
Kinodynamic Motion Planning on Roadmaps in Dynamic Environments

Jur van den Berg Mark Overmars

Abstract— In this paper we present a new method for
kinodynamic motion planning in environments that contain
both static and moving obstacles. We present an efficient two-
stage approach: in the preprocessing phase, it constructs a
roadmap that is collision-free with respect to the static obstacles
and encodes the kinematic constraints on the robot. In the
query phase, it plans a time-optimal path on the roadmap that
obeys the dynamic constraints (bounded acceleration, curvature
derivative) on the robot and avoids collisions with any of
the moving obstacles. We do not put any constraints on the
motions of the moving obstacles, but we assume that they are
completely known when a query is performed. We implemented
our method, and experiments confirm its good performance.

I. INTRODUCTION

The problem we discuss in this paper is kinodynamic
motion planning in dynamic environments. That is, planning
a path for a robot from a start to a goal state in a two- or
three-dimensional workspace that obeys the kinematic and
dynamic constraints on the robot and avoids collisions with
static and moving obstacles in the environment. We assume
that the geometry and motions of the obstacles are given.

The basic, static motion planning problem is usually
formulated in terms of the configuration space, of which
each dimension corresponds to a degree of freedom of the
robot. To take the dynamics of the robot into account, the
configuration space is extended to the state space, whose
states not only contain information about the configuration
of the robot, but also about its velocity. Planning in state
spaces is harder than planning in configuration spaces, as,
for instance, a straight line through the state space is not a
valid motion in general [14].

The approaches that have been suggested for kinodynamic
planning can roughly be divided into two categories. The first
discretizes the state space into a regular grid of reachable
states [5], and the second randomly grows a tree of valid
paths from the start state until a goal region is reached [13].

For dynamic environments, the notion of state-space is
extended to the state-time space, in which time is included
as an additional dimension. Approaches for planning in these
spaces are based on the two sets of approaches mentioned
above. The methods of [8], [17] build a tree of valid motions
from the start state for each planning query. New branches in
the tree are generated by randomly sampling an action from

This research was supported by the Dutch BSIU/BRICKS project and
by the GATE project, funded by the Netherlands Organization for Scien-
tific Research (NWO) and the Netherlands ICT Research and Innovation
Authority (ICT Regie).

Jur van den Berg is with the Department of Computer Science, University
of North Carolina at Chapel Hill, USA (e-mail: berg@cs.unc.edu).

Mark Overmars is with the Department of Information and Computing
Sciences, Universiteit Utrecht, The Netherlands (e-mail: markov@cs.uu.nl).

Fig. 1. An environment with 9 moving obstacles (cylinders). The robot is
shown in the upper-right corner.

the control space of the robot, and integrating it over a short
period of time. Although some promising results have been
achieved, a major drawback is that narrow passages caused
by static obstacles may (heavily) burden the running time of
the method, because all the effort is done in the query phase.
Further, it is only possible to reach a goal region, rather than
a specified goal state, as the planned paths are sequences of
random actions. This latter fact may also cause the paths to
look rather unnatural.

The method of [6] discretizes the state-time space into a
grid, and searches it for an optimal motion. However, to keep
the method computationally feasible, the robot is constrained
to move over a pre-planned path, that is collision-free with
respect to the static obstacles. A state then encodes the
robot’s position and velocity along the path, resulting in a
three-dimensional state-time space. The major drawback of
this method is that constraining the robot’s motion to a path
substantially decreases the maneuverability of the robot. The
method presented in [1] does not have this drawback, as it
constrains the robot to a roadmap, but this method is not able
to take any dynamic constraints on the robot into account.

In this paper, we propose a new approach that combines
the good properties of the latter two methods. It uses a
preprocessed roadmap to guide the motion of the robot,
giving a large maneuverability while keeping the planning
problem tractable, and it also takes the kinematic and dy-
namic constraints on the robot into account.

The roadmap is built in a preprocessing phase, such
that it is collision-free with respect to the static obstacles
and encodes the kinematic constraints on the robot. Hence,
a roadmap has to be built specifically for the particular
kinematics model of the used robot. In this paper we choose
the car-like robot as example, but the results apply to other

Proceedings of the 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems
San Diego, CA, USA, Oct 29 - Nov 2, 2007

ThD11.1

1-4244-0912-8/07/$25.00 ©2007 IEEE. 4253



Fig. 2. The kinematic model of a
car-like robot.

