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Abstract

A computational model of the context processing is
presented. It is shown in computer simulations how
a stable context representation can be learned from a
dynamic sequence of attentional shifts between
various stimuli in the environment. The
mechanism can automatically create the required
context representations, store memories of stimuli
and bind them to locations. The model also shows
how an explicit matching between expected and
actual stimuli can be used for novelty detection.
The novelty detection system is used to decide when
new binding nodes should be created and when the
context representation should be shifted from one
context to another. The role of context in
conditioning and habituation is illustrated in two
simple simulations where context learning is
combined with conditioning or habituation.

1. Introduction

In learning theory the concept of a context is often used in
an apparently unproblematic way. Traditionally, contextual
stimuli are assumed to have the same properties as other
stimuli with the exception that they somehow code the
entire experimental situation (Mackintosh, 1983). Another
way of defining contextual stimuli are as stimuli that are
not manipulated by the experimenter (Donahoe and Palmer,
1994). More generally, many cognitive phenomena are
regarded as being context sensitive, but very seldom is the
concept of a context explained. Given the important role of
context in many theories, it is surprising how little
attention this concept has received.

In descriptions of experiments, the contexts often enters
in the same way as other stimuli, but what justification do
we have for including such a hypothetical stimulus in a
model of learning? While a context certainly exists around
the animal, what evidence do we have that supports that it
could be regarded as a single stimulus? Consider, for
example, a situation where the experimental apparatus is
seen as the context. It is possible that a single stimulus
such as the smell of the box or the feeling of the floor is
used to code the situation internally. A more likely

explanation, however, is that a contextual representation
reflects a combination of several stimuli. The context must
be seen as a configurational stimulus. A computational
account for contextual processing must address how several
external stimuli can be combined into a contextual
representation.

We would like to suggest that a contextual
representation is constructed from the sequential scanning of
external stimuli and can be equated with a sequence of
attentional shifts. As attention moves across a scene, a
number of stimuli are perceived in sequence. When each
stimulus is attended, the animal has access both to the
location of the stimulus and to the stimulus itself. It is
then in a position to bind the stimulus to the location and
store the result in memory. By combining several stimulus-
location bindings, a contextual representation emerges over
time.

It is clear that the construction of a contextual
representation must proceed sequentially since an animal is
not able to perceive all stimuli around it simultaneously. If
for nothing else, because it has to turn around to see objects
behind it. A mechanism is needed that can somehow
integrate several sensory impressions. Since the context is
the same regardless of the order in which the environment is
scanned, this mechanism must have the ability to disregard
this order. However, if the order in which the scene is
scanned is controlled by external events, then it is possible
that the order has some significance. In this case, it would
be useful if the contextual representation contained this
information even if it could be ignored when not needed.

Very often, the context is the location where the
experiment takes place. Given that a location is defined by
local or distal stimuli and that these stimuli must be
attended in sequence, no difference exists between a
representation of a context and that of a place. A reasonable
assumption is that the same learning mechanism could be
used in both cases.

Assuming that stimuli in a context are bound to
locations, we may consider in what form these locations are
specified. There exists ample evidence that multiple
coordinate systems are possible for the representation of
locations. These coordinates can be egocentric, i. e.
anchored in the body, for example, in the retina, the head,
the mouth or arm. It is also possible that allocentric



coordinates can be used that are anchored in the
environment. A complicating factor is that the context
itself may contribute to these coordinate representations.

Whatever coordinate system is used to represent
locations, the binding of two stimuli to locations in the
same coordinate system will also implicitly represent the
relation between these two stimuli.

In summary, the concept of a context covers many areas
(figure 1). For example, a context can be a place indicated
by a number of landmarks. It can also be a sequence of
events or actions. In most cases, of course, a context is
both spatial  and temporal since stimuli are usually located
and must be attended in sequence. In the limiting case, a
context can consist of a single event such as the
presentation of stimulus some time ago. In this case, the
context essentially acts as a stimulus trace. A more
interesting context occurs when the learning experiment
itself is the context. The stimuli for the context could even
be internally generated such as thought and the like.
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Figure 1. Two types of contexts. left: A spatial context
given by three stimuli at three locations. right: A
temporal context consisting of three events A, B and C.

2. The Role of Context in Learning

Many types of learning are context dependent. Here we will
mainly consider the role of context in habituation and
conditioning.

