
University of New Orleans
ScholarWorks@UNO

University of New Orleans Theses and Dissertations Dissertations and Theses

12-15-2007

When Decision Meets Estimation: Theory and
Applications
Ming Yang
University of New Orleans

Follow this and additional works at: http://scholarworks.uno.edu/td

This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UNO. It has been accepted for inclusion
in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. The author is solely responsible for
ensuring compliance with copyright. For more information, please contact scholarworks@uno.edu.

Recommended Citation
Yang, Ming, "When Decision Meets Estimation: Theory and Applications" (2007). University of New Orleans Theses and Dissertations.
Paper 627.

http://scholarworks.uno.edu?utm_source=scholarworks.uno.edu%2Ftd%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uno.edu/etds?utm_source=scholarworks.uno.edu%2Ftd%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uno.edu/td/627?utm_source=scholarworks.uno.edu%2Ftd%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

When Decision Meets Estimation: Theory and Applications

A Dissertation

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirement for the degree of

Doctor of Philosophy
in

Engineering and Applied Science

by

Ming Yang

B.S., Peking University, 1997
M.S., Institute of Acoustics, Chinese Academy of Sciences, 2000

December 2007

c© Copyright by Ming Yang, 2007

ii

Acknowledgment

This research was supported in part by ARO grant W911NF-04-1-0274, NASA/LEQSF

grant (2001-4)-01, Navy through Planning Systems Contract # N68335-05-C-0382, High-

Performance Networking Program of the Office of Science, U. S. Department of Energy

under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. and DoD DURIP program

via grant W911NF-05-1-0107.

I would like to offer my deepest gratitude to my major advisor, Dr. X. Rong Li, for

his continuous encouragement, timely help, and insightful suggestions during the past more

than five years.

I would also thank Dr. Huimin Chen, Dr. Jing Deng, Dr. Vesselin Jilkov, and Dr.

Tumulesh K.S. Solanky for serving on my thesis committee, and for their constructive and

valuable comments on the dissertation. I also appreciate Dr. Stephen Lipp and Dr. Dongmin

Wei for serving on my doctoral qualifying exam. Special thanks go to Dr. Chen for his long-

term collaboration, advice and friendship.

In addition, I want to acknowledge all my friends and members in the Information and

Systems Laboratory, especially Peng Zhang, Keshu Zhang, Zhanlue Zhao, Anwer Bash,

Trang Nguyen, Ryan Pitre, Zhansheng Duan, and Sowmya Bandarupalli. With their col-

laboration and support, I enjoyed my research work in this pleasant working environment.

Furthermore, I would like to thank all the members and staff of the Department of Electrical

Engineering at the University of New Orleans for their support. Many thanks go to the

University of New Orleans and Louisiana State University Systems, for their efforts made to

help reconstruct my research after Hurricane Katrina.

Last but not least at all, I want to thank my family for their unselfish, endless support

and love. Especially for my wife, Jifeng Ru, without her as my companion in these years, I

could not imagine that I am able to accomplish this long journey. I dedicate this thesis to

her.

Abstract

In many practical problems, both decision and estimation are involved. This dissertation

intends to study the relationship between decision and estimation in these problems, so that

more accurate inference methods can be developed.

Hybrid estimation is an important formulation that deals with state estimation and model

structure identification simultaneously. Multiple-model (MM) methods are the most widely-

used tool for hybrid estimation. A novel approach to predict the Internet end-to-end delay

using MM methods is proposed. Based on preliminary analysis of the collected end-to-end

delay data, we propose an off-line model set design procedure using vector quantization (VQ)

and short-term time series analysis so that MM methods can be applied to predict on-line

measurement data. Experimental results show that the proposed MM predictor outperforms

two widely used adaptive filters in terms of prediction accuracy and robustness.

Although hybrid estimation can identify model structure, it mainly focuses on the esti-

mation part. When decision and estimation are of (nearly) equal importance, a joint solution

is preferred. By noticing the resemblance, a new Bayes risk is generalized from those of de-

cision and estimation, respectively. Based on this generalized Bayes risk, a novel, integrated

solution to decision and estimation is introduced. Our study tries to give a more systematic

view on the joint decision and estimation (JDE) problem, which we believe the work in vari-

ous fields, such as target tracking, communications, time series modeling, will benefit greatly

from. We apply this integrated Bayes solution to joint target tracking and classification, a

very important topic in target inference, with simplified measurement models. The results

of this new approach are compared with two conventional strategies.

v

At last, a surveillance testbed is being built for such purposes as algorithm development

and performance evaluation. We try to use the testbed to bridge the gap between theory

and practice. In the dissertation, an overview as well as the architecture of the testbed is

given and one case study is presented. The testbed is capable to serve the tasks with decision

and/or estimation aspects, and is helpful for the development of the JDE algorithms.

Keywords: Multiple Model, Prediction of Internet End-to-End Delay, Joint Decision

and Estimation, Joint Tracking and Classification, Surveillance Testbed, Wireless Sensor

Network

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Hybrid Systems and Hybrid Estimation . 2