Fig. 3. Creating a shortcut between
two edges in the roadmap.

motion models as well (e.g. human walk [16]). As the quality
of the paths largely depends on the quality of the roadmap,
we require a smooth roadmap containing natural and feasible
paths (see Fig. 1). In Section II we introduce the motion
model for car-like robots and in Section III we will show
how we construct such roadmaps.

Given such a roadmap, a start and goal state on the
roadmap, and a start time, our method plans an approx-
imately time-optimal path on the roadmap that obeys the
dynamic constraints on the robot and avoids collisions with
any of the moving obstacles. To this end, time is discretized
into small steps, and at each time step the robot either
accelerates maximally, maintains its current velocity, or
decelerates maximally. This discretizes the set of possible
velocities and the set of possible positions as well. Hence,
we will plan in three-dimensional state-time grids along the
edges of the roadmap. In [6], a standard A*-algorithm was
used to plan through such grids, but we will introduce a more
efficient search algorithm here. We do not put any constraints
on the motions of the moving obstacles, but we assume
that they are completely known when a query is performed.
Experiments show that our algorithm is capable of planning
in complex environments in the order of a second of running
time. The algorithm will be presented in detail in Section
IV and in Section V we show our experimental results. We
conclude the paper in Section VI.

II. CAR-LIKE ROBOTS

The results we present in this paper apply to different
kinds of kinematic models. For ease of presentation though,
we focus on the car-like model. It is an intuitive model that
is often used in literature [14].

A. Kinematic Model of a Car-Like Robot

A car can be imagined as a rectangle moving in the plane.
Its configuration is defined by a position (x, y), and an
orientation θ (see Fig. 2). Let L be the distance between
the rear axle and the front axle of the car. The configuration
transition equations of the car, in terms of the path length s,
are given by:

x′(s) = cos θ (1)
y′(s) = sin θ (2)
θ′(s) = 1

L tanφ = κ, (3)

where φ is the car’s steering angle, and κ the curvature of
the followed path. To have realistic motions, it is important

that the steering angle φ is continuous along the robot’s
paths. This is achieved when the derivative of the curvature
is constant, say K. Hence, κ′(s) = K. Integrating the above
equations then gives the following:

θ(s) =
∫

κ(s) ds = 1
2Ks2 (4)

x(s) =
∫

cos θ(s) ds =
√

π
K C

(√
K
π s

)
(5)

y(s) =
∫

sin θ(s) ds =
√

π
K S

(√
K
π s

)
, (6)

where C(·) and S(·) are the Fresnel integral functions. The
curves described by these equations are called clothoids.

B. Dynamic Constraints

Above we have seen what curves the robot will traverse.
Here we give the model for the motions along these curves
with respect to time t, taking into account the dynamic
constraints on the velocity and acceleration of the robot. This
gives the following set of equations:

s′(t) = v (7)
v′(t) = a, (8)

where v is the velocity of the robot, and a its acceleration. We
bound the velocity and acceleration from above and below:
vmin ≤ v ≤ vmax, and −amax ≤ a ≤ amax. Note that
vmin ≤ 0, and that a negative velocity corresponds to moving
backwards. Because of the discretization we apply later, we
choose symmetric bounds on the acceleration.

To have realistic motions, we bound the speed with which
the steering wheel can be turned. That is, the absolute value
of the derivative to time of the steering angle φ is upper-
bounded by some maximum Φ. This is achieved when the
derivative to time of the curvature κ is upper-bounded by Φ

L :

|κ′(t)| ≤ Φ/L. (9)

So, when we are given a clothoid curve for some value
of K (see Equations (5) and (6)), the maximal velocity with
which it can be traversed is Φ

|K|L , in order to obey the above
constraint. We will use this constraint as an example in this
paper, but additional constraints may be introduced on the
curvature derivative to time, for instance to prevent the car
from slipping away in curves (see, e.g., [6]).

III. CREATING ROADMAPS FOR CAR-LIKE ROBOTS

In [18], a method is presented that creates a roadmap for
the above kinematic model, based on the well known PRM-
method [9]. It randomly samples configurations (x, y, θ), and
connects them by paths having a fixed curvature derivative.
Hence, their method is mainly suitable in situations where
the robot has a fixed velocity. Also, their roadmaps may
contain unnatural paths due to the randomness involved in
the creation process.

