

Proportional Replication in Peer-to-Peer Networks

Saurabh Tewari, Leonard Kleinrock
Computer Science Department

University of California at Los Angeles

Los Angeles, CA 90095, U.S.A.

{stewari, lk}@cs.ucla.edu

Abstract—We recently showed for peer-to-peer networks, that

having the number of replicas of each object proportional to the

request rate for these objects has many per-node advantages. In

this paper we complement those results to show that this

distribution has network-wide advantages as well. Given these

benefits of proportional replication, the next issue is achieving

proportional replication in a decentralized manner. We show that

local storage management algorithms like LRU automatically

achieve near-proportional replication and that the system

performance with the replica distribution achieved by LRU is very

close to optimal. We also show that the LRU responds to a change

in user access pattern quickly (the number of accesses taken to

reach the new steady-state replica distribution with LRU is close

to the minimum possible with any cache replacement algorithm).

Analytical models are provided for computing the steady-state

network-wide replica distribution and the transient period for

LRU.

Keywords—Peer-to-Peer, File Replication, Cache Management,

LRU, Network Bandwidth, Proportional Replication

I. INTRODUCTION

Peer-to-peer networks offer the promise of systems that

automatically scale in capacity as the number of users increases

and yet are extremely robust, automatically adapting to failures

of nodes/links as well as to changes in usage patterns, all at

virtually no cost. These loosely organized networks of

autonomous entities (user nodes or “peers”), which make their

resources available to other peers, represent a new computing

paradigm where the service consumers are, now, the service

providers as well. So, for example in peer-to-peer file sharing

networks, users share files and if one wants to download a file

and another user is sharing that file, one would download it

directly from that user. Upon obtaining the desired file, one

may also begin to share that file allowing other users to

download from them. Thus, a file is likely to have multiple

replicas in the network with the more popular files having more

replicas (i.e. more sources to download the file from). The

replication of files provides the robustness while its correlation

with popularity provides the automatic scaling according usage

patterns. Since music file sharing over the Internet is the most

popular peer-to-peer networking application, characteristics

associated with music file sharing (e.g. free-riding, short node

lifetimes, large variation in user connection bandwidth and user

shared storage, no limits on user storage allocated for

downloaded content) are usually associated with all peer-to-

peer networking. However, many other applications can benefit

from peer-to-peer networking. For example, peer-to-peer

networking can be used to offload load from the service

provider video server in a video-on-demand service. One may

also conceive of use of peer-to-peer networking in a shared

digital library application (for example, a state-funded library

for all K-12 schools in a state) whereby individual schools (or

school districts) dedicate fixed amounts of storage for the

application; the content is brought in upon a user request and is

kept in the storage and is available to other users at other sites.

For applications such as these, the presence of an intermediary

and/or similarity in the user group simplifies the assumptions

for the peer-to-peer system and it is not unreasonable to assume

that users are similar and well-behaved (i.e. no free-riding,

little variation in interests and resources of each user, long

node lifetimes). If the number of users is not very large and the

user caches are available for long time durations, a centralized

solution for the search problem may be feasible. Hence, in this

paper, we ignore the issue of search costs in our peer-to-peer

system, concentrating exclusively on the downloading aspects

of the peer-to-peer system. [35] showed that when the number

of replicas of each object is proportional to the request rate for

that object, a user has no advantage in sharing one file over the

other (as the download load for each file is equal), the total

download load on each node is same and when queueing delays

are convex in node utilization, the average queueing delay seen

by a downloader is minimized. In this paper, we focus on

system performance aspects and show that in addition to these

user-centric advantages, the proportional replication

distribution also minimizes the network bandwidth used

(measured as the average number of links traversed in a

download). The system model is discussed in Section 2 and the

proof of the optimality of the proportional replication for the

network bandwidth used is presented in Section 3.

 Given these benefits of proportional replication, we devote

much of this paper seeking distributed mechanisms to achieve

such a replication. In Section 4, we discuss the performance of

some existing cache management algorithms such as LRU,

LFU, and FIFO. Our simulations show that these algorithms

achieve near-proportional replica distribution. We, next,

construct a cache management algorithm that achieves the

proportional replication and compare system performance with

this algorithm to the system performance when cache

management policy is LRU. Our simulations show that the

performance with LRU is only slightly inferior to the optimal

performance. Therefore, we study the behavior of LRU in peer-

to-peer environments in more detail in Section 5 where an

analytical model is provided to compute the replica distribution

LRU will achieve in different situations which can then be used

to estimate the system performance.

 As user interests change over time, the replica distribution

should adapt to the new request rates. Therefore, the utility of

an algorithm also depends on its ability to converge to the new

steady-state distribution quickly and/or maintain adequate

performance during the transient period. We address this issue

in Section 6 where our simulations show that, upon a change in

the access pattern, LRU converges to the new steady-state

replica distribution faster than the cache management algorithm

that achieves linearly proportional replication. We also provide

a preliminary analytical model for estimating the duration of

the warm-up transient period (i.e. the time taken to reach the

steady-state replica distribution starting with an empty buffer)

and the replica distribution during this transient period for

LRU. This model can be used to estimate the transient

performance with LRU cache management by making similar

extensions as in [4].

 Some related work is briefly discussed in Section 7 and

Section 8 concludes the paper.

II. SYSTEM MODEL

Our abstract peer-to-peer system model is shown in Fig. 1.

The broadband network can have any topology. Our only

assumption is that the network topology has exponential

expansion [32]. As discussed in [32], many commonly used

Internet topology models fit this description. The central server

is optional and shown only to signify that a file never

disappears from the system as a result of cache replacement.

Our simulations do not include the central server and at least

one replica of each file in the system is maintained by assigning

a peer (“origin server”) for each file which must always keep

the file in its cache.

User Cache

Central
Server

(Optional)

User Cache

User Cache

User Cache

User Cache

User Cache

User Cache

User Cache

User Cache

Broadband Network

Figure 1. Peer-to-Peer System

We assume that there are M peers in the system (the terms

peers, users and nodes are used interchangeably in this paper).

There are N unique files in the system (the term file represents

any generic object that may be downloaded), each with an

associated request rate λi for file i per node (the request rates

are uniform across nodes). We assume that each file is of equal

size. Nodes have finite local storage space to store file replicas.

We assume that the storage space at each node is equal and has

the capacity to store K files. A file may have multiple replicas

in the system (i.e. ni ≥ 1 where ni is the number of replicas of

file i in the system). Thus, a node will always find a file it is

looking for. The specifics of the search mechanism are not

important as long as the download requests for file i are equally

distributed over the ni replicas of file i in the system. We

estimate the network bandwidth used in downloading a file by

the average number of links along the shortest path to the

nearest replica of the file. The notation for the various system

parameters discussed is:

M = number of nodes in the system

N = number of unique files in the system

K = per-node storage size in number of files

λi = request rate of file i per node

λ = ∑ =

N

i i1
λ

ni = number of replicas of file i in the system

V = number of nodes in the underlying link-level topology

τi(ni) = average number of links to nearest replica for file i

when there are ni replicas of the file in the system.