1.2.1 Multiple-Model Methods . 2

1.2.2 Predicting Internet End-to-End Packet Delay 3

1.3 Joint Decision and Estimation . 4

1.4 Thesis Outline . 6

2 MM Prediction of Internet End-to-End Packet Delay 8

2.1 Introduction . 8

2.2 Problem Description . 9

2.2.1 End-to-End Delay of the Internet . 10

2.2.2 Introduction to Prediction Theory . 11

2.2.3 Internet End-to-End Delay Prediction: Relevant Issues 12

2.3 Existing Work . 14

2.3.1 Queueing Network Modeling . 15

2.3.2 System Identification Approach . 16

vii

2.3.3 Time Series Approach . 19

2.3.4 Learning and Prediction . 21

2.4 Preliminary Data Analysis . 23

2.4.1 Data Collection . 23

2.4.2 Packet Loss . 24

2.4.3 Round Trip Times . 25

2.5 The Multiple-Model Approach . 34

2.5.1 Multiple-Model Predictor . 34

2.5.2 Model Set Design . 39

2.6 Numerical Results . 42

2.6.1 Synthetic Data . 43

2.6.2 Measured Data . 45

2.7 Discussion and Conclusions . 47

3 Joint Decision and Estimation 49

3.1 Introduction . 49

3.1.1 Statistical Decision . 49

3.1.2 Parameter Estimation . 50

3.1.3 Joint Decision and Estimation . 51

3.1.4 Existing Work . 54

3.2 Bayesian Decision . 56

3.3 Bayesian Estimation . 58

3.4 Composite Hypothesis Testing . 59

viii

3.5 General Formulation . 60

3.6 Solution . 62

3.6.1 Decision Part . 62

3.6.2 Estimation Part . 62

3.6.3 A JDE Algorithm . 64

3.6.4 Remarks . 65

3.7 Performance Evaluation . 66

4 Joint Target Tracking and Classification in JDE Framework 69

4.1 Introduction . 69

4.2 JDE Solution to JTC problem . 72

4.2.1 Problem Formulation . 72

4.2.2 Conditional Independence . 73

4.2.3 Likelihood Functions . 75

4.2.4 Classification by Bayesian Decision 76

4.2.5 Tracking by Bayesian Estimation . 78

4.2.6 Classification before Tracking (Decision then Estimation) 79

4.2.7 Tracking before Classification (Estimation then Decision) 79

4.2.8 Joint Tracking and Classification . 80

4.2.9 Performance Evaluation . 84

4.3 Remarks . 85

4.4 Simulation Results . 86

4.4.1 Scenario 1: Data generated from H0 86

ix

4.4.2 Scenario 2: Data generated from H1 89

4.5 Conclusions and Discussion . 89

5 Vehicle Surveillance Testbed 91

5.1 Introduction . 91

5.2 Sensor Fusion with Practical Constraints . 94

5.2.1 Data Fusion among Sensors of Different Types 95

5.2.2 Hierarchical Fusion . 96

5.3 Target Surveillance Testbed with Networked Sensors 97

5.4 Experimental Results . 99

5.4.1 Hardware Description . 100

5.4.2 Scenario Setup . 105

5.4.3 Preliminary Sensor Data Processing 108

5.4.4 Camera Calibration . 110

5.4.5 Localization by Wireless Sensors . 115

5.4.6 Remarks . 116

5.5 Discussion and Conclusions . 118

6 Summary and Future Work 121

A Likelihood Functions in JTC Example 123

VITA 142

x

List of Figures

2.1 A logical network . 10

2.2 A typical queueing process . 15

2.3 A system - output y, input u, disturbance w 17

2.4 ARX model structure . 18

2.5 A set of end-to-end delay data: the RTT sequence collected at the same host

from one particular destination . 25

2.6 The sample ACFs of an RTT time series for the whole sequence 27

2.7 The sample ACFs of an RTT time series for a short time interval (60 samples) 28

2.8 A model selection example . 31

2.9 The histograms of model selection results . 33

2.10 General structure of multiple-model methods 35

2.11 The block diagram of the IMM algorithm . 37

2.12 Codewords (clustering center) in 2-dimensional space, where the Voronoi re-

gions (nearest neighbor regions) are separated with boundary lines 40

2.13 Model set design diagram . 41

2.14 Prediction using AMM with AR models of different orders 44

xi

2.15 Prediction using IMM with AR models of different orders 44

2.16 Performance comparison between IMM and adaptive filters (synthetic data) . 45

2.17 Performance comparison between IMM and adaptive filters (measured data) 46

3.1 Joint tracking and recognition of crossing targets 53

3.2 A general model of detection-estimation problem 54

5.1 JDE with integrated target inference testbed 97

5.2 A moving vehicle with motes on top . 100

5.3 A vehicle moves along a straight line . 101

5.4 A Micaz mote . 102

5.5 MTS310CA sensor board . 103

5.6 Micaz mote with sensor board attached . 104

5.7 MoteView GUI tool . 105

5.8 MoteConfig in MoteView GUI tool . 106

5.9 MIB510 serial gateway . 107

5.10 BU 581SRW - SONY CCD bullet camera . 108

5.11 Sensor placement (units in feet) . 109

5.12 Vehicle passes by a mote node . 110

5.13 Measurements from a Light sensor for the entire experiment 111

5.14 Plots of vehicle centroid as observed from three cameras 112

5.15 Calibration results for each individual camera 113

5.16 Calibration results for multiple cameras . 114

5.17 Vehicle locations estimated by video cameras 115

xii

List of Tables

2.1 Packet loss rate . 26

2.2 Runs test in short time ranges . 29

2.3 Average RMSE comparison . 47

4.1 Simulation results in JDE solutions (truth is H0) 88

4.2 Simulation results in JDE solutions (truth is H1) 88

5.1 BU 581SRW - SONY CCD bullet camera . 120

xiii

Chapter 1

Introduction

1.1 Motivation

Many statistical inference problems in engineering can be categorized into two classes: de-

cision and estimation. Essentially, estimation is used to determine a point in a continuous

space whereas the selection of one from among discrete alternatives is the task of decision.

In practice, plenty of problems in communications and radar systems have to face both as-

pects. However, much of past work treated them as two independent events and handled

separately.

The objective of this dissertation work is trying to investigate the relationship and inter-

action between decision and estimation in the problems where both operations are involved.

Furthermore, the purpose of the other task in the dissertation, constructing a ground ve-

hicle surveillance testbed with multi-sensors, is two-fold: On the one hand, existing and

proposed algorithms can be implemented and evaluated based on the testbed; on the other,

the challenges and practical constraints brought up from the implementation might provide

1

more insights into the problem or directions of the research, which eventually will help the

development of the testbed.

1.2 Hybrid Systems and Hybrid Estimation

1.2.1 Multiple-Model Methods

In the traditional viewpoint, estimation is concerned with the parameters of a mathematical

model, or the state of a system, or a signal as a stochastic process, etc. In these cases, al-

though the parameters/state/signal are uncertain, the structure of the model/system/process

is always assumed known. If the estimation has to be done in the presence of structural un-

certainty (unknown structure or random structural change), we may think the system to be

estimated has both continuous- and discrete-valued state variables. Such a system is defined

as a hybrid system [50]. Similarly, the associated estimation, e.g., the estimation subject

to structural uncertainty, may be called hybrid estimation in the sense that it deals with

continuous- and discrete-valued uncertainty simultaneously.

The basic idea of the multiple-model (MM) approach to hybrid estimation is as follows:

Assume a set of models as possible candidates of the true mode; run a bank of filters, each

based on a certain model in the set; and generate the overall estimates by a process based

on the results of these filters [55]. Besides the classical state estimation, the MM approach

also identifies the system structure by “choosing” the model(s) in effect time by time. The

prevailing MM formulation can be viewed as a procedure of model average, e.g., instead

of model selection (choosing the “correct” model), where a compound nonlinear model is

2

constructed from a set of candidate (linear or nonlinear) models.

1.2.2 Predicting Internet End-to-End Packet Delay

End-to-end packet delay of the Internet is the packet transmission delay along a path. An ac-

curate end-to-end delay prediction is helpful for protocol design (e.g., [43]), network monitor-

ing and tomography [83]. More specifically, the predicted delays can be used to dynamically

determine the packet size and sending rate, to choose the optimal path (with minimal delay),

and to ensure end-to-end quality of service (QoS) (e.g., [75]). Moreover, delay prediction is

widely used in many realtime network applications, such as adaptive playout buffering for

multimedia [32, 80], performance enhancement for VoIP applications [46], synchronization

and delay deduction in video-conferencing [29], and distributed gaming.

The core work in a model-based approach to a prediction problem is to come up with

the statistical relationship between the past/current and future observations. The Internet,

with its distributed structure, is hard to be described by any single linear time invariant

model due to its nonlinear and time varying nature, which is verified by our preliminary

data analysis. Previous work based on system identification and time series analysis relies

on the linear time invariance (LTI) assumption, which is not quite suitable for capturing the

dynamics of the Internet. Considering the phenomena of path switching, traffic splitting and

merging, etc. (for details, see [6, 18]), it is reasonable to use a set of models to represent the

possible system structures due to different traffic behavior patterns and/or routing paths.

In the MM framework, these system behavior patterns are referred to as system modes.

We develop a novel approach to predict the Internet end-to-end delay using the MM

3

methods [91]. The MM approach was originally designed for state estimation. Here it is

modified for time series prediction. The major task in application of the MM methods lies

in the design of the model set, intended to cover all traffic delay patterns at different times.

Two key techniques are employed in the proposed model set design procedure: (a) using

short-term time series analysis, various Auto-Regressive (AR) models are obtained; (b) via

vector quantization (VQ), quantized AR models are used to summarize the dynamics of the

system in different modes. With such a model set, the MM methods can be applied to

online delay prediction. Compared with two predictors using single model based adaptive

filters, the proposed MM approach improves performance in both prediction accuracy and

robustness.

1.3 Joint Decision and Estimation

Although hybrid estimation applies decision theory in the solution, it focuses on the esti-

mation part. For the model identification part, as we mentioned above, it is more like a

model average in the prevailing MM algorithms. In many practical problems, the “hard”

decision has to be made, which means there is one and only one “correct” model (hypoth-

esis). Other than the composite hypothesis testing, we are also interested in an accurate

parameter estimation.

For instance, a major surveillance task is to do inference of the moving targets (e.g.,

vehicles, people, etc.) in the surveillance region. Here target inference refers not only to

target localization and tracking, but also to target detection and recognition. In addition,

how to combine the sensed/processed data from different sensors can also be cast into a

4

target inference problem such as track-to-track association (determine the originality of the

track) and track-to-track fusion (obtain the estimate of the common origin based on data

from multiple sources). In all of these problems, decision and/or estimation (filtering) are

the key elements [11, 12]. They are usually coupled, e.g., local track estimates will affect the

decision on whether they have a common origin; decision on target type will affect target

motion model to estimate the position and velocity.

