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Abstract—We recently showed for peer-to-peer networks, that 

having the number of replicas of each object proportional to the 

request rate for these objects has many per-node advantages. In 

this paper we complement those results to show that this 

distribution has network-wide advantages as well. Given these 

benefits of proportional replication, the next issue is achieving 

proportional replication in a decentralized manner. We show that 

local storage management algorithms like LRU automatically 

achieve near-proportional replication and that the system 

performance with the replica distribution achieved by LRU is very 

close to optimal. We also show that the LRU responds to a change 

in user access pattern quickly (the number of accesses taken to 

reach the new steady-state replica distribution with LRU is close 

to the minimum possible with any cache replacement algorithm). 

Analytical models are provided for computing the steady-state 

network-wide replica distribution and the transient period for 

LRU. 

Keywords—Peer-to-Peer, File Replication, Cache Management, 

LRU, Network Bandwidth, Proportional Replication 

I. INTRODUCTION 

Peer-to-peer networks offer the promise of systems that 

automatically scale in capacity as the number of users increases 

and yet are extremely robust, automatically adapting to failures 

of nodes/links as well as to changes in usage patterns, all at 

virtually no cost. These loosely organized networks of 

autonomous entities (user nodes or “peers”), which make their 

resources available to other peers, represent a new computing 

paradigm where the service consumers are, now, the service 

providers as well. So, for example in peer-to-peer file sharing 

networks, users share files and if one wants to download a file 

and another user is sharing that file, one would download it 

directly from that user. Upon obtaining the desired file, one 

may also begin to share that file allowing other users to 

download from them. Thus, a file is likely to have multiple 

replicas in the network with the more popular files having more 

replicas (i.e. more sources to download the file from). The 

replication of files provides the robustness while its correlation 

with popularity provides the automatic scaling according usage 

patterns. Since music file sharing over the Internet is the most 

popular peer-to-peer networking application, characteristics 

associated with music file sharing (e.g. free-riding, short node 

lifetimes, large variation in user connection bandwidth and user 

shared storage, no limits on user storage allocated for 

downloaded content) are usually associated with all peer-to-

peer networking. However, many other applications can benefit 

from peer-to-peer networking. For example, peer-to-peer 

networking can be used to offload load from the service 

provider video server in a video-on-demand service. One may 

also conceive of use of peer-to-peer networking in a shared 

digital library application (for example, a state-funded library 

for all K-12 schools in a state) whereby individual schools (or 

school districts) dedicate fixed amounts of storage for the 

application; the content is brought in upon a user request and is 

kept in the storage and is available to other users at other sites. 

For applications such as these, the presence of an intermediary 

and/or similarity in the user group simplifies the assumptions 

for the peer-to-peer system and it is not unreasonable to assume 

that users are similar and well-behaved (i.e. no free-riding, 

little variation in interests and resources of each user, long 

node lifetimes). If the number of users is not very large and the 

user caches are available for long time durations, a centralized 

solution for the search problem may be feasible. Hence, in this 

paper, we ignore the issue of search costs in our peer-to-peer 

system, concentrating exclusively on the downloading aspects 

of the peer-to-peer system. [35] showed that when the number 

of replicas of each object is proportional to the request rate for 

that object, a user has no advantage in sharing one file over the 

other (as the download load for each file is equal), the total 

download load on each node is same and when queueing delays 

are convex in node utilization, the average queueing delay seen 

by a downloader is minimized. In this paper, we focus on 

system performance aspects and show that in addition to these 

user-centric advantages, the proportional replication 

distribution also minimizes the network bandwidth used 

(measured as the average number of links traversed in a 

download). The system model is discussed in Section 2 and the 

proof of the optimality of the proportional replication for the 

network bandwidth used is presented in Section 3.  

 Given these benefits of proportional replication, we devote 

much of this paper seeking distributed mechanisms to achieve 

such a replication. In Section 4, we discuss the performance of 

some existing cache management algorithms such as LRU, 

LFU, and FIFO. Our simulations show that these algorithms 

achieve near-proportional replica distribution. We, next, 



  

construct a cache management algorithm that achieves the 

proportional replication and compare system performance with 

this algorithm to the system performance when cache 

management policy is LRU. Our simulations show that the 

performance with LRU is only slightly inferior to the optimal 

performance. Therefore, we study the behavior of LRU in peer-

to-peer environments in more detail in Section 5 where an 

analytical model is provided to compute the replica distribution 

LRU will achieve in different situations which can then be used 

to estimate the system performance.  

 As user interests change over time, the replica distribution 

should adapt to the new request rates. Therefore, the utility of 

an algorithm also depends on its ability to converge to the new 

steady-state distribution quickly and/or maintain adequate 

performance during the transient period. We address this issue 

in Section 6 where our simulations show that, upon a change in 

the access pattern, LRU converges to the new steady-state 

replica distribution faster than the cache management algorithm 

that achieves linearly proportional replication. We also provide 

a preliminary analytical model for estimating the duration of 

the warm-up transient period (i.e. the time taken to reach the 

steady-state replica distribution starting with an empty buffer) 

and the replica distribution during this transient period for 

LRU. This model can be used to estimate the transient 

performance with LRU cache management by making similar 

extensions as in [4].  

 Some related work is briefly discussed in Section 7 and 

Section 8 concludes the paper.  

II. SYSTEM MODEL 

Our abstract peer-to-peer system model is shown in Fig. 1. 

The broadband network can have any topology. Our only 

assumption is that the network topology has exponential 

expansion [32]. As discussed in [32], many commonly used 

Internet topology models fit this description. The central server 

is optional and shown only to signify that a file never 

disappears from the system as a result of cache replacement. 

Our simulations do not include the central server and at least 

one replica of each file in the system is maintained by assigning 

a peer (“origin server”) for each file which must always keep 

the file in its cache. 
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Figure 1. Peer-to-Peer System 

We assume that there are M peers in the system (the terms 

peers, users and nodes are used interchangeably in this paper). 

There are N unique files in the system (the term file represents 

any generic object that may be downloaded), each with an 

associated request rate λi for file i per node (the request rates 

are uniform across nodes). We assume that each file is of equal 

size. Nodes have finite local storage space to store file replicas. 