III. BENEFITS OF PROPORTIONAL REPLICATION

As discussed earlier, [35] showed that selecting ni ∝ λi as the

replica distribution offers significant user-level benefits. In this

paper, we show that this distribution has system-level benefits

as well. We focus on the average number of links traversed per

download as our metric for system performance since it

provides us with an estimate of the network bandwidth that

each download “consumes”. If the objective is to minimize the

network bandwidth used, the download source should be the

nearest replica if multiple replicas of the file are available. We

derive an expression for the relation between the average

number of links to the nearest replica of a file to the number of

replicas of the file assuming that the replicas are uniformly

distributed over the network. Using the derived expression, we

formulate and solve our optimization problem to find the

optimum replica distribution is, once again, ni ∝ λi. We then

briefly address our assumption of uniform distribution of

replicas and show (via simulations) that if all peers have the

same request rates, cache management automatically results in

a uniform distribution of the replicas over the network.

A. Link Distance to the Nearest Replica

Most of the popular topological models of the Internet and

several other common topologies have the property of

exponential expansion (i.e. the number of unique nodes

reached within a hop distance h is exponentially related to the

hop distance) [32]. Therefore, we assume our link-level

network topology to have this exponential expansion as well.

Clearly, not every node on the link level topology will be a

participating peer. We assume that the participating peers are

uniformly distributed over the entire network. The following

theorem states our main result that τi, the average number of

link-level hops to the nearest replica of file i, is logarithmically

related to ni, the number of replicas of file i, when the

underlying link-level topology has an exponential expansion.

Theorem 1:

For a peer-to-peer network of size M where the underlying

link-level topology has an exponential expansion, i.e. the

number of nodes reachable in h hops is kd
h
 where k and d are

constants based on the link-level topology and the M peers are

uniformly distributed over the link-level topology, for large

networks (i.e. as M → ∞) τi(ni), the average number of links

traversed in downloading file i from its nearest source, is

related to the number of replicas of file i, ni, as follows:

τi(ni) = logd(M/ni) + C (1)

where C is constant, for finite ni, assuming that the ni replicas

of a file are uniformly distributed over the participating peers.

Proof:

We wish to calculate the expected number of link-level hops

to the nearest replica of the file to be downloaded given the

number of replicas of that file in the network.

Assuming that each node of the link-level topology graph is

equally-likely to be a participant in the peer-to-peer network, if

there are V nodes in the link-level topology graph, the

probability that a randomly selected node is a participant in the

peer-to-peer network is M/V. Let Sh be the number of

participating peers reachable in h hops. Since the underlying

link-level topology has exponential expansion, kd
h
 link-level

topology graph nodes (where k and d are constants based on

the link-level topology) can be reached in h hops. These kd
h

nodes are participating peers with probability M/V. Therefore,

Sh = (M/V)kd
h
 (2)

Assuming that the replicas of a file are uniformly distributed in

the network, the probability of finding file i at a randomly

selected node is ni/M when there are ni replicas of the file in the

network. In addition to notation defined earlier, define: Ph as

the probability that the nearest replica of file i is available

exactly at h link-level hops and Fh as the probability that no

peer within h link-level hops has file i.

Therefore, Ph = Fh-1 − Fh. The average link-level hop

distance to the nearest replica is: τi(ni) =
0

MH

hh
hP

=∑ where HM

is the link-level distance within which all the M peers can be

reached. Hence,

τi(ni) = 11
[]

MH

h hh
h F F−=

−∑

 =
1

0

MH

hh
F

−

=∑ − HM
MHF

Using the approximation that the probability of finding file i at

a node is independent of the probability of finding that file at

any other node, we can write Fh = (1) hS

i
n M− . Since, ni ≥ 1,

MHF , the probability that the file is not found even after

probing all nodes, is zero. Therefore,

τi(ni) =
1

0
(1)

h

M

M
kdH

V
ih

n M
−

=
−∑

Using the Euler-Maclaurin summation formula: τi(ni) =

(1) (1)

,1

0

(1) [() (0)]
!

M h
H M

kd n k kkV
i M f nk

B
n M dh f H f R

k

− −

=
− + − +∑∫

where Bk are the Bernoulli numbers, f(h) = (1)
hM

kd
V

in M− , f
k
(h)

is the k
th

 derivative of f(h) and Rf,n is the remainder term in the

summation for function f(h).

Define t = (M/V)kd
h
. Therefore, h = logd(Vt/kM) and, hence,

dh = dt/(tlnd). At h = HM, t = M and at h=0, t =1 (the peer

downloading the file is a participating peer). Therefore: τi(ni) =

(1) (1)

,1

1

(1)1
[() (0)]

ln !

M t
n k ki k

M f nk

n M B
dt f H f R

d t k

− −

=

−
+ − +∑∫

Using the Euler-Maclaurin summation formula again, we

get: τi(ni) =

1 (1) (1)

,1 1

(1)1
[() (1)]

ln !

t
M n k ki k

g nt k

n M B
g M g R

d t k

− − −

= =

 −
− − − 

 
∑ ∑

(1) (1)

,1
[() (0)]

!

n k kk
M f nk

B
f H f R

k

− −

=
+ − +∑

where g(t) = (1)t

i
n M t− , g

k
(t) is the k

th
 derivative of g(t) and

Rg,n is the remainder term in the summation for function g(t).

Since, Bk = 0 for odd k (other than 1) and B4 = 1/720, we

can neglect the higher-order terms beyond k = 2 and the

remainder term in the Euler-Maclaurin summation formulas.

The required g(t), f(h) and g’(t), f’(h) terms at the limits can be

evaluate as:

 g(1) = (1−ni/M),

g(M) = (1−ni/M)
M

/M

 g’(t) = (1−ni/M)
t
/t[ln(1−ni/M) − (1/t)]

=> g’(1) = (1−ni/M)[ln(1−ni/M) − 1]

 g’(M) = {(1−ni/M)
M

/M}[ln(1−ni/M) − 1]

 f(0) = (1−ni/M)

f(HM) = (1−ni/M)
M

 f’(h) = ln(1−ni/M) f(h)d
x
lnd

=> f’(0) = (1−ni/M) ln(1−ni/M) lnd

 f’(HM) = M lnd (1−ni/M)
M

ln(1−ni/M)

As discussed earlier,
MHF = 0. Hence, g(M), g’(M), f(HM),

f’(HM) are all 0. Therefore,

1

1

(1)1 1
() (1)

ln 2

t
M

i
i i it

n M
n n M

d t
τ

−

=

 −
= + − 

 
∑

1 1 1
(1)[1 ln(1)] (1)

ln 12 2
i i i

n M n M n M
d

 
+ − − − − −  

1
(1) ln(1) ln()

12
i i

n M n M d+ − −

1

1

(1)1 1 1 1 1
(1)

ln 2 12 ln 2

t
M i

it

n M
n M

d t d

−

=

−   
= + − + −  

  
∑

1 1
(1) ln(1) ln

12 ln
i i

n M n M d
d

 
+ − − −  

As M → ∞, applying the series summation
1

(1 1)k

k

x

k

∞

=

−
∑

= lnx, we can write
1

1

(1)
t

M i

t

n M

t

−

=

−
∑ = ln(M/ni). As M → ∞,

the ln(M/ni) term will dominate the other (1−ni/M) terms for

finite ni and, hence, we can neglect the other terms to finally

show:

τi(ni) = (1/ lnd)[ln(M/ni)] + C = logd(M/ni) + C

� Q.E.D.

