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An Optimal Polygonal Boundary Encoding
Scheme in the Rate Distortion Sense

Guido M. Schuster and Aggelos K. Katsaggelos,Fellow, IEEE

Abstract—In this paper, we present fast and efficient methods
for the lossy encoding of object boundaries that are given as
eight-connect chain codes. We approximate the boundary by a
polygon, and consider the problem of finding the polygon which
leads to the smallest distortion for a given number of bits. We
also address the dual problem of finding the polygon which leads
to the smallest bit rate for a given distortion. We consider two
different classes of distortion measures. The first class is based
on the maximum operator and the second class is based on the
summation operator. For the first class, we derive a fast and
optimal scheme that is based on a shortest path algorithm for a
weighted directed acyclic graph. For the second class we propose
a solution approach that is based on the Lagrange multiplier
method, which uses the above-mentioned shortest path algorithm.
Since the Lagrange multiplier method can only find solutions
on the convex hull of the operational rate distortion function,
we also propose a tree-pruning-based algorithm that can find all
the optimal solutions. Finally, we present results of the proposed
schemes using objects from the Miss America sequence.

Index Terms— Boundary encoding, dynamic programming,
min-max optimization, object-oriented video compression,
operational rate distortion theory, shape encoding, tree pruning.

I. INTRODUCTION

T HE ENCODING of planar curves is an important problem
in many different fields, such as CAD, object recognition,

object oriented video coding, etc. This research is motivated by
object-oriented video coding, but the developed algorithms can
also be used for other applications. A major problem in object-
oriented video coding [1], [2] is the efficient encoding of object
boundaries. There are two main approaches for encoding the
segmentation information: a lossy approach, which is based
on a spline approximation of the boundary [2], [3], and a
lossless approach, which is based on chain codes [4]. The
proposed boundary-encoding scheme is a lossy scheme that
can be considered a combination of the spline and the chain
code approaches, since the boundary is approximated by a
polygon and its vertices are encoded relative to each other.
The approximation of the boundary by a polygon is similar
to the spline approximation approach, whereas the encoding

Manuscript received March 19, 1996; revised March 31, 1997. Extensions
of this work appear in [22]–[25]. The associate editor coordinating the
review of this manuscript and approving it for publication was Dr. Christine
Podilchuk.

G. M. Schuster is with the Advanced Technologies Research Center,
Carrier Systems, 3COM, Mount Prospect, IL 60056-2293 USA (e-mail:
gschuste@usr.com).

A. K. Katsaggelos is with Department of Electrical and Computer Engineer-
ing, McCormick School of Engineering and Applied Science, Northwestern
University, Evanston, IL 60208-3118 USA (e-mail: aggk@ece.nwu.edu).

Publisher Item Identifier S 1057-7149(98)00315-7.

of the successive vertices is achieved with a chain code-like
scheme.

In [3], B-spline curves are used to approximate a bound-
ary. An optimization procedure is formulated for finding
the optimal locations of the control points by minimizing
the mean squared error (MSE) between the boundary and
the approximation. This is an appropriate objective when
the smoothing of the boundary is the main problem. When,
however, the resulting control points need to be encoded,
the tradeoff between the encoding cost and the resulting
distortion needs to be considered. By selecting the MSE as the
distortion measure and allowing for the location of the control
points to be anywhere on the plane, the resulting optimization
problem is continuous and convex and can be solved easily.
In order to encode the positions of the resulting control points
efficiently, however, one needs to quantize them, and therefore
the optimality of the solution is lost. It is well known that the
optimal solution to a discrete optimization problem (quantized
locations) does not have to be close to the solution of the
corresponding continuous problem.

In [2], a boundary is approximated by a combination of
splines and polygons, where the distortion measure employed
is the maximum distance between the approximation and
the original boundary. First the vertices of the polygon are
heuristically found, and then these vertices are used to find
a spline representation of the boundary. For every segment
where the spline representation does not exceed the maximum
distance from the original boundary, the spline representation
is used instead of the polygon. This leads to a smoother
approximation. Again, the approach is well suited for the
smoothing of the original boundary and there is also an
inherent control over the maximum distance between the
approximation and the original boundary, but the resulting
rate is not taken explicitly into account. If each control point
is encoded using a fixed-length codeword, then minimizing
the number of control points is equivalent to minimizing
the resulting bit rate. On the other hand, if the control
points are along a natural boundary, there exists a high
correlation between the location of two consecutive points, and
a predictive encoding scheme should be employed instead of a
fixed-length codeword scheme. In any case, this approach does
not facilitate the rate constrained encoding of a boundary, i.e.,
the rate is given and one wants to find the best approximation.

Freeman [4] originally proposed the use of chain coding
for boundary quantization and encoding, which has attracted
considerable attention over the last thirty years [5]–[9]. The
most common chain code is the eight-connect chain code
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that is based on a rectangular grid superimposed on a planar
curve. The curve is quantized using the grid intersection
scheme [4] and the quantized curve is represented using a
string of increments. Since the planar curve is assumed to
be continuous, the increments between grid points are limited
to the eight grid neighbors, and hence an increment can be
represented by 3 b. There have been many extensions to
this basic scheme, such as the generalized chain codes [5],
where the coding efficiency has been improved by using links
of different length and different angular resolution. In [8], a
scheme is presented that utilizes patterns in a chain code string
to increase the coding efficiency and in [9], differential chain
codes are presented, which employ the statistical dependency
between successive links. There has also been interest in the
theoretical performance of chain codes. In [6], the performance
of different quantization schemes is compared, whereas in
[7], the rate distortion characteristics of certain chain codes
are studied. In this paper, we are not concerned with the
quantization of the continuous curve, since we assume that
the object boundaries are given with pixel accuracy.