For that reason, we take a slightly different approach for
creating roadmaps: we start with a straightforward roadmap
containing nodes connected by straight-line edges, and then
shortcut each of the sharp turns in the roadmap by a clothoid

4254



curve (a similar approach has been proposed in [15], but it
uses circular arcs as shortcuts, which do not give smooth
steering wheel motions). We want the shortcuts to have the
least possible curvature derivative, such that they can be
traversed with the largest possible velocity. Therefore, we
prefer an input roadmap having a small number of long edges
that cover the connectivity of the free configuration space
well, and have some clearance from the static obstacles. As
we use simple roadmaps as input, we can exploit the vast
amount of literature on the topic of creating them (see, e.g.,
[7] for creating small, well covering roadmaps).

A. Computing Shortcuts

For every pair of edges in the simple roadmap that are
incident to a common node, we compute a shortcut curve
and add it to the new roadmap. Let us look at a node n
with a pair of incident edges making angle γ. Let ` be the
minimum of the half lengths of both edges. We compute
a curve smoothly connecting the points lying at distance `
from n along both of the edges (in order to have a symmetric
curve). Without loss of generality, we rotate and translate
the edges such that node n lies at (`, 0) and that one of its
incident edges lies on the x-axis (see Fig. 3). Let Γ be the
line supporting the bisector of angle γ. The challenge is to
find a value for K, such that the clothoid curve defined by
Equations (5) and (6) intersects Γ perpendicularly. This gives
the following system of equations (note that Γ is defined by
the equation x = `− tan(π

2 −
γ
2 )y):

θ(ŝ) = π
2 −

γ
2 (10)

x(ŝ) = `− tan(π
2 −

γ
2 )y(ŝ), (11)

where ŝ is the s-value for which the clothoid intersects Γ.
Solving for ŝ and K defines the part of the shortcut left of
Γ. It is given by Equations (5) and (6) for 0 ≤ s ≤ ŝ. The
right part is obtained by mirroring the left part in Γ.

If the shortcut is collision-free with respect to the static
obstacles, we can add it to the new roadmap. If not, we can
recompute a shortcut for ` ← `/2. As the simple roadmap
is collision-free, we are guaranteed to find a collision-
free shortcut eventually as ` approaches zero. In Fig. 4 an
example is given of a simple input roadmap and the smooth
roadmap suitable for car-like robots that is obtained after
adding the shortcuts. Creating the roadmap took 0.07s on
an Intel Core2-6400, 2.13GHz. As can be seen from the
figure, the roadmap contains natural paths, and its shape is
easily controllable by manipulating the input roadmap. The
roadmap is valid for cars with any value of L, as far as
kinematics are concerned.

The roadmap resulting from the above procedure is sym-
metric, that is, it can be traversed in both directions, but for
convenience we duplicate each of the edges in the roadmap to
form directed edges, and connect them such that sharp turns
can not be taken at the vertices where three (or more) edges
of the roadmap come together. As a result, any path in the
roadmap is indeed a valid motion for the car-like robot. By
using directed edges, we also distinguish between moving

Fig. 4. A simple roadmap having straight-line edges (left), and the smooth
roadmap after shortcutting all nodes by clothoid curves (right).

backwards, and moving forward in the opposite direction,
which are different motions, obviously.

IV. PLANNING AMONG MOVING OBSTACLES

Above, we have seen how to create a roadmap that encodes
the kinematic constraints on the robot, and is collision-
free with respect to the static obstacles in the environment.
To obey the dynamic constraints on the robot, we have to
consider the state space of the robot, which we will introduce
below. To avoid the moving obstacles in the environment, we
extend the state space to the state-time space, which we will
introduce in Section IV-B. An efficient algorithm to plan
a time-optimal path on the roadmap between a given start
and goal state is presented in Section IV-C. We assume that
the start and goal state are contained in the roadmap (this
can always be achieved by connecting them to the roadmap
before performing the query).