The above theorem establishes the logarithmic relation of τi,

the average number of link-level hops to the nearest replica of

file i, to ni, the number of replicas of file i for M → ∞. Our

simulations indicate that the relation holds for smaller values of

M also. In Fig. 2, we show the simulation results for a peer-to-

peer network of 1000 peers with an underlying 10,254-node

PLRG (power law random graph [8]) link-level topology of

power-law rank-exponent 2.25 (parameters motivated by [8],

[32]) with the participating peers chosen among the link-level

topology nodes uniformly at random, and the targeted number

of replicas placed at the participating peers selected uniformly

at random. The link distances shown are the average distance

from each participating peer to the nearest replica. Other

topologies with exponential expansion give similar results.

y = -0.4973Ln(x) + 1.9231

R2 = 0.9665

0

1

2

3

4

5

6

7

0.001 0.01 0.1 1

Fraction of nodes with the file (log-scale)

L
in

k
 d

is
ta

n
c
e

 t
o

 t
h

e
 n

e
a

re
s
t

re
p

lic
a

Figure 2. Link distance to the Nearest Replica (1000 peers, link topology:

10,254-node PLRG with rank exponent 2.25)

B. Network Bandwidth Used Optimization

Our objective is to find the optimum value for ni, the

number of replicas of file i (for all i), which minimizes τ, the

average number of links traversed in satisfying file requests,

i.e.,

τ =
1

N i

i

λ

λ=∑ τi(ni) (3)

Thus, our optimization problem may be stated as:

1

1
{ }

()
N

i i

N i

i ii
n

nMin
λ

τ τ
λ=

=

 
= 

 
∑ (4)

Subject to:

∑ =

N

i in
1

 ≤ KM (5)

The constraint in (5) states that the total number of replicas of

all the files should not exceed the total storage available. Since

there is no benefit derived from having multiple replicas of a

file at a node, the number of replicas of any file can never be

more than the number of nodes. Further, there is at least one

replica of each file. These two conditions give 2N other

inequality constraints –

ni ≤ M for all i = 1 to N (6)

ni ≥ 1 for all i = 1 to N (7)

This is a straightforward optimization problem and we state

the solution as the following theorem:

Theorem 2:

 For a peer-to-peer network whose underlying link-level

topology is such that the number of links traversed in

downloading file i from its nearest source, is related to the

number of replicas of file i, ni, as: τi(ni) = αlogd(M/ni) + C, and

the storage capacity at each node is equal, then the network

bandwidth used (measured as the average number of links

traversed in a download) is minimized when the number of

replicas, ni, of file i is piece-wise linear with respect to the file

request rate λi, (i = 1,2, …, N) i.e.

(i) The number of replicas of each file ni is proportional to

the file request rate λi i.e.

ni ∝ λi (8)

if
KKM

i 11
≤≤

λ

λ ∀i

and,

(ii) The number of replicas

 ni = Max(1,Min(

0γ

βλi , M)) (9)

where γ0 is s.t.∑ =

N

i in
1

= KM, in the general case.

File Request Rate

N
u
m

b
er

 o
f

R
ep

li
ca

s

File Request Rate

N
u
m

b
er

 o
f

R
ep

li
ca

s

(i) (ii)

11

MM

Figure 3. Optimal Replica Distribution: (i) under constraints on file request

rates (ii) in the general case

Proof:

The classical approach to solving constrained optimization

problems is the method of Lagrange multipliers. First we will

show the result for part (i). We will ignore the constraints

specified by (6), (7) for now and instead show that our optimal

solution satisfies these constraints under conditions on λi

specified in part (i). The Lagrangian of our constrained

optimization problem is:

H = ∑ =

N

i

i

1 λ

λ
τI(NI) + γ (∑ =

N

i in
1

− K M)

Minimizing H over all ni for i = 1 to N:

0=+
∂

∂
=

∂

∂
γ

τ

λ

λ

i

ii

i nn

H
 i = 1 to N (10)

Using τi(ni) = α logd(M/ni) + C = −β ln(ni) + c’,

ii

i

nn

βτ
−=

∂

∂

Substituting this in (10), we obtain,

ni =
γ

β

λ

λi

Applying the constraint ∑ =

N

i in
1

= KM to remove the unknown

constant β/γ, we obtain the optimum number of replicas as:

ni =
λ

λi
KM i = 1 to N (11)

The constraints in (6) and (7) are satisfied if
1 1i

KM K

λ

λ
≤ ≤ ∀i.

This proves part (i) of the theorem.

Without this condition on λi, one can rewrite the problem as

a maximization problem using a modified Lagrangian.

Usingτi(ni) = -β ln(ni) + c, and including both the constraints

in (6) and (7) and rewriting the ni ≥ 1 constraint as -ni ≤ -1, the

modified Lagrangian is:

G = β [∑ =

N

i i1
λ ln(ni)] − γ0 [∑ =

N

i in
1

− KM] −

∑ =

N

i i1
γ (ni−M) − ∑ =

N

i i1
α (-ni + 1)

The Kuhn Tucker Conditions for the modified Lagrangian are:

i

i

n

βλ
− γi − γ0 +α i = 0 for i = 1 to N (12)

∑ =

N

i in
1

≤ K M, γ0 ≥ 0, and γ0[∑ =

N

i in
1

− K M] = 0 (13a)

ni ≤ M, γi ≥ 0, and γi (ni − M) = 0 for i = 1 to N (13b)

-ni ≤ -1, αi ≥ 0, and αi (-ni +1) = 0 for i = 1 to N (13c)

From (12): ni =

ii

i

αγγ

βλ

−+ 0

 (13b) and (13c) imply that: either γi = 0 or ni = M, and also

either αi = 0 or ni = 1, respectively. Therefore, the optimum

solution is:

 ni = Max(1, Min(

0γ

βλi
, M))

where, from (13a), γ0 is such that ∑ =

N

i in
1

= KM when the

storage size is not large enough to store all the files (i.e. N ≥

K). This proves part (ii) of the theorem.

� Q.E.D.

In the remaining discussion, we assume
KKM

i 11
≤≤

λ

λ
∀i

and use (11) as the optimal replica distribution. For sufficiently

large KM,
λ

λi ≥
KM

1
 should be satisfied. If

λ

λi
≥

K

1
, the

optimal distribution is for the higher request rate files to be

located at all M nodes; but if a file is located at all nodes, we

can simply assume that they are not part of the peer-to-peer

system as no one ever lacks them and, hence, no download is

ever made for these files. Without these high request rate files

in the system,
λ

λi ≤
K

1
should be satisfied.

C. Uniform Distribution of Replicas

The assumption of uniform distribution of file replicas in the

network allows us to say that the probability of finding file i at

a randomly selected node is ni/M when there are ni replicas of

the file in the network. In this section, we wish to verify that in

our model of a peer-to-peer system where nodes have fixed

storage (and, consequently, must use some cache management

algorithm), the replicas are indeed uniformly distributed at

“equilibrium” when all peers have the same file access pattern.

Let us clarify what we mean by “equilibrium”. Suppose that

each file is at one node (the “origin server” for that file)

initially. As nodes make requests and get these files, the

number of replicas for each file increases. However, since the

storage is limited, nodes will eventually have to delete some of

these replicas. Thus, the number of replicas changes from the

initial condition of one replica per file over time. We define the

system to be in equilibrium when the number of replicas of

each file does not change (on average, over some time

interval), i.e., the “drift” is zero.