Habituation can be defined as a learning process where
an animal learns to ignore a stimulus that does not predict
anything of value to it. Usually this decreasing interest in a
stimulus is studied through its effect on the orienting
response toward the stimulus. This reaction can be
operationally defined as any response that (1) is elicited by
novel stimuli of any modality, and (2) habituates upon
repetition of the stimulus (Gray, 1975). Figure 2a shows
the basic habituation experiment. A stimulus S is shown in
context CX1, and generates an orienting reaction OR. After
a number of presentation, the orienting reaction disappears.

The orienting reaction reappears when a new novel
stimulus is presented (Thompson and Spencer, 1966). This
new stimulus will make the organism more likely to attend
to the original stimulus again. This situation is called
dishabituation (Gray, 1975). This is shown in figure 2b. A
novel stimulus N is presented together with the original
stimulus S and the previously habituated orienting reaction
reappears. A possible explanation for this phenomenon is
that there is a direct link between the detection of novelty
and the temporary shut down of the habituation system. It

is important to realize that for dishabituation to occur, the
habituation system must be able to react to novelty. This
implies that it must learn expectations to which it can
match every stimulus to detect whether it is novel or not.

A possibly related fact is that a new context will also
cause the orienting reaction to reappear (Gray, 1975,
O’Keefe and Nadel, 1978). Since this is similar to the
situation above it may be explained by the same
mechanisms. However, it does not seem entirely
unreasonable that a novel object in an old contexts should
be distinguished from a known object in a novel context.
As we will see below, the proposed model of context
processing is able to function in conditioning in precisely
this way.

The context also influences conditioning. However, in a
normal conditioning experiment, the main influence of
conditioning appears in extinction. While the initial
learning of a response is associated mainly with the
conditioned stimulus, the extinction of the response appears
to be controlled by the context (Bouton and Nelson, 1998).
Figure 2d-e shows the structure of a typical acquisition-
extinction experiment. Like habituation, the effect of
extinction can also be temporarily removed by the
presentation of a novel stimulus (Pavlov, 1927). This is
called disinhibition (figure 2f) and allows the conditioned
stimulus to elicit the conditioned response again. The
conditioned response is also restored by a context change
(figure 2g).

a. Habituation
CX1 + S -> OR => CX1 + S -> no OR

b. Dishabituation
CX1 + S + N -> OR

c. Context Change
CX2 + S -> OR

d. Conditioning
CX1 + CS + US => CX1 + CS -> CR

e. Extinction
CX1 + CS => CX1 + CS -> no CR

f. Disinhibition
CX1 + CS + N -> CR

g. Context Change
CX2 + CS -> CR

Figure 2. Habituation and Conditioning Paradigms. CX1

and CX2: contexts, S: stimulus, N: novel stimulus, CS:
conditioned stimulus, US: unconditioned stimulus, OR:
orienting reaction, CR: conditioned response.



It is interesting to note that these properties are very
similar to the ones described for habituation above. It
suggests that both processes can be explained in terms of a
contextually controlled learning system that acquires an
inhibitory influence on either the innate orienting reactions
or on classically conditioned responses. This requires that
the context system can produce an output that can be
associated with inhibition of a response.

The relation between context and memory is also very
interesting. On one hand, memory is often context
dependent. On the other hand, a temporally extended context
will act in much the same way as a memory. Donahoe and
Palmer (1994) have suggested that working memory could
be equated with context in such tasks as matching-to-
sample where a subject has to remember an object and later
match it to one of several presented stimuli. The
remembered stimulus has been incorporated in the context
and can later control responding or attention.

Another interesting relation between context and
attention is that attention can sometimes be seen as
contextual discrimination (Donahoe and Palmer, 1994), that
is, one stimulus is attended and not the others and this is
controlled by the context.

3. Neural Correlates

Several brain regions have been associated with context
processing and learning. This section briefly reviews the
relation between the different learning processes described
above and various areas of the mammalian brain.

The neural structure most closely connected with
contextual processing appears to be the hippocampus. The
hippocampus must be intact for normal habituation and
extinction (O’Keefe and Nadel, 1978). Many different roles
have been assigned to the hippocampus in different theories
and models. The perhaps most influential theory of the
hippocampus is the cognitive map theory of O’Keefe and
Nadel (1978). They suggest that the hippocampus is
responsible for the mapping of the environment mainly
based on environmental cues. Other suggestions include the
hippocampus as a memory for sequences or events
(Solomon 1979, Rawlins 1985, Olton, 1986), working
memory (Olton and Samuelson, 1976) or configurational
codes (Solomon, 1980). It has been suggested that the
representation of a location of a stimulus and the stimulus
itself that are segregated in neocortex are bound together in
memory by the hippocampus (Mishkin, Ungerleider and
Macko, 1983). Another function associated with the
hippocampal system is the comparison between stored
regularities and actual stimuli (Gray, 1995). The role of the
hippocampus in contextual control of memory and learning
is also well known (Hall and Pearce, 1979).