Conventional solutions to joint decision and estimation (JDE) problems mainly focus

on solving the problem one at a time, viz., “decision-then-estimation” or “estimation-then-

decision.” The “decision-then-estimation” strategy tries to first make the best decision and

then do estimation based on the decision made as if it were always correct. It does not

account for the possible decision errors in the estimation; on the other hand, decision is

made regardless of the results of estimation. Alternatively, the problem can also be solved by

“estimation-then-decision.” The idea has been widely used in composite hypothesis testing,

leading to the so-called generalized likelihood ratio test (GLRT). The decision is made by

replacing the uncertain term with the maximum likelihood estimate. Usually, the decision

results using GLRT are suboptimal [25].

Due to the drawbacks in the existing approaches, we would like to have a balanced

point of view on both decision and estimation rather than put more emphasis on one of

them. Middleton and Esposito [66] were the first who tried to obtain a coupled design

of simultaneous detection and estimation in a Bayesian framework. Fredriksen et al. [34]

extended their work to multiple hypotheses case. This pioneering work was inspired by the

signal extraction problem [65], and their problem setup was limited to such a prototype

model. Based on a more general JDE problem formulation [54], we will focus on the design

5

of its Bayes risk to make a tradeoff between decision and estimation errors. This approach

is optimal in the sense that the cost of decision and estimation is minimized jointly.

Joint target tracking and classification is of great importance in both ground and airborne

surveillance systems. Evidentally, in many situations, keeping the track and identifying the

type of the target are fundamentally linked. While many attempts at this problem have

been made, there is a lack of a systematic theory to handle the problem in an efficient

and unified manner. In this dissertation, the target tracking problem is solved jointly with

target ID classification via the above JDE framework and the results are compared with the

conventional approaches.

1.4 Thesis Outline

This thesis contains six chapters that are organized as below:

Chapter 1 presents the motivation and background of this research work.

Chapter 2 studies the packet delay of Internet end-to-end delay. Based on the analysis

of the Internet end-to-end behavior and properties, a multiple-model predictor is proposed

and the performance is compared with two widely-used adaptive filters.

Chapter 3 presents a general formulation of the joint decision and estimation framework

[54]. A solution based on a generalized Bayes decision and estimation cost is given. A

comprehensive performance index [53] is employed to evaluate the performance of both

operations at the same time.

Chapter 4 applies the JDE framework of Chapter 3 to solve a joint target tracking and

classification problem. The related background is introduced and measurement models for

6

sensors of different types are assumed. The performance of the JDE solution is compared

with those of other strategies. Since there are two aspects involved, following the conventional

idea, performance of decision is evaluated by probability of correct decision and estimation

by root mean square errors, respectively. Meanwhile, to provide an overall impression of the

performance, the comprehensive performance index is also applied in the comparison.

Chapter 5 presents the development of a ground vehicle surveillance testbed with different

type of sensors. The sensors incorporated (and to be incorporated) include digital cameras,

wireless cameras, Micaz motes from Crossbow, speed/range radars/scanners, and wired video

cameras. The scenarios based on the testbed can be designed for different purposes, e.g.,

target localization/tracking, maneuver onset time detection, and image processing. One

objective of the testbed is to help algorithm development in the JDE framework.

Chapter 6 summarizes the research work in the thesis and provides some further research

directions.

7

Chapter 2

MM Prediction of Internet

End-to-End Packet Delay

2.1 Introduction

It is well known that the current Internet operates on a “best effort” principle [7], which nei-

ther guarantees the quality of service (QoS), nor allocates and reserves bandwidth effectively.

Even after the introduction of IPv6 (Internet Protocol version 6), and reservation protocols

such as RSVP (Resource Reservation Protocol), the situation has not been improved signif-

icantly, mainly due to the pervasive and enduring heterogeneity of the network. Therefore,

applications running over the Internet have to adapt to a network that they cannot control.

In order to tailor an application which generates traffic load to the network and to

react promptly to the changes in traffic conditions, the dynamics and statistics of end-

to-end traffic streams should be studied carefully. In the current Internet, the congestion

control mechanism in Transmission Control Protocol (TCP) uses packet loss as an indication

8

of congestion, i.e., at least one resource within the network is overloaded if one or more

packets are lost. As pointed out in [61], there is a key limitation of this approach: high

utilization can be achieved only with full queues, i.e., when the network operates at the

boundary of congestion. However, from statistical results (e.g., refer to www.caida.org),

90% of the Internet traffic is TCP based; and most TCP applications have short durations

but require low latency, whereas a few long-duration TCP applications which can tolerate

latency generate most of the traffic. By controlling the network around the status with full

queues, short-duration connections (with low-latency tolerance) will suffer unnecessary losses

and queueing delays. Moreover, using loss as a congestion indicator will bring unexpected

performance degradation when losses are due to other reasons (e.g., power supply, receiver

sensitivity). In wireless links, this is the most likely case. In view of the above limitations,

delay is considered an important complementary measure.

2.2 Problem Description

Consider a logical network shown in Figure 2.1 [89] where each node represents a host, a

router, an application (e.g., a printer) or even a subnet. A direct connection between two

nodes is called a link. The links are bidirectional. Note that each logical link can have a

chain of physical links connected by intermediate routers. In this setting, the Internet can

be modeled as an undirected graph G = (V, L) with nodes V and undirected links L. Such

a definition of G implies that the locations of the nodes do not need to be considered. Each

connection between two nodes without a loop is called a path. The nodes at the two ends

of a path are external (or end) nodes and the rest of the nodes along the path are internal

9

www.caida.org

1

2

3

4

5

6
 7

8

1
0

9

Figure 2.1: A logical network

(or intermediate) ones. For instance, in the path (1, 2, 3, 4, 5, 6) of Figure 2.1, 1 and 6 are

end nodes, whereas 2, 3, 4, 5 are intermediate nodes. An end-to-end delay in the graph is the

packet transmission delay over a path.

2.2.1 End-to-End Delay of the Internet

The concept of “end-to-end” is used as a relative comparison with “hop-by-hop.” Data

transmission seldom occurs only between two adjacent nodes, but via a path which may

include many intermediate nodes. End-to-end delay is the sum of delays experienced at

each hop from the source to the destination. The delay at each intermediate node has

two components: a fixed delay which includes the transmission at the sender node and the

propagation over the link to the next node, and a variable delay which includes the processing

10

and queueing at the sender node. The propagation delay is the delay in transmitting the

data packet along a physical link. In the literature, Round Trip Time (RTT) is often used

to study the Internet dynamics (e.g., [70, 72]), which requires measurements only at one

end. Alternatively, One-way Transmission Time (OTT) needs the collaboration at receiver

to obtain the measurements. In [28] and [73], the authors found that the mean OTTs cannot

be accurately approximated by dividing RTTs in half, i.e., the variations in the OTTs are

often asymmetric. However because there is no guarantee to always find collaborative nodes

on the Internet, RTT is still widely used in the experimental study.

2.2.2 Introduction to Prediction Theory

If a subspace M of a Hilbert space H is used to denote the information about the past of a

system, a mapping that maps to an element of M is called a predictor [74]. Therefore M can

be viewed as the space of allowable predictors for the future among which we are to find the

“best” one.

If X̂ is the predictor for a random variable X (X ∈ H) which represents the future, the

prediction error is X − X̂, and it is desirable to make this error as small as possible using

certain error metric. Since X − X̂ is a random quantity and not observable in general, it is

natural to pick X̂ so that X − X̂ is small on the average. This can be done, for example,

by choosing X̂ so that either Pr{|X − X̂| ≥ ǫ} or E[|X − X̂|p] is small, for an appropriate

value of ǫ or p.

In practice, it is desirable to develop a prediction theory that leads to simple prediction

formulas and requires less statistical information than the full distribution of the past. The

11

linear prediction or the Kolmogorov-Wiener prediction theory (refer to Chapter 12 of [52])

provides such a setting in which only the knowledge of the past and the first two moments

of the distribution of the past are required. In fact for the normal (Gaussian) distribution,

the first two moments can fully determine the distribution.