We assume that the storage space at each node is equal and has 

the capacity to store K files. A file may have multiple replicas 

in the system (i.e. ni ≥ 1 where ni is the number of replicas of 

file i in the system). Thus, a node will always find a file it is 

looking for. The specifics of the search mechanism are not 

important as long as the download requests for file i are equally 

distributed over the ni replicas of file i in the system. We 

estimate the network bandwidth used in downloading a file by 

the average number of links along the shortest path to the 

nearest replica of the file. The notation for the various system 

parameters discussed is: 

M = number of nodes in the system 

N = number of unique files in the system 

K = per-node storage size in number of files  

λi = request rate of file i per node      

λ  = ∑ =

N

i i1
λ  

ni  = number of replicas of file i in the system 

V = number of nodes in the underlying link-level topology 

τi(ni) = average number of links to nearest replica for file i   

when there are ni  replicas of the file in the system. 

III. BENEFITS OF PROPORTIONAL REPLICATION 

As discussed earlier, [35] showed that selecting ni ∝ λi as the 

replica distribution offers significant user-level benefits. In this 

paper, we show that this distribution has system-level benefits 

as well. We focus on the average number of links traversed per 

download as our metric for system performance since it 

provides us with an estimate of the network bandwidth that 

each download “consumes”. If the objective is to minimize the 

network bandwidth used, the download source should be the 

nearest replica if multiple replicas of the file are available. We 

derive an expression for the relation between the average 

number of links to the nearest replica of a file to the number of 

replicas of the file assuming that the replicas are uniformly 

distributed over the network. Using the derived expression, we 

formulate and solve our optimization problem to find the 

optimum replica distribution is, once again, ni ∝ λi. We then 

briefly address our assumption of uniform distribution of 

replicas and show (via simulations) that if all peers have the 

same request rates, cache management automatically results in 

a uniform distribution of the replicas over the network. 

A. Link Distance to the Nearest Replica 

Most of the popular topological models of the Internet and 

several other common topologies have the property of 

exponential expansion (i.e. the number of unique nodes 

reached within a hop distance h is exponentially related to the 



  

hop distance) [32]. Therefore, we assume our link-level 

network topology to have this exponential expansion as well. 

Clearly, not every node on the link level topology will be a 

participating peer. We assume that the participating peers are 

uniformly distributed over the entire network. The following 

theorem states our main result that τi, the average number of 

link-level hops to the nearest replica of file i, is logarithmically 

related to ni, the number of replicas of file i, when the 

underlying link-level topology has an exponential expansion. 

Theorem 1:  

For a peer-to-peer network of size M where the underlying 

link-level topology has an exponential expansion, i.e. the 

number of nodes reachable in h hops is kd
h
 where k and d are 

constants based on the link-level topology and the M peers are 

uniformly distributed over the link-level topology, for large 

networks (i.e. as M → ∞) τi(ni), the average number of links 

traversed in downloading file i from its nearest source, is 

related to the number of replicas of file i, ni, as follows: 

τi(ni) = logd(M/ni) + C        (1) 

where C is constant, for finite ni, assuming that the ni replicas 

of a file are uniformly distributed over the participating peers.  

Proof: 

We wish to calculate the expected number of link-level hops 

to the nearest replica of the file to be downloaded given the 

number of replicas of that file in the network.  

Assuming that each node of the link-level topology graph is 

equally-likely to be a participant in the peer-to-peer network, if 

there are V nodes in the link-level topology graph, the 

probability that a randomly selected node is a participant in the 

peer-to-peer network is M/V. Let Sh be the number of 

participating peers reachable in h hops. Since the underlying 

link-level topology has exponential expansion, kd
h
 link-level 

topology graph nodes (where k and d are constants based on 

the link-level topology) can be reached in h hops. These kd
h
 

nodes are participating peers with probability M/V. Therefore,  

Sh = (M/V)kd
h
           (2) 

Assuming that the replicas of a file are uniformly distributed in 

the network, the probability of finding file i at a randomly 

selected node is ni/M when there are ni replicas of the file in the 

network. In addition to notation defined earlier, define: Ph as 

the probability that the nearest replica of file i is available 

exactly at h link-level hops and Fh as the probability that no 

peer within h link-level hops has file i. 

Therefore, Ph = Fh-1 − Fh. The average link-level hop 

distance to the nearest replica is: τi(ni) =  
0

MH

hh
hP

=∑  where HM  

is the link-level distance within which all the M peers can be 

reached.  Hence,           

τi(ni) = 11
[ ]

MH

h hh
h F F−=

−∑   

             = 
1

0

MH

hh
F

−

=∑   −  HM
MHF

 

Using the approximation that the probability of finding file i at 

a node is independent of the probability of finding that file at 

any other node, we can write Fh = (1 ) hS

i
n M− . Since, ni ≥ 1, 

MHF , the probability that the file is not found even after 

probing all nodes, is zero. Therefore, 

τi(ni) = 
1

0
(1 )

h

M

M
kdH

V
ih

n M
−

=
−∑  

Using the Euler-Maclaurin summation formula:   τi(ni) = 

( 1) ( 1)

,1

0

(1 ) [ ( ) (0)]
!

M h
H M

kd n k kkV
i M f nk

B
n M dh f H f R

k

− −

=
− + − +∑∫  

where Bk are the Bernoulli numbers, f(h) = (1 )
hM

kd
V

in M− , f
k
(h) 

is the k
th

 derivative of f(h) and Rf,n is the remainder term in the 

summation for function f(h). 

Define t = (M/V)kd
h
. Therefore, h = logd(Vt/kM) and, hence, 

dh = dt/(tlnd). At h = HM, t = M and at h=0, t =1 (the peer 

downloading the file is a participating peer). Therefore: τi(ni) = 

( 1) ( 1)

,1

1

(1 )1
[ ( ) (0)]

ln !

M t
n k ki k

M f nk

n M B
dt f H f R

d t k

− −

=

−
+ − +∑∫   

Using the Euler-Maclaurin summation formula again, we 

get: τi(ni) = 

1 ( 1) ( 1)

,1 1

(1 )1
[ ( ) (1)]

ln !

t
M n k ki k

g nt k

n M B
g M g R

d t k

− − −

= =

 −
− − − 

 
∑ ∑  

   
( 1) ( 1)

,1
[ ( ) (0)]

!

n k kk
M f nk

B
f H f R

k

− −

=
+ − +∑    

where g(t) = (1 )t

i
n M t− , g

k
(t) is the k

th
 derivative of g(t) and 

Rg,n is the remainder term in the summation for function g(t). 

