there is only

their ORDFs) is commonly solved by the Lagrange multlpllecrme ORDEF left, which represents the total ORDF and it can

’T‘ethOd [1.6]' Again, the Lagrange multiplier method wil Onlydirectly be used to find the optimal solution to the multiple
find solutions that belong to the convex hull, but we arg .
oundary encoding scheme.

interested in all optimal solutions, which is the main reason
for introducing the pruning scheme.

We need the total ORDF to be able to solve the minimum
distortion problem formulated in (23) optimally. Hence, the So far, we have not assumed any specific scheme for
problem is to create the total ORDF, using the& ORDF’s encoding the vertices of the polygon. In this section, we
of the boundaries. In [20] and [21], a dynamic programmingpresent a vertex encoding scheme, which can be considered a
based approach is presented for the case where the ORDI@®bination of an eight-connect chain code and a run-length
are defined on the set of positive integers. We introduceeacoding scheme.
different approach, which does not require that the ORDF'’s
are defined for all the positive integers, but works for ORDF'A. Basic Scheme
defined on any finite subset of the real line. The total ORDF 1pe chain code and the run-length encoding can be com-

can be found by applying a slightly modified version of thgjneq by representing the increment between two vertices
pruning scheme to th&/ different ORDF’s of the boundarles.by an anglea and a rung, which form the symbol &,5).

We explain this scheme with the help of the example in Fig. §erefore, for a run of one, the eight closest neighbors of a
In the rounded boxes on top are the points of the ORDF's vaen point P are

three different boundaries. The notation used in this figure

is of the following form: “rate/distortion.” The goal is to (3,1) (2, 1) (1,1)

merge these three ORDF'’s to find the total ORDF, which 4, 1) P (0, 1) (31)

is displayed on the right. This is achieved by creating the (=31 (=21 (=L 1)

total ORDF iteratively. First, we generate the combined ORD&s an example, (3, 4) represents a straight line of four
of the first and the second boundary. This is achieved bycrements in the3 - =/4 direction. Each of the possible
creating all possible rate distortion points, which are insidgymbols ¢,3) gets a probability assigned and the resulting
box number one. Then we apply the same pruning rule w&eam of increment$ = [(«y, 51), -+, (an_1, Sv—1)] can
established before, i.e., if there are two noglesd: such that be encoded by an arithmetic or a Huffman code. We use the

VI. VERTEX ENCODING SCHEME



SCHUSTER AND KATSAGGELOS: OPTIMAL POLYGONAL BOUNDARY ENCODING SCHEME 23

following code word assignment. For a given symbeld), and one solution is to run the optimal polygon approximation
the first three bits indicate one of the eight possible valu@s6 times and pick the quantizegdwhich leads to the smallest
for « followed by (3 — 1) zeros and a final “1” to encoderate.

the number of runs. Clearly, the number of bits used for this We propose a much faster, but suboptimal iterative proce-
uniquely decodable code is equal 8 3) and the longer the dure to estimatey,,r.. This procedure can be applied to all
run, the more efficient this code is. Note that this code implisgehemes presented, which do not employ an iteration whose
that the lines between the vertices are restricted to interseohvergence is based on the global optimality of the solution.
the horizontal axis in an angle, which is an integer multiplen other words, this scheme can be applied to the minimum rate

of w/4. case for distortion measures of class one and for the pruning
scheme introduced for class two distortion measures in Section
B. Generalized Scheme IV-B.

A generalization of this code is based on the observatiO@The iteration works as follows. First an initial quantized

that this scheme is optimal in the case when the probabilit éLf?aic![St#;tet%isV\ilgzre Jgilticza;?jsvgwl?eltzrr?gO{Tenlu'?;1boerti?nrgjl
mass function of(«, 3) is separable andr is uniformly q ' the 1)th op

distributed over all eighta’s, whereass is geometrically polygon approximation is found. Then, this approximation is

distributed(P(3 = j) = (1—~)/v-+9, j > 1) with parameter used to estimateyy s, ;41 based on the distribution of the

v = 0.5. The assumptions that the distribution is separablnS @nd the quantizedy,, ; ., is derived fromyayz, iv1.