The prefrontal cortex is often described as a structure
whose role is to inhibit responses that are inappropriate in a
certain context or situation (Shimamura, 1995). It has been
argued that extinction is controlled by the inhibition from
this area (Rolls 1995, Balkenius and Morén, 2000).

Similarily, habituation can be seen as the active process of
inhibiting the orienting reaction to stimuli that are of no
value to the animal (Gray 1975, Balkenius, 2000). The
prefrontal cortex has also been implicated in this process
(Fuster 1997). It is likely that the frontal cortex receives
information about the current context from the
hippocampus. Working together, the hippocampus and
prefrontal cortex could be responsible for the inhibition that
occurs in habituation and extinction (Rolls, 1995, Fuster,
1997).

Several structures in the brain have been implicated in
conditioning. Especially interesting is the role of the
amygdala in emotional conditioning. This structure is
known to be under inhibitory control of the prefrontal
cortex. It appears that the amygdala is involved in the
initial learning of an emotional response while the
prefrontal cortex is necessary for extinction (Rolls, 1995).

Another structure that is inhibited by the prefrontal
cortex is the basal ganglia (Fuster, 1997). This system in
the brain may be involved with the learning of response-
reward associations (Houk, Davis and Beiser, 1995) and the
inhibition from frontal cortex could be used to select among
different motor patterns.
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Figure 3. A Model of Contextual Processing. BIND:
stimulus location binding. MEM: context dependent
memory. CONT: contextual representation. MATCH:
matching between actual and recalled stimuli.

4. A Model of Contextual
Processing

We have seen above that a model of context processing
must include a number of components. The most important
being an explicit context dependent memory that stores
stimuli or events that can be matched with the current
perceptual state and a subsystem that constructs a
representation for the current context. This section presents
a model of context processing in the restricted case of a
spatial context.

Figure 3 shows the proposed architecture for the context
processing system. It consists of four main components.
These modules perform computations in a neural network



like fashion, but we do not attempt to be biologically
realistic. The input to each module as well as its output
uses vector representations. This allows for distributed
representations of stimuli and contexts and makes it easy to
interface the model with other neural network based models
of learning. However, in its present state, the model is best
viewed as a mathematical model rather than as a neural
network since some of the equations below can not directly
be interpreted as local computations in a network.

The external input is assumed to consist of two parts, a
stimulus representation and a place representation. These
two representations correspond to the content of the current
focus of attention (Balkenius, 2000).

The BIND system contains representations for the
binding of a stimulus to a location. Every combination of a
stimulus and a location can recruit a compact representation
in this system. Once a binding node is activated it stays on
until it is explicitly reset. A sequence of inputs of
stimulus-location bindings will activate a set of nodes in
BIND. Together, these nodes can represent several stimuli
and their locations although only one enters the system at
each time. The representation in BIND is context
independent in the sense that the representation of a
stimulus-location binding is independent on the context
where it occurs.

The MEM system has complementary properties. Each
stimulus is stored directly in this subsystem and can be
explicitly recalled when cued by a location. This memory is
context dependent in the sense that the location to stimulus
mapping depends on the current context as received from the
CONT module. This implies that there can in principle
exists one specific memory for each combination of a
context and a location. MEM is thus essentially a
heteroassociator where context and location is input and the
expected stimulus at that location is output.

The output from the MEM module is thus used by the
MATCH module as the expected stimulus at the currently
attended location. This expectation is compared with the
actual stimulus at this location as represented in the input,
and if a mismatch occurs the modules BIND and CONT are
reset.

The output from the BIND module is used by the
CONT to create a representation for the current context. A
context representation is a compact code for the whole set
of binding nodes active in BIND. The context representation
evolves in two ways. As long as the context is not reset by
the MATCH module, every new BIND node that is
activated will be included in the current context. This
implies that the context code can be gradually learnt as the
animal scans its environment. In the second case, if the
MATCH module detects a mismatch and resets CONT
simultaneously with the recruitment of a new BIND node, a
new context will be created.