Since, Bk = 0 for odd k (other than 1) and B4 = 1/720, we 

can neglect the higher-order terms beyond k = 2 and the 

remainder term in the Euler-Maclaurin summation formulas. 

The required g(t), f(h) and g’(t), f’(h) terms at the limits can be 

evaluate as: 

 g(1) = (1−ni/M),  

g(M) = (1−ni/M)
M

/M 

 g’(t) = (1−ni/M)
t
/t[ln(1−ni/M) − (1/t)]     

=> g’(1) = (1−ni/M)[ ln(1−ni/M) − 1] 

     g’(M) = {(1−ni/M)
M

/M}[ ln(1−ni/M) − 1] 

 f(0) = (1−ni/M) 

f(HM) = (1−ni/M)
M

 

 f’(h) = ln(1−ni/M) f(h)d
x
lnd     

=> f’(0) = (1−ni/M) ln(1−ni/M) lnd  

     f’(HM) = M lnd (1−ni/M)
M 

ln(1−ni/M) 

As discussed earlier, 
MHF = 0. Hence, g(M), g’(M), f(HM), 

f’(HM) are all 0. Therefore, 

1

1

(1 )1 1
( ) (1 )

ln 2

t
M

i
i i it

n M
n n M

d t
τ

−

=

 −
= + − 

 
∑     

1 1 1
(1 )[1 ln(1 )] (1 )

ln 12 2
i i i

n M n M n M
d

 
+ − − − − −  

 



  

1
(1 ) ln(1 ) ln( )

12
i i

n M n M d+ − −  

1

1

(1 )1 1 1 1 1
(1 )

ln 2 12 ln 2

t
M i

it

n M
n M

d t d

−

=

−   
= + − + −  

  
∑  

1 1
(1 ) ln(1 ) ln

12 ln
i i

n M n M d
d

 
+ − − −  

                                                                                                                                                    

As M → ∞, applying the series summation 
1

(1 1 )k

k

x

k

∞

=

−
∑  

= lnx, we can write 
1

1

(1 )
t

M i

t

n M

t

−

=

−
∑ = ln(M/ni). As M → ∞, 

the ln(M/ni) term will dominate the other (1−ni/M) terms for 

finite ni and, hence, we can neglect the other terms to finally 

show: 

τi(ni) = (1/ lnd )[ln(M/ni)] + C = logd(M/ni) + C 

� Q.E.D. 

The above theorem establishes the logarithmic relation of τi, 

the average number of link-level hops to the nearest replica of 

file i, to ni, the number of replicas of file i for M → ∞. Our 

simulations indicate that the relation holds for smaller values of 

M also. In Fig. 2, we show the simulation results for a peer-to-

peer network of 1000 peers with an underlying 10,254-node 

PLRG (power law random graph [8]) link-level topology of 

power-law rank-exponent 2.25 (parameters motivated by [8], 

[32]) with the participating peers chosen among the link-level 

topology nodes uniformly at random, and the targeted number 

of replicas placed at the participating peers selected uniformly 

at random. The link distances shown are the average distance 

from each participating peer to the nearest replica. Other 

topologies with exponential expansion give similar results.   
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Figure 2. Link distance to the Nearest Replica (1000 peers, link topology: 

10,254-node PLRG with rank exponent 2.25) 

B. Network Bandwidth Used Optimization 

Our objective is to find the optimum value for ni, the 

number of replicas of file i (for all i), which minimizes τ, the 

average number of links traversed in satisfying file requests, 

i.e.,  

τ  =
1

N i

i

λ

λ=∑ τi(ni)              (3)  

Thus, our optimization problem may be stated as: 

1

1
{ }

( )
N

i i

N i

i ii
n

nMin
λ

τ τ
λ=

=

 
= 

 
∑             (4) 

Subject to:  

∑ =

N

i in
1

 ≤ KM                (5) 

The constraint in (5) states that the total number of replicas of 

all the files should not exceed the total storage available. Since 

there is no benefit derived from having multiple replicas of a 

file at a node, the number of replicas of any file can never be 

more than the number of nodes. Further, there is at least one 

replica of each file. These two conditions give 2N other 

inequality constraints – 

ni ≤ M for all i = 1 to N           (6) 

ni ≥ 1  for all i = 1 to N           (7) 

This is a straightforward optimization problem and we state 

the solution as the following theorem: 

Theorem 2:  

 For a peer-to-peer network whose underlying link-level 

topology is such that the number of links traversed in 

downloading file i from its nearest source, is related to the 

number of replicas of file i, ni, as: τi(ni) = αlogd(M/ni) + C, and 

the storage capacity at each node is equal, then the network 

bandwidth used (measured as the average number of links 

traversed in a download) is minimized when the number of 

replicas, ni, of file i is piece-wise linear with respect to the file 

request rate λi, (i = 1,2, …, N ) i.e. 

(i) The number of replicas of each file ni is proportional to 

the file request rate λi i.e. 

ni ∝ λi           (8) 

if
KKM

i 11
≤≤

λ

λ  ∀i 

and, 

(ii)  The number of replicas 

       ni = Max(1,Min(

0γ

βλi , M))    (9) 

where γ0 is s.t.∑ =

N

i in
1

= KM, in the general case. 
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Figure 3. Optimal Replica Distribution: (i) under constraints on file request 

rates (ii) in the general case 

 

Proof: 

The classical approach to solving constrained optimization 

problems is the method of Lagrange multipliers. First we will 

show the result for part (i). We will ignore the constraints 

specified by (6), (7) for now and instead show that our optimal 



  

solution satisfies these constraints under conditions on λi 

specified in part (i). The Lagrangian of our constrained 

optimization problem is: 

H = ∑ =

N

i

i

1 λ

λ
τI(NI) + γ (∑ =

N

i in
1

− K M)  

Minimizing H over all ni for i = 1 to N: 

0=+
∂

∂
=

∂

∂
γ

τ

λ

λ

i

ii

i nn

H
   i = 1 to N        (10) 

Using τi(ni) = α logd(M/ni) + C = −β ln(ni) + c’,   

ii

i

nn

βτ
−=

∂

∂
        

Substituting this in  (10), we obtain, 

ni  =  
γ

β

λ

λi
 

Applying the constraint ∑ =

N

i in
1

= KM to remove the unknown 

constant β/γ, we obtain the optimum number of replicas as: 

ni  =  
λ

λi
KM  i = 1 to N        (11)  

The constraints in  (6) and (7) are satisfied if 
1 1i

KM K

λ

λ
≤ ≤ ∀i. 