Most boundaries contain many straight lines or lines with a
very small curvature, which result in runs of the same incre-
ment. Therefore, a run-length encoding scheme can be used
to encode the eight-connect chain code even more efficiently.
Clearly, the larger the number of straight lines a boundary
contains, the more efficient a chain code/run-length scheme
is. This is the idea behind some preprocessing algorithms
[10] that are used to “straighten” the boundary, i.e., these
algorithms lead to a new boundary that can be encoded more
efficiently. Clearly, such a scheme is a lossy chain code/run-
length encoding scheme since this preprocessing introduces an
error in the boundary representation. The introduction of an
error is usually permissible, as long as the visual distortion
is considered insignificant. The main problem with these
approaches is that there is at best an indirect control over
the resulting rate distortion tradeoff.

In this paper, we present algorithms where the preprocessing
step and the eight-connect chain code/run-length encoding
are combined into an optimal lossy segmentation encoding
scheme. The proposed approach offers complete control over
the tradeoff between distortion and bit rate. Note that this
is achieved in an optimal fashion, resulting in an efficient
encoding scheme.

In Section II, we define the problem and introduce the
required notation. In Section III, we focus on a first class of
distortion measures that are based on the maximum operator,
such as the maximum absolute distance. First, we consider
the problem of finding the polygon that requires the smallest
bit rate for a given distortion. We solve this problem by
introducing a scheme that is based on a shortest path algorithm
for a weighted directed acyclic graph. We then consider the
dual problem, that of finding the polygon with the smallest
distortion for a given bit rate. We derive an iterative scheme
which employs the shortest path algorithm and prove that
this scheme converges to the global optimum. In Section
IV, we focus on a second class of distortion measures that
are based on the summation operator, such as the mean
squared distance. Again, we consider the problem of finding

the polygon that requires the smallest bit rate for a given
distortion. We show how the Lagrange multiplier method can
be employed to transform this constrained problem into a
series of unconstrained problems that can be solved using
the shortest path algorithm introduced earlier. Like every
Lagrangian-based approach, the proposed scheme results only
in solutions that belong to the convex hull of the operational
rate distortion function. Hence, we also propose a second
algorithm, based on a tree pruning scheme, that can find
all optimal solutions. Since both of these algorithms are
symmetric in the rate and the distortion, the dual problem, that
of finding the polygon that results in the smallest distortion for
a given bit rate, can also be solved by the same algorithms.
In Section V, we extend the results for the jointly optimal
encoding of multiple boundaries. In Section VI, we introduce
a vertex encoding scheme that is based on an eight-connect
chain code and run-length coding. In Section VII, we present
results of the proposed algorithms and in Section VIII, we
summarize the paper and present our conclusions.

II. PROBLEM FORMULATION

The main idea behind the proposed approach is to approx-
imate a given boundary by a polygon, and to encode the
polygons vertices instead of the original boundary. Since we
assume that the original boundary is represented with pixel
accuracy, it can be losslessly encoded by an eight-connect
chain-code. We propose to approximate the boundary with a
low-order polygon that can be encoded efficiently.

The following notation will be used. Let
denote the connected boundary, which

is an ordered set, where is the th point of and is
the total number of points in . Note that in the case of a
closed boundary, . Let
denote the polygon used to approximate, which is also an
ordered set, with the th vertex of , the total number
of vertices in and the th edge starts at and ends at

. Since is an ordered set, the ordering rule and the set
of vertices uniquely define the polygon. We will elaborate on
the fact that the polygon is an ordered set later on.

We assume that the vertices of the polygon are encoded dif-
ferentially, which is an efficient method for natural boundaries,
since the location of the current vertex is strongly correlated
with the location of the previous one. We denote the required
bit rate for the differential encoding of vertex given vertex

by . Hence, the bit rate
for the entire polygon is

(1)

where is set equal to the number of bits needed to
encode the absolute position of the first vertex. For a closed
boundary, i.e., the first vertex is identical to the last one, the
rate is set to zero since the last vertex does
not need to be encoded. Note that this rate depends on the
specific vertex encoding scheme. We present one such scheme
that is a combination of an eight-chain code and a run-length
scheme in Section VI.
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In general, the polygon used to approximate the boundary
could be permitted to place its vertices anywhere on the plane.
In this paper, we restrict the vertices to belong to the original
boundary ( ), so that we can employ a fast polygon
selection algorithm. This restriction results in the following
fact, which we employ to derive low complexity optimization
algorithms. The th polygon edge which connects two consec-
utive vertices, and , is an approximation to the partial
boundary , which contains

boundary points. Therefore, we can measure the quality
of this approximation by an edge distortion measure which
we denote by . The polygon distortion measure
can then be expressed as the sum or the maximum of all edge
distortion measures.

There are several different distortion measures that can be
employed. One popular distortion measure for curve approx-
imations is the maximum absolute distance, which has also
been employed in [2], [6], [7], and [11]. Besides its perceptual
relevance, this distortion measure has the advantage that it
can be computed efficiently. Let be the shortest
distance between the line which goes through and and
an arbitrary point . This distance can be expressed as shown
in (2), at the bottom of the page, where the subscriptsand

indicate the and coordinates of a particular point. Then,
the maximum absolute distance between the partial boundary

and the edge
is given by

(3)

Another popular distortion measure is the mean squared dis-
tance (error), which has been used in [3] and [12] and is of
the following form:

(4)

So far, we have only discussed the edge distortion measures,
i.e., the measures that judge the approximation of a certain
partial boundary by a given polygon edge. In general, we are
interested in a polygon distortion measure that can be used to
determine the quality of approximation of an entire polygon.
We will treat two different classes of polygon distortion
measures. The first class is based on the maximum operator (or
equivalently, on the minimum operator) and is of the following
form:

(5)

where is defined to be zero. We will refer to all
distortion measures based on the above definition as class one
distortion measures.

The second class of distortion measures is based on the
summation operator is of the following form:

(6)

where again is set equal to zero. We will refer to
all distortion measures based on the above definition as class
two distortion measures.