Together, the mechanisms described above will develop
context representations based on sequences of stimulus-
location inputs. It will also detect novel stimuli and reset
the context when appropriate.

5. Formal Description

This section presents a formal description of the context
model and its computer implementation. The input to the
context system is assumed to vary over time and is not
controlled in any way by the context system itself. In this
respect, the system passively processes whatever signals
reaches its input structures. The input is divided into two
types: locations and stimuli. Both inputs are coded as
vectors to allow distributed representations. The current
stimulus is represented by a vector S and the location is
coded by the vector L. For computational purposes, the
location is also represented by the index l of the maximum
element of L. When the two vectors L and S are appended
together they are called X.

The state of the binding module BIND uses two vectors
B and W, where B is the activity of all the binding nodes
and W are the weights on the connections from the input to
these nodes. The context module CONT uses the vectors C
and U to represent the activity of the context nodes and the
weights on the connections from BIND respectively.
Finally, the MEM module uses the structure M to store the
memory of each context-dependent stimulus place binding.

The state of the different modules are calculated in the
following way: First, the binding module activates a
binding node for the current input. Second, the memory of
the currently attended location is recalled and compared with
the current stimulus input in the matching module. Third,
if novelty is detected the context and binding nodes are reset
otherwise the new context is calculated. Fourth, the activity
of the context nodes are updates, and finally, working
memory is updated.

5.1 Binding

First the distance to each bound pattern is calculated,

Di = d(Wi , X), (1)

where d() is the Euclidean distance, W are the weights from
the input X to the binding nodes B. The index of the best
matching binding is stored in b,

b = arg max
i

Di . (2)

If Db > 0 5.  then a new binding node is recruited, i. e.,

Wnew = X , (3)

Bnew = 1, and

If Db ≤ 0 5.  then the best binding node is activated,
Bb = 1. (4)

In the version of the model described here, the order of the
bindings is disregarded.



5.2 Matching

In the second step, the match between the input stimulus
and the expected  stimulus at the current location l in the
current context c is calculated,

N = Mc,l,i − Si[ ]
i
∑

+
, (5)

where [x]+ = max(0, x). The value N expresses the novelty
of the stimulus and Mc,l is the memory of a stimulus at
location l in the current context.

5.3. Reset or Update

If N > 0 then the stimulus is novel and the context nodes
Ci as well as the binding nodes Bj must be reset. For all i,

Ci  = 0, and, (6)

Bi =
1 if i = new

0 otherwise




As the current input is not reset, Bnew is assumed to resist
being reset and is kept active.

If a new binding node was created in equation (3) above,
a new context representation is recruited,

Unew = B. (7)

Here, Uc is the pattern of the active binding nodes for
context c. Otherwise if N = 0, no novelty was detected and
the current context is updated with the new stimulus-
location binding, for all i,

Uc,i = max(Bi ,Uc,i ) (8)

Equation (8) implies that a context can gradually be
expanded to include more and more bindings between
stimuli and locations.

5.4 Context Calculation

In the next step, unless a reset has occurred, the activity of
the context nodes are calculated,

Ci = BUi , (9)

and the current maximum context is found,

c = arg max
i

Ci (10)

5.5 Memory

Finally, the memory of the currently attended stimulus is
stored,

Mc,l = S . (11)

This completes one cycle of the context system.

6. Simulation Studies

This section described a number of simulations of the
context model. First the basic properties of the context
mechanism is demonstrated. The subsequent simulations
illustrates how a context representation can be used in
habituation, classical conditioning, and extinction. The aim
is here only to show how a context system can interact
with other learning processes. The other systems are kept at
a minimal complexity to illustrate the role of context in
various learning paradigms. We do not pretend to present
full-fledged models of habituation or conditioning.

6.1 Context Learning

Figure 4 illustrates the basic operation of the model. A
contextual representation is built from a number of
stimulus-location bindings. In the simulation, attention
alternates between a location to the left, called LL, and a
location to the right, called LR. In the first context,
stimulus A is to the left and stimulus B is to the right. In
the next context, both locations contains instances of
stimulus B. Finally, in the last context, stimulus B is to
the left and stimulus A is to the right.