This proves part (i) of the theorem. 

Without this condition on λi, one can rewrite the problem as 

a maximization problem using a modified Lagrangian.  

Usingτi(ni) = -β ln(ni) + c, and including both the constraints  

in  (6) and (7) and rewriting the ni ≥ 1 constraint as -ni ≤ -1, the 

modified Lagrangian is: 

G = β [∑ =

N

i i1
λ ln(ni)] − γ0 [∑ =

N

i in
1

− KM] − 

∑ =

N

i i1
γ (ni−M) − ∑ =

N

i i1
α (-ni + 1) 

The Kuhn Tucker Conditions for the modified Lagrangian are: 

i

i

n

βλ
− γi − γ0 +α i = 0    for  i = 1 to N        (12) 

∑ =

N

i in
1

≤  K M,   γ0 ≥ 0,   and   γ0[∑ =

N

i in
1

− K M ] = 0  (13a) 

ni ≤  M,   γi ≥ 0,   and   γi (ni − M) = 0    for  i = 1 to N  (13b) 

-ni ≤  -1,   αi ≥ 0,   and   αi (-ni +1) = 0    for  i = 1 to N  (13c) 

From  (12):  ni  =

ii

i

αγγ

βλ

−+ 0

 

 (13b) and (13c) imply that: either γi = 0  or  ni =  M, and also 

either  αi = 0  or  ni = 1, respectively. Therefore, the optimum 

solution is: 

 ni = Max(1, Min(

0γ

βλi
, M))      

where, from (13a), γ0 is such that ∑ =

N

i in
1

= KM  when the 

storage size is not large enough to store all the files (i.e. N ≥ 

K). This proves part (ii) of the theorem. 

� Q.E.D. 

In the remaining discussion, we assume 
KKM

i 11
≤≤

λ

λ
∀i 

and use (11) as the optimal replica distribution. For sufficiently 

large KM, 
λ

λi ≥
KM

1
 should be satisfied. If 

λ

λi
≥

K

1
, the 

optimal distribution is for the higher request rate files to be 

located at all M nodes; but if a file is located at all nodes, we 

can simply assume that they are not part of the peer-to-peer 

system as no one ever lacks them and, hence, no download is 

ever made for these files. Without these high request rate files 

in the system, 
λ

λi ≤
K

1
should be satisfied.  

C. Uniform Distribution of Replicas 

The assumption of uniform distribution of file replicas in the 

network allows us to say that the probability of finding file i at 

a randomly selected node is ni/M when there are ni replicas of 

the file in the network. In this section, we wish to verify that in 

our model of a peer-to-peer system where nodes have fixed 

storage (and, consequently, must use some cache management 

algorithm), the replicas are indeed uniformly distributed at 

“equilibrium” when all peers have the same file access pattern. 

Let us clarify what we mean by “equilibrium”. Suppose that 

each file is at one node (the “origin server” for that file) 

initially. As nodes make requests and get these files, the 

number of replicas for each file increases. However, since the 

storage is limited, nodes will eventually have to delete some of 

these replicas. Thus, the number of replicas changes from the 

initial condition of one replica per file over time. We define the 

system to be in equilibrium when the number of replicas of 

each file does not change (on average, over some time 

interval), i.e., the “drift” is zero. 

A generic un-annotated network topology has no physical 

location associations which makes discussing the distribution 

of replicas in the system difficult. Therefore, we introduce a 

coordinate system in our network. Relative to any one 

particular node (the “origin”-node), one can think of the 

location of the other nodes as their hop distance to the origin-

node. Thus, relative to the origin-node, the node location can 

be specified using polar coordinates. A radially different 

pattern is not possible if the file request patterns and the per-

node storage capacity are uniform across all nodes, and the 

topological difference among the nodes is minimal. Therefore, 

the ratio of the number of replicas of a file to the number of 

nodes at each hop from the origin-node is an adequate measure 

of file distribution. For example, if this ratio is the same at each 

hop-distance, one can conclude that the file replicas are 

uniformly distributed in the network. In contrast, if this ratio 

were to decrease with increasing hop distance when the origin 

server is chosen to be the origin-node, one would conclude that 

the probability of finding the file is higher at nodes closer to 

the origin server. For any simulation run, after the topology 

instance is generated, the number of nodes located at each hop 



  

from the origin-node is easily computed. Statistics for the 

number of nodes that have a file can be collected after the 

simulation has run for a sufficient length of time (reached 

“equilibrium”),. 

Fig. 4 shows the file distribution, with a single origin server, 

for three different files – one with a very high request rate, 

another with a moderate request rate and the third with a very 

low request rate. The simulation had 1000 peers with a storage 

capacity to store 10 files each and there were a total of 100 

unique files in the system. The file request rates were Zipf-

distributed with a zipf-exponent of 1.0
1
. The underlying link-

level topology was the 10,254-node PLRG discussed earlier. 

The participating peers were uniformly chosen from the link-

level topology nodes. The file replacement policy when the 

space was needed for a newly requested file was LRU (i.e. the 

Least Recently Used file is replaced).  
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Figure 4. Distribution of files at different hop distances from the Origin Server 

for files with different request rates 

For the simulation results shown in Fig. 4, the number of 

replicas used to compute the fraction of nodes that have the file 

at each hop distance is the average value over 1000 simulation 

iterations after the steady-state replica distribution was reached. 

The deviation from the overall fraction of nodes with the file, 

at different hop distances, is a measure of how uneven the file 

distribution is. As seen in the figure, relative to the overall 

fraction of nodes with the file, the variation in the fraction of 

nodes with the file at different hop distances is very small 

(asymmetries at larger hop distance appear as there are very 

few participating peers at these hop distances). Therefore, we 

conclude that when all the participating peers have the same 

file request rates, at equilibrium, the replicas of a file are 

uniformly distributed over the network. 

IV. CACHE REPLACEMENT ALGORITHMS FOR PROPORTIONAL 

REPLICA DISTRIBUTION  

Ideally, we wish our peer-to-peer system to be autonomic 

and operate at optimal or near-optimal performance with no 

external intervention (as opposed to measuring file request 

rates periodically and then populating the network with a 

 
1 Zipf-exponent of 1 has been found to be adequate to capture the skew in 

request rates for peer-to-peer systems [11] and web environments [3]. 

proportional number of replicas by a centralized mechanism).  