The main motivation for considering these two classes of
distortion measures stems from the popularity of the maximum
absolute distance distortion measure, which is a class one
measure, and the mean squared distance distortion measure,
which is a class two measure. If we select the maximum
absolute distance as the polygon distortion measure, then
we have to use (3) for the edge distortion and (5) for
the polygon distortion. On the other hand, if we select the
mean squared distance as the distortion measure, then we
have to use (4) for the edge distortion and (6) for the
polygon distortion. Note that there are many other polygon
distortion measures that fit into this framework, such as the
absolute area or the total number of error pixels between the
boundary and the polygon. As we mentioned above, one of
the big advantages of restricting the vertices of the polygon
to belong to the original boundary is the ability to express
the polygon distortion as the sum or the maximum of the
edges distortions. We will employ this fact later on to derive
fast polygon selection algorithms. These fast algorithms are
necessary since the number of possible polygons is extremely
high. If we define the smallest possible polygon as a single
point, then, given the degree of the polygon (), there are

different selections of
vertices from the original boundary. Since we have defined
the polygon to be an ordered set, the set of vertices uniquely
specifies a polygon. The degree of the polygon () is also
a variable, therefore the total number of possible polygons is
equal to

(7)

Clearly, an exhaustive search is not a feasible approach.
In the remainder of the paper we introduce fast and efficient

algorithms for both classes of polygon distortion measures that
solve the following constrained optimization problem

subject to

(8)

where is the maximum bit rate permitted for the encod-
ing of the boundary. We also present algorithms that solve the

(2)
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dual problem

subject to

(9)

where is the maximum distortion permitted. Note that
there is an inherent tradeoff between the rate and the distortion
in the sense that a small distortion requires a high rate, whereas
a small rate results in a high distortion. As we will see, the
solution approaches for problems (8) and (9) are related in
the sense that the algorithms are symmetric with respect to
the rate and the distortion or the algorithm developed to solve
problem (9) is used iteratively to solve problem (8).

III. D ISTORTION MEASURES BASED

ON THE MAXIMUM OPERATOR

In this section, we introduce two algorithms to solve the
problems stated in (8) and (9) for class one distortion measures,
such as the maximum absolute distance.

A. The Minimum Rate Case

First, we consider the minimum rate case stated in (9). The
goal of the proposed algorithm is to find the polygon whose
vertices can be encoded with the smallest number of bits. This
selection is constrained by the fact that the selected polygon
must result in a distortion smaller or equal to the maximum
distortion.

The key observation for deriving an efficient search is the
fact that given a certain vertex of a polygon and the
rate which is required to code the polygon up to and including
this vertex , the selection of the next vertex

is independent of the selection of the previous vertices
. This is true since the rate can be expressed

recursively as a function of the segment rates and
the segment distortions . That is,

(10)

where

(11)

This recursion needs to be initialized by setting
equal to zero. Note that by the definition of ,
the rate for a polygon that does not satisfy the maximum
distortion constraint is infinite. Clearly,

, the rate for the entire polygon.
As indicated above, we need to start the search for an

optimal polygon at a given vertex. If the boundary is not
closed, the first boundary point has to be selected as the
first vertex . For a closed boundary, the selection of the
first vertex is less obvious. Ideally, the algorithm should find
all the optimal vertices, including the first one. Unfortunately,
the above recursion requires a starting vertex. Hence, since

we want to use this recursion to derive a fast algorithm,
we need to fix the first vertex, even for a closed boundary.
Therefore, the found solution is optimal, given the constraint
of the predetermined first vertex. Clearly, we can drop this
constraint by finding all optimal approximations using each
boundary point as a starting vertex and then selecting the
overall best solution. This exhaustive search with respect
to the initial vertex is computationally quite expensive. We,
therefore, propose to select the point with the highest curvature
as the first vertex, since it is the most likely point to be included
in any polygonal approximation. This heuristic almost always
results in the best possible selection of the initial vertex and
if not, the performance difference is negligible.

For future convenience, we relabel the boundary so that the
first vertex of the polygon coincides with the first point of
the boundary . Besides fixing the first vertex of the polygon,
we also require that the last vertex is equal to the last
point of the boundary . This leads to a closed polygonal
approximation for a closed boundary. For a boundary which is
not closed, this condition, together with the starting condition,
makes sure that the approximation starts and ends at the same
points as the boundary.

Using (10), the problem stated in (9) can be formulated
as a shortest path problem in a weighted directed graph

, where is the sets of graph vertices and
is the set of edges (see Fig. 1). Let since every
boundary point can be a polygon vertex. Note that there are
two kind of vertices, polygon vertices and graph vertices.
In the proposed formulation, each graph vertex represents a
possible polygon vertex and, henceforth, we will drop the
distinction between these two entities. The edges between the
vertices represent the line segments of the polygon. A directed
edge is denoted by the ordered pair , which implies
that the edge starts at vertexand ends at vertex. Since
every combination of different boundary points can represent
a line segment of a valid polygon, the edge setis defined
as follows: (see Fig. 1). A
path of order from vertex to a vertex is an ordered set

such that , and
for . The order of the path is the number of
edges in the path. The length of a path is defined as follows:

(12)

where is a weight function defined in
accordance with (11) as follows:

(13)

Again, note that the above definition of the weight function
leads to a length of infinity for every path (polygon), which
includes a line segment resulting in an approximation error
larger than . Therefore, a shortest path algorithm will
not select these paths. Every path that starts at vertexand
ends at vertex and does not result in a path length
of infinity, results in a path length equal to the rate of the
polygon it represents. Therefore, the shortest of all those paths
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(a) (b)

Fig. 1. Interpretation of the boundary and the polygon approximation as a
fully connected weighted directed graph. Note that the set of all edgesE

equalsf(bi; bj) 2 B2: i 6= jg. Two representative subsets are displayed: (a)
f(b4; bj) 2 B2: 8 j 6= 4g and (b)f(b8; bj) 2 B2 : 8 j 6= 8g.

(a) (b)

Fig. 2. Examples of polygons with rapid changes in direction.

corresponds to the polygon with the smallest bit rate, which
is the solution to the problem in (9).

