
Domain Models are NOT Aspect Free

Awais Rashid, Ana Moreira

Computing Department, Lancaster University, Lancaster LA1 4WA, UK
awais@comp.lancs.ac.uk

Departamento de Informática, Universidade Nova de Lisboa, 2829-516 Lisboa, Portugal

amm@di.fct.unl.pt

Abstract. In proceedings of MoDELS/UML 2005, Steimann argues that
domain models are aspect free. Steimann’s hypothesis is that the notion of
aspect in aspect-oriented software development (AOSD) is a meta-level
concept. He concludes that aspects are technical concepts, i.e., a property of
programming and not a means to reason about domain concepts in a modular
fashion. In this paper we argue otherwise. We highlight that, by ignoring the
body of work on Early Aspects, Steimann in fact ignores the problem domain
itself. Early Aspects techniques support improved modular and compositional
reasoning about the problem domain. Using concrete examples we argue that
domain models do indeed have aspects which need first-class support for such
reasoning. Steimann’s argument is based on treating quantification and
obliviousness as fundamental properties of AOSD. Using concrete application
studies we challenge this basis and argue that abstraction, modularity and
composability are much more fundamental.

1. Introduction

As new software development paradigms appear on the horizon, it is normal that
debates rage over their merits and demerits. Aspect-oriented software development
(AOSD) [13] is no stranger to this situation. Since Kiczales et al’s invited paper at
ECOOP’97 [22], several points and counterpoints have been made in literature
arguing about the merits and demerits of modularising crosscutting concerns in
separate abstractions. Over the years the focus of aspect-orientation has significantly
expanded beyond programming. A number of aspect-oriented analysis and design
approaches, e.g., [2, 6, 17, 26, 27, 34, 39], aimed at disentangling requirements,
architecture and design descriptions have appeared. These approaches provide explicit
support for identification, modular representation, composition and analysis of
broadly-scoped properties of both a functional and non-functional nature. In fact,
several approaches, e.g., [8, 27, 38], take a multi-dimensional perspective on the
problem and remove the strong distinction between aspects and the concerns they
crosscut. Thus they also remove any distinction about whether a concern is functional
or non-functional hence facilitating uniform modelling of concerns and their
crosscutting influences (amidst other dependencies and interactions).

2 Awais Rashid, Ana Moreira

In his MoDELS/UML 2005 paper [35], Friedrich Steimann, however, argues that
AOSD approaches in general, and aspect-oriented analysis and design approaches in
particular, are merely useful for representing meta-level concepts. His hypothesis is
that aspects are second order entities that only require meta-modelling support and
that domain models are in fact aspect free. His overall conclusion is that aspects are
technical concepts, i.e., a property of programming, and not a means to reason about
domain concepts in a modular fashion. In other words: there are no functional aspects
and non-functional aspects are properties of the solution domain that do not require
first-order representation. In his discussion, Steimann disregards the work on Early
Aspects indicating that just because a functional requirement crosscuts other
requirements does not mean that it should be treated as an aspect. Steimann’s notion
of an aspect is rooted in the properties of quantification and obliviousness as proposed
by Filman and Friedman [14]. He treats these as fundamental properties of any
aspect-oriented approach and, on this basis, argues about the second-ordered nature of
aspects – to paraphrase Steimann: aspects are meta-level concepts that manipulate
base-level (or first-order) elements.

In this paper we argue otherwise. We contend that if one is to discuss whether a
domain model has crosscutting concerns, one cannot disregard the problem
descriptions themselves. Therefore, we base our argument on Early Aspects
techniques which support improved modular and compositional reasoning about the
problem domain. Using concrete examples rooted in these techniques we argue that
domain models do indeed have aspects which need to be modularised effectively to
enable us to reason about them in a modular fashion. Similarly, using concrete
application studies we challenge the fundamental basis of Steimann’s argument, i.e.,
the notion of quantification and obliviousness. We demonstrate that abstraction,
modularity and composability are much more fundamental to AOSD than
quantification and obliviousness (which, though desirable are not necessary defining
characteristics of an aspect). We conclude by discussing that, even if quantification
and obliviousness were to be considered fundamental, firstly, early aspects techniques
meet these characteristics and, secondly, the notion of aspects in the problem domain,
as demonstrated by Early Aspects techniques, flows into the solution space, requiring
first-class modelling of functional and non-functional aspects.

The rest of the paper is structured as follows. Section 2 lists Steimann’s main four
perspectives that give body to his argument. Section 3 debates each of these four
arguments, showing counter examples. Section 4 explains why quantification and
obliviousness cannot be understood as necessary defining properties of an aspect,
discussing other equally valid views not aligned with Filman and Friedman’s
perspective. We argue that, just like with other separation of concerns approaches,
abstraction, modularity and composability are the fundamental characteristics of
AOSD. In Section 5 we discuss how first-class aspects, both functional and non-
functional, in the problem domain flow into the solution space hence requiring their
first class representation in the solution domain. Finally, Section 6 concludes the
paper by discussing how our argument invalidates Steimann’s hypothesis while still
satisfying several constraints set by him.