In Section 3.C, we discussed a peer-to-peer system where the 

peers had finite storage space and if space was needed for a 

newly requested file then a previously obtained file was deleted 

using the LRU file replacement policy (except that the last 

replica of a file is never deleted). We plot the steady-state 

distribution of the number of replicas of each file against the 

file request rate in Fig. 5 for the same simulation. As we can 

see, the LRU cache replacement policy obtains near linear 

proportionality except for high request rate files.  

We also simulated other common cache management 

algorithms such as FIFO (First-In, First-Out: replace the oldest 

file), LFU (Least Frequently Used: replace the least frequently 

used file) and Random-Delete (randomly select the file to be 

replaced) and the results are shown in Fig. 5 alongside the 

results for LRU. All these algorithms generate a replica 

distribution similar to LRU: LFU is closer to the optimal 

distribution than LRU while FIFO and Random-Delete are 

slightly further from it than LRU.  
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Figure 5. Number of Replicas vs. Request Rate 

While none of the known cache management algorithms give 

us exactly the desired linear proportionality, an equilibrium 

analysis of Random Delete (when space needs to be made in 

the cache, one of the files is randomly selected for deletion) 

provided us insights into possible ways to constructing 

mechanisms to achieve the linear proportionality in a 

decentralized manner. 

Each file request where the file is not available in the local 

cache results in that file being brought into the cache. Thus, the 

replicas for file i are created at a rate λi(1−ni/M). With random 

deletion, the file removal rate is proportional to the number of 

replicas of the file in the system. At equilibrium, the replica 

creation rate should equal the replica deletion rate. Thus, at the 

equilibrium distribution, we have:  

λi(1−ni/M) = Cni 

where C is a proportionality constant. This explains why 

Random Delete does not give linear proportionality.  

A keen observer will note that a replica creation rate of λi 

will achieve linear proportionality with Random Delete file 

replacements. The deviation from λi creation rate was due to 



  

replicas not being created when the file is available in local 

cache. Creating a replica when the requested file is available in 

local cache can rectify this. Since the replica cannot be created 

in the local cache, it must be created at a different peer. This 

Create-Extra+Random-Delete algorithm was simulated and the 

results are shown in Fig. 6. As expected, the populate-extra 

algorithm does give us the linear proportionality in number of 

replicas. Writing on other peers caches, however, defeats our 

original objective as the extra download incurred on every 

request that is locally satisfied is likely to negate any 

performance benefit derived from the replica distribution being 

closer to optimal. It would be better if we could adjust the file 

deletion rate to be proportional to ni(1−ni/M). This can be 

achieved if the file to be deleted is not selected with uniform 

probability from the cache but is weighted according to 

(1−ni/M). Since, each node does not know the total number of 

replicas of a file in the network locally, we need to devise other 

methods to achieve the (1−ni/M) biasing in the file selection for 

deletion. We know that if the desired linear proportionality was 

achieved, ni/M = Kλi/λ. Therefore, if the global file request 

rates were known locally, we could devise an algorithm that 

selects the file to be deleted with probability proportional to 

Kλi/λ, we may get the desired linear proportionality. The 

simulation results for this DeleteProb_RequestRatesKnown 

algorithm are shown in Fig. 6. Unfortunately, in real systems, it 

is difficult to obtain the global file request rates locally so this 

algorithm does not seem very practical. 
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Figure 6. Optimal Cache Management Algorithms 

To evaluate the benefits (against the cost) of each of these 

algorithms, we should know the average number of links 

traversed per download for these algorithms. Using the τi(ni) = 

α logd(M/ni) + C expression for the average number of links 

traversed in downloading a file that has ni replicas, we can 

compute the average number of links traversed per download 

using (3) to be:   

τ  = α
1

N i

i

λ

λ=∑  logd(M/ni)  +  C’ = 
1

ln
ln

N i

i
i

M

d n

λα

λ=

 
 
 

∑   + C’ 

To remove effects of underlying network topology, we extract 

the replica-distribution-dependent term from τ and define a 

new system performance metric, normalized network 

bandwidth used: 

        τ’ = 
1

ln
N i

i
i

M

n

λ

λ=

 
 
 

∑        (14) 

We compute the normalized network bandwidth used from the 

steady-state replica distribution achieved by the different cache 

replacement algorithms in these simulations. The numbers are 

listed in Table 1.  

TABLE I.  NORMALIZED NETWORK BANDWIDTH USED VS. CACHE 

REPLACEMENT ALGORITHM 

Algorithm LRU LFU FIFO “Optimal” 

ττττ' 1.1897 1.176 1.203 1.1746 

Comparing the performance of the different algorithms, we 

find that no significant advantage is obtained by using LFU 

(especially taking into account the added complexity of 

keeping frequency counters) instead of LRU and that even the 

optimal cache replacement algorithm offers no significant 

advantage.  Thus, LRU cache replacement is a strong candidate 

for use in our peer-to-peer system and we study its performance 

in peer-to-peer environment in more detail in the next section. 

V. LRU CACHE REPLACEMENT IN PEER-TO-PEER 

ENVIRONMENT 

So far, our simulations used zipf-distributed file request rate 

with zipf-exponent of 1.0. To explore the effect of skew in file 

request rates, we show the simulation results for the number of 

replicas against the file request rate in Fig. 7 for two other file 

request rate distributions: a more skewed file request rate 

distribution (zipf-distribution with zipf-exponent 1.5), and a 

less-skewed request rate distribution where the request rates for 

different files are uniformly distributed between the lowest and 

the highest file request rates.  
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Figure 7. LRU performance with varying levels of skew in the request rate 

distribution  

These results suggest that for applications where the access 

patterns do not have much skew, LRU will perform very well. 

Notice that even when the skew in file request rates is so large 



  

that the optimal replica distribution is now defined by  (9) 

instead of  (8), LRU file replacement still achieves near optimal 

replica distribution. 

An analytical model of network of LRU storage can be 

constructed as follows. Since the probability of finding a file is 

the same across the network, it is sufficient to find the 

probability of a file being in storage at any random node. 

