
A Framework for ImmigratingExisting Software intoNew Software Development EnvironmentsMichael H. SokolskyGail E. KaiserColumbia UniversityDepartment of Computer ScienceNew York, NY 10027Appeared in Software Engineering Journal, IEE, 6(6):435-453, November 1991.AbstractWe have investigated the problem of immigrating software artifacts from one soft-ware development environment (SDE) to another for the purpose of upgrading to newSDEs as technology improves, while continuing development or maintenance of exist-ing software systems. We �rst taxonomize the larger problem of data migration, toestablish the scope of immigration. We then classify SDEs in terms of the ease ofimmigrating software artifacts out of the data repository of the source SDE withoutknowledge of its internal representation. A framework is presented for constructingautomatic immigration tools as utilities provided by destination SDEs. We describe aspeci�c immigration tool, called Marvelizer, that we have implemented as part of theMarvel SDE and discuss our experience using the tool.Keywords: Reusability, architectural issues, integration mechanisms, knowledge-based approach, object-oriented approach, object bases.c1990 Michael H. Sokolsky and Gail E. Kaiser1

1 IntroductionThere is an enormous amount of existing software that must be maintained for many yearsinto the future. Reuse depends on being able to incorporate existing software artifacts(including designs, source code, test cases and so forth) into new software projects. Newsoftware development environments (SDEs) may not be adopted unless it is easy to immigrateexisting software artifacts into them. This is particularly a problem given the trend towardsbuilding SDEs on top of object bases, which seems fundamental to applying many aspectsof the advancing technology but which rarely �t the original �lesystem and/or databasestructures containing existing software artifacts [RW89, Tul88].There are also countless existing software tools, and it seems likely that new commercialo�-the-shelf (COTS) tools will continue to be developed independently of speci�c SDEs orstandards recommendations such as PCTE [GMT86]. Many organizations are reluctant toabandon old tools due to large economic and personnel training investments and/or foregonew tools that seem very promising to raise productivity, just because they do not matchsome SDE's tool interface. Therefore, it is important to be able to integrate COTS toolsinto new and existing SDEs. Most such tools assume conventional text (ascii) and binary�les and/or speci�c formats of software artifacts.Several environments (e.g., Istar [Dow87] and Network Software Environment(NSE) [AHM89]) have addressed the problem of providing the bene�ts of new SDE technol-ogy while supporting familiar COTS tools. These environments typically utilize databasestructures of some sort to supplement the software artifacts understood by COTS tools.To take full advantage of the new technology of such environments, these structures mustbe set up for existing software artifacts | and most of these environments provide somesupport for this. The purpose of this paper is to propose a general approach to solving thisproblem. Although our results are not limited to SDEs that integrate COTS tools, we havefound that immigration from an SDE that supports COTS tools to another such SDE issomewhat simpler than other cases, due to the corresponding restrictions placed on the twodata representations.We begin our study of immigration by placing it in the context of the general datamigration problem, which consists of immigration, reorganization, evolution and emigration.We then classify certain important types of SDEs with respect to their data repositories interms of the ease of iteration and navigation over these repositories, and present a frameworkfor immigration within and among several of these classes. We explain which cases requirespecialized knowledge of the source database structures and thus the construction of custom2

immigration tools, and which cases can be automated without this knowledge. Our designfor a general immigration tool requires that the source SDE provide some facility for iteratingover the full set of software artifacts contained in its data repository, and supports a higherdegree of automation when the source SDE also provides some facility for navigation overrelations among the artifacts. The framework assumes that the physical data representationsused by the destination SDE are known by the implementors of the immigration tool, butnot necessarily by its \customers" who will use it to immigrate their existing software.We present a speci�c immigration tool, called Marvelizer, based on our framework.We have implemented Marvelizer as part of the Marvel SDE kernel [KFP88], for con-structing or augmentingMarvel object bases to represent existing software artifacts copiedfrom the data repository of some source SDE. We discuss our experience using Marvelizerfor a number of practical examples, and conclude by summarizing the contributions of thiswork. Comparisons to related work are made throughout the paper as relevant.A Note on TerminologyEvery SDE is based on a data repository of some form, perhaps just the native �lesys-tem, in which the software artifacts reside. New SDEs often invoke the popular buzzword\object-oriented", but there is much disagreement as to what exactly an \object", an \ob-ject base", an \object management system", or an \object-oriented database" is [Ban88].Therefore, throughout the rest of this paper, we will use the terms \data model", \dataitem", \database" and \data repository" without any precise de�nition when referring tosource and destination SDEs (other than Marvel itself, where we de�ne precisely what wemean by \object base"). We also use the term \class" to mean a grouping of data items,without implying any object-oriented concepts often associated with classes. We intendthat these terms apply equally to software artifacts stored in �lesystems, relational databasemanagement systems, object bases, etc.It is important to emphasize that we do not claim that our results apply to generaldatabase applications; we address only software development environments, where we havesome a priori knowledge of the kinds of data items and relations among data items likely tobe supported. 3

2 Data Migration TaxonomyData migration is concerned with the parts of the lifecycle of software artifacts when theyare moved (or copied) within a data repository or between data repositories and/or con-verted from one data model to another. We have identi�ed four basic processes within datamigration.Immigration is the process of moving the contents of a source data repository to a destina-tion data repository for the purpose of upgrading an ongoing software project to a newSDE or reusing old data items in a new project. Immigration includes the generationof new attributes and relations of the destination environment not supported in thesource environment, as well as conversion of the source data formats to those requiredby the destination data repository.Reorganization involves the rearranging of data within a single data repository using thesame data model. Reorganization is needed to curb entropy as management objectiveschange, designs evolve, and/or the software system becomes more complex. A reorga-nization tool should provide facilities as least as powerful as typical operating systemutilities for reorganizing �les and directories. For example, Unix provides mv, cp, ln,tar, cpio and others, for moving, copying and linking, and manipulating large hier-archies. Marvel provides the add, delete, copy, move, rename and join com-mands. A special case is to import a portion of one data repository into another,but within the same SDE. The Smile environment [KF87b] provides the retrievecommand to move a selected subset of one of its data repositories into another one.Evolution is the process of updating a data repository as its data model (schema) changesover time. This involves data translation and schema integration, which are generallybelieved to be solved problems for relational databases [Ne89, BLN86]. Some progresshas been made for object-oriented databases [SZ86, BK87], but this is often limited tokeeping old versions of the data model for accessing old data, and there are still manyopen questions, particularly regarding the operations associated with objects. We donot address these issues here.Emigration consists of moving data out of a data repository, which is useful for archivingdata items for later reuse or consultation.1 Emigration might also be used as a back1These uses of emigration were suggested by Dewayne Perry.4

end for immigration, to convert data items to some standard format. Many VLSIdesign tools communicate via a common format, e.g., EDIF [Com85]. There is notyet any widely-accepted standard format for software artifacts (other than ascii text),although IDL and its instantiations such as Diana seem promising [Lam87, GWJr83].In the general case, immigration is considerably more di�cult than evolution. Evolutionconverts the contents of a particular data repository from one data model to another, butthe same underlying physical representation scheme and data management architecture isemployed, the implementor of the evolution tool understands this internal structure, and thechanges to the data model are likely to be incremental | that is, the source and destinationdata models are strongly related. In immigration, in contrast, little or nothing may be knownabout the internal representations used in the source data repository, its end-user interfacemay not provide all the necessary access and manipulation primitives, and there may belittle common ground between the source and destination data models. We have identi�edpractical classes of source SDEs where automated immigration is feasible, as elaborated in thenext section, but we make no claims regarding the general case. Note that it is impossibleto automatically construct information speci�c to a new environment that simply is notknown by the original environment, and at best it is extremely di�cult if this informationis implicit in the original environment, e.g., requiring understanding of the internal contentsof data items; we address only the importation of information that is explicitly available inthe source data repository.3 Immigration FrameworkWe begin by listing general requirements for an immigration tool. We then categorize theclasses of SDEs by identifying the forms of their data repositories, focusing on the capabilitiesfor iteration and navigation over data items. We evaluate the matrix of possible kinds ofimmigration from each of these forms into the others, and introduce our design for a generalimmigration tool. In the following discussion, remember that \data", \data item" and \datarepository" refer to software artifacts such as designs, source code, test cases and so on.3.1 RequirementsKey requirements of an immigration tool include the following:5