Domain Models are NOT Aspect Free 3

2. Steimann’s Argument

Steimann’s argument about domain models being aspect free is based on four
different perspectives:

1. Relationship between the notion of an aspect and a role;
2. The lack of any observed examples of arbitrary functional aspects in the

current literature;
3. Aspects being strictly non-functional properties that are in fact aspects of the

solution rather than the problem domain;
4. The second-order nature of aspects, i.e., aspects must always manipulate

entities in a first-order separation.
From the above four perspectives, Steimann argues that for functional aspects to

exist, and hence the need for them to be modelled, they must be at the same level of
abstraction as other elements in the domain. Using a semi-formal proof based on
quantification and obliviousness [14] he argues that aspects are always second-order
statements that manipulate first-order elements thus concluding that they are meta-
level concepts. From this semi-formal proof he also draws his conclusion that no
functional (or domain) aspects exist.

We discuss quantification and obliviousness in detail in Section 4. Before that, in
section 3, we debate each of the above four perspectives underpinning Steimann’s
argument. As mentioned above, Steimann disregards the work on Early Aspects
stating that natural language descriptions are too imprecise to be aspectised. However,
stakeholders, who are the primary descriptors of a problem domain, tend to specify
their problems using natural language. These natural language descriptions are where
aspects first manifest themselves as broadly-scoped properties leading to tangled
representations in requirements models and subsequently in architecture, design and
implementation. If we are to look for the existence of functional aspects in domain
models we must start at the requirements analysis stage. Thus, this is where we start
our search for aspects in domain models.

3. Aspects in Domain Models

When discussing the existence of aspects in domain models, we first examine
Steimann’s perspective on aspects and roles. In subsection 3.1, we demonstrate that
his perspective is just one observation on the relationship between the two concepts
and other equally valid arguments exist that demonstrate the synergy between the two
concepts and their mutual complementarity. Then, in subsection 3.2, we show
evidence, by means of practical examples drawn from the body of work on Early
Aspects, that functional aspects do exist and can be found in everyday problems. In
subsection 3.3, we discuss that non-functional requirements are not just properties of
the solution but in fact properties of the problem that, too, require first-class
modelling support. Finally, in subsection 3.4, we provide additional arguments as to
why aspects require a first-order representation.

4 Awais Rashid, Ana Moreira

3.1 On the Relation between Aspects and Roles

Steimann equates an aspect to a role. He argues that for roles to be appropriately
realised, each object must explicitly implement all the roles it intends to play. In his
view, since most role implementations tend to be specific to the particular class of
objects, it is not reasonable to assume that role implementations can indeed be
aspectised. This is, however, not the case. Several roles can be very generic. Most
design patterns utilise the notion of roles to decouple the pattern implementation from
its concrete usage in a specific application. For instance, the Observer pattern uses the
Subject and Observer roles for this purpose. A number of design modelling
approaches, e.g., Theme/UML [8] have shown how aspect-oriented techniques can be
employed to improve the modular representation of design patterns such as the
Observer pattern. Similarly, Hannemann and Kiczales [16] have demonstrated how
design pattern implementations can benefit from the use of aspect-oriented
programming (AOP) in terms of code locality, reusability, composability and
pluggability. Garcia et al. have used these implementations as a basis of their
quantitative evaluation of the benefits and scalability of AOP [5, 15]. Their studies
show significant improvements in the case of 13 out of 23 design patterns with
regards to metrics such as separation of concerns, coupling, cohesion and size. These
studies mostly represent roles as interfaces with the glue code, between their abstract
representation in the modularised pattern implementation and its concrete application
instantiation, being provided through aspect-oriented composition mechanisms. This
relationship between roles and aspects is entirely different from what is perceived by
Steimann. Roles remain completely polymorphic as they are realised through
interfaces while aspects provide the modularity and composition support essential to
modularise the pattern implementation in a separate aspectual component.

Kendall’s work [20] demonstrates a similar yet orthogonal relationship. She
utilises AOP as a means to improve the implementation of role models. Through re-
engineering of an existing role-based framework to an AspectJ implementation, she
demonstrates that an aspect-oriented implementation is more cohesive than an object-
oriented one.

Hannemann and Kiczales as well as Kendall utilize AOP as a means to improve the
modularity of role-based implementations. Another different, yet equally valid,
perspective arises from the ability of roles to help us realise multi-faceted objects.
Roles can apply (often dynamically) across the system and hence, role-based systems
tend to be less prescriptive about how objects interact. This ability makes it possible
for role-models to facilitate aspect composition as is the case in CaesarJ [28]. In this
case the provided and required interfaces specify the roles an aspect can play in a
composition and those it expects of other modules in the system.