A. State Space

Let us first assume that the roadmap consists of a single
path. The state space of the robot then consists of pairs 〈s, v〉,
where s is the position of the robot along the path, and v the
robot’s velocity. We discretize the state space into a grid by
choosing a small time step ∆t. At each time step, the robot is
allowed to either accelerate maximally, maintain its current
velocity, or decelerate maximally. This gives the following
state transition equations:

a ∈ {−amax, 0, amax} (12)
v(t + ∆t) = v(t) + a∆t (13)
s(t + ∆t) = s(t) + v(t)∆t + 1

2a∆t2. (14)

They result in a regular two-dimensional grid of reachable
states (see Fig. 5), where the spacings in the grid are
∆v = amax∆t along the v-axis, and ∆s = 1

2amax∆t2 along
the s-axis. From a given state 〈s, v〉, three other states are
reachable: 〈s + (2 v

∆v + 1)∆s, v + ∆v〉, 〈s + 2 v
∆v ∆s, v〉 and

〈s + (2 v
∆v − 1)∆s, v − ∆v〉, each one associated with a

different acceleration. This defines a directed graph in the
discretized state space which we call the state graph.

To create the state graph for an entire roadmap rather than
a single path, we construct a state grid along each of the
edges of the roadmap and connect them at the vertices of
the roadmap, such that the robot can choose among all of

4255



Fig. 5. The state grid along a single edge of the roadmap. Only the grid
points marked by the dots are reachable. A part of the state graph is shown
using dotted arrows. Each transition takes one time step.

the outgoing edges when it encounters a vertex. As can be
seen in Fig. 5, only half of the states in the state grid are
reachable. So, in order to connect the state grids smoothly at
the vertices, we subdivide each of the edges of the roadmap
into steps of the largest possible length smaller than ∆s,
such that the edge is subdivided exactly into an even number
of steps. As a result, there is a finite number of reachable
positions in the roadmap. For each of these positions, the
velocity is bounded from above and below; either by vmax

and vmin, or by the dynamic constraint of Equation (9).
Hence, the total state graph contains a finite number of states.
We construct this state graph explicitly.

In the experiments we performed in the roadmap of Fig.
4 (the scene has dimensions 60 × 60), we chose ∆t = 0.2
and amax = 5, resulting in ∆v = 1 and ∆s = 0.1. Further,
we chose vmax = 10, vmin = −2, L = 2 and Φ = 1,
which resulted in a state graph containing 75,609 valid states.
Constructing it took 0.50 seconds, but as it is part of the
preprocessing, this step is not time-critical.

B. State-Time Space

To plan over the roadmap while avoiding collisions with
the moving obstacles, we add the time dimension to the
discretized state space, forming a three-dimensional state-
time space along each of the edges of the roadmap (see Fig.
6). It consists of pairs 〈q, t〉, where q = 〈s, v〉 is a state
contained in the state graph, and t a time value. The time
axis is discretized by the time step ∆t. The moving obstacles
in the environment transform to static obstacles in the state-
time space. They are cylindrical along the v-dimension, as
the robot’s velocity does not influence its collision status.

Like we defined the state graph on the discretized state
space, we define the state-time graph on the discretized state-
time space. It is a directed acyclic graph, that contains a
transition from state-time 〈q, t〉 to 〈q′, t + ∆t〉 if q′ is a
successor of q in the state graph. Also, the transition needs
to be collision-free with respect to the moving obstacles. As
its length (in terms of time) is only ∆t, we assume that
this is the case when both of the state-times it connects are
collision-free (such an approximation is common in motion
planning [1], [12]).

The task is to plan a collision-free path through the state-
time graph from a given start state-time 〈qstart, tstart〉 that
reaches a given goal state qgoal as soon as possible, i.e. for the

Fig. 6. The three-dimensional state-time grid along a single edge of the
roadmap. Obstacles (grey) are cylindrical along the v-dimension.

lowest possible time value. Unlike the state graph, the state-
time graph is infinite, so we construct it implicitly during the
search for a valid path.

C. Planning Algorithm

A straightforward approach for searching a time-optimal
path is the A*-algorithm. It builds a shortest path tree rooted
at the start state-time and biases its growth towards the goal.
To this end, A* maintains the leafs of the tree in a priority
queue Q, and sorts them according to their f -value. The
function f(〈q, t〉) gives an estimate of the length (in terms
of time) of the shortest path from the start to the goal via
〈q, t〉. It is computed as g(〈q, t〉) + h(〈q, t〉) where g(〈q, t〉)
is the time it takes to go from the start to 〈q, t〉, and h(〈q, t〉)
a lower-bound estimate of the time it takes to reach the goal
from 〈q, t〉. In our case, g(〈q, t〉) = t and h(〈q, t〉) is the
distance in the state graph between state q and the goal state
qgoal. This distance is acquired for all states by performing a
single backwards breadth-first search on the state graph from
qgoal prior to executing the A*-algorithm. A* is initialized
with the start state-time in its priority queue, and in each
iteration it takes the state-time from the queue with the lowest
f -value and checks it for collisions. If it is collision-free,
each successor of this state-time that has not been visited
before is inserted into the queue. This process repeats until
the goal state is reached. The algorithm is given below.