A generic un-annotated network topology has no physical

location associations which makes discussing the distribution

of replicas in the system difficult. Therefore, we introduce a

coordinate system in our network. Relative to any one

particular node (the “origin”-node), one can think of the

location of the other nodes as their hop distance to the origin-

node. Thus, relative to the origin-node, the node location can

be specified using polar coordinates. A radially different

pattern is not possible if the file request patterns and the per-

node storage capacity are uniform across all nodes, and the

topological difference among the nodes is minimal. Therefore,

the ratio of the number of replicas of a file to the number of

nodes at each hop from the origin-node is an adequate measure

of file distribution. For example, if this ratio is the same at each

hop-distance, one can conclude that the file replicas are

uniformly distributed in the network. In contrast, if this ratio

were to decrease with increasing hop distance when the origin

server is chosen to be the origin-node, one would conclude that

the probability of finding the file is higher at nodes closer to

the origin server. For any simulation run, after the topology

instance is generated, the number of nodes located at each hop

from the origin-node is easily computed. Statistics for the

number of nodes that have a file can be collected after the

simulation has run for a sufficient length of time (reached

“equilibrium”),.

Fig. 4 shows the file distribution, with a single origin server,

for three different files – one with a very high request rate,

another with a moderate request rate and the third with a very

low request rate. The simulation had 1000 peers with a storage

capacity to store 10 files each and there were a total of 100

unique files in the system. The file request rates were Zipf-

distributed with a zipf-exponent of 1.0
1
. The underlying link-

level topology was the 10,254-node PLRG discussed earlier.

The participating peers were uniformly chosen from the link-

level topology nodes. The file replacement policy when the

space was needed for a newly requested file was LRU (i.e. the

Least Recently Used file is replaced).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10

Hop Distance

F
ra

c
ti
o
n
 o

f
N

o
d
e
s
 w

it
h
 f
ile

low request rate

medium request rate

high request rate

Request Ratio 1:14.4:45.2

Figure 4. Distribution of files at different hop distances from the Origin Server

for files with different request rates

For the simulation results shown in Fig. 4, the number of

replicas used to compute the fraction of nodes that have the file

at each hop distance is the average value over 1000 simulation

iterations after the steady-state replica distribution was reached.

The deviation from the overall fraction of nodes with the file,

at different hop distances, is a measure of how uneven the file

distribution is. As seen in the figure, relative to the overall

fraction of nodes with the file, the variation in the fraction of

nodes with the file at different hop distances is very small

(asymmetries at larger hop distance appear as there are very

few participating peers at these hop distances). Therefore, we

conclude that when all the participating peers have the same

file request rates, at equilibrium, the replicas of a file are

uniformly distributed over the network.

IV. CACHE REPLACEMENT ALGORITHMS FOR PROPORTIONAL

REPLICA DISTRIBUTION

Ideally, we wish our peer-to-peer system to be autonomic

and operate at optimal or near-optimal performance with no

external intervention (as opposed to measuring file request

rates periodically and then populating the network with a

1 Zipf-exponent of 1 has been found to be adequate to capture the skew in

request rates for peer-to-peer systems [11] and web environments [3].

proportional number of replicas by a centralized mechanism).

In Section 3.C, we discussed a peer-to-peer system where the

peers had finite storage space and if space was needed for a

newly requested file then a previously obtained file was deleted

using the LRU file replacement policy (except that the last

replica of a file is never deleted). We plot the steady-state

distribution of the number of replicas of each file against the

file request rate in Fig. 5 for the same simulation. As we can

see, the LRU cache replacement policy obtains near linear

proportionality except for high request rate files.

We also simulated other common cache management

algorithms such as FIFO (First-In, First-Out: replace the oldest

file), LFU (Least Frequently Used: replace the least frequently

used file) and Random-Delete (randomly select the file to be

replaced) and the results are shown in Fig. 5 alongside the

results for LRU. All these algorithms generate a replica

distribution similar to LRU: LFU is closer to the optimal

distribution than LRU while FIFO and Random-Delete are

slightly further from it than LRU.

0

200

400

600

800

1000

0 0.02 0.04 0.06 0.08 0.1

File request rate

N
u
m

b
e
r

o
f

R
e
p
lic

a
s

Optimal

LFU

FIFO / Random-

Delete

LRU

Figure 5. Number of Replicas vs. Request Rate

While none of the known cache management algorithms give

us exactly the desired linear proportionality, an equilibrium

analysis of Random Delete (when space needs to be made in

the cache, one of the files is randomly selected for deletion)

provided us insights into possible ways to constructing

mechanisms to achieve the linear proportionality in a

decentralized manner.

Each file request where the file is not available in the local

cache results in that file being brought into the cache. Thus, the

replicas for file i are created at a rate λi(1−ni/M). With random

deletion, the file removal rate is proportional to the number of

replicas of the file in the system. At equilibrium, the replica

creation rate should equal the replica deletion rate. Thus, at the

equilibrium distribution, we have:

λi(1−ni/M) = Cni

where C is a proportionality constant. This explains why

Random Delete does not give linear proportionality.

A keen observer will note that a replica creation rate of λi

will achieve linear proportionality with Random Delete file

replacements. The deviation from λi creation rate was due to

replicas not being created when the file is available in local

cache. Creating a replica when the requested file is available in

local cache can rectify this. Since the replica cannot be created

in the local cache, it must be created at a different peer. This

Create-Extra+Random-Delete algorithm was simulated and the

results are shown in Fig. 6. As expected, the populate-extra

algorithm does give us the linear proportionality in number of

replicas. Writing on other peers caches, however, defeats our

original objective as the extra download incurred on every

request that is locally satisfied is likely to negate any

performance benefit derived from the replica distribution being

closer to optimal. It would be better if we could adjust the file

deletion rate to be proportional to ni(1−ni/M). This can be

achieved if the file to be deleted is not selected with uniform

probability from the cache but is weighted according to

(1−ni/M). Since, each node does not know the total number of

replicas of a file in the network locally, we need to devise other

methods to achieve the (1−ni/M) biasing in the file selection for

deletion. We know that if the desired linear proportionality was

achieved, ni/M = Kλi/λ. Therefore, if the global file request

rates were known locally, we could devise an algorithm that

selects the file to be deleted with probability proportional to

Kλi/λ, we may get the desired linear proportionality. The

simulation results for this DeleteProb_RequestRatesKnown

algorithm are shown in Fig. 6. Unfortunately, in real systems, it

is difficult to obtain the global file request rates locally so this

algorithm does not seem very practical.

0

100

200

300

400

500

600

700

800

900

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Request Rate

N
u
m

b
e
r

o
f

R
e
p
lic

a
s

Optimal

CreateExtra+RandomDelete

DeleteProb_RequestRatesKnown

Figure 6. Optimal Cache Management Algorithms

To evaluate the benefits (against the cost) of each of these

algorithms, we should know the average number of links

traversed per download for these algorithms. Using the τi(ni) =

α logd(M/ni) + C expression for the average number of links

traversed in downloading a file that has ni replicas, we can

compute the average number of links traversed per download

using (3) to be:

τ = α
1

N i

i

λ

λ=∑ logd(M/ni) + C’ =
1

ln
ln

N i

i
i

M

d n

λα

λ=

 
 
 

∑ + C’

To remove effects of underlying network topology, we extract

the replica-distribution-dependent term from τ and define a

new system performance metric, normalized network

bandwidth used:

 τ’ =
1

ln
N i

i
i

M

n

λ

λ=

 
 
 

∑ (14)

We compute the normalized network bandwidth used from the

steady-state replica distribution achieved by the different cache

replacement algorithms in these simulations. The numbers are

listed in Table 1.