Steimann further argues that roles are polymorphic by nature and aspects are not.
This is not true. Firstly, most aspect-oriented approaches facilitate aspect inheritance
hence respecting the substitutability semantics that are normal in object-oriented
hierarchies. Though approaches such as AspectJ [1] restrict the programmer to
implicit aspect instantiation through the language framework, other techniques, e.g.,
CaesarJ [28], Composition Filters [4], JBoss [18] and Vejal [33], facilitate explicit
aspect instantiation hence supporting substitutability of an aspect instance of a sub-
aspect-type whenever an instance of a super-aspect-type is required. Since most of

Domain Models are NOT Aspect Free 5

these approaches reify aspects as first-class objects (or use Java classes to specify
aspect behaviour with XML descriptors specifying the aspect compositions), any role
realisation using such AOP mechanisms can have the same polymorphic nature as a
pure OO role realisation. It is perfectly conceivable that using an approach such as
Composition Filters one can have a core object with a set of attached filters, each of
which realises a specific role the object has to play (cf. Figure 1 – note only incoming
message filters are shown but similar logic applies to outgoing messages). The per
instance attachment ability of Composition Filters further facilitates an object-specific
(unlike class-specific implementation in most standard OO techniques) configuration
of roles that an object may participate in – this has been realised in the context of
implementing roles at each edge of association and aggregation relationships using
the SADES implementation of composition filter concepts [31]. Since such filters are
implemented as first-class elements, polymorphic properties of roles are fully
preserved.

Core
Object

Messages

Series of
Dispatch Filters

Role Implementations

Object
Interface

Figure 1: Polymorphic Role Implementations with AOP using Composition Filters

Having established the complementary nature of roles and aspects, we can also say

that aspects do exist in domain models. Roles are a domain concept. Different objects
in different domains play different (perhaps sometimes overlapping) sets of roles.
Since roles have a broadly-scoped nature and aspects can be used to realise role
models in a fashion that supports role modularity without compromising role
polymorphism, aspects do exist in domain models. However, one might argue that
roles naturally form good candidates for aspects. In a system not following a role
model design principle, are there indeed crosscutting functional and non-functional
properties that are first-order domain elements? We discuss this next.

3.2 Observed Examples of Arbitrary Functional Aspects

For such observed examples, we turn to the extensive body of work on Early Aspects
[2, 6, 8, 17, 26, 27, 34, 39]. Steimann disregards the work in this space by stating that
the language of requirements is informal and that aspect-oriented requirements
engineering approaches do not satisfy the quantification and obliviousness properties.
Requirements engineering is mainly concerned with reasoning about the problem
domain and formulating an effective understanding of the stakeholders’ needs. Such
an understanding leads to the emergence of a requirements specification that forms a
bridge between the problem domain and the solution domain, the latter being the
system architecture, design and implementation. So if one is to argue about the
existence of aspects in domain models, one must examine the body of work in Early

6 Awais Rashid, Ana Moreira

Aspects and specifically that on aspect-oriented requirements engineering. Though we
argue in Section 4 that quantification and obliviousness are desirable, not
fundamental, properties of AOSD approaches, Steimann’s assertion that Early
Aspects techniques do not satisfy these properties is incorrect. In fact, several
approaches, e.g., [2, 6, 27, 34, 39], do not require any specific hooks within the base
decomposition hence satisfying the obliviousness property. Furthermore, they have
powerful composition mechanisms based on high-level declarative queries and
semantics-based join point models that certainly do satisfy the quantification property.
Figure 2 shows simplified viewpoint and aspect definitions as well as an example
composition specification in the viewpoint-based aspect-oriented requirements
engineering approach we presented in [34] – note we omit the XML notation for
simplification. The problem domain in question is that of online auction systems. We
can observe that the base concerns, i.e., the viewpoints Seller and Buyer are oblivious
of the aspect Bidding whose associated composition specification quantifies over a set
of viewpoint requirements to which it applies. Incidentally, note that the aspect
Bidding is a core functional property of the system and not a non-functional one.

Viewpoint: Seller
R1: A seller starts an auction.
R2: A seller sets the closing time for an auction.

Viewpoint: Buyer
R1: A buyer can browse various auctions in the

system.
R2: A buyer can bid for items available for auction.

Aspect: Bidding
R1: Bids can only be placed if an auction is in progress

Bidding Composition
For Buyer.R2 apply Bidding.R1 so that:

Seller.R1 = satisfied
and
Current Time < Closing Time in Seller.R2

Figure 2: Obliviousness in viewpoint-based aspect-oriented requirements engineering

Reasoning about the problem domain with early aspects
Let us look at the specific problem description of an online auction system and
analyse what are the various crosscutting functional and non-functional concerns. We
use a viewpoint-based requirements specification mechanism. Aspects in the
specification crosscut the viewpoints, each of which represents requirements from a
specific stakeholders’ perspective. The viewpoints in this specific problem description
are also analogous to roles as they capture the requirements about specific user roles,
i.e. the System Administrator, Customer, Seller, Buyer, System Owner and
Webmaster. As shown in Figure 3, such a system has a number of concerns that
crosscut the requirements of these various viewpoints (or roles). For instance, the
bidding aspect affects the customer viewpoint because customers are interested in
bidding for the items being auctioned. It also affects sellers as they are the primary
stakeholders interested in the bids. At the same time, the system administrator is
interested in ensuring that bids are only received until the specified auction closing
time, and so on. The same is true of the selling aspect which affects these multiple
viewpoints. Another aspect of significance is the bid solvency concern which dictates
that all placed bids must be solvent, i.e. a customer must have more credit than the
sum total of all the bids s/he has in progress. This is of key concern to the system
administrator and owner as they wish to ensure that sellers recover their due
payments. At the same time, this is a key factor in the seller choosing the specific

Domain Models are NOT Aspect Free 7

auction system for the security and trust the bid solvency aspect offers. All the
aspects, i.e. bidding, selling, bid solvency, etc. are functional properties of the domain
hence requiring first-class modelling support. They are not properties of the program
to be developed to satisfy the auction system requirements. Nor are they second order
entities as the various viewpoints have strong dependencies on the semantics of these
aspects and are at the same level of abstraction as the aspects themselves.