Further, one can construct the model from the perspective of a 

particular file, say, file i – all requests for file i move the file to 

the top-most position in the storage; a request for any other 

files moves file i down to one lower position. We set up a 

Markov Chain to represent the position of the file in the stack, 

i.e. the system is in state k when the file is in the k
th

 position 

from the top of the LRU stack: state 1 implies that the file is at 

the top-most position in the LRU stack; state N (N is the 

storage capacity in number of files) means that the file is at the 

bottom-most position in the LRU stack. An additional state, 

state 0, is defined to represent the state when the file is not in 

the storage. A satisfied request for the file always changes the 

system state to 1 (as the file moves to top-most position in the 

storage). A satisfied request for any other file changes the 

system state to next higher state (as that new file now moves to 

the top-most position pushing all other files one position 

down). Satisfied requests for the file include the storage 

owner’s requests for this file (since all file requests are 

eventually satisfied, this contributes to transitions to state 1 

from all the other states) and the requests for the file from the 

other nodes that are satisfied (since nodes always share their 

files, this contributes to transitions to state 1 from all states 

other than state 0). 
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Figure 8. Markov Chain model for the position of file i when per-node storage 

capacity is K 

The model is shown in Fig. 8 where λi is the file request rate 

for file i, λi' is the total request rate including file i’s requests 

from other nodes satisfied by this node and µij,j+1 is the rate at 

which file i is pushed down from position j to position j+1 as 

requests for other files are served by the node. While λi is 

given, the file requests from the other nodes (remote requests) 

complicate the expressions for λi'. A node sends out a file 

request only when it does not have the file. Thus, the rate at 

which the other M-1 nodes send a file request for this file to the 

peer-to-peer network is λipi0, where pi0 is the probability that 

the file i is not available at a node. The nodes that have file i in 

their cache satisfy these requests for file i sent to the peer-to-

peer network. Assuming that the requests are uniformly 

distributed over the nodes that have the file, the request rate for 

file i served by a node that has file i on account of requests 

from other nodes equals  (M-1)λi pi0 /M(1- pi0). Unfortunately 

computing µij,j+1 is much harder for j>1. For j=1, the rate at 

which file i is pushed down is the total rate at which requests 

for all other files are served by this node (including both local 

and remote requests). Thus, µi12 = ∑k≠iλk(1+pk0) where pk0 is the 

probability of not finding file k.
 
However, for j>1, one must 

adjust these rates for the possibility that the requested file may 

be in a position <j in which case, an access to a file k≠i will not 

affect position of file i in the LRU stack. 

[6] suggests one technique to circumvent this complexity. 

The key idea is that at steady-state, the push-down rate for file i 

from position j to j+1 must equal the rate at which file i is 

brought into top j positions of the LRU stack (otherwise the 

probability of finding the file in these top j positions becomes 

unbounded). This conservation of flow principle allows us to 

compute µij,j+1. File i is brought into top j positions under two 

conditions: (i) a local request for file i when file i is not in top j 

positions: the file may be brought to the top position from 

positions j+1…K of the local cache if it is available there or it 

may be brought from a remote node (since we assume that a 

file that may be requested never disappears from the system, all 

file requests are satisfied) (ii) a remote request for file i: since 

the file i is not in top j positions, it must be in the remaining 

j+1…K positions in the local cache for it to show up in top j 

positions on a remote request. The local requests contribute 

λi[1−P(i,1…j)] to the push-down rate where P(i,1…j) is the 

probability that file i is in one of the top j positions in the local 

cache. The remote requests contribute an additional λi[(M-

1)pi0/M(1-pi0)]P(i,j+1…K|j) where P(i,j+1…K|j) is the 

probability that file i is in positions j+1…K of the local cache 

given that it is not in top j positions in the local cache. Thus, 

µij,j+1 = λi[1−P(i,1…j)]  

+ λi[(M-1) pi0 /M(1- pi0)]P(i,j+1…K|j)   (15) 

Even after obtaining all the required rates for the Markov 

Chain model, calculating individual probabilities is very 

involved. [6] provide an approximate expression for pij, the 

probability that file i is at position j in the LRU stack in terms 

of the push-down rates at position j-1 as follows: 
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Other probabilities are defined in terms of pij as: 
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P i j

−

−
 (18) 

pi0  = 1 − P(i,1…K)         (19) 

Starting with P(i,1) = λi, we can iteratively solve Eqs. 15-19 

until the value of pi0 converges. The complexity is O(KN) [6] 

and, in our computations, the value of pi0 converged in only a 

few iterations. In Fig. 9, we plot the number of replicas of each 

file obtained from simulation and MP(i,1…K), the product of 

number of peers in the system and the probability of finding 

file i in the local cache, obtained from Eqs. 15-19 against the 



  

file request rates for M = 5000, N = 500, K = 50 and zipf-

distributed {λi} with zipf-exponent 1.0. As shown in the figure, 

the analytical model agrees very well with the simulation 

results. System designers can use this model to estimate the 

steady-state replica distribution for different system parameters 

and the predicted values can be used to estimate the required 

network bandwidth using (14) for a given cache size or for 

selecting the appropriate size of the per-node user cache to 

limit the required network bandwidth within a desired value. 
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Figure 9. Validation of Steady-state Analytical Model for LRU 

VI. TRANSIENT PERFORMANCE OF LRU CACHE REPLACEMENT 

POLICY 

As we saw in earlier sections, at steady state, LRU and other 

popular cache management algorithms can achieve near-

proportional replication even when the access rates are 

extremely skewed. All our simulations in Fig. 4 had started 

with only a single replica of each file (at their respective origin 

servers) and, the equilibrium distribution was eventually 

achieved in all the cases. Thus, we know that reasonable cache 

replacement policies will also adapt the file replication 

distribution if the user access patterns change. We, however, do 

need to examine the transient performance of the system to 

assure ourselves that: either (a) the transient period is short, or 

(b) the performance during the transient period is acceptable 

(i.e. the peer-to-peer network does not crash for example). We 

conducted a number of simulation runs to study the transient 

performance with the different cache replacement algorithms. 