In the beginning of the simulation, the simulated
animal first attends to stimulus A to the left. This will lead
to the recruitment of a binding node coding for this
conjunction. The node B0 is activated to represent this
binding. An explicit memory of stimulus A at location LL

is also stored in the working memory MEM. After a few
time-steps the animal attends the location to the right with
stimulus B which will recruit a new binding node, B1. The
combination of binding node B0 and B1 will subsequently
be learned by a context node CX0 which will become active
and represent the current context. In the following time-
steps attention shifts back and fourth between stimulus A
and B which will not lead to any new internal state.

In the second phase of the simulation, the context is
changed by placing a second stimulus B to the left. When
the simulated animal attends to this location, the stored
memory of this location will no longer match the actual
stimulus and novelty will be detected. This novelty will
cause the context and binding representations to be reset. A
new binding node will simultaneously be recruited to
represent the novel stimulus and a new context node will
become active.

When the animal again attends to the stimulus to the
right, the binding node for this stimulus will be reactivated
and included in the new context. Since one of the stimuli
are common to both contexts, the original context will also
be partially active. This distributed context-representation
allows for better generalization between similar contexts
(Balkenius, 1996).
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Figure 4. Simulation of context learning, novelty detection and context change. Ll and LR: location representations. SA and
SB: two stimuli. B0-B3: binding nodes. CX0-CX2: context nodes. Nov: novelty detection. Bind: recruitment of binding node.

In the next phase, the context is changed back again.
This will again trigger a mismatch event and the binding
and context nodes will be reset. This time, however, no
new binding nodes are recruited since there already exist
representations for both A to the left and B to the right.

Instead, the original context node will become active
again. As above, the previous context will also receive
some activation since it has one binding in common with
the current context.

The following phase shows the effect of a second
context change without any learning. Finally, a new
context is encountered with B to the left and A to the right.
In this context, one new binding node will be recruited for
representing A to the right since it has not been encountered
before. The distributed context representation includes some
activation of context 1 but none of context 0 since it has no
bindings in common with the current context.

It should be noted that context learning is an entirely
passive process, it does not depend on what the animal
does. Here it was assumed that the attention alternated
between two locations, but does not matter whether these
attentional shifts are controlled by external stimulus events
or internally by an active scanning. Nor is it necessary that

attention shifts in the orderly way used in this simulation.
In fact, the order in which attention shifts is not used by the
system. The system also ignores the time between each
attentional fixation. This is a simplification since ideally
the context system should represent this information.

6.2 Context in Habituation

We now turn to how the context system can support
context dependent habituation. It is not the aim of this
section to develop a complete model of habituation. The
model below is intended as an elementary example of how
the context system can interact with other learning
processes.

The magnitude of the orienting reaction to a novel
stimulus is assumed to be equal the intensity of the
stimulus reduced with the total inhibition from the context
system,

OR = N − wiCXi
i
∑ , (12)
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Figure 5. Habituation and dishabituation by context change.

where, OR is the orienting reaction, N is the intensity
of the novel stimulus. CXi are the activity of the context
nodes as above and wi are the inhibition from each context
node to the orienting reaction. Habituation is modelled in
the following way,

∆wi = α CXi OR, (13)

where, α is the habituation rate.
Figure 5 shows a simulation of habituation in one

context and a subsequent context change. The simulation
can be seen as two distinct tasks where one is the context
learning task as described above and the second is a
habituation task. The two tasks interact in several ways
however.

In the habituation phase, the simulated animal alternates
between looking at the context stimuli and the novel
stimulus N. Since the model does not know whether a
stimiulus is part of the context or not, all stimuli will
influence the processing in the context system. As can be
seen in figure 5, the context system will recruit binding
nodes for the novel stimulus N as well as for the context
stimuli SA and SB.

An orienting reaction occurs when the novel stimulus is
attended. This reaction will gradually vanish as the
inhibition from the context representation grows in
strength. In the second phase, the context changes and as a
result, the orienting reaction to stimulus N is reinstated. In
this phase, however, habituation is quicker as a result of
generalization from the previous context.

6.3 Context in Classical Conditioning and
Extinction

In the final simulation, we show how the context system
can be used to control extinction in classical conditioning.
A basic equation describing conditioning is the following,

CR = CSu − wiCXi
i
∑ , (14)

where CR is the conditioned response, CS is the intensity
of the conditioned stimulus and u is the excitatory
connection from CS to CR. The sum is identical to the
case of habituation except that the inhibition now acts on
the conditioned response and not on the orienting reaction.
Admittedly, this is not much of a conditioning model. As
above, the conditioning equation described here is not
intended as a full-fledged model. Instead, the aim is to show
the operation of the context system in a classical
conditioning paradigm.