Customer

Seller BuyerSystem AdministratorWeb Master System Owner

provide
requirements

provide requirementsprovide requirements

<<aspect>>
Bidding

<<aspect>>
Selling

<<aspect>>
Bid Solvency

<<aspect>>
Security

<<aspect>>
Concurrency

<<aspect>>
Transaction

<<aspect>>
Logging

<<aspect>>
Availability

crosscuts crosscuts crosscuts crosscuts
crosscuts

crosscuts

crosscuts

crosscuts

Requirements structured per viewpoint
VPSeller VPBuyer VPSystemOwner

Figure 3: Aspects in a viewpoint-oriented model of the auction system

Other evidence in existing literature
Jacobson and Ng [17] offer an aspect-oriented use case approach to handle
stakeholder concerns from requirements analysis through to low-level design. Their
proposal is based on the observation that use cases reflect stakeholders’ concerns and
are crosscutting by nature. Therefore, each use case is encapsulated in a use-case
module which typically contains one non-use-case specific slice (that only adds
classes to the module) and one or more use-case slices which contain classes and
aspects specific to the realisation of the use case. It is worth observing that use-case
slices (and, therefore, aspects) identified in this work are typical functional aspects
and may represent extensions, inclusions and certain secondary flows used in classical
object-oriented modelling, which makes use case slices abundant for each new
problem. In their hotel reservation system example, Jacobson and Ng have identified
a number of functional aspects, such as handle waiting list, checking in customer and
handle no room.

In the Theme approach by Clarke and Baniassad [8], a theme encapsulates a piece
of functionality or aspect or concern that is of interest to a developer. At the
requirements analysis level, themes are classified sets of requirements (taken directly
from the requirements description document). Aspect themes are those that might be
triggered in multiple different situations. They identify several examples of theme
aspects, many of them being functional, e.g., functional crosscutting themes in a
crystal collection game, namely, Track-Energy, Challenge, Drop.

In [26], Moreira et al use aspects to modularise and compose volatile concerns.
Many of these volatile concerns are functional, such as card solvency and calculate
fares in a subway system and bidding, order handling, payment and monitoring in a
transport system.

8 Awais Rashid, Ana Moreira

D’Hondt and Jonckers [10] provide an approach for representing business rules as
aspects. Business rules are highly domain- and application-dependent and crosscut
other domain elements. Examples of such business rules include: loyal customers are
entitled to a 5% discount; all customers who have a charge card are loyal, and so on.

3.3. On the Notion of Non-Functional Requirements being Solution Domain
Properties

Steimann argues that non-functional requirements are not elements of the problem
domain and are, instead, technical properties and therefore only appear at the solution
domain level. This is not so, however. Several other well-established approaches
(goal- and agent-oriented [7, 11], for example) have demonstrated the need for putting
non-functional requirements at the forefront of developers’ thinking. In fact, many of
these properties reflect real stakeholder concerns, even at the strategic organisational
level, and their existence can be noticed explicitly and implicitly in the requirements
descriptions. Therefore, we should not put those concerns on hold until the
implementation phase is reached. And, as mentioned earlier, if we are to prove that
aspects exist at the modelling analysis level, we cannot ignore a significant part of
what constitutes one of the primary bases for our work: the requirements descriptions.

Our auction system model in Figure 3 also shows a number of non-functional
aspects, i.e., security, concurrency, transaction, logging and availability. Again,
though these non-functional aspects will be present in other domains, the
requirements pertaining to these will nevertheless be domain specific and dictate
different types of needs. For instance, in the auction system, the security needs are
mainly concerned with ensuring that all users accessing the system are authorised, the
communication between the client and server uses a secure connection and so on. On
the other hand, security requirements for a home security monitoring system will
include ensuring that all doors and windows have locks, alarms are wired to those
locks, motion detectors fitted, etc. Security requirements for a transportation system
might be related to special arrangements necessary when transporting military assets
or sensitive documents. Though the non-functional property security appears in all
these domains, the specific requirements differ and so will the solutions to satisfy
those requirements. Also note that the transaction aspect is also a property of the
domain as it relates to customers completing their transactions and obtaining their
goods. Just because it may map on to a concrete transaction processing aspect in the
implementation does not imply that it is a property of the programming (as stated by
Steimann). When analysing the problem domain, the concept of a transaction will
have specific properties, e.g., a long transaction in an auction system where a
customer places several bids on the same item in response to increasing bids from
other users. This is in contrast to a transaction in a banking system where the general
nature of a transaction is typically short: users go to the ATM or bank clerk to
withdraw cash and the transactions do not last for days or weeks as is the case for an
auction system. At the domain analysis level we are interested in modelling the
semantics of a transaction from a user/stakeholder perspective and not from the
perspective of specific locking or concurrency protocols that may be employed during
implementation.