The classical algorithm for solving such a single-source
shortest-path problem, where all the weights are nonnegative,
is Dijkstra’s algorithm [13] with time complexity

. This is a significant reduction compared to the time
complexity of exhaustive search. Recall that we defined the
polygon as an ordered set for reasons that will now become
apparent. We can further simplify the algorithm by observing
that it is very unlikely for the optimal path to select a boundary
point as a vertex when the last selected vertex was, where

. In general, we cannot guarantee that the optimal path
will not do this, since the selection process depends on the
vertex encoding scheme, which we have not specified yet. On
the other hand, a polygon where successive vertices are not
assigned to boundary points in increasing order can exhibit
rapid direction changes, even when the original boundary is
quite smooth (see Fig. 2). Therefore, we add the restriction
that not every possible combination of represents a
valid edge but only the ones for which . Hence, the
edge set is redefined in the following way:

(see Fig. 3). This restriction results in the fact that
a given vertex set uniquely specifies the polygon. We used this
fact before to derive the number of possible polygons in an
exhaustive search approach.

By defining the edge set in the above fashion, we
achieve two goals simultaneously. First, the selected polygon
approximation has to follow the original boundary without
rapid direction changes, and second and more important, the

(a) (b)

Fig. 3. Interpretation of the boundary and the polygon approximation
as a weighted directed graph. Note that the set of all edgesE equals
f(bi; bj) 2 B2: i < jg. Two representative subsets are displayed: (a)
f(b4; bj) 2 B2: 8 j > 4g and (b)f(b8; bj) 2 B2: 8 j > 8g.

resulting graph is a weighteddirected acyclic graph(DAG).
For a DAG, there exists an algorithm for finding a single-
source shortest-path, which is even faster than Dijkstra’s
algorithm. Following the notation in [13], we call this the
DAG-shortest-path algorithm. The time complexity for the
DAG-shortest-path algorithm is , which means
that the asymptotic lower bound is equal to the
asymptotic upper bound .

Let represent the minimum rate to reach the bound-
ary point from the source vertex via a polygon
approximation. Clearly, is the solution to problem
(9). Let be a back pointer which is used to remember the
optimal path. Then the proposed algorithm works as follows.

1) = ;
2) for ;
3)
4) ;
5)
6) for ;
7)
8) for ;
9)
10) calculate edge distortion ;
11) look up edge rate ;
12) assign based on definition (13);
13) if ;
14)
15) ;
16) ;
17)
18)
19)

The optimal path can be found by back-
tracking the pointers in the following recursive fashion
(by definition and ):

(14)

The formal proof of the correctness of the DAG-shortest-path
algorithm, on which the above scheme is based, can be found
in [13]. We will reason more intuitively how this approach
works. In line 1, the rate for encoding the starting point of the



18 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 1, JANUARY 1998

boundary is assigned to the minimum rate of the first polygon
vertex. In lines 2–5, the minimum rate for reaching any of
the boundary points is set to infinity. The “for loop” in line
6 selects the boundary points in sequence as possible vertex
points from which a polygon edge starts and the “for loop” in
line 8 selects possible vertex points where the polygon edge
ends. Hence, these two loops select each edge in the edge set

exactly once. Therefore, the lines 9–18 are processed for
every edge. The lines 10–12 are used to calculate the weight of
the edge, . The most important part of this algorithm
is the comparison in line 13. Here, we test if the new bit
rate, , to reach boundary point , given
that the last vertex was , is smaller than the smallest bit
rate used so far to reach, . If this bit rate is indeed
smaller, then it is assigned as the new smallest bit rate to reach
boundary point , . We also
assign the back pointer of , to point to since this
is the previous vertex used to achieve . This algorithm
leads to the optimal solution because, as stated earlier, when
the rate ( ) of a vertex ( ) is given, then the selection
of the future vertices ( , ) is independent of the
selection of the past vertices (, ).

The analysis of the above algorithm shows that there are
two nested loops, which results in a time complexity of

. We use the number of edge distortion evaluations as
measure for the time complexity, since this is the most time-
consuming operation. In the case where the edge distortion is
the maximum absolute distance, then another loop is required
because of the maximum operator in (3). Therefore, the time
complexity of the maximum absolute distance algorithm is

with respect to the distance evaluations in (2).

B. The Minimum Distortion Case

We now consider the minimum distortion case which is
stated in (8). The goal of the proposed algorithm is to find
the polygon with the smallest distortion for a given bit budget
for encoding its vertices. Sometimes this is called arate
constrained approach. Recall that for class one distortion
measures the polygon distortion is defined as the maximum
of the edge distortions [see (5)]. Hence, in this section,
we propose an efficient algorithm that finds the polygonal
approximation with the smallest maximum distortion for a
given bit rate.

We propose an iterative solution to this problem that is
based on the fact that we can solve the dual problem stated
in (9) optimally. Consider in (9) to be a variable. We
derived in Section III-A an algorithm that finds the polygonal
approximation which results in the minimum rate for any

. We denote this optimal rate by . We prove
below that the rate is a nonincreasing function of

, which means that implies
.

Proof: (By contradiction): Let polygon and rate
be the solutions to the minimum rate optimization

problem 1. Let polygon and rate be the
solutions to the minimum rate optimization problem 2.
Assume that and .

Fig. 4. R�(Dmax) function, which is a nonincreasing function exhibiting
a staircase characteristic. The selectedRmax falls onto a discontinuity and,
therefore, the optimal solution is of the formR�(D�

max
) < Rmax, instead

of R�(D�

max
) = Rmax.

Then, is an admissible polygon for the optimization
problem 2, since . Since by assumption

, is a better solution than
, which is a contradiction, since we showed that the

selection algorithm employed to find is optimal. Hence,
implies .

Having shown that is a nonincreasing function,
we can use bisection [14] to find the optimal such that

. Since this is a discrete optimization prob-
lem, the function is not continuous and exhibits a
staircase characteristic (see Fig. 4). This implies that there
might not exist a such that . In
that case, the proposed algorithm will still find the optimal
solution, which is of the form , but
only after an infinite number of iterations. Therefore if we
have not found a such that after
a given maximum number of iterations, we terminate the
algorithm.