TABLE I. NORMALIZED NETWORK BANDWIDTH USED VS. CACHE

REPLACEMENT ALGORITHM

Algorithm LRU LFU FIFO “Optimal”

ττττ' 1.1897 1.176 1.203 1.1746

Comparing the performance of the different algorithms, we

find that no significant advantage is obtained by using LFU

(especially taking into account the added complexity of

keeping frequency counters) instead of LRU and that even the

optimal cache replacement algorithm offers no significant

advantage. Thus, LRU cache replacement is a strong candidate

for use in our peer-to-peer system and we study its performance

in peer-to-peer environment in more detail in the next section.

V. LRU CACHE REPLACEMENT IN PEER-TO-PEER

ENVIRONMENT

So far, our simulations used zipf-distributed file request rate

with zipf-exponent of 1.0. To explore the effect of skew in file

request rates, we show the simulation results for the number of

replicas against the file request rate in Fig. 7 for two other file

request rate distributions: a more skewed file request rate

distribution (zipf-distribution with zipf-exponent 1.5), and a

less-skewed request rate distribution where the request rates for

different files are uniformly distributed between the lowest and

the highest file request rates.

0

200

400

600

800

1000

0 0.02 0.04 0.06 0.08 0.1

File Request Rate

N
u
m

b
e
r

o
f
R

e
p
lic

a
s

Zipf 1 .5 - optimal

Zipf 1.5 - LRU

Zipf 1 - optimal

Zipf 1 - LRU

Uniform - optimal/LRU

Figure 7. LRU performance with varying levels of skew in the request rate

distribution

These results suggest that for applications where the access

patterns do not have much skew, LRU will perform very well.

Notice that even when the skew in file request rates is so large

that the optimal replica distribution is now defined by (9)

instead of (8), LRU file replacement still achieves near optimal

replica distribution.

An analytical model of network of LRU storage can be

constructed as follows. Since the probability of finding a file is

the same across the network, it is sufficient to find the

probability of a file being in storage at any random node.

Further, one can construct the model from the perspective of a

particular file, say, file i – all requests for file i move the file to

the top-most position in the storage; a request for any other

files moves file i down to one lower position. We set up a

Markov Chain to represent the position of the file in the stack,

i.e. the system is in state k when the file is in the k
th

 position

from the top of the LRU stack: state 1 implies that the file is at

the top-most position in the LRU stack; state N (N is the

storage capacity in number of files) means that the file is at the

bottom-most position in the LRU stack. An additional state,

state 0, is defined to represent the state when the file is not in

the storage. A satisfied request for the file always changes the

system state to 1 (as the file moves to top-most position in the

storage). A satisfied request for any other file changes the

system state to next higher state (as that new file now moves to

the top-most position pushing all other files one position

down). Satisfied requests for the file include the storage

owner’s requests for this file (since all file requests are

eventually satisfied, this contributes to transitions to state 1

from all the other states) and the requests for the file from the

other nodes that are satisfied (since nodes always share their

files, this contributes to transitions to state 1 from all states

other than state 0).

1 2 3 K 0

λi

λi‘

λi‘ λi‘ λi‘

µi12 µi23 µi34 µiK-1,K µiK,0

Figure 8. Markov Chain model for the position of file i when per-node storage

capacity is K

The model is shown in Fig. 8 where λi is the file request rate

for file i, λi' is the total request rate including file i’s requests

from other nodes satisfied by this node and µij,j+1 is the rate at

which file i is pushed down from position j to position j+1 as

requests for other files are served by the node. While λi is

given, the file requests from the other nodes (remote requests)

complicate the expressions for λi'. A node sends out a file

request only when it does not have the file. Thus, the rate at

which the other M-1 nodes send a file request for this file to the

peer-to-peer network is λipi0, where pi0 is the probability that

the file i is not available at a node. The nodes that have file i in

their cache satisfy these requests for file i sent to the peer-to-

peer network. Assuming that the requests are uniformly

distributed over the nodes that have the file, the request rate for

file i served by a node that has file i on account of requests

from other nodes equals (M-1)λi pi0 /M(1- pi0). Unfortunately

computing µij,j+1 is much harder for j>1. For j=1, the rate at

which file i is pushed down is the total rate at which requests

for all other files are served by this node (including both local

and remote requests). Thus, µi12 = ∑k≠iλk(1+pk0) where pk0 is the

probability of not finding file k.

However, for j>1, one must

adjust these rates for the possibility that the requested file may

be in a position <j in which case, an access to a file k≠i will not

affect position of file i in the LRU stack.

[6] suggests one technique to circumvent this complexity.

The key idea is that at steady-state, the push-down rate for file i

from position j to j+1 must equal the rate at which file i is

brought into top j positions of the LRU stack (otherwise the

probability of finding the file in these top j positions becomes

unbounded). This conservation of flow principle allows us to

compute µij,j+1. File i is brought into top j positions under two

conditions: (i) a local request for file i when file i is not in top j

positions: the file may be brought to the top position from

positions j+1…K of the local cache if it is available there or it

may be brought from a remote node (since we assume that a

file that may be requested never disappears from the system, all

file requests are satisfied) (ii) a remote request for file i: since

the file i is not in top j positions, it must be in the remaining

j+1…K positions in the local cache for it to show up in top j

positions on a remote request. The local requests contribute

λi[1−P(i,1…j)] to the push-down rate where P(i,1…j) is the

probability that file i is in one of the top j positions in the local

cache. The remote requests contribute an additional λi[(M-

1)pi0/M(1-pi0)]P(i,j+1…K|j) where P(i,j+1…K|j) is the

probability that file i is in positions j+1…K of the local cache

given that it is not in top j positions in the local cache. Thus,

µij,j+1 = λi[1−P(i,1…j)]

+ λi[(M-1) pi0 /M(1- pi0)]P(i,j+1…K|j) (15)

Even after obtaining all the required rates for the Markov

Chain model, calculating individual probabilities is very

involved. [6] provide an approximate expression for pij, the

probability that file i is at position j in the LRU stack in terms

of the push-down rates at position j-1 as follows:

1,

1,
1

ij j

ij N

kj j
k

p
µ

µ

−

−
=

≈

∑
 (16)

Other probabilities are defined in terms of pij as:

1

(,1...)
j

ik
k

P i j p
=

≈ ∑ (17)

P(i,j+1…K|j)=
(,1...) (,1...)

1 (,1...)

P i K P i j

P i j

−

−
 (18)

pi0 = 1 − P(i,1…K) (19)

Starting with P(i,1) = λi, we can iteratively solve Eqs. 15-19

until the value of pi0 converges. The complexity is O(KN) [6]

and, in our computations, the value of pi0 converged in only a

few iterations. In Fig. 9, we plot the number of replicas of each

file obtained from simulation and MP(i,1…K), the product of

number of peers in the system and the probability of finding

file i in the local cache, obtained from Eqs. 15-19 against the

file request rates for M = 5000, N = 500, K = 50 and zipf-

distributed {λi} with zipf-exponent 1.0. As shown in the figure,

the analytical model agrees very well with the simulation

results. System designers can use this model to estimate the

steady-state replica distribution for different system parameters

and the predicted values can be used to estimate the required

network bandwidth using (14) for a given cache size or for

selecting the appropriate size of the per-node user cache to

limit the required network bandwidth within a desired value.