� The tool should be mostly automatic, requiring minimal interaction between the userand the ongoing immigration process.� The immigration process should be fast. Speed is of course relative, but it seemsreasonable that immigration should not take signi�cantly longer than copying andrebuilding the entire software system.� The tool should construct as many destination database structures as possible, ratherthan leaving these to be hand-generated.� The tool should handle both complete source data repositories and their subparts (e.g.for reuse) with equal ease.� The immigration process should require no understanding by the end-user of the in-ternal implementation details of the destination data repository. It should not requireany knowledge on the part of either the end-user or the immigration tool implementorof the internals of the source data repository.� It should be easy to verify the results of the immigration process, preferably visually.There are cases where only partial automation is possible, and it should be easy forthe user to determine what work remains to be done manually.3.2 Data Repository FormsThe classes of SDEs we address include both those based upon �lesystems and those thatemploy a database of some sort, which encompasses most practical SDEs. We excludeinterpretive environments and language-based environments (.e.g, [Gol84, RT89, KKM87]),as outside the scope of our framework. Immigration into many language-based environmentscan be handled by parsing individual �les and carrying out a batch attribution process, butevolution is a more serious problem. For example, the TransformGen [GKS86] tool, part ofthe Gandalf system, supports conversion of attributed syntax trees when the grammar usedto generate a Gandalf editor is modi�ed; this is accomplished with a monitoring process, torecord the changes made to a grammar.In order to analyze the necessary immigration processes between SDEs, we �rst classifythe forms of data repositories employed by SDEs. Our primary concern is with the iterationand/or navigation facilities supported, as a means for visiting all the data items representedin the data repository, and retrieving these data items, their attributes and relations. If thesource SDE does not provide facilities to visit all its data items, then there is no way to copy6

them to a destination SDE without custom tools that understand the internal representationused in the source data repository. These types of immigration are beyond the scope of thispaper.We consider �ve major forms, called form 0 through form 4. In general, the larger numbersrepresent more complex data repositories, and often more sophisticated environments. Wesubdivide some of these forms into a and b, where b generally represents a more sophisticatedform than a. Letters indicate �ner grain di�erences than numbers.Form 0aA at, unorganized group of �les, all within the same directory. All data items are representedas �les. Any control information is encoded in the names of the �les, and control andmanagement of the �les is placed upon the user. The operating system provides an iterationscheme for accessing each �le in turn, say in alphabetical order or according to time ofcreation or last update. This form represents the most naive way a piece of software mightbe developed, and is still commonplace amongst DOS operating system users, where softwaretools are relatively less sophisticated then those in operating systems such as Unix.Form 0bA �lesystem directory structure that implies relations among directories and the �les thatthey contain. A data item is represented as a �le or as a directory containing componentitems (�les). This is probably the most common form for \toolkits" whose only commonknowledge is naming conventions such as special-purpose directories (e.g., bin, include, liband man for Unix) and �lename extensions (e.g., .c, .h and .a for C program development).Control and management of such systems tends to fall upon users, as with form 0a. Theoperating system provides a simple navigation facility for preorder traversal from selectedroot directories, with some capability for recognizing previously visited �les and directorieswhen links are supported.Form 1Form 0 above, plus specially formatted �les and directories maintained by tools that aretreated as part of the SDE. Thus, this form includes \private" data repositories of individualtools, such as the delta �les of RCS [Tic85] or the Unix sccs tool, whose contents are intendedto be hidden from users. Again, the operating system supports simple navigation, but theSDE must provide some means for recognizing the specially formatted �les and directories.7

If the same COTS tools that generated these �les will be employed in the destination SDE,then they can be copied wholesale, but otherwise tool-speci�c conversion facilities will berequired. We do not address the construction of such facilities here.Form 2The repositories of these SDEs include form 1 above, plus a database of connective and/orstate information. This database might be manipulated by a general purpose databasemanagement system (relational databases have been employed in this fashion, e.g., DomainSoftware Engineering Environment (DSEE) [LJ84]) or might be speci�c to the SDE (NSE's\.nse data" �les [Sun88]). The database typically resides in distinguished locations in a�lesystem (e.g., a user's home directory), as determined by the SDE. The �lesystem com-ponent of the data repository can be navigated as in the previous forms, but must includea handle on all data items, aiding the extraction of their attributes and relations from thespecial database structures. So naming conventions are still important in this form to assistan immigration tool. There cannot be any data items represented solely within the databaseand not reected by the �lesystem; if not all artifacts are represented in the �lesystem, thenwe treat the SDE as form 3a rather than form 2.Form 3aThese SDEs have more sophisticated internal databases than those of form 2. The SDEinterprets the �lesystem name space, generating names that might be meaningless to users.Thus, information is more di�cult to recover in a primitive form than with repositories ofform 2. SDEs with this type of data repository often utilize \object{oriented" principles,but employ a rooted �lesystem for byte-stream data items. The byte-stream data itemsare typically those required by COTS tools, and it is not necessarily the case that all dataitems are represented in the �lesystem. Examples of form 3a include the Smile and Marvel[KBFS88] data repositories. Since the �lesystem can provide little help in determining theset of data items to be moved, or relations among these items, the SDE's user interface mustprovide an iteration or navigation facility that reaches all data items.Form 3bForm 3b is the same as form 3a, except the �lesystem is not employed at all and all dataitems are internal to the database, stored typically in some directly accessed partition ona disk. These systems tend to be \object{oriented", since the relational model does not �t8

Figure 1: Several di�erent representations of data in a data repository. Objects in circles arein special formats controlled by COTS tools. Small ovals are directories, and small squaresare �les.well with SDE requirements for retrieval of data items [Ber87]. Existing object base systemsintended as SDE platforms include Cactis, Mneme and Observer [HK88, MS88, HZ87]; someongoing SDE projects such as Arcadia plan to take advantage of such systems [TSY+88].Form 4Form 4 SDEs do not support either iteration or navigation via their user interfaces. Thusthe SDE cannot supply the set of data items that need to be immigrated, unless of coursean emigration tool is provided. We do not discuss immigration from form 4 SDEs further,although we do consider immigration into such repositories from less opaque SDEs.3.3 Immigration Between the FormsIn this section, we analyze the prospects for immigration between each of the forms above.Table 1 shows several types of immigration. In general, forms 0 through 2 increase insophistication as their numbers increase; for forms 0, 1 and 2, immigration from some formy to some other form z where y > z does not make sense in practice, and therefore is notconsidered here (although this might come up during emigration). These forms are labeledwith X in table 1. However, forms 2, 3 and 4 cannot be compared a priori with respect to9