Algorithm 1 A*(qstart, tstart, qgoal)
1: Insert 〈qstart, tstart〉 into Q
2: while Q is not empty do
3: Pop the element 〈q, t〉 with lowest f -value from Q
4: if 〈q, t〉 is collision-free then
5: if q = qgoal then return success!
6: for all successors q′ of q in the state graph do
7: if not 〈q′, t + ∆t〉.visited then
8: 〈q′, t + ∆t〉.backpointer ← 〈q, t〉
9: 〈q′, t + ∆t〉.visited ← true

10: Insert 〈q′, t + ∆t〉 into Q
11: Path does not exist; return failure

The state-time graph differs considerably in nature from
regular (directed acyclic) graphs. This is because of each
state-time 〈q, t〉 it is clear a priori that if it can be reached,

4256



Fig. 7. The states collision-checked (gray) by an A*-search (left) and a
repeated A*-search using the freespace assumption (right) in an implicit
8-connected grid where each traversal costs 1. The dark states are colliding.

it will be reached in t time. Hence, we do not need to relax
state-times in the algorithm. Therefore, the above algorithm
is not truly an A*-algorithm, but rather a prioritized breadth-
first search. Also, the state-time graph is implicit; whether
or not traversing a state-time is possible (due to a collision)
has to be checked “on demand” during the exploration of the
graph. Note that collision-checking is an expensive operation
in general, so the cylindrical structure of the state-time
obstacles is exploited to save collision-checks by reusing the
result of previous collision-checks.

We can do better than Algorithm 1, though. If one would
only be concerned with minimizing the number of collision-
checks, an approach taking the freespace assumption [10] is
cheaper. It assumes that the state-times are traversable unless
it knows otherwise. So, it repeatedly plans a time-optimal
path from start to goal, and then collision-checks this path. If
a state-time along the path appears to be untraversable, a new
path is planned taking the newly acquired information into
account. This process is repeated until a path is found that is
fully collision-free from start to goal. If the backpointers are
maintained such that collision-checks from previous paths
are reused maximally, this scheme is guaranteed to use less
or equal collision-checks than Algorithm 1. In Fig. 7, the
difference in the number of collision checks is shown for a
simple 8-connected grid.

This procedure, however, introduces the overhead of re-
peatedly rebuilding a shortest path tree. This can be remedied
by letting the repeated searches maintain a single shortest
path tree, similar to Lifelong Planning A* [11]. This method
was developed for navigation in unknown terrain, but we
adapted it for efficient planning in the implicit state-time
graph. The algorithm is shown in Algorithm 2 (its overhead
can be reduced further, but we left out some details).

The algorithm repeatedly plans a path to the goal given the
current collision-check information (lines 3-11). When a path
has been found, it is collision-checked from the start towards
the goal, and if a collision is detected, the algorithm attempts
to connect the branch of the shortest path tree emanating
from the invalidated state-time to other, valid state-times. If
this fails, it is erased and its leafs whose corresponding state-
times are in the priority queue are removed from the queue
(lines 17-25). This process is repeated until a path is found
that is completely collision-free (line 15).

Algorithm 2 REPEATEDA*(qstart, tstart, qgoal)
1: Insert 〈qstart, tstart〉 into Q
2: while true do
3: 〈q, t〉 ← element of Q with lowest f -value
4: while Q is not empty and q 6= qgoal do
5: Remove 〈q, t〉 from Q
6: for all successors q′ of q in the state graph do
7: if not 〈q′, t + ∆t〉.visited then
8: 〈q′, t + ∆t〉.backpointer ← 〈q, t〉
9: 〈q′, t + ∆t〉.visited ← true

10: Insert 〈q′, t + ∆t〉 into Q
11: 〈q, t〉 ← element of Q with lowest f -value
12: if Q is empty then path does not exist; return failure
13: Construct path π from start to goal by following the back-

pointers from 〈qgoal, t〉
14: Collision-check state-times in π in order of increasing t-

value and stop when a collision is encountered. Let 〈q, t〉
be the last checked state-time