It is clear that such a prediction problem is closely related to a (quality) control problem

because if we can predict how a process will behave, we can adjust the process so that

the achieved values are, in some sense, as close to the target value as possible. In many

applications, the purpose of predicting the Internet end-to-end packet delay is to design

a working mechanism so that the Internet can work more stably and more efficiently. In

particular, by more accurate prediction, delay-based bandwidth allocation and congestion

control can provide further improvements to QoS in heterogeneous networks.

2.2.3 Internet End-to-End Delay Prediction: Relevant Issues

Probing Strategy

Probing strategies are an important topic in the research of computer networks. Specifically,

as an active approach to directly measure the Internet dynamics, the properties of probing

packets should be considered. A probing packet is a unit of data sent across a network

to gather information about the internal network or its end users. “Packet” is a generic

term used to describe a unit of data at any layer of the Open System Interconnection (OSI)

protocol stack, but here it is recommended to only describe application layer data units.

There are three major factors [89] that should be considered when a probing strategy is

being designed: packet size, inter-departure time, and data/packet transmission protocols.

12

Many software tools for actively or passively measuring network performance have been

developed by researchers in the fields of computer science and networking. For example,

netstat, being an important statistical tool for TCP/IP network connections, can give the

current summary of the packets sent/received (with the -e option) for different protocols

(with the -s option), e.g., IP, ICMP, TCP, UDP. For active probing tools, ping, pathchar [2],

NetDyn [4], traceroute are all widely used for different purposes. The CAIDA (Cooperative

Association for Internet Data Analysis) website [2] provides a survey of available network

measurements tools.

One important issue ought to be mentioned here is that these tools usually need cooper-

ation along the routing path, e.g., response from the nodes among the path. Furthermore,

several special assumptions have to hold, e.g., symmetric routing path (forward and re-

verse), store-and-forward routers, nonexistence of firewalls. Being a decentralized system,

the Internet has to face some uncooperative administrations and these tools might not be

applicable. For example, after being attacked by the Internet worm MSBlast.D in August

2003, the servers at the University of New Orleans increased the security level of the firewall

and disabled traceroute outside the firewall. In such cases, large-scale inference and Internet

tomography methods [22, 30] have their special value since they can deal with uncooperative

networks.

Network Tomography

Loosely speaking, network tomography refers to estimation of network performance parame-

ters based on measurements from a limited subset of its nodes. [30] provides an introduction

to the work in this field.

13

Many network tomography problems can be roughly approximated by the following linear

model [30]

y = Aθ + ε (2.1)

where y is a vector of measurements, e.g., packet counts or end-to-end delays; A is a routing

matrix, θ is a vector of packet parameters, e.g., mean delays over a link, or the origin-

destination traffic vector; ε is a noise term.

In the recent literature, network tomography has been divided into three classes: 1)

the estimation of path-level network parameters from measurements made on individual

links, which is so-called origin-destination (or source-destination) tomography (y in (2.1)

is not known precisely), see, e.g., [84], 2) the estimation of link-level network parameters

from path-level measurements (θ is not known precisely), see, e.g., [31, 83], and 3) topology

identification (A is not known precisely), see, e.g., [33]. For the recent advanced topics in

this area, see [22] for more details.

2.3 Existing Work

In the end-to-end delay prediction problem, similar to traffic prediction, there are two fun-

damental issues involved: one is the prediction method, the other is the prediction interval

[68, 77]. Here the prediction interval refers to how far into the future can the network packet

delay be predicted with a certain confidence (subject to a certain error constraint). The

choice of a prediction method is a trade-off between the prediction error and cost. For real-

time applications an effective prediction requires a low cost, otherwise the network will suffer

from a heavy burden caused by extra computation and network resources.

14

2.3.1 Queueing Network Modeling

A queueing system can be described as customers arriving for service, waiting for service if

it is not available immediately, and leaving the system after being served [36]. The term

customer here is used in a general sense and does not imply necessarily a human customer.

For example, in network modeling, a customer is a packet waiting in line to be processed.

Such a basic system with a single queue can be illustrated by Figure 2.2. Using the shorthand

notation introduced by Kendall (for details, refer to [36]), this is a G/G/1 queueing model.

S
e
r
v
i
c
e

f
a
c
i
l
i
t
y

C
u
s
t
o
m
e
r
s

a
r
r
i
v
i
n
g

D
i
s
c
o
u
r
a
g
e
d

c
u
s
t
o
m
e
r
s

l
e
a
v
i
n
g

S
e
r
v
e
d

c
u
s
t
o
m
e
r
s

l
e
a
v
i
n
g

Figure 2.2: A typical queueing process

Queueing theory was developed to provide models to predict the behavior of systems that

attempt to provide service for randomly arising demands. Telephone traffic load analysis is

one of the earliest problem studied by it.

Queueing theory has been extensively used as a powerful tool to analyze computer and

communication networks for a long time. Kleinrock [45] derived an expression for the mean

end-to-end delay based on the queueing model at each link with certain assumptions which

have been summarized in [86]. When these assumptions hold, queueing analysis will get

several product-form solutions, e.g., the queue size distribution for an entire network of

queues is equal to the product of the queue size distribution of the individual queues. With

this result, several performance measures such as the average delay (queue size) and delay

15

distribution can be easily calculated.

Queueing network theory can be applied if the distribution at each individual link is

known. This assumption might hold in a small-scale network with a few interconnected

servers, but usually not for large-scale networks. Even though the distribution of each link

is available, the computational cost will grow dramatically as the size of network increases.

In addition, the product-form solution does not characterize some features of the real-life

network such as the correlations introduced when traffic streams merge and split, the regu-

lation of traffic by routing and flow control mechanisms, or the packet losses due to buffer

overflow [18]. Due to these limitations to obtain the dynamic behavior of the networks by

queueing theory, we will focus on simulation or measurement based approaches instead of

such an analytical method.

2.3.2 System Identification Approach

System identification (SI) is used for building dynamic mathematical models based on the

observations of the systems [60]. The three essentials in constructing models from data are:

observations, candidate model sets and evaluation criteria.

Basically, for a dynamic system, we choose the observation signals we are interested in as

outputs, the external signals which can be controlled as inputs, and the others as disturbances.

Figure 2.3 is a general framework of a dynamic system [60], where y denotes the output, u

the input, and w the disturbance. If we regard the Internet as a dynamic system, obviously,

end-to-end delays (or round-trip times) should be our output y. The input u could be the

sending rate (or other parameters, e.g., interdepature times) of the probing packets, which

16

describes the effect of the probing packets. And the disturbance w accounts for effects from

other traffic (i.e., packets coming from other hosts), usually modeled as white Gaussian noise

(WGN).

y
u

w

Figure 2.3: A system - output y, input u, disturbance w

Then we select a candidate model set and we determine the “most” suitable one in the

set for the system based on the observed data. By choosing a model fitting criterion, we can

compare the models in the set to find the one that best fit the measured data. At last we do

model validation, usually based on “fresh” (new) data, to decide whether the “best” model

is good enough for fitting the new observations for our purpose.

For either prediction or control purpose, the core work is to identify a model for the

system (or process) given the observations on the input and output of the system. Although

recently there has been an increased interest in time-varying and non-linear systems, much

of the literature assumes that the system can be adequately approximated over the range of

interest by a linear model whose parameters do not change with time. For instance, in [70]

and [69], the authors used Auto-Regressive eXogenous (ARX) models for the delay dynamics.

As shown in Figure 2.4, a discrete-time ARX model is defined as

A(q)y(k) = B(q)u(k) + e(k) (2.2)

17

q
-

A

1

A

B
u
(
k
)

e
(
k
)

y
(
k
)

d
n

Figure 2.4: ARX model structure

where A(q) and B(q) are given by

A(q) = 1 + a1q
−1 + · · ·+ ana

q−na

B(q) = 1 + b1q
−1 + · · ·+ bnb

q−nb

Here e(k) is unmeasurable disturbance (i.e., white noise), and q−1 is the delay operator;

i.e., q−1f(k) = f(k−1). The numbers na and nb are the orders of polynomials. The number

nd corresponds to delays from the input to the output. In such a case, the adjustable

parameter is

θ = [a1, a2, ..., anq
, b1, b2, ..., bnb

]T (2.3)

The “AR” in ARX models stands for the autoregressive part A(q) and e(k), and “X”denotes

the external input B(q)u(k).