Domain Models are NOT Aspect Free 9

3.4 On the First-Order Nature of Aspects

The discussion in Sections 3.1-3 clearly demonstrates that functional and non-
functional aspects are properties of the domain and therefore must be modelled at the
same level of abstraction as other domain concepts being analysed. Here we offer
further evidence of the first-order nature of aspects.

In his paper, Steimann offers a semi-formal proof regarding the second-order
nature of aspects. This proof is founded on the presence of a base decomposition, i.e.
he envisages that there will always be a dominant decomposition paradigm employed
for modelling domain concepts and that aspects will crosscut concerns in this
dominant decomposition. However, a number of approaches in AOSD remove the
strong distinction between base concerns and aspects. Instead they take a multi-
dimensional perspective on separation of concerns and their subsequent modelling.
This means that there is no dominant decomposition. All concerns, whether they are
functional or non-functional, classes or aspects, are at the same level of abstraction.
This has significant advantages for domain analysis and modelling. One can fold or
project one set of concerns on another set of concerns, as needed, to understand their
mutual dependencies and influences, including crosscutting ones. This provides a
powerful composition mechanism as all concerns are composable in a uniform
fashion. Concerns can be incrementally composed to build composite concerns which
can in turn be composed together to form more coarse-grained concerns. Such multi-
dimensional approaches have been proposed for requirements analysis [8, 27, 37, 38],
design [3, 8, 19] and implementation [3, 38]. Models in such approaches invalidate
Steimann’s proof as all concerns in a multi-dimensional model are first-order entities.

4. Quantification and Obliviousness

In [14] Filman and Friedman proposed a simple classification of the relationship
between aspects and classes based on the notions of quantification and obliviousness.
Quantification is defined as the ability of an AOP pointcut language to specify a
predicate which can match a variety of join points in the static class definitions and
dynamic object interaction graphs. Obliviousness, on the other hand, is the ability of a
class to be aspectised without having to specially provide any hooks to expose the
various join points that aspects might want to quantify over. The statement in [14] is,
however, a position statement and the authors do not imply that their classification is
the only classification of fundamental properties of AOP. Nor is the classification
intended as a definition of the fundamentals of AOP. There are other classifications
that focus on other facets of the relationship between aspects and classes. For
instance, Kersten and Murphy [21] have proposed a classification based on their
experience in developing the ATLAS web-based learning system. They categorise
aspect-class relationships into:
• class directional: the aspects know about the classes but not vice versa. This is

analogous to Filman and Friedman’s obliviousness.
• aspect directional: the classes know about the aspects but not vice versa. This

means that classes are no longer oblivious of the aspects. Classes may need to be

10 Awais Rashid, Ana Moreira

annotated to specify the intention of fields and methods, e.g., as in meta-data-
based pointcut expressions [25], instead of relying on lexical matching in existing
pointcut expression mechanisms.

• open: this is a union of aspect directional and class directional – both aspects and
classes know about each other.

• closed: neither the aspects nor the classes know about each other. This applies to
systems with strong encapsulation, e.g., [30].

Kersten and Murphy’s classification demonstrates that there are several non-
oblivious modalities of the aspect-class relationship. In fact, a number of application
studies have shown that, in a variety of cases, obliviousness is neither achievable nor
desirable. Kienzle and Guerraoui [24] and Fabry [12] argue that when modularising
transaction management concerns only syntactic obliviousness is achievable, i.e.
syntactic representation of aspects and class models may not contain direct references
to each other. However, semantic obliviousness is not desirable as objects need to be
aware of their transactional nature. Similarly, Rashid and Chitchyan [32] demonstrate
that, in the context of a database application, persistence can be effectively aspectised.
However, only partial obliviousness is desirable. This is because persistence has to be
accounted for as an architectural decision during the design of data-consumer
components – GUI components, for instance, need to be aware of large volumes of
data so that they may be presented to users in manageable chunks. Furthermore,
designers of such components also need to consider the declarative nature of retrieval
mechanisms supported by most database systems. Similarly, deletion requires explicit
attention during application design as mostly applications trigger such an operation.

Quantification too is only a desirable property of any AOSD technique. No doubt
predicate-like pointcut expressions, e.g., [29, 36] provide a means to match a range of
join points in design or code models. However, in several situations that Colyer et al.
[9] refer to as heterogeneous aspects, a pointcut expression may only select a single
join point (i.e. no pattern-matching a la AspectJ is employed). The encapsulation of a
number of such pointcuts and their associated advice in an aspect still modularises a
crosscutting concern, though pointcuts do not employ any quantification mechanism.

There are, of course, alternative aspect composition models that do not rely on
predicate-like pointcut expressions. We discussed role-based composition in Section
2.1. Such role-based composition models are often found in aspect-oriented
architecture design approaches where connectors and associated roles manage aspect
composition [2, 30]. Similarly, the increasing drive towards semantics-based pointcut
expressions in AOSD means that at first glance a pointcut may not be explicitly
quantifying over multiple join points. However, the semantics to be matched by the
pointcut expression will inevitably be implicitly quantifying over other system
elements. One such semantics-based pointcut expression mechanism has been
developed in the requirements description language from AOSD-Europe [6]. The
language enriches existing requirements descriptions with additional semantics
derived from the semantics of the natural language itself. Therefore, as shown in
Figure 4, the constraint specification (analogous to a pointcut expression) can match
all the aspect requirements where the subject of the sentence (in a grammatical sense)
is a seller and the object (again in a grammatical sense) an auction with an end
relationship between the subject and object. Similar semantics-based matching is done
in the base and outcome expressions. Instead of using a syntactical match as in Figure

Domain Models are NOT Aspect Free 11

2 (bidding composition), we are instead matching elements based on the semantics
derived from the requirements descriptions, i.e. the subject, object and nature of
relationship between the subject and object. Such semantics-based join point models
have also been proposed for aspect-oriented design [36] and programming [29, 33].