sophistication, since they are all based on a database system of some sort, with arbitrarilypowerful functionality.Since names and relations of �les and directories are all that comprises the data reposi-tory in form 0, immigration from one form 0 database to another is simply a reorganizationof the �les and/or directories. These cases are labeled Reorg in the table. Form 1 addsthe possibility that certain �les and directories are controlled by speci�c COTS tools. Im-migration from form 0 to form 1 thus exploits the initialization commands provided by theindividual COTS tools. The automatic building of initial delta �les by RCS is a good ex-ample. Any initialization beyond what the tool provides must be manual (e.g., checking inseveral revisions into RCS when beginning to use RCS).For immigration from one form 1 SDE to another, either the identical tools must be em-ployed in both environments or there must be custom facilities for converting data items fromone COTS tool format to another (e.g., NSE supports conversion from RCS delta �les tosccs delta �les); we do not address these kinds of tools here, but are instead concerned withthe overall data repositories. Thus, all immigration from form 0 or 1 to form 1 data reposito-ries can be handled via a combination of reorganization tools and tool-speci�c initializationand conversion procedures, and is labeled Reorg+TS in table 1.For immigration of form 0 and form 1 data repositories to more sophisticated forms, theimmigration tool needs only the ability to navigate the �les, directories and relationshipsimplemented by the native �lesystem. There are no internal database structures, and thusno need to rely on special iteration or navigation facilities that might be provided by thesource SDE. We call this type of immigration the Base Case, labeled Base in table 1. Weelaborate on this case in section 4.1.The NSE bootstraputility is an example of a commercial immigration tool that navigatesa selected subhierarchy of the �lesystem to construct its internal database. We have usedbootstrap to immigrate the Marvel software system (as opposed to one of its objectbases) from its original form 1 �lesystem data repository into NSE. NSE provides little helpfor immigrating from form 2 or higher data repositories.Immigration from form 2 to form 2 and higher forms is more complex. In addition to theBase case support to navigate the �lesystem component of the data repository, additionalfacilities are required for extracting information from the auxiliary database structures. Byde�nition, it is possible to determine the full set of data items from the �lesystem, by creatingone new data item per directory and per �le, with a speci�ed relation among the data itemsset according to the directory hierarchy. There are no additional data items represented10

0a 0b 1 2 3a 3b 40a Reorg Reorg Reorg+TS Base Base Base Base0b X Reorg Reorg+TS Base Base Base Base1 X X Reorg+TS Base Base Base Base2 X X X Extract Extract Extract Extract3a X X X Navigate Navigate Navigate Navigate3b X X X Navigate Navigate Navigate NavigateTable 1: Immigration Casesentirely within the database, but instead only attributes of known data items and relationsamong known data items. The user interface of the source SDE must provide commands toextract the attributes and relations in string form, given input identifying the desired dataitem that can be obtained entirely from the �lesystem, such as its path name. We call thisthe Extraction Case, and it is labeled Extract in table 1. We introduce our design for thiscase in section 4.2. Note that the extraction case subsumes the base case.For immigration from form 3 to form 2 and higher forms, it is necessary that the sourceSDE provide its own facility of some sort for iterating over all its data items| and preferablynavigating through them to determine some basic structural relation. There is no longer anyhelp to be obtained from the native �lesystem. This facility must provide textual output,since the immigration tool can not \see" the results of a graphical browser; this is an issuegiven the trend for new SDEs to abandon command-line user interfaces for only graphicaluser interfaces, making immigration from such SDEs exceedingly di�cult. We call this theNavigation case; it subsumes the extraction and base cases. Immigration out of form 3 islabeled Navigate in the table. Our design for this case is presented in section 4.3.4 Immigration Tool DesignWe have sketched �ve immigration cases: reorganization, tool-speci�c initializa-tion/conversion, base case, extraction and navigation. Reorganization was briey discussedin section 2, and tool-speci�c procedures are entirely dependent upon the particular COTStools employed. We focus on the three remaining cases for the rest of this paper. We presentabstract descriptions rather than a formal language for specifying immigration processes inthe following cases, because we intend this to be a framework adaptable to a variety ofSDEs, with details instantiated according to a speci�c SDE's philosophies and data reposi-11

tory structures.The Base case handles immigrations where all data items are represented as �les ordirectories in the source data repository, although they can be represented in any mannerin the destination data repository. However, environments that support COTS tools arelikely to maintain similar �les and directories in the destination data repository, perhapswith opaque �lenames and extra levels of directory hierarchy.The Navigation case is concerned with the more di�cult immigrations where all dataitems are hidden inside the source data repository and must be accessed via end-user queries,or scripts of queries. Both Base and Navigation may be combined with Extraction, to querythe SDE user interface for additional attributes and relations of already identi�ed data items.Navigation and extraction operate by mimicking a human user of the source SDE, accessingall the data items through the query facilities of its user interface.4.1 Base Case: File System WalkBase case immigration handles source data repositories whose only internal database struc-tures are those manipulated by COTS tools. Our framework supports mapping of �les todata items, mapping of directories to data items, and construction of additional databasecontents from information derived solely from �lenames and hierarchical directory structures.The mappings are de�ned by two kinds of speci�cations.File Conversion (FC) Speci�cations provide information about the kinds of �les thatcan be encountered in the source data repository, and how these map to the kinds ofdata items represented in the destination data repository. We refer to the latter kinds asclasses for lack of a better term, but without any intention to imply that destinationdata items are \objects". These speci�cations specify �lename patterns, generallypre�xes or su�xes (e.g., �lename extensions) of all the di�erent source �le types thatmap to the given destination classes. Patterns may also match entire �lenames, butdo not involve the contents of �les.<d-class> <s-f-pattern-1> ... <s-f-pattern-n><d-class> refers to a class in the destination data repository, and <s-f-pattern>refers to a �lename or pattern matching �les in the source data repository.Directory Conversion (DC) Speci�cations show how directories in the source datarepository map to particular classes in the destination. It is also possible to mapsu�xes or pre�xes of directory names, as with �les.12

Figure 2: Left: Source Form 0b Data Repository. Right: Destination Form 3a Data Repos-itory. <d-class> <s-d-pattern-1> ... <s-d-pattern-n><s-d-pattern> refers to a directory name or pattern matching directories in the sourcedata repository.Base case immigration involves one or more passes through (some subset of) the sourcedata repository (necessarily a �le hierarchy), depending on how well that structure �ts thedestination data model (perhaps itself a convention for a �le hierarchy). Each source �lemight map to a single destination data item, or to a set of data items; each source directorymight map to a single destination data item, to a single data item containing one or moreother data items, or to a set of data items.Consider the simple form 0b data repository illustrated in �gure 2, with directories calledinput, output, body and do-stuff, and �les with .c, .o and a.out su�xes. To immigrateit into a form 3a data repository with PROCEDURE and PROGRAM classes (amongothers), the following FC and DC speci�cations are utilized:1. File Conversion Speci�cations:PROCEDURE .c .oPROGRAM a.out2. Directory Conversion Speci�cations:PROCEDURE input output bodyPROGRAM do_stuff 13

The results of immigration are shown on the right side of �gure 2. In the form 3a datarepository, �lenames are not especially human understandable, an extra level of hierarchyhas been added, and special database structures appear.4.2 Extraction: User Interface CommandsExtraction supports immigration from data repositories with an internal database. Extrac-tion capabilities are needed to obtain more knowledge about the data items themselves, aswell as interconnections between data items other then those provided by primary naviga-tion (�lesystem walk as in the previous section or navigators as in the next section). Weagain have several kinds of speci�cations, which determine when these extraction techniquesshould be employed. Speci�cations utilize \queries" or \tools", the former being commandsdirectly supported by the user interface of the source SDE, and the latter scripts or programsenveloping queries.Four di�erent kinds of speci�cations comprise this part of our framework, two each tohandle attributes of individual data items and relations between data items, respectively.Attribute Equivalence (AE) Speci�cations specify how attributes of source data itemsmap to attributes of destination data items. Mappings are determined by applying aquery (that must, by de�nition, return a string) to the user interface of the source SDE.The resulting string is interpreted according to the type (e.g., integer, real, string, etc.)required by the speci�ed destination attribute to obtain its value; this assumes all thesource attribute types and their string formats are known, via perusal of the sourceSDE's user manual. These speci�cations are applied to all data items in the namedclass.<d-class> <a-name> <-- <s-query><a-name> refers to a destination attribute, and <s-query> to a query to the sourceSDE. Generally, users who construct these queries must have detailed knowledge ofthe database schema as presented through the user interface; however, this does notrequire understanding of the internal data representations.Complex Attribute Conversion (CAC) Speci�cations specify how attributes ofsource data items map to attributes of destination data items, but where the map-ping is determined by applying a tool to the source SDE user interface.14