There are two basic methods for model fitting on observations [60]. One is the so-called

Prediction-Error Identification Method (PEM), which minimizes the prediction error series.

18

It contains famous methods such as Least Squares (LS), Maximum Likelihood Estimation

(MLE), and Maximum A Posteriori (MAP) estimation, MMSE, etc. To implement these

methods, adaptive filtering techniques can be applied. The other one is the Correlation

Approach. Its major difference from PEM is that it does not assume prediction error is

independent with the past data. Its typical methods include Instrumental-Variable method

(IV) and rational transfer function model, etc. We can regard PEM as a special case of the

Correlation Approach. For the problem addressed here, PEM will be emphasized.

2.3.3 Time Series Approach

A time series y(t) is a set of observations ordered sequentially in time [63]. A series of T

observations can be viewed as a random process of the variables y1, y2, ..., yT , sampled at

equidistant time intervals t1, t2, ..., tT . In fact, a time series can also be treated as the output

of a dynamic system whose external input cannot be observed [60].

There are two major aspects to the study of time series – analysis and modeling. The aim

of analysis is to summarize the properties of a series and to characterize its salient features.

This can be done either in time domain or in frequency domain. The two forms of analysis

are complementary rather than competitive: The same information is processed in different

ways, which provide different insights into the essence of the time series.

The main reason for modeling a time series is to predict future output values. The most

distinct feature of time series modeling is that there is no attempt to build a relationship

between the observations and other variables. In other words, it just uses its “own” past to

predict future.

19

In time series approach, ARMA (Auto-Regressive Moving Average) models are widely

used for prediction purpose. Most time series data of Internet end-to-end delay are non-

stationary. However, ARMA models are used for stationary time series. This does not

present an insolvable problem, since there are several methods which allow us to transform

a non-stationary series into a stationary one. In most practical cases first and second-order

differencings are sufficient to remove any kind of trend existing in a time series [63]. The

ARIMA (Autoregressive Integrated Moving Average) methodology, developed by Box and

Jenkins, is based on such an idea [19]. An ARMA model can be viewed as a special case of

ARIMA models. From an engineer’s point of view, differencings in ARIMA models act as

high-pass filters on the trended data.

In addition to non-stationarity in the mean of time series, we can also have non-stationarity

in variance. The latter can become stationary by transforming the data into a logarithmic

scale or a fraction of a power (e.g., square root).

Recent studies have revealed a fractal-like structure of delay sequences, which may not be

well suited to ARMA models [49]. In [49], the authors propose a delay-boundary prediction

algorithm based on a deviation-lag function (DLF) to characterize the end-to-end delay

variations. Preliminary experiments show that it has an significantly increased prediction

accuracy than Jacobson’s algorithm in [43], which is based on an ARMA model.

The MSEs of predictions in the ARIMA models tend to increase rapidly as the prediction

interval becomes greater [39]. Thus the main value of such models is for short-term fore-

casting (prediction). In fact, because of routing behavior, competing traffic, and available

bandwidth etc., end-to-end delays are quite dynamic and the prediction interval cannot be

too large.

20

State-space models for a time series problem is usually arrived at through a structural

analysis of its components that make up the series. These components may include trend,

seasonal, cycle, together with explanatory variables, interventions, outliers and missing val-

ues. By determining the state of the system, the useful information for prediction can be

summarized efficiently. In contrast, the ARIMA modeling is a passive black box approach

in which model identification relies solely on the data without prior information of the sys-

tem that generated the data. Which tool is more suitable for our purpose? From a control

engineer’s viewpoint, state-space models have more structural advantages than the ARIMA

framework. But in the study of the Internet end-to-end delay, unfortunately, there is very

little information to build up the state of the system due to the complexity of the net-

works. A trade-off between these two schemes is to find the best fit time series model by the

ARIMA methods first, and then convert to the state-space representation so that prediction

and control can be done more efficiently.

2.3.4 Learning and Prediction

So far the methods above are all model-based. However in many applications the principle

or knowledge upon which scientific models can be built up is not available, or the systems

under study are too complex to be mathematically described. In such cases, a learning

machine can be used to do prediction. Loosely speaking, a learning machine tries to build

up an unknown mapping of the system from its observed samples. Here we use the term

“learning” to emphasize its data-driven nature. Artificial neural networks (NNs) are one of

the most representative methods in machine learning.

21

NNs are computing architectures that consist of massive parallel interconnections of

simple neural processors. In fact, the NN is more like a computing technique than a new

model.

The NN approach can be used in system identification and prediction, that is, we can use

NNs to substitute for other forms of dynamic functions (e.g., time series). For a non-linear

function, it is more useful: due to the strong adaptive learning ability of NNs, usually we

can obtain a good result. NNs can also be used to construct an input-output structure. For

the situation where suitable models are not available, the NN approach is invaluable since

it performs a task that many other approaches can not. In such a sense, we can regard the

NN method as a “blind” model.

In [72], Parlos presented an empirical approach for the identification of the end-to-end

delay and round trip time dynamics using recurrent NNs. Similar to the SI approach in [70],

by using the packet inter-departure time as the input and the end-to-end delay variation

and round trip time variation as the output, a SISO system was built for the Internet

delay dynamics. The predictors were designed for multi-step-ahead accuracy within a finite

horizon.

In [9] and [72], the authors claimed that their dynamic recurrent NNs as semi-parametric

approximators for modeling complex systems. We regard NNs as a model-free method or a

“universal” solution in the sense that it does not require any special structure of the system.

Besides the computational complexity, the main drawback of this method stems from that

the prior knowledge of the system structure is totally ignored.

22

2.4 Preliminary Data Analysis

In the literature, Round Trip Time (RTT) has often been used to study the Internet end-

to-end delay dynamics (e.g., [70, 72]), which requires measurements only at one end. In

[43], Jacobson designed his congestion avoidance algorithm by modeling each RTT sequence

based on a certain ARMA model. Following a similar idea, we constructed an experiment

to get the Internet end-to-end delay data (RTTs) and did some preliminary data analysis.

2.4.1 Data Collection

In this study we sent probing packets using Internet Control Message Protocol (ICMP)

instead of TCP in [43]. More specifically, as in the ping program, the source host sends out a

series of ICMP Echo Requests to the destination host, and the destination host returns ICMP

Echo Reply messages. Here an ICMP Echo message is regarded as a probing packet. The

original ping program sends packets with fixed time interval (one second). We modified it so

that variable inter-departure times can be obtained [88]. The reason that we chose ICMP

rather than TCP is the following: TCP has an embedded congestion control mechanism so

that the packet inter-departure time, which is usually considered as the system input, is not

independent, identically distributed (i.i.d.) in time. However this independence assumption

is required in most system identification techniques. On the other hand, User Datagram

Protocol (UDP) and ICMP have no feedback-based control. The packet inter-departure

time of UDP and ICMP can be freely adjusted by the end users.

In our experiment, we used a common source host in the Electrical Engineering Depart-

ment of the University of New Orleans. Eight different destination hosts were chosen, which

23

included 2 inside the LAN (without switch and with one single switch) and 6 outside the

LAN (with multiple routers/switches). For each destination, we collected the RTTs as a

time series using our modified ping program. Two different probing packet sizes (512 bytes

and 1024 bytes) were used in the experiment, that is, for each destination there are two

sets of time series data. The timeout as well as inter-departure time were set to 0.5 second.

The data collection for each path lasted around 24 hours. Figure 2.5 shows one set of time

series data collected from a remote destination (www.yahoo.com). Note that an RTT value

of zero indicates where the packet was lost. The plot actually follows the people working

pattern: the dark part (with longer delays by average) corresponds to the daytime; the flat

part corresponds to the nighttime.

2.4.2 Packet Loss

Although this topic is beyond the scope of this study, as a widely-used indication of con-

gestion, packet loss may still provide some useful information for our study. Table 2.1 [90]

lists the loss rate of each set of data. The common source host is Fusion1.uno.edu. Note that

the loss rate in the source-destination (SD) pair F is much higher than the others. However,

this does not necessarily indicate the paths between those two hosts were more congested.