<Composition name="CancelAuction">
<Constraint operator="begin/end">subject="seller" and relationship="end" and object="auction"</Constraint>
<Base operator="ifNot">subject="auction" and relationship="begin"</Base>
<Outcome operator="satisfy">all requirements where subject="start date“ or object=“start date”</Outcome>

</Composition>

Figure 4: Semantics-based composition in the AOSD-Europe RDL

So if quantification and obliviousness are not fundamental characteristics of an
AOSD approach, what is fundamental for aspects? In our view, the same
characteristics that hold for other separation of concerns mechanisms are also
fundamental for aspects, i.e. abstraction, modularity and composability. It is not
quantification and obliviousness but the systematic support for abstraction, modularity
and composability of crosscutting concerns [34] that distinguishes AOSD techniques
from other separation of concerns mechanisms.

4.1 Aspects are about Abstraction

Abstraction is a means to hide away the details of how a specific concept or feature
may be implemented in a system. Abstract types provide us a means to reason about
relevant properties of a problem domain without getting bogged down in
implementation details. So the first question we need to address is whether aspects
provide any benefits in terms of abstraction. In fact, abstraction is as fundamental to
AOSD as it is to any other separation of concerns mechanism. The notion of an aspect
allows us to abstract away from the details of how that aspect might be scattered and
tangled with the functionality of other modules in the system. At the modelling level,
aspects help us abstract away from implementation details, for instance, the examples
of security and transactions in Section 3.3. At the same time, we can refine aspects at
a higher-level of abstraction, e.g., aspects in requirements models, to more concrete
aspects hence gaining invaluable knowledge about how crosscutting properties in
requirements map to architecture-, design- and implementation-level aspects (this is
discussed further in Section 5). This is analogous to refining objects in requirements
models to their corresponding designs and implementations. The key difference is
that, as abstractions, aspects facilitate tracing the impact and influence of crosscutting
relationships through the various refinements.

4.2 Aspects are about Modularity

Abstraction and modularity are closely related. When we abstract away from specific
details that may not be of interest at a certain level of abstraction, we also want to
modularise details that are of interest so that we may reason about them in isolation.
This is termed modular reasoning [23]. When modelling domain concepts, modular
reasoning is fundamental to understand the main concerns of a problem and to reason

12 Awais Rashid, Ana Moreira

about the individual properties of the domain concerns. The modularisation of
crosscutting requirements in aspects greatly facilitates such modular reasoning.
Returning to our example from Section 3.2, the modularisation of bidding, selling and
bid solvency requirements allows us to reason about the needs they impose on the
system as well as about their completeness regardless of how they affect or influence
various viewpoints in the system. The same applies to the non-functional aspects we
discussed. Without modularisation of such crosscutting properties, we would need to
reason about them by looking at their tangled representations in the various viewpoint
requirements, which would be an arduous and time consuming task. Because these
crosscutting concerns would be tangled with the viewpoints in the absence of aspect
modularity, this is further evidence that they are properties of the domain and not of
the programming solution.

4.3 Aspects are about Composability

Modularity must be complemented by composability. The various modules need to
relate to each other in a systematic and coherent fashion so that one may reason about
the global or emergent properties of the system – using the modular reasoning
outcomes as a basis. We refer to this global reasoning as compositional reasoning.
Aspects facilitate such compositional reasoning about the problem domain as well as
the corresponding solution. For instance, when composing the various aspects and
viewpoints in our auction system example, we can understand the trade-offs between
the aspects even before the architecture is derived. For example, we can observe that
the bidding and bid solvency concerns may be at odds at times: we wish to allow
people to place bids yet the solvency requirements must prohibit this at times. This
allows us to reason about the overall bidding process and its administration. In
addition to reasoning about inter-aspect interactions, we can also reason about how
aspects influence the requirements of the various viewpoints. For instance, the various
viewpoints are constrained by the security requirements which may require customers
to register, login and use secure transmissions before participating in any auctions.
How this compositional reasoning is carried out is beside the point. Quantification in
pointcut expressions is just one way of doing this. That does not mean that one is
manipulating first-order elements in second-order expressions. The goal is to compose
the various domain elements, i.e. the aspects, classes, etc. to be able to reason about
the global properties of the system.

5. From Early Domain Aspects to Design and Implementation
Aspects

Capturing aspects early in the life-cycle has several advantages. In particular, this can
help to guarantee that all stakeholders’ concerns are identified and captured properly,
reducing the possibility of either losing significant requirements during development
or else keeping them in a separate list that needs to accompany the developer through
to the solution domain. Such an approach increases the consistency between

Domain Models are NOT Aspect Free 13

requirements, architecture, design and implementation, providing, at the same time,
improved support for traceability of all types of concerns across the development
lifecycle activities. Moreover, a systematic means to identify and manage crosscutting
concerns at the problem domain level contributes to completeness of requirements
specifications and their corresponding architecture, design and implementation. An
evident consequence is that the requirements specification can truly function as a
bridge to narrow the classic gap between the problem and the solution domains.