<d-class> <a-name> <-- <s-tool><s-tool> refers to tools applied to the source data repository. Tools are written bythe user of the immigration tool, based on information provided by the destinationSDE's user manual. There is nothing we can do if some source type is completelyunsupported in the destination SDE, other than ag the problems for special handlingby the user.Relation Equivalence (RE) Speci�cations specify how binary relations between sourcedata items map to binary relations between destination data items. Mappings workthe same way as with attribute equivalence speci�cations. A particular relation canapply to all the data items in some class in the destination data repository, or to oneunique item.<d-class> [d-item] <relation> <-- <s-query>[d-item] is a unique data item in the destination SDE that has a <relation> speci�edby <s-query>. It is optional, and would only be speci�ed if there is a particular querythat is not applicable to all the destination data items of the <d-class> in question.This facility also allows immigration of data items in the source SDE that might notbe members of some particular class, but can be accessed via a query.Complex Relation Conversion (CRC) Speci�cations specify how N-ary relations be-tween source data items map to N-ary relations between destination data items, oralternatively, how multi-valued binary relations are mapped. As with complex at-tribute conversion speci�cations, a tool is applied to the source SDE user interface.Again, there can either be one unique data item in the destination data repositoryhaving the speci�ed relation, or the relation can apply to each data item in the speci-�ed destination class.<d-class> [d-item] <relation> <-- <s-tool><s-tool> is a tool used to derive the speci�ed relation.Consider the form 3a data repository in the left part of �gure 3. The source datarepository has special database structures to maintain timestamps and change logs, andhypertext-like links between code �les and documentation for that code. The destina-tion data repository has attributes calledPROCEDURE.ts, PROCEDURE.change and15

Figure 3: Left: Source Form 3a Data Repository. Right: Destination Form 3a Data Reposi-tory.PROCEDURE.doclink (where doclink is a special type of attribute that provides a link,or bidirectional binary relation between two data items). To complete the immigration, weadd the following AE and RE speci�cations to those of the example in section 4.1:for destination data item input:PROCEDURE ts `get timestamp from input'PROCEDURE change `get changelog from input'PROCEDURE doclink `find doc for input'for destination data item output:PROCEDURE ts `get timestamp from output'...for destination data item body:...It is assumed here that the source SDE supports queries of the forms \get <value> from<data-item>" and \�nd <data-item> for <data-item>". Also, this example maps sourcedata item names to identical destination data item names for clarity, this need not be thecase, as some destination SDE might get value in changing names.4.3 Navigation Case: Data Repository NavigationNavigation is a fundamental necessity to provide comprehensive immigration capabilities forform 3 data repositories. There are three aspects of our framework to support navigation: oneor more navigators provided by the source SDE, one-to-one mappings between equivalent16

kinds of data items stored by the source and destination SDEs, and complex conversionqueries or tools for more complicated mappings.Navigators are queries or tools that return the hierarchical breakdown of data items in thesource data repository. The construction of the navigator depends on the native itera-tion and/or navigation facilities of the source SDE's user interface. This information isused as the basis for creating data items in the destination data repository accordingto the class equivalence and complex class conversion speci�cations described below.Afterwards, the extraction speci�cations described above are utilized to acquire theremaining parts of the data items. If the source SDE supports only iteration, then the\navigator" is a degenerate case, and makes every data item a child of the root of thedestination data repository.Class Equivalence (CE) Speci�cations provide information about data items in thesource data repository, and how these map to data items in the destination data repos-itory. These appear as follows, mapping source classes into destination classes. Whilethe source data repository might not have classes, per se, it must have groupings ofsome sort that can be mapped to classes | the degenerate case is every data item isin a singleton grouping.<d-class> <s-class-1> ... <s-class-n><d-class> refers to a class in the destination data repository, and <s-class> refersto a grouping (class) of data items in the source data repository.Complex Class Conversion (CCC) Speci�cations provide information in cases wheresource data items do not map well to destination data items. When the mappingbetween source and destination items is many-to-one, one-to-many or many-to-many,an appropriate query must already exist in the source SDE's user interface or anauxiliary tool must be created by the user.<d-class> <s-class> <s-query> or<d-class> <s-class> <s-tool>This concludes our framework for immigration between SDEs. Given the lack of a uni-versal data model for SDE data repositories, we cannot evaluate the \completeness" of thisframework. However, due to the arbitrary power of \tools" in combining user interface prim-itives, it is clear that all the immigrations we have described are possible if the user interface17

supports the necessary access. The more important question is whether this framework willminimize the use of such tools as opposed to relatively simple single-command queries. Basedon our initial experience this seems to be the case, but more empirical study is needed. In thenext section, we demonstrate the practicality of our immigration framework by describingan implementation of it called Marvelizer, a tool for immigrating software artifacts intoMarvel. We then summarize our experience using Marvelizer.5 Marvelizer | Implementation and ExperienceWe briey describe the relevant aspects of Marvel in section 5.1, and then present Mar-velizer in detail. Section 5.2 presents the base case capabilities, and discusses our experi-ence using the base case alone. Section 5.3 presents the extraction and navigation facilities,and describes our experience using this more complex version ofMarvelizer. Marvelizeris implemented as two separate utilities, because the base case Marvelizer was imple-mented (and in use) �rst, and later we implemented what we call Complex Marvelizerto do extraction and navigation. The two utilities are currently invoked via two separatecommands from the Marvel user interface.5.1 MarvelMarvel is a software development environment kernel that models software processes asexpert system-style rules and \enacts" these processes by forward and backward chainingamong the rules. The administrator of a particular Marvel environment de�nes the rule-based process model and the object-oriented data model in a notation called the MarvelStrategy Language (MSL). These process and data models are then instantiated in theMarvel kernel to form a Marvel Environment. An administrator is contrasted to a user,who uses a Marvel environment as if all process and data models were built in.The rules determine the behavior of the environment by specifying the software develop-ment process in terms of activities and the interactions among activities. Each rule consistsof a name that corresponds to an end-user command, a set of parameters indicating theexpected types of argument objects, a condition that must be satis�ed in order to initiatethe activity, an activity represented by a tool envelope (a Unix Shell script), and one ormore e�ects indicating the possible results of completing the activity. Which e�ect is actu-ally asserted on the object base is determined by the status code returned by the envelope.Rules are thus a declarative speci�cation of the requirements imposed by the overall software18

process on individual steps of the process represented by software development activities.The software process is automated by forward and backward chaining on the rules asfollows. When the user requests a command, Marvel uses polymorphism and inheritanceto select the closest matching rule that implements the command, and checks whether itscondition is satis�ed. If not, it applies backward chaining in an attempt to satisfy it. Back-ward chaining is more complicated than in most expert systems because of the multiplee�ects of rules, since it is not possible to determine a priori which of the e�ects will beasserted before carrying out the activity. It may not be possible to satisfy the condition, inwhich case another rule may be tried from the inheritance precedence ordering, but if nonewill work, the user is informed of the problem. If the condition is satis�ed, the envelope isexecuted outside of Marvel, and then the object base is updated to reect the e�ect of theenvelope. This may satisfy the conditions of other rules, so forward chaining is applied toensure consistency in the object base by following through with all the implications of theactivity in terms of the process as a whole. Forward chaining also allows a user to be \ledby the hand", to go on to the next phases of the process.The data model given by the administrator de�nes the structure of a Marvel objectbase, an instance of a form 3a data repository, with classes de�ning the structure of objectsvia multiply inherited attributes. Attributes may be simple entities such as integers, stringsor enumerated values, text (ascii) or binary �les, sets (to implement composite objects, i.e.,containment relations), or links (to implement arbitrary binary relations, including one-to-many) to other objects. Objects are persistent instantiations of classes.Marvelmaintains an in-memory object base, which contains hooks to a \hidden" �lesys-tem. The name space for this �lesystem is de�ned by Marvel, with the intent of storingsoftware artifacts in a fashion that the relevant COTS tools understand. The hidden �lesys-tem is not intended for user perusal. We clarify this structure with an example when wediscuss our base case immigration experience in the next section.Figures 4 and 5 show the complete data model for the C/Marvel environment, which isused as the destination data repository when we describe our experience using Marvelizerin the following sections. In these �gures, keywords are shown in bold, built-in objecttypes in italics, and lines beginning with \#" are comments. Classes may have one ormore superclasses and any number of named attributes. ENTITY is the root of the classhierarchy. Each attribute is an instance of a built-in object type or an enumerated set, orindicates a containment or other relation to one or more other objects. A set of attributeindicates containment by one object of an aggregate of any number of other objects, while19