It is most likely because more probing packets were cut off by this destination host as a

preventive mechanism to the packet flooding from one source. This phenomenon indicates

that google.com had a more secure network firewall setting than the other ones at the time

the experiment was performed. The sizes of probing packets in our experiment are much

larger than normal ones (32 bytes by default) since larger packets carry out more information

24

0 1 2 3 4 5 6 7 8

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (s)

R
TT

 (s
)

Dest: www.yahoo.com, Packet size = 1024 bytes

Figure 2.5: A set of end-to-end delay data: the RTT sequence collected at the same host

from one particular destination

about delay (RTT might not reflect traffic delay if the packet size is too small). On the other

hand, the probing packets should not be too large, otherwise they may significantly affect

the traffic.

2.4.3 Round Trip Times

In raw data (refer to Figure 2.5), some RTTs are equal to zero, which correspond to the cases

that the packets are lost. In our time series analysis, these points were treated as missing

data and skipped. By doing this, the delay properties will not be impacted since packet

delay and loss are two separate issues.

25

Table 2.1: Packet loss rate

Index Target bytes = 512 bytes = 1024

A enee613-2000.uno.edu < 0.0001 < 0.0001

B www.sina.com 0.0273 0.0325

C www.utd.edu 0.0104 0.0112

D www.yahoo.com 0.0174 0.0176

E www.uno.edu 0.0020 0.0017

F www.google.com 0.1160 0.1698

G www.wenxuecity.com 0.0081 0.0080

H 216.107.90.145 0.0110 0.0111

Test for Stationarity

A random process is (wide sense) stationary if it has a constant mean and the autocorrelation

coefficient Function (ACF) depends only on time difference τ = ∆t but not the absolute time

t. In time series analysis, the stationarity property leads to great simplification. Therefore

the first step in time series analysis is to check whether the data are stationary or not. There

are two general classes of approaches for stationarity testing, parametric and nonparametric.

Being a class of totally data-driven approaches, nonparametric tests are more applicable

for our case than parametric ones which often require certain model assumption. On the

other hand, nonparametric tests require more data than parametric ones to achieve the same

statistical decision at the same confidence level.

The sample ACF is an important parametric tool to assess the stationarity of the process.

26

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

Lag

Sa
m

pl
e

Au
to

co
rre

la
tio

n
Co

ef
fic

ie
nt

Sample Autocorrelation Coefficient Function (ACF)

Figure 2.6: The sample ACFs of an RTT time series for the whole sequence

The sample autocovariance function (ACVF) is given by

cτ =
1

K

K−τ∑

i=1

(zi − z̄)(zi+τ − z̄), τ = 1, 2, ... (2.4)

where K is the length of the data 〈zk〉, z̄ is the sample mean of the 〈zk〉. The sample ACF is

rτ = cτ/c0 (2.5)

where c0 = 1
K

√∑K
i=1 z2

i ·
∑K−τ

i=1 z2
i+τ . Figure 2.6 and 2.7 shows the sample ACF plots of

a time series: Figure 2.6 was computed for the whole sequence, whereas Figure 2.7 was

computed for a short time interval (60 samples). In the plots, the area between two parallel

straight lines is the 95% confidence interval within which the sample values are thought close

enough to zero. Typically, the sample ACF will either cut off or die down quickly if the time

series is stationary. In Figure 2.6, we found that the sample ACF decays very slow, which

suggests that the process is non-stationary on the mean level; however in Figure 2.7, the

sample ACF cuts off at lag 3, which suggests that the process is stationary in a short term.

27

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag

Sa
m

pl
e

Au
to

co
rre

la
tio

n
Co

ef
fic

ie
nt

Sample Autocorrelation Coefficient Function (ACF)

Figure 2.7: The sample ACFs of an RTT time series for a short time interval (60 samples)

However, such ACF analyses highly depend on experience. For example, under what rate

the decay can be viewed as quick is not well defined. There is a lack of quantitative ways to

make decision based on ACF plots. Therefore an alternative approach is preferred.

We applied [90] a widely-used nonparametric test, runs test [15], to check the stationarity

of the time series. Consider a sequence of K observations of a random variable where each

observation is classified into one of two mutually exclusive categories, denoted by plus (+)

or minus (−). A most straightforward example is to flip a coin. A run is defined as “a

sequence of identical observations that is followed and preceded by a different observation or

no observation at all” [15]. For example, the sequence “+++−−+−++−−−+−++−+−−”

has 12 runs. The runs test is to check whether the observations are independent with each

other by counting the number of runs in the sequence and comparing to the desired level of

significance under the hypothesis of independence. The sample significance intervals under

28

different observation sizes are given in Table A.6 of [15]. The runs test can be used to test

stationarity as follows.

1. Divide the sequence into time intervals of equal length.

2. Compute a mean value for each interval.

3. Count the number of runs that the mean value in every interval is above (+) or below

(−) the median of the whole sequence.

4. Compare the result to the known sample significance interval: if it is inside the interval,

the time series is stationary; otherwise non-stationary.

When the runs test was applied to the whole sequence of a time series (e.g., data from

yahoo.com), we divided the sequence into 100 equal intervals and the number of runs r = 10.

Since the 95% significance interval for 100 is [42, 59], the time series is non-stationary. To

check the stationarity in shorter time ranges, we cut the whole sequence of the time series

into segments with certain lengths K ′, and treat them as different realizations of a random

process to perform runs test one by one. When the frequency f with which the number of

runs r falls inside the significance interval is high enough (say, over 90%), the time series is

considered stationary with time range K ′.

Table 2.2: Runs test in short time ranges

Time range (samples) 30 60 90 120 · · ·

Frequency (%) 94.96 91.92 88.38 83.12 · · ·

29

Table 2.2 shows the testing results in different time ranges. For each runs test, the data

segment was divided into 10 equal length intervals and the corresponding 95% significance

interval is [3, 8]. From Table 2.2 we can see that f increases as the time range K ′ decreases.

Although the time series is non-stationary in long-range, when the time range is smaller than

60 samples (i.e., half a minute), each data segment can be viewed as stationary since f > 90%.

In other words, the time series is short-term stationary. Based on this understanding, the

time series analysis will be performed in each segment with a time range around 60 samples.

Model Order Selection in Short-Term Time Series Analysis

For the sake of the simplicity and extensity, we performed AR modeling for each data seg-

ment. One primary work in AR modeling is order selection. This problem can be formulated

as a testing problem of multiple composite hypotheses. Let Hn denote the hypothesis that

the model order is n, where n is upper bounded by N , i.e., n ∈ [1, N]. We assume that the

hypotheses {Hn} are mutually exclusive meaning that only one of them can be true at one

time. Note that the hypotheses {Hn} are nested since AR(n) includes AR(m) as a special

case if n > m. If we only perform likelihood ratio test (or MAP with equiprobable prior),

the trend of the order selection is to pick the one with the highest order, especially when the

truth is not in the hypotheses. Hence there should be one penalty term which accounts for

the model complexity in a “fair” model order selection rule.

Let zK denote a vector of K independent observations, and θn the AR parameter vector,

i.e., θn = [a1 · · · an
]′. Most commonly used model selection criteria can be written in a

general form

ξn = −2 log fn(zK |θ̂n) + dn(zK) (2.6)

30

0 10 20 30 40 50 60
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075
Time Plot

Time index

0 5 10 15
0.009

0.01

0.011

0.012

0.013

0.014

0.015

7

Order

Final Prediction Error Criterion (FPE)

0 5 10 15
−560

−550

−540

−530

−520

−510

7

Order

Akaike Information Criterion (AIC)

0 5 10 15
−540

−520

−500

−480

−460

−440

3

Order

Bayesian Information Criterion (BIC)

0 5 10 15
−540

−530

−520

−510

−500

−490

3

Order

Minimum Description Length Criterion (MDL)

Figure 2.8: A model selection example

31

minimized among N hypotheses. Here log denotes the natural logarithm and θ̂n is the

maximum likelihood (ML) estimate

θ̂n = arg max
θn

fn(zK |θn) (2.7)

The first term of ξn in (2.6) is a natural extension of the generalized likelihood test (GLRT)

to deal with multiple hypotheses testing. The reason we add a multiplier 2 is to cancel

the factor 1/2 under Gaussian assumption. Due to the limited data and the model nesting

issue, if only this term is used for model selection, we will usually have an overfit. Thus

the second term dn(zK) is used as a penalty function that varies for different criteria. The

Akaike information criterion (AIC) uses dn(z
K) = 2n [5]. The Bayesian information criterion

(BIC, also known as SBC – Schwartz’s Bayesian Criterion) uses dn(z
K) = n log K [78]. The

minimum description length (MDL) criterion uses dn(zK) = 2 log(
∫

fn(zK |θ̂n)dzK) which

is interpreted as part of the normalized maximum likelihood (NML) [76]. Akaike’s final

prediction error (FPE) criterion uses dn(zK) = 2K log[(K + n)/(K − n)] [60] 1.