IV. DISTORTION MEASURES BASED

ON THE SUMMATION OPERATOR

In this section, we introduce two algorithms to solve the
problems stated in (8) and (9) for class two distortion mea-
sures, such as the mean squared distance. Both presented algo-
rithms are symmetric in the rate and the distortion and, hence,
the same technique can be employed for the minimum distor-
tion case (8) and the minimum rate case (9). We will, therefore,
only solve the minimum distortion case, and the minimum rate
case can be solved be applying the following relabeling to the
function names:
and .

The first algorithm we propose is based on the Lagrange
multiplier method. Like every Lagrangian-based approach the
resulting solutions belong to the convex hull of the operational
rate distortion function. For cases where the Lagrangian bound
is not tight enough, we propose a tree-pruning-based scheme,
which can find all optimal solutions.
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A. Lagrange Multiplier Approach

In this section, we derive a solution to problem (8) that is
based on the Lagrange multiplier method [15]–[17] and the
shortest path algorithm presented in Section III-A. Lagrangian
relaxation [18] is a well-known tool in operations research.
It is mainly used to relax constraints that make the solution
of an integer problem difficult. The relaxed integer program
can then be solved more easily, which leads to an efficient
method for certain problems. The Lagrange multiplier method
is closely related to Lagrangian relaxation, and it is extremely
useful for solving constrained resource allocation problems. In
this application, we will use the Lagrange multiplier method to
relax the constraint, so that the relaxed problem can be solved
using the shortest path algorithm proposed in Section III-A.

We first define the Lagrangian cost function

(15)

where is called the Lagrange multiplier. It has been shown
in [15] and [16] that if there is a such that

(16)

and which leads to , then
is also an optimal solution to (8). It is

well known that when sweeps from zero to infinity, the
solution to problem (16) traces out the convex hull of the
operational rate distortion function, which is a nonincreasing
function. Hence, bisection [14] or the fast convex search we
presented in [19] can be used to find. Therefore, if we
can find the optimal solution to the unconstrained problem
(16), then we can find the optimal and the convex hull
approximation to the constrained problem of (8).

The key observation for deriving an efficient search for
the polygon that minimizes the unconstrained problem (16)
is based on the fact that given a certain vertex of a polygon

and the Lagrangian cost function that results by coding
the polygon up to and including this vertex

, the selection of the next vertex
is independent of the selection of the previous vertices

. This is true since the rate and the distortion
can be expressed recursively as functions of the segment rates

and segment distortions

(17)

and

(18)

These recursions need to be initialized by setting
and equal to zero. Since the rate and the distortion
can be calculated with a first-order recursion, the Lagrangian
cost function can also be calculated recursively as follows:

(19)

Clearly, , the rate for
the entire polygon,

the distortion for the entire polygon and
, the Lagrangian cost function for the entire

polygon.
In Section III-A, we have shown that an optimization

problem that has the above-described structure can be solved
optimally by a DAG-shortest-path algorithm. To be able to
employ the previously proposed shortest path algorithm, we
have to redefine the weight function as

(20)

Since the shortest path algorithm results in the polygon that
minimizes the following sum:

(21)

this polygon is the optimal solution to the relaxed problem
of (16).

Clearly, the time complexity of the Lagrangian approach
for a fixed is the same as for the shortest path algorithm.
The shortest path algorithm is invoked several times by the
bisection algorithm to find the optimal and, hence, the time
complexity is a function of the number of required iterations.
As pointed out before, the Lagrangian approach finds optimal
solutions that belong to the convex hull of the operational rate
distortion curve. Clearly, there are other optimal solutions that
are above the convex hull. In the next section, we present a
tree-pruning algorithm that finds all optimal solutions.

B. Pruning Approach

As before, for this algorithm we make use of the fact that
when the current vertex is selected and we know the rate and
the distortion used to encode the polygon up to and including
this vertex, the previous vertices do not influence the selection
of the future vertices. For a given boundary point () under
consideration to be chosen as a polygon vertex, every previous
boundary point ( ) could have been the last vertex
used for the polygon approximation. Therefore, the rate and
distortion for every previous boundary point are calculated
under the assumption that the previous boundary point was
used as the previous vertex. These calculations lead to a set
of nodes, each representing the hypothesis that the current
boundary point is a vertex but with different boundary points
as previous vertices.

We introduce a pruning procedure to reduce the number of
nodes for each boundary point. If there are two nodesand
such that and , where is the
distortion and the rate up to and including node, then
it is clear that node cannot belong to the optimal solution.
This is because node has a lower distortion and a lower
rate than node, but both represent the same boundary point
as the last selected vertex. Hence, nodeis pruned from the
decision tree. Since the pruned nodes need not be considered in
the future of the optimization process, the more nodes pruned,
the faster the algorithm becomes. A straightforward approach
to pruning has a quadratic time complexity in the number of
nodes to be pruned . Since depends on previous pruning
results, the time complexity of the entire approach depends on
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Fig. 5. Pruned decision tree for the encoding of a boundary. The nodes are labeled as follows: “index/rate/distortion.”

the boundary, the distortion measure, and the vertex encoding
scheme. As with most integer programming algorithms, one
can construct an example where the pruning scheme fails
completely, which results in an exponential time complexity.
Note that this exponential time complexity is still better than
the time complexity of the exhaustive search, since we use the
fact about the independence of the future with respect to the
past. In general, though, the pruning is extremely efficient in
cutting down the complexity of the algorithm and, in fact, this
scheme and the previously discussed Lagrangian approach take
about the same amount of time for the experimental results we
will present in Section VII. If the complete set of optimal rate
distortion points is not of interest, but only the problem of
(8) needs to be solved, additional pruning can be achieved by
removing all nodes that contain a rate higher than . This
leads effectively to all optimal rate distortion points below and
including the line .