In [27] and [34] we observed that analysis of requirements-level aspects provides
us with an improved understanding of their mutual trade-offs and, consequently, with
the ability to make improved architectural choices. Each functional or non-functional
aspect leads to a number of architecture choices that would serve its needs with
varying levels of stakeholder satisfaction. These architectural choices are unlikely to
be the same and could even be conflicting (which is often the case). All these, often
conflicting architectural choices pull the final architecture choice in various
directions. Our requirements-level trade-off analysis gives us some early insights into
such a pull and helps us resolve some of the conflicts. This arms us with a better
understanding of the diverse and conflicting needs of aspectual concerns hence
facilitating the choice of an optimal architecture that balances these conflicting needs.

However, requirements-level aspects are more than just identifying architectural
choices and trade-offs. A requirements-level aspect can be stepwise refined into one
or more architectural aspects, and, subsequently, design and implementation aspects.
For instance, in our auction system example, the bid solvency aspect would be refined
into an aspect implementing specific algorithms for ensuring solvency across
multiple, concurrent bids by the same customer. At the same time, such an aspect
would require an awareness that customers could be selling items at the same time,
and hence receiving top-ups on their accounts. The availability aspect, on the other
hand, would map onto a decision for an architectural choice, i.e. involving backup
servers, high stability network connections and so on. At the same time, it will also
refine into concrete solution domain aspects realising replication, session
management, etc.

Similar mappings have been proposed by others. Jacobson and Ng [17], for
instance, handle each use case module, and in particular each use case slice,
separately through architecture to code, by refining the analysis elements into design
structures (classes and components) and, when necessary, adding new solution
structures. In their examples, all the use case slices identified during the requirements
analysis are kept during architecture and low level design. During architecture design,
new aspects appear to keep platform specific elements separate from the platform
independent ones. Similarly, in Theme [8], requirements analysis themes are carried
forward to the design level – each analysis-level theme is designed separately from all
the others and contains all the necessary solution domain structures to implement it.

6. Conclusion

In his conclusion Steimann encourages others to challenge and disprove his
hypothesis and sets three conditions [35]:

14 Awais Rashid, Ana Moreira

1. “The aspect must be an aspect in the aspect-oriented sense (in particular, it
must not be a subroutine or a role);

2. It must not be an artefact of the (technical) solution, but must be seen as
representative of an element of the underlying problem domain;

3. Its choice must have a certain arbitrariness about it so that the example
provides evidence that there are more aspects of the same kind, be it in the
same or in other domains.”

In this paper, we have shown several examples where aspects are not mere sub-
routines or roles – i.e. they are first-class problem domain concepts that crosscut other
problem domain concepts (satisfying condition 1). Modelling of such concerns as
sub-routines would require them to be triggered by viewpoints in different situations,
hence tangling these concerns with the core descriptions of the viewpoints. We have
also shown that quantification and obliviousness, though desirable, are not
fundamental properties of AOSD. However, even if these were to be considered
fundamental, aspect-oriented requirements engineering approaches offer strong
modularisation and composition mechanisms satisfying both obliviousness and
quantification (in contrast to what Steimann affirms). We have demonstrated that
functional and non-functional aspects represent important stakeholders concerns at the
domain-level and therefore need a first-order representation (satisfying condition 2).
Finally, we have pointed out a considerable number of arbitrary functional aspects
that can be found in the existing Early Aspects body of work, therefore satisfying
condition 3.

We hope to have convinced the reader that aspects are not about obliviousness and
quantification, and that they represent important stakeholder concerns present in the
requirements descriptions which cannot be ignored and left to be treated during the
implementation phase. Aspects are about more fundamental software engineering
principles. Aspects are about abstraction, modularity and composability. These are the
lemmas that should guide our decisions throughout the development lifecycle.

Acknowledgements. This work is supported by the projects: AOSD-Europe (IST-2-
004349), MULDRE (EPSRC EP/C003330/1) and SOFTAS (POSC/EIA/60189/2004).
The authors wish to thank Ruzanna Chitchyan for helpful comments and discussions.

References
[1] AspectJ Project, http://www.eclipse.org/aspectj/, 2006.
[2] E. Baniassad, et al., "Discovering Early Aspects", IEEE Software, 23(1), pp. 61-69, 2006.
[3] D. Batory, et al., "Scaling Stepwise-Refinement", IEEE Trans. on Soft. Engg., 30(6), 2004.
[4] L. Bergmans, M. Aksit, "Composing Crosscutting Concerns using Composition Filters",

CACM, 44(10), pp. 51-57, 2001.
[5] N. Cacho, et al., "Composing Design Patterns: A Scalability Study of Aspect-Oriented

Programming", Proc. AOSD Conf., 2006, ACM, pp. 109-121.
[6] R. Chitchyan, et al., "Initial Version of Aspect-Oriented Requirements Engineering Model",

AOSD-Europe Report D36 (AOSD-Europe-ULANC-17) http://www.aosd-europe.net 2006.
[7] L. Chung, et al., Non-Functional Requirements in Software Engineering: Kluwer, 2000.
[8] S. Clarke, E. Baniassad, Aspect-Oriented Analysis and Design: The Theme Approach:

Addison-Wesley, 2005.