0

500

1000

1500

2000

2500

3000

0 0.005 0.01 0.015

Request Rate

N
u
m

b
e
r

o
f

R
e
p
lic

a
s

simulation

analysis

Figure 9. Validation of Steady-state Analytical Model for LRU

VI. TRANSIENT PERFORMANCE OF LRU CACHE REPLACEMENT

POLICY

As we saw in earlier sections, at steady state, LRU and other

popular cache management algorithms can achieve near-

proportional replication even when the access rates are

extremely skewed. All our simulations in Fig. 4 had started

with only a single replica of each file (at their respective origin

servers) and, the equilibrium distribution was eventually

achieved in all the cases. Thus, we know that reasonable cache

replacement policies will also adapt the file replication

distribution if the user access patterns change. We, however, do

need to examine the transient performance of the system to

assure ourselves that: either (a) the transient period is short, or

(b) the performance during the transient period is acceptable

(i.e. the peer-to-peer network does not crash for example). We

conducted a number of simulation runs to study the transient

performance with the different cache replacement algorithms.

The basic simulation setup here was identical to that in Section

4 except that at a certain pre-determined simulation iteration,

the request rate distribution was changed from zipf-distributed

with exponent 1 to an exponent of 0 where each file now had

the same request rates at all nodes. Fig. 10 shows the number

of replicas of each file with LRU cache replacement with

increasing simulation iterations starting from a few iterations

prior to the change. To get a sense of the scale of the x-axis, we

note that in each simulation iteration, on average, each node

makes one file request. In the zipf-exponent-1 request rate

distribution, the lowest file request rate is 0.0001

requests/node/iteration. Thus, on average, in 10 iterations, the

least popular file is requested only once.

0

100

200

300

400

500

600

700

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

Simulation Iterations

N
u

m
b

e
r

o
f

R
e

p
lic

a
s

Figure 10. Transient behavior of LRU (the request rate distribution changed at

iteration label 5)2: each curve represents the number of replicas at

 From Fig. 10, we note that it takes about 12-13 iterations to

reach the new steady-state in the presented simulation scenario.

For zipf-exponent-0 request rate distribution, on average, there

are 10 requests for each file per iteration. The file with the

lowest request rate in the original distribution had 1 replica at

iteration labeled 5 and according to the zipf-exponent-0 request

rate distribution there should be about 100 replicas in the

system. Since new replicas are created only upon requests for

the file, it will take at least 10 iterations to create 100 replicas.

Thus, the 12-13 iterations LRU took to reach the new

equilibrium distribution is very reasonable.

 In the aforementioned simulation, we also changed the

request rate distribution back to the original zipf-exponent-1

distribution 400 simulation iterations after the change to the

zipf-exponent-0 request rate distribution. In Fig. 11, we show

the number of replicas of each file with increasing simulation

iterations starting a few iterations prior to when the request

rates revert back to the original distribution.

0

100

200

300

400

500

600

700

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

Simulation Iterations

N
u

m
b

e
r

o
f
R

e
p

lic
a

s

Figure 11. Transient behavior of LRU (the request rate distribution changed at

iteration label 5)

Once again, we see that the number of replicas reaches in the

neighborhood of the steady-state values in about 12-13

iterations after which we can say that the system performance is

close to the steady-state performance. We also note here that

2 In Figs. 10, 11 and 13, each curve is for a different file and shows the

number of replicas of the file in the iteration indicated on the x-axis.

the rate of convergence to the new steady-state distribution

appears to be independent to the individual request rates in

both Fig. 10 and 11.

Similar experiments were performed for FIFO, LFU and the

“optimal” cache replacement algorithm discussed in Section 4.

Instead of presenting the per-file details, as in Figs. 10, 11, we

condense the replica distribution information by computing the

normalized network bandwidth used defined in Section 4 for

the replica distribution at each iteration and show only that in

Fig. 12. At the 4200
th

 iteration, the request rate distribution was

changed from zipf-exponent-1 to zipf-exponent-0 and at the

4600
th

 iteration it was changed back to zipf-exponent-0. As

shown in the figure, the duration of the transient period with

FIFO is the same as that with LRU while the optimal cache

replacement algorithm constructed in Section 4 has a slightly

longer transient period and a slightly worse performance during

the transient period (even though the simulations assumed that

the new file request rate distribution is relayed to the algorithm

at all nodes instantaneously).

0

0.5

1

1.5

2

2.5

3

3.5

4

4190 4200 4210 4220 4230 4240

Simulation Iterations

N
o

rm
a

liz
e

d
 N

e
tw

o
rk

 B
a

n
d

w
id

th
 U

s
e

d

LRU

"Optimal"

FIFO

LFU

0

0.5

1

1.5

2

2.5

3

3.5

4

4590 4600 4610 4620 4630 4640

Simulation Iterations

N
o

rm
a

liz
e

d
 N

e
tw

o
rk

 B
a

n
d

w
id

th
 U

s
e

d

LRU

"Optimal"

FIFO

LFU

Figure 12. Transient Performance of different cache replacement algorithms

As we can see LFU adapt to the change in request rate very

poorly (it has better transient performance than other

algorithms upon reverting back to the original request rate

distribution only because it had never achieved the steady-state

distribution for the equal request rate distribution and when the

request rate distribution reverted back to zipf-exponent-1

distribution, the replica distribution was close to the steady-

state distribution of LFU for the zipf-exponent-1 distribution).

This happened because our simulations used an infinite length

window over which the frequency is counted (with an upper

bound on the maximum counter value) due to which it takes a

long time for the algorithm to register the change in access

patterns (effectively, the replica distribution never changed). A

shorter window should perform better than shown (but not

necessarily better than LRU) but maintaining a sliding window

is a complex task.

These results suggest that LRU may be an adequate choice

for cache replacement in peer-to-peer systems. To better

understand the transient behavior of LRU, we now attempt to

develop an analytical model for the transient behavior of LRU

cache replacement.

Following the approach in [4], which analyzed the transient

performance of LRU for a database application, we first derive

the expressions for LRU performance in the cache warm-up

period (i.e. starting with an empty cache to reaching the steady-

state replica distribution). As we saw in the previous section,

the number of replicas of each file at steady state can be

computed as MP(i,1…K) where M is the number of peers in the

network and P(i,1…K) is the probability of finding file i in the

cache. We wish to compute the time-dependent probability of

finding file i in the cache after T accesses, P
t
(i,T), starting with

an empty cache. Note that once there are enough accesses that

LRU replacement policy kicks in, the desired probabilities are

defined by (15)-(19) as derived in Section 5. In this section, we

are only interested in computing the probabilities while the

cache is not full.

We can compute P
t
(i,T) if we know the probability that file i

is not in the cache after T accesses, p
t
i0(T), using (19). After T

accesses, file i is not in the cache only if none of the previous T

accesses were for file i. Therefore,

p
t
i0(T) = 1

T

i
λ

λ

 
− 

 
 (20)

where λi is the request rate for file i. Note that if the file is not

in the cache, the additional term for requests for file i from

other nodes satisfied by this node that complicated (15) is not

required in the warm-up transient analysis.

Given p
t
i0(T), the probability of finding file i in the cache

after T accesses is:

P
t
(i,T) = 1− 1

T

i
λ

λ

 
− 

 
 (21)

These expressions apply only if the cache is not full yet i.e.