Each of the remaining nodes represents a polygon which has
the current boundary point as its last vertex, but with different
rate-distortion characteristics. In other words, the remaining
nodes represent the set of all optimal solutions for the encoding
of the boundary up to and including the current boundary point.
These nodes make up the admissible nodes for this boundary
point, when this boundary point is considered as a previous
vertex in the future of the optimization process.

Fig. 5 shows a simple example of the algorithm. In the
left upper corner is the boundary that must be encoded. The
adjacent pixels are labeled 0, 1, 2, 3, and 4, and they simply
form a square of side length 1. Note that point 4 is the same
as point 0 and, therefore, it does not need to be transmitted,
but still a distortion occurs between the last vertex of the
polygon and point 4 and it is, therefore, included in the closed
boundary. Fig. 5 shows the complete decision tree. This tree
reflects the fact that given the boundary point used as the
previous vertex, and the rate and the distortion for encoding
the polygon up to and including that vertex, the selection

of future vertices is independent of the selection made for
previous vertices. In Fig. 5, the boundary point index, the
rate and the distortion are indicated in the following fashion:
“index/rate/distortion.” In this example, the sum of the squared
distance between the boundary and the polygon is used as the
distortion measure and the vertex encoding scheme proposed
in Section VI is employed (4 b is required for each transition
in this example).

There are two possible transitions from a given node. The
upward transition, which indicates that this node is used as a
previous vertex, and the downward transition which indicates
that this node is not used as a previous vertex. The downward
transitions carry a weight of zero (rate 0, distortion 0),
but the upward transitions result in the addition of(previous
vertex, current vertex) to the rate and(previous vertex,
current vertex) to the distortion. The epochs, which correspond
to the boundary points, are indicated at the bottom of the
tree. The boxes indicate the new nodes per boundary point
and, therefore, the pruning procedure is only applied to those
nodes.

Consider the box at epoch 3. There are two nodes (both
with description 3/8/0.5) that require the same rate and lead
to the same distortion to reach boundary point 3. Therefore,
one of the two can be pruned (indicated by an empty circle),
since both will lead to the same collection of future paths. By
pruning a node, the collection of future paths gets reduced.
Clearly, the more nodes that can be pruned, the faster the
algorithm is.

At the last epoch, which corresponds to boundary point 4,
three nodes can be pruned and only four final nodes remain,
which represent the four optimal solutions to the boundary
approximation. These four optimal solutions are also displayed
as an operational rate distortion function in the lower left
corner of Fig. 5. The path (0,1,2,3,4) that leads to 12 b and
no distortion is the highest quality approximation which is
basically the chain code of the original boundary. The path
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(0,1,2,2,4) approximates the box by a triangle, which requires
8 b and leads to a distortion of 0.5. The path (0,0,2,2,4)
approximates the box by a diagonal line, which requires 4
b and leads to a distortion of 1. Finally, the path (0,0,0,0,4)
does not require any bits, since it approximates the box by its
starting point, but it leads to a maximum distortion of 4.

It is interesting to note that this pruning scheme can be easily
modified to work with class one distortion measures, since the
additivity of the class two distortion measures has not been
used in the derivation of this scheme. The only fact employed
is the independence of the future from the past, which is also
present for class one distortion measures. In general though,
the schemes presented for class one distortion measures are
faster than the pruning approach.

V. MULTIPLE BOUNDARY ENCODING

In this section, we extend the results of the previous sections
for the encoding of multiple boundaries. Assume that
different boundaries have to be encoded and we will adopt
the convention that a subscript indicates which boundary is
addressed, i.e., is the third boundary, is the polygon
used to approximate the fourth boundary, etc. Then, the
minimum rate optimization problem can be stated as follows:

subject to

(22)

whereas the minimum distortion problem is of the following
form:

subject to

(23)

The total rate in the above formulation is
defined as

(24)

The total distortion measure is defined for
class one distortion measures by

(25)

and for class two distortion measures by

(26)

As we have seen in the previous sections, the two classes of
distortion measures require different algorithms. This is also
true for the encoding of multiple boundaries.

A. Distortion Measures Based on the Maximum Operator

1) The Minimum Rate Case:Since the total rate
is the sum of the individual rates

, and the encoding of the different
boundaries is accomplished independently, the minimum total
rate is equal to the sum of the minimum individual rates,
where the search for the minimum individual rates is also
constrained by the maximum distortion . Therefore, the
following optimization problem is identical to the one in (22):

subject to

for

(27)

which shows that the optimal solution to problem (22) can be
found by solving the optimization problems for the different
boundaries independently using the algorithm developed in
Section III-A.

2) The Minimum Distortion Case:We now consider the
minimum distortion case of (23). As in Section III-B, we
use the fact that we can solve the minimum rate problem
optimally, in order to solve the minimum distortion problem
by an iterative scheme. By defining of Section III-
B as the minimum total rate needed to encode thegiven
boundaries with a maximum error of , the derivation in
Section III-B still applies. Hence, the resulting algorithm is a
bisection search and at each iteration the optimization problem
of (22) is solved optimally using the above proposed scheme.

B. Distortion Measures Based on the Summation Operator

For class two distortion measures, we have introduced two
different algorithms, the Lagrange multiplier approach and the
tree-pruning scheme. As we pointed out in Section IV, these
algorithms are symmetric in the rate and the distortion and,
therefore, we will only discuss the minimum distortion case
of (23).

1) Lagrange Multiplier Approach:We define the total La-
grangian cost function as follows:

(28)

According to Section IV-A, if we can find the global minimum
of the total Lagrangian cost function with respect to the
approximation polygons

(29)
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Then we can use an iterative search to solve the constrained
problem of (23).

Since the different boundaries are independently encoded,
the minimum of the total Lagrangian cost function can be
found by minimizing each of the individual boundaries sepa-
rately. In other words, this problem reduces to the ones studied
in [16]. Hence, the following minimization is equivalent to the
one in (29):

(30)

Therefore, the multiple boundary encoding problem can be
solved with the Lagrange multiplier method using (30), which
states that the global minimum of the total Lagrangian cost
function is the sum of the global minima of the Lagrangian cost
functions for each boundary. Since we derived in Section IV-
A an algorithm to find the minimum of a boundary Lagrangian
cost function, we can find the minimum of (30) and, hence, we
can encode multiple objects using the Lagrangian relaxation
scheme.