Domain Models are NOT Aspect Free 15

[9] A. Colyer, et al., "On the Separation of Concerns in Program Families", Lancaster
University Tech. Report COMP-001-2004 (http://www.comp.lancs.ac.uk/computing/aose).

[10] M. D'Hondt, V. Jonckers, "Hybrid Aspects for Weaving Object-Oriented Functionality and
Rule-based Knowledge", Proc. AOSD Conf., 2004, ACM, pp. 132-140.

[11] A. Dardenne, et al., "Goal-directed Requirements Acquisition", Science of Computer
Programming, 20, pp. 3-50, 1993.

[12] J. Fabry, "Modularizing Advanced Transaction Management - Tackling Tangled Aspect
Code": PhD Thesis, Vrije Universiteit Brussel, Belgium, 2005.

[13] R. Filman, et al. (eds.), "Aspect-Oriented Software Development": Addison-Wesley, 2004.
[14] R. Filman, D. Friedman, "Aspect-Oriented Programming is Quantification and

Obliviousness", OOPSLA WS on Advanced Separation of Concerns, 2000.
[15] A. Garcia, et al., "Modularizing Design Patterns with Aspects: A Quantitative Study",

Proc. AOSD Conf., 2005, ACM, pp. 3-14.
[16] J. Hannemann, G. Kiczales, "Design Pattern Implementation in Java and AspectJ", Proc.

OOPSLA, 2002, ACM, pp. 161-173.
[17] I. Jacobson, P.-W. Ng, Aspect-Oriented Software Development with Use Cases: Addison-

Wesley, 2004.
[18] JBoss Aspect Oriented Programming Webpage, http://www.jboss.org/products/aop, 2006.
[19] M. Kande, "A Concern-Oriented Approach to Software Architecture": PhD, EPFL, 2003.
[20] E. A. Kendall, "Role Model Designs and Implementations with Aspect-Oriented

Programming", Proc. OOPSLA, 1999, ACM, pp. 353-369.
[21] M. A. Kersten, G. C. Murphy, "Atlas: A Case Study in Building a Web-based Learning

Environment using Aspect-oriented Programming", Proc. OOPSLA, 1999, ACM, 340-352.
[22] G. Kiczales, et al., "Aspect-Oriented Programming", ECOOP 1997, Springer, pp. 220-242.
[23] G. Kiczales, M. Mezini, "Aspect-Oriented Programming and Modular Reasoning", Proc.

ICSE, 2005, ACM, pp. 49-58.
[24] J. Kienzle, R. Guerraoui, "AOP: Does It Make Sense? The Case of Concurrency and

Failures", Proc. ECOOP, 2002, Springer, pp. 37-61.
[25] R. Laddad, "AOP with Metadata: Principles and Patterns", Industry Talk at AOSD 2005.
[26] A. Moreira, et al., "Modeling Volatile Concerns as Aspects", Proc. CAiSE, 2006, Springer.
[27] A. Moreira, et al., "Multi-Dimensional Separation of Concerns in Requirements

Engineering", Proc. Requirements Engineering Conf., 2005, IEEE CS, pp. 285-296.
[28] K. Ostermann, "CaesarJ", http://caesarj.org/, 2006.
[29] K. Ostermann, et al., "Expressive Pointcuts for Increased Modularity", Proc. ECOOP,

2005, Springer, pp. 214-240.
[30] M. Pinto, et al., "DAOP-ADL: An Architecture Description Language for Dynamic

Component and Aspect-Based Development", Proc. GPCE, 2003, Springer, pp. 118-137.
[31] A. Rashid, Aspect-Oriented Database Systems: Springer-Verlag, 2003.
[32] A. Rashid, R. Chitchyan, "Persistence as an Aspect", Proc. AOSD, 2003, ACM, 120-129.
[33] A. Rashid, N. Leidenfrost, "VEJAL: An Aspect Language for Versioned Type Evolution

in Object Databases", AOSD 2006 Workshop on Linking Aspect Technology and Evolution.
[34] A. Rashid, et al., "Modularisation and Composition of Aspectual Requirements", Proc.

AOSD Conf., 2003, ACM, pp. 11-20.
[35] F. Steimann, "Domain Models are Aspect Free", Proc. MODELS 2005, Springer, 171-185.
[36] D. Stein, et al., "Expressing Different Conceptual Models of Join Point Selections in

Aspect-Oriented Design", Proc. AOSD Conf., 2006, ACM, pp. 15-26.
[37] S. M. Sutton, I. Rouvellou, "Modeling of Software Concerns in Cosmos", Proc. AOSD

Conf., 2002, ACM, pp. 127-133.
[38] P. L. Tarr, et al., "N Degrees of Separation: Multi-Dimensional Separation of Concerns",

Proc. ICSE, 1999, ACM, pp. 107-119.
[39] J. Whittle, J. Araujo, "Scenario Modelling with Aspects", IEE Proceedings - Software,

151(4), pp. 157-172, 2004.