Figure 4: C/Marvel's data model.20

Figure 5: C/Marvel's data model, continued.21

Figure 6: A representation of C/Marvel's hidden �lesystem. Large circles are directoriesrepresenting instantiated classes, small circles are directories representing set attributes, andsmall labels are these set attributes names, (also used as intermediate directory names).Squares map to text and binary �les. 22

link indicates a relation between objects and/or attributes. binary and text attributesrepresent �les in the \hidden" �lesystem.The format of the corresponding hidden �lesystem maintained by C/Marvel is shown in�gure 6. The C/Marvel environment consists of nineteen rules, not shown (see [CSB90]),that integrate conventional Unix programming tools for C.Several successive versions of Marvel have been implemented. The current version,Marvel 2.6, consists of about 45,000 lines of C code, provides both a command-line userinterface and an X11 graphical user interface, and runs on SunOS 4.0.3, Ultrix 3.1 and AIX2.2.1. Further details of Marvel, and our experience using it, are described in previouspapers [KF87a, BK88, KFP88, KBFS88, KB88, Sok89, KBS90]. This paper is concernedonly with Marvel's data model and object base as it relates to the implementation of ourtwo immigration tools.5.2 Marvelizer: Base Case ImmigrationMarvelizer is an implementation of the base case of extraction. It is implemented bythe marvelize command in Marvel. The base case implementation consists of approxi-mately 1200 lines of C. We highlight the practical steps a user would take to prepare to useMarvelizer, and then describe the process itself.Preparation Steps1. Prior to Marvelizing (immigrating), theMarvel administrator must create aMarveldata model to de�ne the structure of the destination object base. The data modelcould be de�ned with either of two goals in mind. The Marvel class lattice couldbe de�ned to mimic all or most of the structure of the source SDE; this of coursemakes Marvelization relatively easy, but would be done only when a new Marvelenvironment was being developed speci�cally to take over the role of the source SDE.The alternative is for a Marvel administrator to develop a data model suitable forthe purposes of the new Marvel environment, independent of whether or not theenvironment is planned to encompass existing data items from some other SDE thatwill later be Marvelized. In all our examples, here and in following sections, the datamodel was developed prior to the Marvelizer tool, and thus was conceived entirelyindependently of the formats of any potential source SDEs.2. Write File Conversion (FC) speci�cations for all the �les in the original system.23

3. Write Directory Conversion (DC) speci�cations for all directories that might be au-tomatically converted. In verbose mode, the user will be queried for any unspeci�eddirectories. All these speci�cations are just as described in Section 4.1. These speci�-cations are consulted before the immigration of each data item.4. Choose either verbose or automatic modes to proceed, in general, automatic mode isused if the user doing the Marvelization does not want to monitor the process.Marvelizer algorithmBase case immigration is accomplished via two simultaneous preorder traversals, one over thesource data repository's �lesystem directory structure, and the other over theMarvel objectbase, starting at the destination object speci�ed by the user. In the following description,there are notions of \current" object and class. The current object is the one being examinedat some particular instant in the traversal of the destinationMarvel object base; the currentclass is that object's class.When a �le in the source data repository traversal is encountered, Marvelizer checkswhether the �le's su�x matches a speci�cation in the table, and if that speci�cation's classmatches either the current class (the class of the current object in the Marvel objectbase), or a set attribute of the current class. In the �rst case the �le is simply copied intothe appropriate place in Marvel's hidden �lesystem space, as determined by the currentobject. In the second case, which gets priority in case both cases are true, a child object ishierarchically added to the current object; then the (source) �le is copied to a place in thehidden �lesystem determined by the new child object. Files not speci�ed by a speci�cationare skipped. Marvelizer generates messages specifying those �les that were skipped, withthe explanatory content of these messages depending upon the verbosity mode chosen.When a directory in the source data repository is encountered, Marvelizer �rst looksto see if there is a matching speci�cation. If so, and if the speci�cation's class is the currentclass of the destination object base traversal, then a corresponding new object is added tothe destination object base, as described above. Otherwise, Marvelizer determines theset of possible classes this directory could be an instantiation of, based on the attributesof the current object in the (destination) object base traversal. If there is more than onematching attribute type or class, the user is queried (possibly skipping the directory is anoption). This is the only direct interaction with the user once the process has started, andcan be turned o�, to only generate messages for the user to look at later.This process continues recursively, until the traversal of one or the other data repository24

is complete. If the Marvel objectbase traversal completes �rst, those remaining portionsof the �lesystem traversal must not match Marvel's current data model, and must beseparately marvelized. If Marvel's graphics interface is being employed, the visual displayof its object base is updated after Marvelization. At this point, any software artifacts thatwere not successfully immigrated (i.e., were skipped) can be reMarvelized individually, byrunning Marvelizer again using a di�erent user-designated object as the starting pointand a subset of the source SDE's �lesystem as the source root. Such failures happen whenMarvelizer cannot recognize the structure of an existing source directory hierarchy, forexample, when insu�cient speci�cations were provided.Base Case ExperienceWe have applied Marvelizer using two data models, C/Marvel described above, andDocPrep for formatting documents with the text processor Scribe.Using C/Marvel, we immigrated Marvel itself with the base case Marvelizer. Theimmigration process was straightforward, as we have been doing development work onMar-vel directly on top of the Unix �lesystem, using a variety of COTS and custom tools, ratherthan using a particular SDE. Hence, the Marvel code was in a form 1 data repository. Allthe tools we have been using were easily integrated, as a primary motivation for the cre-ation of C/Marvel was to enable us to use a Marvel environment to continue our owndevelopment of Marvel.The initial dialog with Marvelizer for the above Marvelization is shown in �gure 7;user responses are in italics. The user �rst speci�es the location of the original SDE and theobject in a C/Marvel object base to start the algorithm. Marvelizer then requests all FCand DC speci�cations. Figure 8 shows the �nal results of Marvelizing the Marvel system.The code forMarvel was divided into a shared library and two programs. The programs didnot quite �t the data model for C/Marvel, so they had to be Marvelized separately from theshared library. All together, the entire process took about 20 minutes (elapsed time) on a Sun3/60 (3 Mips) workstation that had to copy all the code over a busy Ethernet. Derived �les(.o, .a and executables) were not Marvelized, so recompilation was then necessary. We couldhave immigrated the derived �les also, but did not do so since recompilation withinMarvelautomatically initializes all its status information; otherwise, this would have had to havebeen hand-generated, since whether or not any given �le had been compiled successfully wasnot explicitly available in the source data repository (although we could have written a toolto have guessed this information from �le update timestamps and so forth).25

Enter the filesystem root to be Marvelized: /example/marvelEnter destination class for /example/marvel: PROJECT(v)erbose, (q)uiet or (s)ilent mode? (any other key to exit): vNow enter all file suffixes for each class.Format is:CLASS_NAME <suffix-1> <suffix-2> ... <suffix-n>Enter a q when finished, or an e to exit.Enter string: FILE .c .o Make�leEnter string: VERSION ,vEnter string: qNow enter specific directories and the classes to immigrate them to.Format is:CLASS_NAME <directory-1> <directory-3> ... <directory-n>Enter a q when finished, or an e to exit.Enter string: PROGRAM marvel loaderEnter string: qReady to Marvelize /example/marvel. Are you sure [y/n]: yFigure 7: A dialog with Marvelizer.