2) Pruning Approach:The tree-pruning approach proposed
in Section IV-B results in the operational rate distortion
function (ORDF) for a given boundary. Again, since the
boundaries are encoded independently, we first run the pruning
algorithm for each of the boundaries. This results in
different ORDF’s. It is interesting to notice that the optimal
bit allocation among independent quantizers (characterized by
their ORDF’s) is commonly solved by the Lagrange multiplier
method [16]. Again, the Lagrange multiplier method will only
find solutions that belong to the convex hull, but we are
interested in all optimal solutions, which is the main reason
for introducing the pruning scheme.

We need the total ORDF to be able to solve the minimum
distortion problem formulated in (23) optimally. Hence, the
problem is to create the total ORDF, using the ORDF’s
of the boundaries. In [20] and [21], a dynamic programming-
based approach is presented for the case where the ORDF’s
are defined on the set of positive integers. We introduce a
different approach, which does not require that the ORDF’s
are defined for all the positive integers, but works for ORDF’s
defined on any finite subset of the real line. The total ORDF
can be found by applying a slightly modified version of the
pruning scheme to the different ORDF’s of the boundaries.
We explain this scheme with the help of the example in Fig. 6.
In the rounded boxes on top are the points of the ORDF’s of
three different boundaries. The notation used in this figure
is of the following form: “rate/distortion.” The goal is to
merge these three ORDF’s to find the total ORDF, which
is displayed on the right. This is achieved by creating the
total ORDF iteratively. First, we generate the combined ORDF
of the first and the second boundary. This is achieved by
creating all possible rate distortion points, which are inside
box number one. Then we apply the same pruning rule we
established before, i.e., if there are two nodesand such that

Fig. 6. Pruned decision tree for the optimal encoding of three boundaries.
The nodes are labeled as follows: “rate/distortion.”

and , then node cannot belong to
the optimal solution. The pruned nodes are indicated with an
empty circle and the black nodes represent the new combined
ORDF. We then iteratively apply this merging and pruning of
two ORDF’s to create a combined ORDF, until there is only
one ORDF left, which represents the total ORDF and it can
directly be used to find the optimal solution to the multiple
boundary encoding scheme.

VI. V ERTEX ENCODING SCHEME

So far, we have not assumed any specific scheme for
encoding the vertices of the polygon. In this section, we
present a vertex encoding scheme, which can be considered a
combination of an eight-connect chain code and a run-length
encoding scheme.

A. Basic Scheme

The chain code and the run-length encoding can be com-
bined by representing the increment between two vertices
by an angle and a run , which form the symbol (, ).
Therefore, for a run of one, the eight closest neighbors of a
given point are

(31)

As an example, (3, 4) represents a straight line of four
increments in the direction. Each of the possible
symbols ( , ) gets a probability assigned and the resulting
stream of increments can
be encoded by an arithmetic or a Huffman code. We use the
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following code word assignment. For a given symbol (, ),
the first three bits indicate one of the eight possible values
for followed by ( ) zeros and a final “1” to encode
the number of runs. Clearly, the number of bits used for this
uniquely decodable code is equal to ( ) and the longer the
run, the more efficient this code is. Note that this code implies
that the lines between the vertices are restricted to intersect
the horizontal axis in an angle, which is an integer multiple
of .

B. Generalized Scheme

A generalization of this code is based on the observation
that this scheme is optimal in the case when the probability
mass function of is separable and is uniformly
distributed over all eight ’s, whereas is geometrically
distributed with parameter

. The assumptions that the distribution is separable,
is uniformly distributed, and is geometrically distributed

are reasonable, but there might be better choices forthan
0.5. When an arithmetic coder is used, the resulting bit rate
is the entropy based on the probability model the encoder
employs (we neglect the renormalization bits used in practical
implementations). Therefore, a probability model that leads
to a smaller entropy than the above one can be used, even
though this leads to fractional bit assignments per symbol. For
example, only six out of the eight’s need to be considered
since the next cannot be equal to the current one (if so, this
would be coded by an additional run), nor can it be equal to
the direct opposite one (if so, one less run would have been
coded). Hence, there are only six possible’s, and instead of
using 3 b to encode them, only b are needed.

The question, therefore, is: Which leads to the smallest
bit rate for the encoding of a particular polygon? It can
be shown that the maximum likelihood estimate also
leads to the minimum entropy and, hence, to the smallest bit
rate. Since we assume that the runsfor the encoding of
vertices are independent of each other and have the same
geometric probability mass function, the likelihood function
can be written as follows:

(32)

which leads to the following maximum likelihood estimate of
:

(33)

So far, we have considered the case where has been given
(in other words, the code word assignment has been given)
and then the optimal polygon approximation is found. The
question arises of how to jointly select and the polygon
approximation optimally. In fact has to be quantized
since it needs to be sent for every boundary and, in the current
scheme, an 8-b uniform quantizer with a range from zero to
one is used for that purpose. Therefore, 256 different’s exist,

and one solution is to run the optimal polygon approximation
256 times and pick the quantized, which leads to the smallest
rate.

We propose a much faster, but suboptimal iterative proce-
dure to estimate . This procedure can be applied to all
schemes presented, which do not employ an iteration whose
convergence is based on the global optimality of the solution.
In other words, this scheme can be applied to the minimum rate
case for distortion measures of class one and for the pruning
scheme introduced for class two distortion measures in Section
IV-B.

The iteration works as follows. First an initial quantized
is used, where indicates the iteration number and

the fact that this is a quantized value, and the th optimal
polygon approximation is found. Then, this approximation is
used to estimate based on the distribution of the
runs and the quantized is derived from .
These three steps are repeated until the minimum rate for the
polygon of iteration , does not decrease
any further, which usually happens after two to three iterations.
Since the minimum rate of the polygonal approximation is
bounded from below by zero, we can prove that this iteration
converges to a local minimum by showing that

is a nonincreasing function of .