In general, the penalty terms have the order: FPE ≈ AIC < BIC ≈ MDL. When obser-

vation number K goes to infinity, BIC (and MDL) can select the best model asymptotically

with probability 1 given that the truth is in the model set [78]. FPE and AIC do not have

this asymptotic property; they always overfit the data, especially when the sample size is

small. Figure 2.8 shows an example in which we used different criteria to decide the AR

order of a segment from the time series data.

We applied the above model selection criteria to the whole time series data to take a

glance at the model structure. To satisfy the stationarity constraint, the time series data

1Rigorously speaking, this is the form of log(FPE). Originally, FPE was defined using prediction error

variance although we can also interpret it by the idea of GLRT.

32

have to be segmented into small pieces to perform analysis. The segment size was chosen to

have 60 samples (i.e., half a minute). Sliding windows were used in segmentation to reduce

the impact due to high frequency components. A sliding window is like a stencil that you

move along a data stream, exposing only a fixed number of data points at one time. Here

the window size was 60 samples. The window moving step (sliding factor) was 30 samples,

that is, there were 60 − 30 = 30 samples overlapping between the adjacent segments.

0 10 20 30
0

2000

4000

6000

8000

Order

FPE

0 10 20 30
0

2000

4000

6000

8000

Order

AIC

0 10 20 30
0

0.5

1

1.5

2

2.5
x 10

4

Order

BIC

0 5 10 15 20 25
0

0.5

1

1.5

2
x 10

4

Order

MDL

Figure 2.9: The histograms of model selection results

Figure 2.9 shows the histograms of model selection results of the full dataset. Since FPE

and AIC are not consistent, we only refer to the results from BIC and MDL. According

to these two criteria, about 90% of the time series segments can be approximated by AR

33

models with order 4 or lower. Therefore the orders of AR models in the short-term time

series analysis were chosen as 4 or lower. For simplicity, the orders of all the AR models can

be further approximated to be 4 (AR models of a lower order can be viewed as special cases

of AR(4) models) to accomplish some batch work.

2.5 The Multiple-Model Approach

Based on the preliminary data analysis, we concluded that the Internet end-to-end data can

be analyzed by AR modeling in each short data segment [90]. However, even though the

structure (order) of each model can be chosen as the same, the parameters in different seg-

ments are usually different. How to use these different AR models to do prediction? Bayesian

framework is a natural choice. More specifically, the multiple-model (MM) approach is par-

ticularly suitable to this situation since it could solve the model selection problem and

parameter estimation problem jointly.

2.5.1 Multiple-Model Predictor

In the MM methods, a set M of models is assumed to represent the possible system behavior

patterns or structures (system modes) which may jump at unknown times; a bank of filters

runs in parallel at every time, each based on a particular model, to obtain model-conditioned

estimates; the jumps in the system mode can be modeled as switchings between the assumed

models. For simplicity, the transition between system modes are usually assumed to follow

a Markov chain. Finally, the overall estimate is given by fusion of the estimates from these

filters.

34

Model 1
Filter

Model 1
Filter Model 2

Filter

Model 2
Filter Model M

Filter

Model M
Filter

Cooperation

Filter Output Fusion (Combination)
Overall Estimate

Data

Figure 2.10: General structure of multiple-model methods

A general structure of multiple-model methods is given in Figure 2.10. Development of an

MM predictor consists of the following steps: model set design, filter selection, cooperation

strategy development, and estimate output fusion. Here “cooperation” means any actions

taken among the filters to achieve better performance, such as individualized recondition-

ing of each filter (e.g., in the interacting MM (IMM) algorithm), interactive iterations and

competitions (e.g., in EM based algorithms), etc. The final step, estimate fusion, can be

achieved by a procedure based on hard decision or soft decision (e.g, weighted sum). A more

detailed description of the MM methods can be found in [51, 55].

In the early work of the MM approach, each filter from the model set operates indepen-

dently without any interaction with one another, i.e., no cooperation, because it was assumed

that the mode does not jump. This type of MM estimator is referred to as the autonomous

MM (AMM) [55] estimator. Many applications of AMM estimators can be found in the lit-

35

erature under various other names, such as “multiple model adaptive estimator/filter” [14],

“multi-model partitioning algorithm” [47], etc. However, as a consequence of its underly-

ing assumption, this method is not effective in handling systems with frequent mode jumps

(which is likely in the Internet end-to-end measurements) because without any interaction

among filters it will take a considerable amount of time for the overall estimate to converge

to the true mode. Unlike AMM, the IMM estimator assumes that the system mode is a

Markov (or semi-Markov) process and thus is allowed to jump between members of a set. In

the IMM algorithm, each filter uses a weighted sum of the most recent estimates from every

filter as its input which usually differs from one to another. By such a cooperation, IMM

can capture the mode transition faster than AMM.

Most existing MM algorithms are built on state-space models and a Kalman filter (KF)

is run for each model (for a nonlinear case, an extended KF (EKF) can be used). Note that

based on the same idea MM algorithms can also be derived using filters in other forms (e.g.,

ARMA). The KF was picked mainly because of its simplicity among its peers and capability

of on-line recursion.

We apply the IMM algorithm to predict the Internet end-to-end delay. Figure 2.11

shows the block diagram of the IMM algorithm. Note that each filter input matching the

corresponding mode is obtained through a mixture of all filter estimates at the previous time.

This operation is what “interacting” stands for. A complete cycle of the IMM scheme with

Kalman filter as its mode-matched filter is summarized in Table II of [55]. The most widely

used minimum mean square error (MMSE) linear predictor is applied in our approach. Let

zk , {z1, ..., zk} be the end-to-end delay measurement sequence up to time k, l the time lag,

36

2
1|1 −− kkx

Model 1 based filter

Model 2 based filter

Model M based filter

Interaction

E
stim

ation F
usion

… output

M
kkx 1|1 −−

1
|ˆ kkx

2
|ˆ kkx

M
kkx |ˆ

1
1|1 −− kkx

kkx |ˆ

kz

Figure 2.11: The block diagram of the IMM algorithm

then the MMSE linear predictor is

ẑk+l|k , E[zk+l|z
k], Pk+l|k , E[(ẑk+l|k − zk+l)(ẑk+l|k − zk+l)

′] (2.8)

where Pk+l|k is the prediction error covariance matrix.

The model set is constructed from different AR models (to be presented later). We

choose AR models since they have a simple structure and can approximate well a large class

of short-term stationary data. To implement the IMM algorithm, the above models should

be converted to the state-space representation [88]. Consider an AR(p) model

zk + a1zk−1 + · · ·+ apzk−p = b0ωk (2.9)

where 〈ωk〉 is a white noise sequence. Let M denote the set of all M designed models and j

a generic model in it. Then each AR(p) model can be represented by

xk+1 = F j
kxk + Gj

kω
j
k (2.10)

zk = Hkxk + υj
k (2.11)

37

where x is the state vector; z is the measurement vector; ωk ∼ N (0, Q) and υk ∼ N (0, R)

are independent process and measurement noise, respectively; and the initial state x0 ∼

N (x0, P0) is independent of ωk and υk. The model matrices (F , G and H) can be determined

in the observable canonical form:

F =





−a1 1 0 · · · 0

−a2 0 1 · · · 0

...
...