Acquisition of the conditioned response is modelled by
the following equation,

∆u = β US − CR[ ], (15)

where β is the learning rate. Extinction is modelled in a
similar way as habituation above,

∆wi = α CXi CR − US[ ] (16)
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Figure 6. Acquisition, extinction and disinhibition in classical conditioning embedded into a context learning
experiment.

Figure 6 shows a simulation of context in extinction. In
the acquisition phase, the CS is paired with the US and this
causes the excitatory connection between the CS and the
CR to grow. In the second phase, the US is omitted which
will cause the inhibition from the context to increase in
strength according to equation (16). After a few
presentations, the CR will almost disappear. Finally, the
context changes which resets the context. As a consequence,
the inhibition will be removed making the animal react to
the CS again. As for habituation, the CR is now
extinguished again, but with a faster rate than before.

7. Discussion

The model presented is limited in several respects. The
most severe shortcoming is that there exist cases when it
will not be able to resolve which context it is currently in.
For example, assume that the model first encounters a
context with stimulus A both to the right and to the left,
then a second with B at both locations, and finally a context
with A to the left and B to the right. When the final context
is presented it will first look at A then B and so on. Neither
A nor B will trigger the binding system since both bindings
have been seen before. When the system looks at A it will
start to activate the first context, but when attention is
shifted to B, it will be reset again. The same happens when
the system starts to attend B and then moves on to A. In

effect, the context representation will oscillate between the
first and second context, and a new one will not be created.

In a sense, this is correct since the system does not
know that the context does not change with each attentional
shift. On the other hand, it is clearly incorrect since we
know that the context is the same. To resolve this situation
additional assumption have to be made. For instance, a
mechanism similar to that used in the ART model could be
used, where a node that has been reset cannot be activated
for some time (Carpenter and Grossberg, 1986). This
however requires an ad hoc time constant that we did not
want to include in the model.

Another possibility is that a series of novelty detections
are somehow accumulated in such a way that too much
novelty will trigger the creation of a new context. Again,
this will require an ad hoc constant defining what too much
novelty is.

An intriguing possibility would be to code the new
context in a recursive way using the previous contexts. In
this case, the novel context would be represented as a
context that resembles both the first and the second context.
For more complicated situations, it appears that smaller
contexts should be embedded into larger contexts. It would
be useful if a context could be represented at a number of
levels simultaneously (Balkenius, 1996). For example, a
context could represent the spatial location of an animal,
the experimental situation, and the fact that a stimulus was



presented two seconds ago. These are all different
components of a hierarchical context.

In the future, we want to develop an expectancy
matching mechanism that can handle such hierarchical
context. When an expectation is not met, only the part of
the context that produced the expectation need to be reset.
However, it is far from clear how such a mechanism should
work and the experimental data on animals are sparse.

Another limitation of the model is that sequential
information is not represented. In the future, we want to
extend the model with a temporal coding of bindings. This
would allow the output of the context system to be used for
sequence recognition and sequential discrimination.

A final direction for future research is to incorporate
more physiological data into the model. It was hinted above
that the task solved by the model is similar to that ascribed
to the hippocampal system in the brain, but we did not try
to model this structure directly. It is interesting to note that
the context system presented above, especially with the
extensions discussed here, could account for many of the
seemingly disparate properties of the hippocampus. If the
inputs are visual landmarks, then the context nodes will
have properties similar to place cells. Since they store
previously attended stimuli, they can also act as a working
memory. The grouping of several stimuli into a context
will make the context act as a configurational code. Finally,
if a sequential code is used rather than the one described
above, the model could conceivably describe some the
sequence effects and stimulus-trace properties sometimes
associated with the hippocampus.

8. Conclusion

A computational model of the context processing has been
presented. It was shown in compute simulations how a
stable context representation could be learned from a
dynamic sequence of attentional shifts between various
stimuli in the environment. The mechanism can
automatically create the required context representations,
store memories of stimuli and bind them to locations. The
model also shows how an explicit matching between
expected and actual stimuli can be used for novelty
detection. The novelty detection system is used to decide
when new binding nodes should be created and when the
context representation should be shifted from one context to
another.

The role of context is conditioning and habituation was
shown in two simple simulations where context learning
was combined with conditioning or habituation. It has also
been suggested that the function of the context processing
system is similar to that carried out by the hippocampus.
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