1

(,)
N

t

i

P i T K
=

≤∑ (22)

One can iteratively compute (21), (22) for increasing values

of T beginning with T=1 until (22) is violated. The smallest

value of T at which (22) is violated is the transient period,

Ttransient. The values of P
t
(i,T) computed at each iteration can be

used to compute the number of replicas of each file in the

transient period which can, then, be used to estimate the system

performance as defined in Section 4 for the transient period.

We compare the replica distribution during the starting

period of our simulation with LRU cache replacement to the

output of our analytical model for the same system parameters

(M = 1000, N = 100, K = 10 and zipf-distributed {λi} with zipf-

exponent 1.0) in Fig. 13. As we can see in Fig. 13, the transient

performance predicted by the analysis matches very well with

the simulation results for the cache warm-up period. The

analytical model shows (22) being violated at the 13
th

 iteration

which is the duration of the warm-up transient period in the

simulation as well. MP
t
(i,T) also appears to match well with the

number of replicas of each file in the warm-up transient

duration. Beyond the warm-up transient period, we plot the

replica distribution based on the steady-state probabilities as

given in Section 5.

Simulation

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Simulation Iterations

N
u
m

b
e
r

o
f

R
e
p
lic

a
s

Analytical Model

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Iterations

M
P

^t
(i
,
T

)

0

1

2

3

4

5

6

7

8

9

10

S
u
m

(p
ro

b
a
b
ili

ti
e
s
)

Sum(probabilitities

)

Figure 13. Validation of Analytical Warm-up Transient Model

We also note that the values of P
t
(i, Ttransient) obtained via

this iterative process (shown in Fig. 13) are close to the steady-

state probabilities P(i,1…K) that we computed in the previous

section using (15)-(19) (the differences arise as we ignored the

additional term for requests for file i from other nodes satisfied

by this node). Thus, this warm-up transient model gives us

another method of estimating the steady-state system

performance.

Another key observation is that the warm-up transient period

of 13 iterations is the same as the transient period in our

simulations shown in Fig. 10, 11. Thus, the general transient

period is related to the warm-up transient period. We know that

if the request pattern changed such that none of the older files

were to be requested and a new set of files becomes the active

set, our arguments in development of (21), (22) will apply

exactly the same. In the general case where the file request rate

changes are not as drastic, the same calculations for P
t
(i,T) as

in (21) may not apply although the duration of the transient

period is likely to be shorter or the same as that defined by

(21), (22) which the cache is completely populated according

to the new access pattern.

Finally, we add that (22) directly demonstrates the role of

cache size in determining the duration of the transient period. If

we increase the cache size K to 20 files in our earlier system,

our computations show that the duration of the warm-up

transient period increases to 35 iterations (compared to 13

iterations for K=10). Intuitively, one can see this since a larger

cache means more entries must clear out before the distribution

is defined by the new access pattern. When the request rate

changes are not as drastic, however, we do expect the transient

period to be shorter.

Also, recall from Section 4 that the system performance is

not very sensitive to the replica distribution when the replica

distribution is close to the optimal distribution. So, for small

changes, the system performance should remain reasonable

even through the transient period.

VII. RELATED WORK

Till now, the most popular application of peer-to-peer

networking has been music/video file sharing over the Internet

which is fraught with problems such as free-riding, short node

lifetimes [20], unreliable content quality [7], lack of any

enforceable payment mechanism. Thus, a lot of research has

gone into analyzing [2, 16, 18] and solving [12, 14] these

problems. Even in absence of these problems, finding which

peer has the desired file is a difficult task especially if one

attempts to build an ideal peer-to-peer system where all

participants are equal and there are no central servers. A lot of

work has gone into designing effective mechanisms for

searching which peer has the desired file [10, 15, 21, 24, 30,

39]. Some of the analytical work on search performance in

unstructured peer-to-peer networks [33, 34] is relevant to our

work as the average distance to the nearest replica is also the

number of hops needed to find a source for the desired file in

flooding-based searches. In particular, our derivation of the

average distance to the nearest replica over the link-level

topology in Section 3 has the same steps as the derivation of

the average distance to the nearest replica over the Erdos-Renyi

random graph overlay network in [34]. Download performance

in peer-to-peer networks has also been addressed by [1, 9, 22,

26, 31, 35, 38]. [9, 22, 26, 31, 38] study the gains in reducing

the download time by splitting a large file into small pieces so

as to increase the service capacity of a large file rapidly after its

initial introduction into the peer-to-peer network. [1] provides

an analytical model for selecting peers so as to minimize the

download time while [35], like our current work, focuses on

file replication in seeking the same goal. File replication is

addressed in the context of structured peer-to-peer systems by

[5, 10, 13, 27] among others; [5, 13, 27] are similar to our

work in that one of their objectives in replication is improving

the download performance. However, [13,17] study system

architecture issues. [5] is presents an analytical model for a

decentralized caching system but since it is in context of web

caching, the assumptions are different (e.g. unlike our model,

cached content has limited lifetime in their scenario). Web

caching are addressed by many others [23, 25, 29, 36, 40] and,

even though we study a network of cache, some of this work is

relevant to ours as our assumptions of uniformity imply that the

system performance can be inferred from the behavior of a

single cache and, hence, we find similarities in the analyses

[29] and conclusions [36]. A content distribution network also

replicates content at multiple sites (to decrease access latency

seen by end-users) and optimal allocation of system storage is

an issue in these networks also (e.g. [17, 37]). Even though,

[17] incorporates caching/replacement in its investigation, in

general, the overall model is of centralized control over the

multiple sites so issues such as replica placement have been the

focus of much of the research in this area. Peer-to-peer

networking is also being proposed now to support web accesses

in cooperative mobile environments and [19] presents an

analytical model for the performance of such a system. Our

analytical model in Section 5 is very similar to theirs as we

both extend the analytical model for a stand-alone LRU cache

given in [6]. Finally, [28], also discusses the “natural” scaling

achieved by the fact that user requests create additional replicas

which improves system performance (although they focused on

system’s ability to find the newly created sources).

VIII. CONCLUSION

In this paper, we showed that the average network bandwidth

used per download is minimized when the number of replicas

of a file in the network is proportional to the request rate for

the file i.e. ni ∝ λi ∀i, where ni is the number of replicas of file

i, and λi is the request rate for file i. This result on network-

wide benefits of this proportional replication which

complements our earlier results on the per-node advantages of

this replica distribution motivated our inquiry into the ability of

cache replacement algorithms to automatically achieve the

proportional replication. We found that cache replacement

algorithms such as LRU are able to achieve near-proportional

distribution. Our simulation results indicate that the average

network bandwidth used per download with the replica

distribution achieved by LRU is very close to the performance

achieved with the optimal replica distribution in the cases we

simulated. An analytical model was developed for computing

the steady-state replica distribution with LRU in the general

case. Since the user access patterns may change over time, we

also investigated the transient performance of some of the

cache replacement algorithms. The time taken by LRU to

converge to the new steady-state replica distribution after a

change in the user access pattern was found to be very close to

the minimum required by any cache replacement algorithm. We

also developed an analytical model for the transient behavior of

LRU. In conclusion, LRU cache replacement algorithm is a

very attractive mechanism for obtaining the network-wide

benefits offered by proportional replication in peer-to-peer

networks.