a is uniformly distributed, and? is geometrically distributed These three steps are repeated until the minimum rate for the

are reasonable, but there might be better choicesyftran polygon of |ter§1t|on(z +1), ?+1(’71?4L:i) does not deprea_se
0.5. When an arithmetic coder is used, the resulting bit ra gy further, V\.'h,'Ch usually happens after two to threg |ter§1t|oqs.
is the entropy based on the probability model the enco ce the minimum rate of the polygonal approx!mgtlon_ls
employs (we neglect the renormalization bits used in practi (Punded from below bY Z€ro, we can prove that thg Iteration
implementations). Therefore, a probability model that lead@nverges to a local minimum by showing “ﬁtﬂ('yML,i)
to a smaller entropy than the above one can be used, el&@ Nonincreasing function of i,
though this leads to fractional bit assignments per symbol. For Proof: Clearly, Rf+1(%?u,¢) > R (ymr,iq1) since
example, only six out of the eight’s need to be consideredyasr i+1 IS estimated using the runs of the optimal polygon
since the nextr cannot be equal to the current one (if so, thisf iteration (z 4+ 1). Since the likelihood function used to find
would be coded by an additional run), nor can it be equal t9y, i+1 is concave;yféL 41 can be found by evaluating the
the direct opposite one (if so, one less run would have belkkelihood function for the two reconstruction levels, which
coded). Hence, there are only six possibls, and instead of are the closest toyasr, ;41 and settingfyf;?“’z,rl equal to
using 3 b to encode them, onlyg, (1/6) = 2.6 b are needed. the one which results in the higher score. Note that this
The question, therefore, is: Which leads to the smallestis a special case where the optimal solution to a discrete
bit rate for the encoding of a particular polygon? It caproblem (findingfyfémﬂ) can be inferred from the solu-
be shown that the maximum likelihood estimajg;; also tion of a continuous problem (findingy, . ;+1). Therefore,
leads to the minimum entropy and, hence, to the smallest Bif, , (v}, ;) > Riy(751141) > Riyo(¥is, 1) Which
rate. Since we assume that the ruyfjsfor the encoding of proves the convergence to a local minimum. [
verticesp; are independent of each other and have the sameJsing an arithmetic coder and this iterative scheme, the ef-
geometric probability mass function, the likelihood functiofficiency of the minimum rate approach for class one distortion
can be written as follows: measures can be improved by about 15%.

Np—1
1—
P(py, -, Bnp_1) = H Tfy -y (32) VII. EXPERIMENTAL RESULTS

=1

In this section, we present experimental results of the
which leads to the following maximum likelihood estimate ofproposed algorithms using object boundaries from the Miss
! America sequence. For the presented experiments, we use the
vertex encoding scheme with= 0.5 and the Huffman code

Np-—1 : .
T (33) proposed in Section VI, o

We first present results for class one distortion measures,
Z pi where the employed distortion measure is the minimum abso-
lute distance. In Fig. 7, we compare the original segmentation,
So far, we have considered the case whgyg has been given which is displayed in the left figure, versus the optimal
(in other words, the code word assignment has been giveggmentation for a maximum distortian,,,,. of one pixel,
and then the optimal polygon approximation is found. Thehich is displayed in the right figure. The two objects in the
guestion arises of how to jointly selegi,;;, and the polygon original segmentation require 468 b if encoded by an eight-
approximation optimally. In factyy;;, has to be quantized connect chain code, whereas the optimal segmentation can
since it needs to be sent for every boundary and, in the curréet encoded with only 235 b. By introducing a permissible
scheme, an 8-b uniform quantizer with a range from zero toaximum error of one pixel, we are able to reduce the total bit
one is used for that purpose. Therefore, 256 differemexist, rate by about 50%. As expected, some of the details have been

ML =1-
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Fig. 7. Left: original segmentation, which requires 468 b using the eight-connect chain code. Right: optimal segmentatidn.wits 1 pixel, which
requires a rate of 235 b and results in a distortion of one pixel.
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Fig. 8. Left: optimal segmentation witk....x = 280 b, which results in a distortion of 0.71 pixels and a bit rate of 274 b. Right: closeup of the lower
boundary; the stars indicate the original boundary and the line represents the polygonal approximation. The upper left corner has been sdfiestee dexh

lost, i.e., the boundary has been “straightened.” This smoothifig, ... from (8) to 200 b. In Fig. 10, a close-up of the boundary
of the boundary might be desired, since most segmentatisrshown, and the operational rate distortion curve is displayed.
algorithms result in noisy boundaries. In Fig. 8, we show tHéote the possible Lagrangian solutions, which are indicated by
resulting segmentation for the minimum distortion case f@ircles around the vertices of the convex hull. The Lagrangian
multiple boundaries. The maximum raf,,... has been set solution that satisfies? < 200 b results inR = 169 b and
to 280 b, and the optimal solution, which uses 274 b for & = 0.1, (for a A* = 0.002), whereas the pruning approach
Dinax = 0.71 pixels, is displayed in the left figure. The rightresults ink = 200 b andD = 0.05. Both solutions are shown
figure is a close-up of the lower boundary in the left figurd? Fig. 9, and it is clear that the pruning approach results in a
and the stars indicate the original boundary with the polygortter approximation of the original boundary.
approximation drawn on top of it.