Proof: Clearly, since
is estimated using the runs of the optimal polygon

of iteration . Since the likelihood function used to find
is concave, can be found by evaluating the

likelihood function for the two reconstruction levels, which
are the closest to and setting equal to
the one which results in the higher score. Note that this
is a special case where the optimal solution to a discrete
problem (finding ) can be inferred from the solu-
tion of a continuous problem (finding ). Therefore,

which
proves the convergence to a local minimum.

Using an arithmetic coder and this iterative scheme, the ef-
ficiency of the minimum rate approach for class one distortion
measures can be improved by about 15%.

VII. EXPERIMENTAL RESULTS

In this section, we present experimental results of the
proposed algorithms using object boundaries from the Miss
America sequence. For the presented experiments, we use the
vertex encoding scheme with and the Huffman code
proposed in Section VI.

We first present results for class one distortion measures,
where the employed distortion measure is the minimum abso-
lute distance. In Fig. 7, we compare the original segmentation,
which is displayed in the left figure, versus the optimal
segmentation for a maximum distortion of one pixel,
which is displayed in the right figure. The two objects in the
original segmentation require 468 b if encoded by an eight-
connect chain code, whereas the optimal segmentation can
be encoded with only 235 b. By introducing a permissible
maximum error of one pixel, we are able to reduce the total bit
rate by about 50%. As expected, some of the details have been
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Fig. 7. Left: original segmentation, which requires 468 b using the eight-connect chain code. Right: optimal segmentation withDmax = 1 pixel, which
requires a rate of 235 b and results in a distortion of one pixel.

Fig. 8. Left: optimal segmentation withRmax = 280 b, which results in a distortion of 0.71 pixels and a bit rate of 274 b. Right: closeup of the lower
boundary; the stars indicate the original boundary and the line represents the polygonal approximation. The upper left corner has been selected as the first vertex.

lost, i.e., the boundary has been “straightened.” This smoothing
of the boundary might be desired, since most segmentation
algorithms result in noisy boundaries. In Fig. 8, we show the
resulting segmentation for the minimum distortion case for
multiple boundaries. The maximum rate has been set
to 280 b, and the optimal solution, which uses 274 b for a

pixels, is displayed in the left figure. The right
figure is a close-up of the lower boundary in the left figure,
and the stars indicate the original boundary with the polygonal
approximation drawn on top of it.

In Fig. 9, we present results for distortion measures of
class two, where the employed distortion measure is the mean
squared distance. To highlight the difference between the
Lagrange multiplier scheme and the pruning scheme, we set

from (8) to 200 b. In Fig. 10, a close-up of the boundary
is shown, and the operational rate distortion curve is displayed.
Note the possible Lagrangian solutions, which are indicated by
circles around the vertices of the convex hull. The Lagrangian
solution that satisfies b results in b and

, (for a ), whereas the pruning approach
results in b and . Both solutions are shown
in Fig. 9, and it is clear that the pruning approach results in a
better approximation of the original boundary.

VIII. SUMMARY AND CONCLUSIONS

We presented fast and efficient methods for the lossy en-
coding of object boundaries which are given as eight-connect
chain codes. The boundary is approximated by a polygon, and
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Fig. 9. Comparison between the Lagrangian relaxation approach and the pruning approach forRmax = 200 b, for distortion measure the mean squared
distance. Left: Lagrange multiplier approach,R = 169 b, D = 0:1. Right: Pruning approach,R = 200 b, D = 0:05.

Fig. 10. Comparison between the Lagrangian relaxation approach and the pruning approach. Left: close-up of the boundary and the two different
approximations. Right: the operational rate distortion function and its convex hull.

we considered the problem of finding the polygon, which leads
to the smallest distortion for a given number of bits. The dual
problem of finding the polygon that leads to the smallest bit
rate for a given distortion was also addressed. We considered
two different classes of distortion measures, where the first
class is based on the maximum operator and the second class
is based on the summation operator. For the first class, we
derived a scheme that is based on a shortest-path algorithm
for a weighted directed acyclic graph. For the second class,
we proposed a Lagrange multiplier-based approach, which
employs the shortest path algorithm iteratively. Lagrangian
schemes can only find solutions that belong to the convex
hull of the operational rate distortion function; therefore,
we also proposed a tree-pruning algorithm that can find all
optimal solutions. We extended all proposed schemes to the
jointly optimal encoding of multiple boundaries. We finally
introduced a vertex encoding scheme, which is a combination
of an eight-connect chain code and a run-length scheme.

Experimental results of the proposed schemes were presented
using objects from the Miss America sequence.

In conclusion, we compare the different approaches and how
they might be applied for the encoding of object boundaries.
The Lagrangian-based approaches (class two distortion mea-
sures) are iterative schemes, and so is the minimum distortion
approach for class one distortion measures. Even though these
schemes converge to the optimal solution, several iterations
might be required. The pruning-based approaches (class two
distortion measures) are one-pass approaches, and so is the
minimum rate approach for class one distortion measures.
Unfortunately, the efficiency of the pruning schemes cannot be
guaranteed. This is in contrast to the minimum rate approach
for class one distortion measures. This one-pass method has
a time complexity of and it is the fastest of all
proposed methods. By selecting the edge distortion to be the
maximum distance, this algorithm efficiently finds the smallest
rate polygonal approximation to a given boundary, which
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stays within a maximum error of . Because of its speed
and its perceptual relevance, this is our preferred approach
for encoding object boundaries in a variable bit rate coding
framework.

In [23], the vertices of the polygon that approximates
the given boundary are allowed to be outside the set of
boundary points but inside a predefined distortion band. In
[24], second-order B-splines are used for the encoding of
the boundary, whose control points lie within a predefined
distortion band. Finally, in [25], the various optimal boundary
encoding approaches we have developed are reviewed, along
with the methods developed toward the solution of the same
problem, by the MPEG-4 standardization effort.
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