15: if no collision was encountered in π then return success!
16: if q = qgoal then remove 〈q, t〉 from Q
17: else put all successors of 〈q, t〉 into a FIFO-queue F
18: while F not empty do
19: Pop front element 〈q′, t′〉 from F
20: if 〈q′, t′〉 has a visited valid predecessor then
21: 〈q′, t′〉.backpointer← predecessor with lowest f -value
22: else
23: 〈q′, t′〉.visited ← false
24: if 〈q′, t′〉 ∈ Q then remove 〈q′, t′〉 from Q
25: else put all successors of 〈q′, t′〉 into F

V. EXPERIMENTAL RESULTS

We implemented both Algorithm 1 and Algorithm 2, and
performed a first experiment with them in the state graph
constructed in Section IV-A. We chose a start and goal
state that are far away from each other, and we let nine
cylinder-shaped obstacles move around in the scene such
that they heavily impede the robot (see Fig. 1). For the
robot, we used a VRML-model consisting of 11,960 triangles.
The experiments were performed on an Intel Core2-6400,
2.13GHz with 2GByte of memory, and we used Solid as
collision-checker [3]. Calculating the distances of the states
in the state graph to the goal state to provide heuristics for the
search took 0.03 seconds. Finding a path avoiding the moving
obstacles with Algorithm 2 took 1.51 seconds, of which
1.31 seconds were spent on 5,844 collision-checks. With
Algorithm 1, it took 4.80 seconds, of which 4.67 seconds
were spent on 21,373 collision-checks.

Thus, Algorithm 2 saves almost a factor 4 in the number
of collision-checks, at the cost of a slightly increased combi-
natorial overhead. The collision-checks are the major factor
in the running time of both algorithms, but we note that the
relative share of the collision-checks in the total running time
depends on how costly the collision-checks are, which in turn
depends on the complexity of the objects used to model the
robot and the obstacles. We used a fairly complicated robot,
but simple obstacles, which we believe results in collision-
checks of costs typical for many applications. Note that if we
would not exploit the cylindrical structure of the obstacles
in the state-time space, the difference in the number of
collision-checks between the two algorithms is much higher:

4257



TABLE I
RESULTS FOR VARIOUS VALUES OF ∆t

Algorithm 2 Algorithm 1

∆t #states #col col-t tot-t #col col-t tot-t

0.10 576,769 59,840 11.80 16.88 211,027 41.13 44.00
0.15 164,793 9,257 2.01 2.42 39,095 8.05 8.34
0.20 75,609 5,844 1.31 1.51 21,373 4.67 4.80
0.25 37,245 3,739 0.88 1.00 14,966 3.49 3.57

8,976 for Algorithm 2 and 63,193 for Algorithm 1.
We also varied the value of ∆t, the parameter determining

the resolution of the discretization. Note that the sizes of
state graph and the state-time graph grow quickly when ∆t
gets smaller, as ∆v ∼ ∆t and ∆s ∼ ∆t2. Table I gives
the results for different values of ∆t in the same setting as
the above experiment. The results give an indication how
the performance of the algorithms will scale with problems
of different sizes. The columns named “#col” indicate the
number of collision-checks used, “col-t” the amount of time
spent on collision-checks (in seconds), and “tot-t” the total
time needed to plan a path (in seconds).

As can be seen from the table, both algorithms scale
similarly as the size of the state graph increases. Algorithm
1 uses a factor 4 more collision-checks than Algorithm 2,
and for both algorithms, the relative amount of time spent
on collision-checks remains more or less the same.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a new method for
kinodynamic planning in dynamic environments. Our method
extends the method of [6] to work on a roadmap instead of
a path, thereby greatly expanding the maneuverability of the
robot. It also extends the method of [1], so that it takes the
kinematic and dynamic constraints on the robot into account.
An advantage of our method with respect to [8] is that narrow
passage problems caused by the static obstacles are tackled
already during preprocessing (by building a roadmap), so
that they do not affect the query performance.

We implemented our method, and experimental results
show that natural and realistic paths can be computed in
complicated dynamic environments in the order of a sec-
ond of running time using a discretization of a reasonably
high resolution. This makes the algorithm perfectly suited
for many applications, for instance prioritized multi-robot
motion planning [2].