In Fig. 9, we present results for distortion measures of VIIl. SUMMARY AND CONCLUSIONS
class two, where the employed distortion measure is the meawe presented fast and efficient methods for the lossy en-
squared distance. To highlight the difference between theding of object boundaries which are given as eight-connect
Lagrange multiplier scheme and the pruning scheme, we sbtin codes. The boundary is approximated by a polygon, and
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Fig. 10. Comparison between the Lagrangian relaxation approach and the pruning approach. Left: close-up of the boundary and the two different
approximations. Right: the operational rate distortion function and its convex hull.

we considered the problem of finding the polygon, which leadsperimental results of the proposed schemes were presented
to the smallest distortion for a given number of bits. The duaking objects from the Miss America sequence.

problem of finding the polygon that leads to the smallest bit In conclusion, we compare the different approaches and how
rate for a given distortion was also addressed. We considethdy might be applied for the encoding of object boundaries.
two different classes of distortion measures, where the fifBhe Lagrangian-based approaches (class two distortion mea-
class is based on the maximum operator and the second clg®s) are iterative schemes, and so is the minimum distortion
is based on the summation operator. For the first class, agproach for class one distortion measures. Even though these
derived a scheme that is based on a shortest-path algoritsthemes converge to the optimal solution, several iterations
for a weighted directed acyclic graph. For the second classight be required. The pruning-based approaches (class two
we proposed a Lagrange multiplier-based approach, whidlstortion measures) are one-pass approaches, and so is the
employs the shortest path algorithm iteratively. Lagrangianinimum rate approach for class one distortion measures.
schemes can only find solutions that belong to the convekfortunately, the efficiency of the pruning schemes cannot be
hull of the operational rate distortion function; thereforeguaranteed. This is in contrast to the minimum rate approach
we also proposed a tree-pruning algorithm that can find &tir class one distortion measures. This one-pass method has
optimal solutions. We extended all proposed schemes to thetime complexity of @(N3) and it is the fastest of all
jointly optimal encoding of multiple boundaries. We finallyproposed methods. By selecting the edge distortion to be the
introduced a vertex encoding scheme, which is a combinatioraximum distance, this algorithm efficiently finds the smallest
of an eight-connect chain code and a run-length schemate polygonal approximation to a given boundary, which
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stays within a maximum error @b,,,,. Because of its speed [21] , “Optimal bit allocation algorithm for quantizing a random
and its perceptual relevance, this is our preferred approach vector,” Problems Inform. Transmissiowol. 17, pp. 156-161, 1981,

. . . . . : ; trans. from Russian.
::grﬁgv(\:/g?ll(ng ObJeCt boundaries in a variable bit rate COdIr}QZ] G. M. Schuster and A. K. KatsaggeloRate-Distortion Based Video

Compression, Optimal Video Frame Compression, and Object Boundary
In [23], the vertices of the polygon that approximates Encoding. Boston, MA: Kluwer, 1997.

the given boundary are allowed to be outside the set B8] » “An efficient boundary encoding scheme which is optimal in

boundary points but inside a predefined distortion band. In the rate distortion sense,” iRroc. 1996 Int. Conf. Image Processing

. . Lausanne, Switzerland, Sept. 1996, pp II-77-80.
[24], second-order B-splines are used for the encoding ﬁ]:l] F. W. Meier, G. M. Schuster, and A. K. Katsaggelos, An efficient

the boundary, whose control points lie within a predefined = poundary encoding scheme using B-spline curves which is optimal in the
distortion band. Finally, in [25], the various optimal boundary  rate-distortion sense,” iRroc. 2nd Erlangen Symp., Advances in Digital
encoding approaches we have developed are reviewed, ann? Image CommunicatiorErlangen, Germany, April 25, 1997, pp. 75-84.

. . A. K. K | I, “MPEG-4 -di i h -
with the methods developed toward the solution of the sarf@ ’ atsaggelowt al, "MPEG-4 and rate-distortion based shape cod
ing techniques,Proc. IEEE Special Issue Multimedia Signal Processing,

problem, by the MPEG-4 standardization effort. to be published.
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