The basic simulation setup here was identical to that in Section 

4 except that at a certain pre-determined simulation iteration, 

the request rate distribution was changed from zipf-distributed 

with exponent 1 to an exponent of 0 where each file now had 

the same request rates at all nodes. Fig. 10 shows the number 

of replicas of each file with LRU cache replacement with 

increasing simulation iterations starting from a few iterations 

prior to the change. To get a sense of the scale of the x-axis, we 

note that in each simulation iteration, on average, each node 

makes one file request. In the zipf-exponent-1 request rate 

distribution, the lowest file request rate is 0.0001 

requests/node/iteration. Thus, on average, in 10 iterations, the 

least popular file is requested only once.  
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Figure 10. Transient behavior of LRU (the request rate distribution changed at 

iteration label 5)2: each curve represents the number of replicas at  

 From Fig. 10, we note that it takes about 12-13 iterations to 

reach the new steady-state in the presented simulation scenario. 

For zipf-exponent-0 request rate distribution, on average, there 

are 10 requests for each file per iteration. The file with the 

lowest request rate in the original distribution had 1 replica at 

iteration labeled 5 and according to the zipf-exponent-0 request 

rate distribution there should be about 100 replicas in the 

system. Since new replicas are created only upon requests for 

the file, it will take at least 10 iterations to create 100 replicas. 

Thus, the 12-13 iterations LRU took to reach the new 

equilibrium distribution is very reasonable. 

 In the aforementioned simulation, we also changed the 

request rate distribution back to the original zipf-exponent-1 

distribution 400 simulation iterations after the change to the 

zipf-exponent-0 request rate distribution. In Fig. 11, we show 

the number of replicas of each file with increasing simulation 

iterations starting a few iterations prior to when the request 

rates revert back to the original distribution.  
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Figure 11. Transient behavior of LRU (the request rate distribution changed at 

iteration label 5) 

Once again, we see that the number of replicas reaches in the 

neighborhood of the steady-state values in about 12-13 

iterations after which we can say that the system performance is 

close to the steady-state performance. We also note here that 

 
2 In Figs. 10, 11 and 13, each curve is for a different file and shows the 

number of replicas of the file in the iteration indicated on the x-axis. 



  

the rate of convergence to the new steady-state distribution 

appears to be independent to the individual request rates in 

both Fig. 10 and 11. 

Similar experiments were performed for FIFO, LFU and the 

“optimal” cache replacement algorithm discussed in Section 4. 

Instead of presenting the per-file details, as in Figs. 10, 11, we 

condense the replica distribution information by computing the 

normalized network bandwidth used defined in Section 4 for 

the replica distribution at each iteration and show only that in 

Fig. 12. At the 4200
th

 iteration, the request rate distribution was 

changed from zipf-exponent-1 to zipf-exponent-0 and at the 

4600
th

 iteration it was changed back to zipf-exponent-0. As 

shown in the figure, the duration of the transient period with 

FIFO is the same as that with LRU while the optimal cache 

replacement algorithm constructed in Section 4 has a slightly 

longer transient period and a slightly worse performance during 

the transient period (even though the simulations assumed that 

the new file request rate distribution is relayed to the algorithm 

at all nodes instantaneously).   
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Figure 12. Transient Performance of different cache replacement algorithms 

As we can see LFU adapt to the change in request rate very 

poorly (it has better transient performance than other 

algorithms upon reverting back to the original request rate 

distribution only because it had never achieved the steady-state 

distribution for the equal request rate distribution and when the 

request rate distribution reverted back to zipf-exponent-1 

distribution, the replica distribution was close to the steady-

state distribution of LFU for the zipf-exponent-1 distribution).  

This happened because our simulations used an infinite length 

window over which the frequency is counted (with an upper 

bound on the maximum counter value) due to which it takes a 

long time for the algorithm to register the change in access 

patterns (effectively, the replica distribution never changed). A 

shorter window should perform better than shown (but not 

necessarily better than LRU) but maintaining a sliding window 

is a complex task.  

These results suggest that LRU may be an adequate choice 

for cache replacement in peer-to-peer systems. To better 

understand the transient behavior of LRU, we now attempt to 

develop an analytical model for the transient behavior of LRU 

cache replacement. 

Following the approach in [4], which analyzed the transient 

performance of LRU for a database application, we first derive 

the expressions for LRU performance in the cache warm-up 

period (i.e. starting with an empty cache to reaching the steady-

state replica distribution). As we saw in the previous section, 

the number of replicas of each file at steady state can be 

computed as MP(i,1…K) where M is the number of peers in the 

network and P(i,1…K) is the probability of finding file i in the 

cache. We wish to compute the time-dependent probability of 

finding file i in the cache after T accesses, P
t
(i,T), starting with 

an empty cache. Note that once there are enough accesses that 

LRU replacement policy kicks in, the desired probabilities are 

defined by (15)-(19) as derived in Section 5. In this section, we 

are only interested in computing the probabilities while the 

cache is not full.  

We can compute P
t
(i,T) if we know the probability that file i 

is not in the cache after T accesses, p
t
i0(T), using  (19). After T 

accesses, file i is not in the cache only if none of the previous T 

accesses were for file i. Therefore, 

p
t
i0(T) = 1

T

i
λ

λ

 
− 

 
        (20)  

where λi is the request rate for file i. Note that if the file is not 

in the cache, the additional term for requests for file i from 

other nodes satisfied by this node that complicated (15) is not 

required in the warm-up transient analysis.  

Given p
t
i0(T), the probability of finding file i in the cache 

after T accesses is: 

P
t
(i,T) = 1− 1

T

i
λ

λ

 
− 

 
       (21) 

These expressions apply only if the cache is not full yet i.e. 



  

1

( , )
N

t

i

P i T K
=

≤∑          (22) 

One can iteratively compute (21), (22) for increasing values 

of T beginning with T=1 until (22) is violated. The smallest 

value of T at which (22) is violated is the transient period, 

Ttransient. The values of P
t
(i,T) computed at each iteration can be 

used to compute the number of replicas of each file in the 

transient period which can, then, be used to estimate the system 

performance as defined in Section 4 for the transient period.  