Figure 8: The results of Marvelizing Marvel.26

Using the DocPrep data model, not shown, we immigrated the Marvel User's Manualand a 200-page PhD thesis. Both test cases were form 0 data repositories, and both immi-grations went smoothly. The most interesting thing about DocPrep is that it was developedby two students as a one semester class project.2 These students had no knowledge of eitherthe then in-progress Marvelizer work or the format of the PhD thesis we later immigratedsuccessfully using their data model; the PhD thesis was written in 1985, certainly withoutlater Marvelization in mind.5.3 Complex Marvelizer: Extraction and NavigationComplexMarvelizer is an implementation of the extraction and navigation components ofimmigration. It is implemented by the c mrvlze and cm commands in Marvel. c mrvlzeis invoked to enter all speci�cations and the navigator, to create appropriate database struc-tures for storage of this information, and to generate a script of Marvel commands toperform the immigration. (Marvel has a general facility for executing batch commandscripts.) cm is an internal Marvel command intended for use in batch execution in thesegenerated scripts only. It is a dispatcher that either creates a new object in Marvel or exe-cutes a tool or query on the source SDE's user interface. ComplexMarvelizer is comprisedof approximately 1500 lines of C.ComplexMarvelizer supports run-time variables to specify the source data item beingMarvelized at the current time, the corresponding Marvel object, and that object's pathin the Marvel object base. Similar variables are supported for ancestors of these sourcedata items and Marvel objects. A variable that stores the name of the source SDE andany initial calling arguments is also supported. These variables are available to the user inthe speci�cation part of c mrvlze.The algorithms closely match the abstract discussion of sections 4.2 and 4.3. We nowhighlight the practical steps a user would take to prepare to use ComplexMarvelizer, andthen describe the process itself.Preparation Steps1. Implement one or more navigators. These will generally be tools that envelope thequery facilities supplied by the source SDE user interface.2Laura Johnson and Victor Kan in E6123y Programming Environments and Software Tools, Spring 1989.27

2. Write Class Equivalence (CE) and Complex Class Conversion (CCC) speci�cations(section 4.3) for all classes of data items in the source data repository.3. Write Attribute Equivalence (AE) and Complex Attribute Conversion (CAC) speci�-cations (section 4.2) for all attributes of data items in the source data repository wherea non-default value is desired.4. Write Relation Equivalence (RE) and Complex Relation Conversion (CRC) speci�ca-tions (section 4.2) for all relations of data items in the source data repository wherenon-default relations (if any) are desired. These will map to link attributes in theMarvel object base.Complex Marvelizer algorithm1. Choose the c mrvlze command in Marvel. The next several steps outline the use ofthis command.2. Input the path to invoke the source SDE, and any arguments need to execute it on thesource data repository. Then input the navigator and any calling arguments. For eachclass in Marvel's data model, input corresponding classes (if any) in the source datarepository, and any CE and CCC speci�cations. Then for each chosen class, input allAE, CAC, RE and CRC speci�cations. c mrvlze does immediate variable substitutionof any Marvelizer speci�c variables at this point.3. The immigration is completed as follows. c and o represent classes and individual dataitems in the source data repository, respectively; C and O represent classes and newlycreated objects in the destination Marvel object base, respectively.4. Apply the navigator to create a preorder listing of the data items in the source datarepository. The output of the navigator is a list in the format required as input forthe next step. Each entry in the list speci�es a source class, a Marvel class, a dataitem name and a depth number for determining hierarchy. The depth number and theMarvel class are used as a guide to determine how to build the resultant Marvelobjectbase.5. Read this list, and create a Marvel script that does the following:for all classes c do 28

�nd C, using CE or CCC speci�cationsfor all objects o in c docreate a new object O in C by dispatching the cmcommandapply AE, CAC, RE and CRC speci�cations, by dis-patching one cm command for each speci�cation,from o to Oat this point, other objects related to O are createdby cm, facilitating immigrations that are not 1{1mappings between source data items and destina-tion Marvel objectsdonedoneExtraction and Navigation ExperienceWe have used our Complex Marvelizer on the Smile (version 6.0) system, a C programdevelopment environment developed at Carnegie Mellon University [HN86]. Smile is a goodtest case for Complex Marvelizer, because it has a hidden �lesystem with a non-obviousinternal structure, and a special purpose database that stores much additional informationabout the program, such as import and export lists for modules. Smile has module, pro-cedure, object and datatype data items (among others). Modules are basic organizationalblocks including imports and exports of items; procedures are stylized C code, where proce-dure parameters are speci�ed in a Pascal-like style (called GC, the purpose is to facilitateinter-module type checking); objects are global variables; and datatypes are type and prepro-cessor de�nitions. For compiling, Smile combines all procedures, objects and datatypes (andexterns based upon imports and exports) together into one large �le per module, internallyconverts GC to C, and uses a normal C compiler for compilation.We considered two distinct approaches to Marvelizing Smile data repositories: One withall the separate procedures, objects and datatypes represented as separate destination dataitems, shown completely Marvelized in �gure 12, and one with each module combined into alarge C �le, shown completely Marvelized in �gure 13. The particular Smile data repositoryshown contains Smile's own code, roughly 25,000 lines. The motivation to use the samesource SDE for two di�erent immigrations is to demonstrate Marvelizer's capability tomake multiple distinct transformations from the same source data model into the same29

destination data model, depending upon the navigator and mapping speci�cations provided.Additionally, the immigration could have taken on a completely di�erent nature if someother data model had been used.For the two approaches, we have written two navigators, one a proper subset of the other.There is one CAC speci�cation for the �rst case, and a CAC and a CCC speci�cation for thesecond. The navigators are simple C programs (230 lines and 180 lines, including comments)respectively, and the other speci�cations are simple Unix shell scripts (36, 21 and 18 lines,respectively), shown in �gures 9, 10 and 11. The dialog with Marvelizer for the �rstcase is shown in �gure 14, and for the second in �gure 15. The �rst Marvelization tookapproximately 2 hours, the second 15 minutes, both on a Sun 3/60. The ine�ciency of the�rst case is due to the overhead of starting Smile up once for each data item; this wouldbe greatly reduced by employing tools that call Smile with requests for more then one dataitem at a time. In both cases, telling the system the initial speci�cations took a few minutes.The two cm scripts generated by c mrvlze for the two di�erent approaches are 3587 and 119lines long, respectively. The �rst part of the longer one of these scripts is shown in �gure 16.Note that we were careful to avoid considering the internal storage format of Smile'ssource data repository, in terms of hidden directories and special database structures, eventhough we had its source code available. In our attempt at a \blind" experiment, the secondauthor, who is familiar with this aspect of Smile, did not assist the �rst author, who is not,in the Marvelization. Nothing in Marvelizer \understands" Smile in any way.6 ConclusionThe primary research contribution of this paper is our framework for immigration of soft-ware artifacts among software development environments. The framework applies to mostpractical classes of SDEs. The base case, extraction case and navigation case appear to coverall instances of immigration from one SDE to another where there is no knowledge of theinternal representation of the source data repository and the source SDE has not anticipatedthe need for an emigration tool, but does provide a facility for iterating or navigating overthe full set of data items maintained in its data repository.Construction of auxiliary tools to aid in extraction and navigation depends on the ca-pabilities of the source SDE's user interface and the degree of similarity between the sourceand destination data models; in any case, custom utilities will be required for convertingthe individual data formats required by one COTS tool to those required by another. We30