REFERENCES

[1] M. Adler, R. Kumar, K. Ross, D. Rubenstein, T.Suel and D. Yao,

“Optimal Peer Selection for P2P Downloading and Streaming,” In Proc.

of IEEE INFOCOM, March 2005.

[2] P. Antoniadis, C. Courcoubetis and R. Mason, “Comparing economic

incentives in peer-to-peer networks,” Computer Networks 46(1), 2004.

[3] L. Breslau, P. Cao, G. Phillips, and S. Shenker, “Web caching and Zipf-

like distributions: Evidence and implications,” In Proc. of IEEE

INFOCOM 1999.

[4] A. Bhide, A. Dan and D. M. Dias, “A Simple Analysis of the LRU

Buffer Policy and Its Relationship to Buffer Warm-Up Transient,” In

Proc. of ICDE 1993.

[5] F. Clévenot and P. Nain, “A Simple Model for the Analysis of the

Squirrel Peer-to-peer Caching System,” In Proc. of IEEE INFOCOM

2004.

[6] A. Dan and D. Towsley, “An Approximate Analysis of the LRU and

FIFO Buffer Replacement Schemes,” In Proc. of ACM SIGMETRICS

1990.

[7] D. Dumitriu, E. Knightly, A. Kuzmanovic, I. Stoica and W. Zwaenepoel,

“Denial-of-Service Resilience in Peer-to-Peer File-Sharing Systems,” in

Proc. of ACM SIGMETRICS, June 2005.

[8] C. Faloutsos, M. Faloutsos and P. Faloutsos, “On power-law

relationships of the internet topology,” In Proc. of ACM SIGCOMM

1999.

[9] C. Gkantsidis and P. Rodriguez, “Network Coding for Large Scale

Content Distribution,” In Proc. of IEEE INFOCOM 2005.

[10] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee and P. Keleher,

“Adaptive replication in peer-to-peer systems,” In Proc. of the 24th

ICDCS, 2004.

[11] K. P. Gummadi, et al., “Measurement, Modeling, and Analysis of a Peer-

to-Peer File-Sharing Workload,” In Proceedings of ACM SOSP, 2003.

[12] D. Hausheer, N. Liebau, A. Mauthe, R. Steinmetz and B. Stiller, “Token-

Based Accounting and Distributed Pricing to Introduce Market

Mechanisms,” in Proc. of Peer-to-Peer Computing, 2003.

[13] J. Kubiatowicz et. al., “OceanStore: An Architecture for Global-scale

Persistent Storage,” In Proc. of the 9th ASPLOS, 2000.

[14] P. Judge and M. Ammar, `”CITADEL: A Content protection

Architecture for Decentralized Peer-to-Peer Systems,” In Proc. IEEE

Globecom, 2003.

[15] A. Kumar, J. Xu and E. Zegura, “Efficient and Scalable Query Routing

for Unstructured Peer-to-Peer Networks,” In Proc. of INFOCOM 2005.

[16] F. Kuhn, S. Schmid and R. Wattenhofer, “A Self-Repairing Peer-to-Peer

System Resilient to Dynamic Adversarial Churn,” In 4th IPTPS 2005.

[17] N. Laoutaris, V. Zissimopoulos and I. Stavrakakis, “On the Optimization

of Storage Capacity Allocation for Content Distribution,” Computer

Networks, Vol. 47, No. 3, pp. 409-428, February 2005.

[18] D. Leonard, V. Rai and D. Loguinov, “On lifetime-based node failure

and stochastic resilience of decentralized peer-to-peer networks,” In

Proc. of ACM SIGMETRICS 2005.

[19] C. Lindemann and O. P. Waldhorst, “Modeling Epidemic Information

Dissemination on Mobile Devices with Finite Buffers,” In Proc. of ACM

SIGMETRICS 2005.

[20] J. Chu, K. Labonte and B. N. Levine, “Availability and Locality

Measurements of Peer-to-Peer File Systems,” In Proc. of ITCom:

Scalability and Traffic Control in IP Networks II Conferences, 2002.

[21] Y. Liu, X. Liu, L. Xiao, L. M. Ni and X. Zhang, “Location-Aware

Topology Matching in P2P Systems,” In Proc. of INFOCOM 2004.

[22] L. Massoulie and M. Vojnovic, “Coupon Replication Systems,” In Proc.

of ACM SIGMETRICS 2005.

[23] J. Pan, Y. T. Hou and B. Li, “Retrieval and freshness thresholds in

hierarchical caching systems,” Computer Networks 44(2), 2004.

[24] M. Pias, J. Crowcroft, S. Wilbur, T. Harris and S. Bhatti, “Lighthouses

for Scalable Distributed Location,” In Proc. of IPTPS '03, Feb. 2003.

[25] K. Psounis and B. Prabhakar, “A Randomized Web-Cache Replacement

Scheme,” In Proc. of IEEE INFOCOM 2001.

[26] D. Qiu and R. Srikant, “Modeling and Performance Analysis of

BitTorrent-Like Peer-to-Peer Networks,” In Proc. of ACM SIGCOMM

2004.

[27] A. Rowstron and P. Druschel, “Storage management and caching in

PAST, a large-scale, persistent peer-to-peer storage utility”, In Proc. of

18th SOSP 2001.

[28] D. Rubenstein and S. Sahu, “Can Unstructured P2P Protocols Survive

Flash Crowds?,” In IEEE/ACM Trans. on Networking, April 2005.

[29] D. Starobinski and D. Tse, ”Probabilistic Methods for Web Caching,”

Performance Evaluation, Vol 46, Nos. 2-3, October 2001.

[30] I. Stoica, R. Morris, D. Karger, M. Kaashoek and H. Balakrishnan,

“Chord: A Scalable Peer-To-Peer Lookup Service For Internet

Applications,” in Proc. of ACM SIGCOMM, 2001.

[31] D. Stutzbach, D. Zappala and R. Rejaie, “The Scalability of Swarming

Peer-to-Peer Content Delivery,” In Proc. of IFIP Networking 2005.

[32] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W.

Willinger, “Network topology generators: Degree-based vs structural,”

In Proc. of ACM SIGCOMM 2002.

[33] S. Tewari and L. Kleinrock, “Analysis of Search and Replication in

Unstructured Peer-to-Peer Networks,” In Proc. of ACM SIGMETRICS

2005.

[34] S. Tewari and L. Kleinrock, “Search and Replication in Unstructured

Peer-to-Peer Networks,” UCLA Computer Science Dept Technical

Report UCLA-CSD-TR050006, March 2005.

[35] S. Tewari and L. Kleinrock, “On Fairness, Optimal Download

Performance and Proportional Replication in Peer-to-Peer Networks,” In

Proc. of IFIP Networking, 2005.

[36] L. Rizzo and L.Vicisano, “Replacement policies for a proxy cache,”

UCL-CS Research Note RN/98/13.

[37] M. Yang and Z. Fei, “A Model for Replica Placement in Content

Distribution Networks for Multimedia Applications,” In Proc. of IEEE

ICC 2003, May 2003.

[38] X. Yang and G. de Veciana, “Service Capacity of Peer to Peer

Networks,” In Proc. of ACM INFOCOM 2004.

[39] R. Zhang and Y. C. Hu., “Assisted Peer-to-Peer Search with Partial

Indexing,” In Proc. of IEEE INFOCOM 2005.

[40] H. Zhu and T. Yang, “Cachuma: Class-based Cache Management for

Dynamic Web Content,” In Proc. of IEEE INFOCOM 2001.