We compare the replica distribution during the starting 

period of our simulation with LRU cache replacement to the 

output of our analytical model for the same system parameters 

(M = 1000, N = 100, K = 10 and zipf-distributed {λi} with zipf-

exponent 1.0) in Fig. 13. As we can see in Fig. 13, the transient 

performance predicted by the analysis matches very well with 

the simulation results for the cache warm-up period. The 

analytical model shows (22) being violated at the 13
th

 iteration 

which is the duration of the warm-up transient period in the 

simulation as well. MP
t
(i,T) also appears to match well with the 

number of replicas of each file in the warm-up transient 

duration. Beyond the warm-up transient period, we plot the 

replica distribution based on the steady-state probabilities as 

given in Section 5. 
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Figure 13. Validation of Analytical Warm-up Transient Model  

We also note that the values of P
t
(i, Ttransient) obtained via 

this iterative process (shown in Fig. 13) are close to the steady-

state probabilities P(i,1…K) that we computed in the previous 

section using (15)-(19) (the differences arise as we ignored the 

additional term for requests for file i from other nodes satisfied 

by this node). Thus, this warm-up transient model gives us 

another method of estimating the steady-state system 

performance. 

Another key observation is that the warm-up transient period 

of 13 iterations is the same as the transient period in our 

simulations shown in Fig. 10, 11. Thus, the general transient 

period is related to the warm-up transient period. We know that 

if the request pattern changed such that none of the older files 

were to be requested and a new set of files becomes the active 

set, our arguments in development of (21), (22) will apply 

exactly the same. In the general case where the file request rate 

changes are not as drastic, the same calculations for P
t
(i,T) as 

in (21) may not apply although the duration of the transient 

period is likely to be shorter or the same as that defined by 

(21), (22) which the cache is completely populated according 

to the new access pattern. 

Finally, we add that (22) directly demonstrates the role of 

cache size in determining the duration of the transient period. If 

we increase the cache size K to 20 files in our earlier system, 

our computations show that the duration of the warm-up 

transient period increases to 35 iterations (compared to 13 

iterations for K=10). Intuitively, one can see this since a larger 

cache means more entries must clear out before the distribution 

is defined by the new access pattern. When the request rate 

changes are not as drastic, however, we do expect the transient 

period to be shorter.  

Also, recall from Section 4 that the system performance is 

not very sensitive to the replica distribution when the replica 

distribution is close to the optimal distribution. So, for small 

changes, the system performance should remain reasonable 

even through the transient period. 

VII. RELATED WORK 

Till now, the most popular application of peer-to-peer 

networking has been music/video file sharing over the Internet 

which is fraught with problems such as free-riding, short node 

lifetimes [20], unreliable content quality [7], lack of any 

enforceable payment mechanism. Thus, a lot of research has 

gone into analyzing [2, 16, 18] and solving [12, 14] these 

problems. Even in absence of these problems, finding which 

peer has the desired file is a difficult task especially if one 

attempts to build an ideal peer-to-peer system where all 

participants are equal and there are no central servers. A lot of 

work has gone into designing effective mechanisms for 

searching which peer has the desired file [10, 15, 21, 24, 30, 

39]. Some of the analytical work on search performance in 

unstructured peer-to-peer networks [33, 34] is relevant to our 

work as the average distance to the nearest replica is also the 

number of hops needed to find a source for the desired file in 

flooding-based searches. In particular, our derivation of the 

average distance to the nearest replica over the link-level 



  

topology in Section 3 has the same steps as the derivation of 

the average distance to the nearest replica over the Erdos-Renyi 

random graph overlay network in [34]. Download performance 

in peer-to-peer networks has also been addressed by [1, 9, 22, 

26, 31, 35, 38]. [9, 22, 26, 31, 38] study the gains in reducing 

the download time by splitting a large file into small pieces so 

as to increase the service capacity of a large file rapidly after its 

initial introduction into the peer-to-peer network. [1] provides 

an analytical model for selecting peers so as to minimize the 

download time while [35], like our current work, focuses on 

file replication in seeking the same goal.   File replication is 

addressed in the context of structured peer-to-peer systems by 

[5, 10, 13, 27] among others; [5, 13, 27] are similar to our 

work in that one of their objectives in replication is improving 

the download performance. However, [13,17] study system 

architecture issues. [5] is presents an analytical model for a 

decentralized caching system but since it is in context of web 

caching, the assumptions are different (e.g. unlike our model,  

cached content has limited lifetime in their scenario). Web 

caching are addressed by many others [23, 25, 29, 36, 40] and, 

even though we study a network of cache, some of this work is 

relevant to ours as our assumptions of uniformity imply that the 

system performance can be inferred from the behavior of a 

single cache and, hence, we find similarities in the analyses 

[29] and conclusions [36]. A content distribution network also 

replicates content at multiple sites (to decrease access latency 

seen by end-users) and optimal allocation of system storage is 

an issue in these networks also (e.g. [17, 37]). Even though, 

[17] incorporates caching/replacement in its investigation, in 

general, the overall model is of centralized control over the 

multiple sites so issues such as replica placement have been the 

focus of much of the research in this area. Peer-to-peer 

networking is also being proposed now to support web accesses 

in cooperative mobile environments and [19] presents an 

analytical model for the performance of such a system. Our 

analytical model in Section 5 is very similar to theirs as we 

both extend the analytical model for a stand-alone LRU cache 

given in [6]. Finally, [28], also discusses the “natural” scaling 

achieved by the fact that user requests create additional replicas 

which improves system performance (although they focused on 

system’s ability to find the newly created sources).   

VIII. CONCLUSION 

In this paper, we showed that the average network bandwidth 

used per download is minimized when the number of replicas 

of a file in the network is proportional to the request rate for 

the file i.e. ni ∝ λi ∀i, where ni is the number of replicas of file 

i, and λi is the request rate for file i. This result on network-

wide benefits of this proportional replication which 

complements our earlier results on the per-node advantages of 

this replica distribution motivated our inquiry into the ability of 

cache replacement algorithms to automatically achieve the 

proportional replication.  We found that cache replacement 

algorithms such as LRU are able to achieve near-proportional 

distribution. Our simulation results indicate that the average 

network bandwidth used per download with the replica 

distribution achieved by LRU is very close to the performance 

achieved with the optimal replica distribution in the cases we 

simulated. An analytical model was developed for computing 

the steady-state replica distribution with LRU in the general 

case. Since the user access patterns may change over time, we 

also investigated the transient performance of some of the 

cache replacement algorithms. The time taken by LRU to 

converge to the new steady-state replica distribution after a 

change in the user access pattern was found to be very close to 

the minimum required by any cache replacement algorithm. We 

also developed an analytical model for the transient behavior of 

LRU. In conclusion, LRU cache replacement algorithm is a 

very attractive mechanism for obtaining the network-wide 

benefits offered by proportional replication in peer-to-peer 

networks. 
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