get_file: get a source SDE file.# This script is a simple example of a tool that really just provides# the querying facility to an SDE that does not quite have enough user# interface power to do it itself.#usage="$0 <s-mod> <s-class> <s-object> <where-to-put> <s-sde w args>"if [$# -lt 5]thenecho $usageexit 1fitmpfile=/tmp/getfile.temptmpsmilefile=smile.out# run the smile commands into a fileecho "module $1" > $tmpfileecho "print source declaration $2 $3 $tmpsmilefile" >> $tmpfileecho "quit" >> $tmpfiledestfile=$4shift; shift; shift; shift;# copy that file to the correct place.prog=$1; shift;args=$*$prog $args < $tmpfilemv $tmpsmilefile $destfile # should be the same filesystem.rm $tmpfileexit 0 Figure 9: A CAC speci�cation for approach 131

get_big_cfile: get a Smile big C file.## assumption is that an earlier script made all the big C files.# this is done with a Smile command which could be called to be sure# but this adds inefficiency.usage="$0 <s-db> <s-program> <s-module> <path>"if [$# -lt 4]thenecho $usageexit 1ficp $1/$2/$3/C_$3.c $4 # do the copying.Figure 10: A CAC speci�cation for approach 2assume in this paper that the implementor of an immigration tool is highly knowledgableregarding the implementation details of the destination data repository, but relaxation ofthis requirement seems an interesting area for future work. Our successful experience imple-menting and using Marvelizer demonstrates that our results represent a promising stepin this �eld.AcknowledgmentsThe development of Marvel thus far has been a long, cooperative e�ort involving toomany people to list individually. We would like to single out Naser Barghouti, who hasbeen the driving force behind much of the pragmatic design and implementation; PeterFeiler collaborated with the second author on the initial conception of Marvel. We wouldalso like to thank Dan Duchamp and Susan Blockstein for reviewing drafts of this paper.Marvel 2.6, which includes all of Marvel (and Marvelizer) as described in this paper,is fully documented (over 350 pages) and available for licensing to educational institutionsand industrial sponsors.A condensed version of this paper has been submitted to the conference ACM SIGSOFT'90: Fourth Symposium on Software Development Environments, under the title Immigrationinto Software Development Environments. 32

mod_to_cfile a shell script that changes the name of a module in# the source SDE to module.c for the target SDE.OBJECT_MOD_FILE=/tmp/obj_mod.tmp # must be so, for marvelizer# currently hard coded, but could# be changed. This has nothing to# do with Smile.usage="$0 <s-class> <m-class> <s-obj> <hier>"if [$# -lt 4]thenecho $usageexit 1fiecho "$1 $2 $3 $3.c $4" > $OBJECT_MOD_FILE# here is where we would put other arbitrary marvel commandsexit 0 Figure 11: A CCC speci�cation for approach 2
33

Figure 12: Smile in Marvel : approach 1

Figure 13: Smile in Marvel : approach 234

Source SDE with arguments: smile /u/douglass/sokolsky/SMILENavigation function: navigator $SPEnter <o_class> for GROUP:Enter <o_class> for PROJECT:Enter <o_class> for PROGRAM: projectEnter 1 for query, 2 for tool, <cr> for equiv (class CFILE): crEnter <o_class> for PROGRAM:Enter <o_class> for LIB:Enter <o_class> for MODULE: moduleEnter 1 for query, 2 for tool, <cr> for equiv (class CFILE): crEnter <o_class> for MODULE:Enter <o_class> for FILE:Enter <o_class> for CFILE: procedureEnter 1 for query, 2 for tool, <cr> for equiv (class CFILE): crEnter <o_class> for CFILE: objectEnter 1 for query, 2 for tool, <cr> for equiv (class CFILE): crEnter <o_class> for CFILE:Enter <o_class> for HFILE: datatypeEnter 1 for query, 2 for tool, <cr> for equiv (class CFILE): cr...Getting Attribute methods for source project, dest PROGRAM...Getting Attribute methods for source procedure, dest CFILEEnter 1 for query, 2 for tool, <cr> for default (attribute name):Enter 1 for query, 2 for tool, <cr> for default (attribute owner):Enter 1 for query, 2 for tool, <cr> for default (attribute timestamp):Enter 1 for query, 2 for tool, <cr> for default (attribute reservation_status):Enter 1 for query, 2 for tool, <cr> for default (attribute version):Enter 1 for query, 2 for tool, <cr> for default (attribute contents): 2Enter <tool> for contents: get_�le $SP $OBJ0 $OBJ1 $PATH...Getting Attribute methods for source object, dest CFILE...edit the command script? [y/n] nExecuting queries ...Figure 14: A dialog with complex Marvelizer: approach 135

Source SDE with arguments: smile /u/douglass/sokolsky/SMILENavigation function: simple_navig $SPEnter <o_class> for GROUP:Enter <o_class> for PROJECT:Enter <o_class> for PROGRAM: projectEnter 1 for query, 2 for tool, <cr> for equiv (class CFILE): crEnter <o_class> for PROGRAM:...Enter <o_class> for FILE:Enter <o_class> for CFILE: moduleEnter 1 for query, 2 for tool, <cr> for equiv (class CFILE): 2Enter <tool> for CFILE: mod_to_c�leEnter <o_class> for CFILE:Enter <o_class> for HFILE:Enter <o_class> for DOCFILE:...Getting Attribute methods for source project, dest PROGRAM...Getting Attribute methods for source module, dest CFILEEnter 1 for query, 2 for tool, <cr> for default (attribute name):Enter 1 for query, 2 for tool, <cr> for default (attribute owner):Enter 1 for query, 2 for tool, <cr> for default (attribute timestamp):Enter 1 for query, 2 for tool, <cr> for default (attribute reservation_status):Enter 1 for query, 2 for tool, <cr> for default (attribute version):Enter 1 for query, 2 for tool, <cr> for default (attribute contents): 2Enter <tool> for contents: get_big_c�leEnter 1 for query, 2 for tool, <cr> for default (attribute compile_status):Enter 1 for query, 2 for tool, <cr> for default (attribute analyze_status):Enter 1 for query, 2 for tool, <cr> for default (attribute documentation):edit the command script? [y/n] nExecuting queries ...Figure 15: A dialog with complex Marvelizer: approach 236

#!marvel script# class PROGRAM, original object smilecm project PROGRAM smile 0# class MODULE, original object CMDDATAcm module MODULE CMDDATA 1# class HFILE, original object SRC_AVAILcm datatype HFILE SRC_AVAIL 2cm __SETATT__ contents __TOOL__ get_file $SP $OBJ0 $OBJ1 $PATH# class HFILE, original object SRC_BUSYcm datatype HFILE SRC_BUSY 2cm __SETATT__ contents __TOOL__ get_file $SP $OBJ0 $OBJ1 $PATH# class HFILE, original object SRC_DEPcm datatype HFILE SRC_DEP 2cm __SETATT__ contents __TOOL__ get_file $SP $OBJ0 $OBJ1 $PATH# class CFILE, original object CIlistcm object CFILE CIlist 2cm __SETATT__ contents __TOOL__ get_file $SP $OBJ0 $OBJ1 $PATH# class CFILE, original object PROMPTcm object CFILE PROMPT 2cm __SETATT__ contents __TOOL__ get_file $SP $OBJ0 $OBJ1 $PATH# class CFILE, original object crosslistcm object CFILE crosslist 2cm __SETATT__ contents __TOOL__ get_file $SP $OBJ0 $OBJ1 $PATH... Figure 16: The begining of a script generated by c mrvlze37