Our paper contains other contributions. Firstly, we have
shown how roadmaps can be created for car-like robots con-
taining visually attractive paths with a continuous curvature
profile. Also, we have exploited the specific nature of the
graphs in state-time space, and presented a search algorithm
that is faster than the traditional A* approach. It works
particularly well for graphs of the type we have seen in our
paper, but it is applicable to any kind of implicit graph or grid
where collision-checks or other expensive operations have to
be carried out during the search to check the traversability of
states. Examples are coordinated multi-robot planning [12]
and Lazy PRM [4].

An interesting direction for future work is to make the
method suitable for real-time application. In real-time set-
tings, one is given a planning query from state qstart to qgoal

at some real-world time tw, which should be answered as
quickly as possible. Thus, we should reserve some amount
of time τ for planning, and initialize the planner with start
state-time 〈qstart, tw+τ〉. The planner must finish within time
τ , otherwise the plan is invalid. However, for our method,
as well as the previously proposed approaches [1], [6], [8],
the amount of time needed to plan a path is difficult to
estimate accurately in advance. Hence, it is difficult to choose
an appropriate value for τ . Moreover, it is impossible to
guarantee that it finishes within this time. A solution to this
problem is to have a planner that is given τ time to initialize,
and then computes a path simultaneously with its execution.
Our planner is easily adapted to this situation, as it can use
the last considered path in the algorithm as an indication
of the global direction towards the goal. Details need to be
worked out, but this remains a subject of future research.

REFERENCES

[1] J. van den Berg, M. Overmars. Roadmap-based motion planning in
dynamic environments. IEEE Trans. on Robotics 21(5), pp. 885–897,
2005.

[2] J. van den Berg, M. Overmars. Prioritized motion planning for multiple
robots. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
pp. 2217–2222, 2005.

[3] G. van den Bergen. Collision detection in interactive 3D environments.
Morgan Kaufmann Publishers, San Francisco, 2004.

[4] R. Bohlin, L. Kavraki. Path planning using Lazy PRM. Proc. IEEE
Int. Conf. on Robotics and Automation, pp. 521–528, 2000.

[5] B. Donald, P. Xavier, J. Canny, J. Reif. Kinodynamic planning. Journal
of the ACM 40, pp. 1048–1066, 1993.

[6] T. Fraichard. Trajectory planning in a dynamic workspace: a ‘state-
time space’ approach. Advanced Robotics 13(1), pp. 75–94, 1999.

[7] R. Geraerts, M. Overmars. Creating high-quality roadmaps for mo-
tion planning in virtual environments. Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, pp. 4355–4361, 2006.

[8] D. Hsu, R. Kindel, J.-C. Latombe, S. Rock. Randomized kinodynamic
motion planning with moving obstacles. Int. Journal of Robotics
Research 21(3), pp. 233–255, 2002.

[9] L. Kavraki, P. Švestka, J.-C. Latombe, M. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.
IEEE Trans. on Robotics and Automation 12(4), pp. 566–580, 1996.

[10] S. Koenig, Y. Smirnov. Sensor-based planning with the freespace
assumption. Proc. IEEE Int. Conf. on Robotics and Automation, pp.
3540–3545, 1997.

[11] S. Koenig, M. Likhachev, D. Furcy. Lifelong planning A*. Artificial
Intelligence 155, pp. 93–146, 2004.

[12] S. LaValle, S. Hutchinson. Optimal motion planning for multiple
robots having independent goals. IEEE Trans. on Robotics and Au-
tomation 14(6), pp. 912–925, 1998.

[13] S. LaValle, J. Kuffner. Randomized kinodynamic planning. Int. Jour-
nal of Robotics Research 20(5), pp. 378–400, 2001.

[14] S. LaValle. Planning Algorithms. Cambridge University Press, New
York, 2006.

[15] D. Nieuwenhuisen, A. Kamphuis, M. Mooijekind, M. Overmars.
Automatic construction of roadmaps for path planning in games. Proc.
Int. Conf. on Computer Games, Artificial Intelligence, Design and
Education, pp. 285–292, 2004.

[16] J. Pettré, T. Siméon, J.P. Laumond. Planning human walk in virtual
environments. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pp. 3048–3053, 2002.

[17] S. Petty, T. Fraichard. Safe motion planning in dynamic environments.
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp.
3726–3731, 2005.

[18] A. Scheuer, C. Laugier. Planning sub-optimal and continuous curvature
paths for car-like robots. Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pp. 25–31, 1998.

4258