Sokolsky is supported in part by the Center for Advanced Technology. Kaiser is sup-ported by National Science Foundation grants CCR-8858029 and CCR-8802741, by grantsfrom AT&T, Citicorp, DEC, IBM, Siemens, Sun and Xerox, by the Center for AdvancedTechnology and by the Center for Telecommunications Research.References[AHM89] Evan W. Adams, Masahiro Honda, and Terrence C. Miller. Object Management ina CASE Environment. In 11th International Conference on Software Engineering,pages 154{163, Pittsburgh PA, May 1989.[Ban88] Francois Bancilhon. Object-Oriented Database Systems. In 7th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Austin TX,March 1988. ACM Press.[Ber87] Philip A. Bernstein. Database System Support for Software Engineering. In 9thInternational Conference on Software Engineering, pages 166{178, Monterey, CA,March 1987.[BK87] Jay Banerjee and Won Kim. Semantics and Implementation of Schema Evolutionin Object-Oriented Databases. In ACM SIGMOD 1987 Annual Conference, pages311{322. ACM Press, May 1987.[BK88] Naser S. Barghouti and Gail E. Kaiser. Implementation of a Knowledge-BasedProgramming Environment. In 21st Annual Hawaii International Conference onSystem Sciences, volume II, pages 54{63, Kona HI, January 1988. IEEE ComputerSociety.[BLN86] C. Batini, M. Lenzerini, and S. B. Navathe. A Comparative Analysis of Method-ologies for Database Schema Integration. ACM Computing Surveys, 18(4):323{364, December 1986.[Com85] EDIF Steering Committee. EDIF Speci�cation Version 1.1.0. Electronic DesignInterchange Format Steering Committee, 1985.[CSB90] Mara W. Cohen, Michael H. Sokolsky, and Naser S. Barghouti. Marvel 2.5 UserManual. Technical Report CUCS-498-89, Columbia University Department ofComputer Science, May 1990. 38

[Dow87] Mark Dowson. Integrated Project Support with IStar. IEEE Software, 4(6):6{15,November 1987.[GKS86] David Garlan, Charles W. Krueger, and Barbara J. Staudt. A Structural Ap-proach to the Maintenance of Structure-Oriented Environments. In ACM SIG-SOFT/SIGPLAN Software Engineering Symposium on Practical Software Devel-opment Environments, pages 160{170, Palo Alto CA, January 1986. SIGPLANNotices, 22(1), January 1987.[GMT86] F. Gallo, R. Minot, and M. I. Thomas. The Object Management System ofPCTE as a Software Engineering Database Management System. In ACM SIG-SOFT/SIGPLAN Software Engineering Symposium on Practical Software Devel-opment Environments, pages 12{15, Palo Alto CA, January 1986. SIGPLANNotices, 22(1), January 1987.[Gol84] Adele Goldberg. Smalltalk-80: The Interactive Programming Environment.Addison-Wesley, Reading MA, 1984.[GWJr83] G. Goos, W. A. Wulf, A. Evans Jr., and K. J. Butle r. DIANA { An IntermediateLanguage for Ada, volume 161 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1983.[HK88] Scott E. Hudson and Roger King. The Cactis Project: Database Support forSoftware Environments. IEEE Transactions on Software Engineering, 14(6):709{719, June 1988.[HN86] A.N. Habermann and D. Notkin. Gandalf: Software Development Environments.IEEE Transactions on Software Engineering, SE-12(12):1117{1127, December1986.[HZ87] Mark F. Hornick and Stanley B. Zdonik. A Shared, SegmentedMemory System foran Object-Oriented Database. ACM Transactions on O�ce Automation Systems,5(1):70{95, January 1987.[KB88] Gail E. Kaiser and Naser S. Barghouti. An Expert System for Software Designand Development. In Joint Statistical Meetings, pages 10{19, New Orleans LA,August 1988. Invited paper. 39

[KBFS88] Gail E. Kaiser, Naser S. Barghouti, Peter H. Feiler, and Robert W. Schwanke.Database Support for Knowledge-Based Engineering environments. IEEE Expert,3(2):18{32, Summer 1988.[KBS90] Gail E. Kaiser, Naser S. Barghouti, and Michael H. Sokolsky. Preliminary Expe-rience with Process Modeling in the Marvel Software Development EnvironmentKernel. In Bruce D. Shriver, editor, 23rd Annual Hawaii International Conferenceon System Sciences, volume II, pages 131{140, Kona HI, January 1990.[KF87a] Gail E. Kaiser and Peter H. Feiler. An Architecture for Intelligent Assistance inSoftware Development. In 9th International Conference on Software Engineering,pages 180{188, Monterey CA, March 1987. IEEE Computer Society.[KF87b] Gail E. Kaiser and Peter H. Feiler. Intelligent Assistance Without Arti�cial Intelli-gence. In 32nd IEEE Computer Society International Conference, pages 236{241,San Francisco CA, February 1987. IEEE Computer Society.[KFP88] Gail E. Kaiser, Peter H. Feiler, and Steven S. Popovich. Intelligent Assistance forSoftware Development and Maintenance. IEEE Software, 5(3):40{49, May 1988.[KKM87] Gail E. Kaiser, Simon M. Kaplan, and Josephine Micallef. Multiuser, DistributedLanguage-Based Environments. IEEE Software, 4(6):58{67, November 1987.[Lam87] David Alex Lamb. IDL: Sharing Intermediate Representations. ACM Transac-tions on Programming Languages and Systems, 9(3):297{318, July 1987.[LJ84] David B. Leblang and Robert P. Chase Jr. Computer-aided Software Engineeringin a Distributed Workstation Environment. In ACM SIGSOFT/SIGPLAN Soft-ware Engineering Symposium on Practical Software Development Environments,pages 104{112, Pittsburgh PA, April 1984. SIGPLAN Notices, 19(5), May, 1985.[MS88] J. Eliot B. Moss and Steven Sinofsky. Managing Persistent Data with Mneme:Designing a Reliable, Shared Object Interface. In Advances in Object-OrientedDatabase Systems, volume 334 of Lecture Notes in Computer Science, pages 298{316. Springer-Verlag, September 1988.[Ne89] Erich Neuhold and Michael Stonebraker (editors). Future Directions in DBMSResearch. SIGMOD Record, 18(1), March 1989.40

[RT89] Thomas W. Reps and Tim Teitelbaum. The Synthesizer Generator A System forConstructing Language-Based Editors. Springer-Verlag, New York, 1989.[RW89] Lawrence A. Rowe and Sharon Wensel, editors. 1989 ACM SIGMOD Workshopon Software CAD Databases, Napa CA, February 1989.[Sok89] Michael H. Sokolsky. Data Migration in an Object-Oriented Software Develop-ment Environment. Master's thesis, Columbia University Department of Com-puter Science, April 1989, Technical Report CUCS-424-89.[Sun88] Sun Microsystems, Inc., Mountain View CA. Introduction to the NSE, March1988.[SZ86] Andrea H. Skarra and Stanley B. Zdonik. The management of changing typesin an object-oriented database. In OOPSLA '86, pages 483{494. ACM Press,October 1986. SIGPLAN Notices, 21(11), November 1986.[Tic85] Walter F. Tichy. RCS { A System for Version Control. Software { Practice andExperience, 15(7):637{654, July 1985.[TSY+88] Richard N. Taylor, Richard W. Selby, Michael Young, Frank C. Belz, Lori A.Clarke, Jack C. Wileden, Leon Osterweil, and Alex L. Wolf. Foundations forthe Arcadia Environment Architecture. In ACM SIGSOFT/SIGPLAN SoftwareEngineering Symposium on Practical Software Development Environments, pages1{13, Boston MA, November 1988. SIGPLAN Notices, 24(2), Februrary 1989.[Tul88] Colin Tully, editor. 4th International Software Process Workshop: Representingand Enacting the Software Process, Moretonhampstead Devon, UK, May 1988.ACM Press. Special issue of Software Engineering Notes, 14(4), June 1989.
41