...
. . .

...

−ap−1 0 0 · · · 1

−ap 0 0 · · · 0





, G = −





a1

a2

...

ap−1

ap





b0 (2.12)

H =

[
1 0 0 · · · 0

]

It is assumed that the system mode sequence is a first order Markov chain with transition

probabilities πij = P{mj
k+1|m

i
k}, where mi

k denotes that the ith model is in effect at time

k. In MM, (posterior) model probabilities provide a meaningful measure of how likely each

mode is at a given time. It can be used as a measure for detection of process jumps by

comparing some preset thresholds. An l-step ahead end-to-end delay predictor is

ẑk+l|k =
n∑

j=1

ẑj
k+l|kµ

j
k+l|k (2.13)

Pk+l|k =
n∑

j=1

µj
k+l|k[P

j
k+l|k + (ẑj

k+l|k − ẑk+l|k)(ẑ
j
k+l|k − ẑk+l|k)

′] (2.14)

µj
k+η|k =

n∑

i=1

πijµ
i
k+η−1|k (2.15)

where ẑj
k+l|k is the predicted delay estimate from the jth elemental filter, µj

k+l|k is the corre-

sponding model probability which can be obtained by running (2.15) from η = 1 to l, µi
k|k

38

is the i-th model probability of the state estimate x̂k, and n is the number of models in the

model set in effect at time k. (2.13) uses the total expectation theorem to obtain the overall

estimate ẑk+l|k based on all predicted measurement estimates.

2.5.2 Model Set Design

Model set design is the most important part in the implementation of the MM methods. The

performance of MM methods depends largely on the set of models chosen for the problem.

A theoretical discussion of model set design can be found in [57, 55]. In this paper, based on

preliminary data analysis, an off-line VQ-based method is proposed, which can be viewed as

a special case of the clustering method in [57].

Vector Quantization and Clustering

Vector quantization (VQ) is a (usually lossy) data compression method based on the principle

of block coding [62]. A VQ is nothing more than an approximator. The idea is similar to that

of “rounding-off” (say, to the nearest integer). It is more effective than scalar quantization

(can achieve less than 1 bit/parameter).

VQ has deep roots in the clustering algorithms. Clustering is an example of unsupervised

learning. Usually, the number and form of classes {Ci} are unknown, and available data

samples {xi} are unlabeled. VQ can be viewed as a special case of clustering (K-means

[27] clustering). From this point of view, each individual cluster centroid in VQ is called a

codeword. The set of cluster centroids is called a codebook. Figure 2.12 shows a VQ example

in a 2-D space.

39

Codewords

Vectors

Voronoi Region

Figure 2.12: Codewords (clustering center) in 2-dimensional space, where the Voronoi regions

(nearest neighbor regions) are separated with boundary lines

The LBG Algorithm

VQ can be formulated as an optimization problem. There are two optimality conditions that

must be satisfied:

• Nearest neighbor condition: usually used with a Euclidean distance metric

d(x, y) = ||x − y||2 = (x − y)
′

(x − y) (2.16)

• Centroid condition: The codeword should be the average of all those training vectors

in the Voronoi region (i.e., nearest neighbor region).

40

In 1980, Linde, Buzo, and Gray (LBG) proposed a VQ design algorithm based on a

training sequence [58]. The LBG VQ design algorithm is an iterative algorithm which alter-

natively solves the above two optimality criteria. In this method, an initial codeword is set

as the average of the entire training sequence. At the beginning, the initial codeword is split

into two. The iterative algorithm is run with these two vectors as the initial codebook. After

iteration, the two obtained codewords are splitted into four and the process is repeated until

the desired number of codewords is obtained. Further details of the LBG algorithm can be

found in [58].

Model Set Design Procedure

Time Series

AR(p) models

Short-term
analysis

Raw data

 Quantized AR
 models

Candidate
model set

 MM Approach

LBG Algorithm

Vector Quantizaion

Skip missing
data

State-space
representation

Figure 2.13: Model set design diagram

Figure 2.13 is a diagram of the model set design procedure. The same data as described in

Section 2.4.1 were used to implement our MM methods. We cut each RTT sequence into two

parts: one for the training model set here, the other for the testing/validation (in the next

section). The ratio of the length of the training dataset to that of the testing dataset is 8:3.

41

Raw data in the diagram were chosen from the training dataset with 8 different destinations.

By the same segmentation scheme in the preliminary data analysis, the training data were

segmented into equal-length (60 samples) pieces. After segmentation, we did short-term

analysis for each segment to get an AR model. Since there are too many models of different

parameters obtained from the training set, the VQ method was used to select the candidate

models. As discussed in Section 2.4.1, the order of AR models was chosen fixed at 4. In

fact, this setting is just for simplicity, since after clustering, there is no guarantee that lower

order AR models can be obtained although they are more suitable in many segments (refer

to Figure 2.9). The parameters of each AR(4) model can be viewed as a 5-dimensional vector

to apply VQ techniques. The LBG algorithm was used here. The size of the model set, i.e.,

the size of the codebook, was chosen to be 8. To implement the existing MM algorithms,

the quantized models are converted to the state space.

2.6 Numerical Results

Adaptive filtering is a well known technique to estimate the signal with unknown parameters

which are usually constant or slow time-varying. In general, a linear adaptive predictor is

designed by a transversal filter where tap weights are continuously adapted based on data.

Adaptive filtering is powerful to handle parametric changes in the stationary process, but

when the parameter variation rate is high it may break down. In fact this case can be

viewed as a system with structural uncertainty. Considering the unclear structure of the

process corresponding to the Internet end-to-end delay, it would be meaningful to compare

the performance between the linear adaptive predictors and the MM based predictors.

42

Least Mean Square (LMS), Recursive Least Square (RLS) are two most widely used linear

adaptive filters. Here they are used as the baseline solutions whose performance is compared

with that of the MM methods. The root-mean-square error (RMSE) of the end-to-end delay

prediction was used as the performance measure. It is defined as

RMSE(ẑk+l|k) =

√√√√ 1

N

N∑

i=1

(zi
k+l − ẑi

k+l|k)
2 (2.17)

where N is the number of Monte Carlo runs, k is the time index, l is the prediction steps,

and the superscript i stands for quantities on the i-th run.

2.6.1 Synthetic Data

Figures 2.6.1 and 2.15 show the simulation results using AMM and IMM respectively. The

time series in the simulation were made up of three different order AR models: AR(1),

AR(2), and AR(3). More specifically, the data sequence was generated by five segments:

AR(1)-AR(2)-AR(1)-AR(3)-AR(1) in order, which are shown in the figures. All data plots

are averages over 100 Monte Carlo runs. The transition probabilities in the IMM were chosen

as πii = 0.90, πij = 0.05, i, j = 1, 2, 3, i 6= j, which means each model was viewed equally.

Comparing the results of the two methods, we found that using IMM the model switchings

in the sequence can be accurately tracked, whereas using AMM the delays in time to catch

the model changes are relatively long. This phenomenon will be more apparent when model

switchings happen more often. In the real data we collected, abrupt peaks were observed

very frequently, which suggests that IMM should be a better choice than AMM.

Figure 2.16 compared the RMSEs of IMM with those of LMS and RLS. Since the order

of AR models is up to 3, the tap size n of adaptive filters was chosen as 3. For LMS, step

43

0 20 40 60 80 100 120 140 160
−1

−0.5

0

0.5

1

Da
ta

0 20 40 60 80 100 120 140 160
0

1

2

3

4
One−step ahead prediction

Time index

RM
SE

0 20 40 60 80 100 120 140 160
0

0.5

1

M
od

el
 p

ro
ba

bi
liti

es AR(1)
AR(2)
AR(3)

AR(1) AR(2) AR(1) AR(3) AR(1)

Figure 2.14: Prediction using AMM with AR models of different orders

0 20 40 60 80 100 120 140 160
−1

−0.5

0

0.5

1

Da
ta

0 20 40 60 80 100 120 140 160
0

1

2

3

4
One−step ahead prediction

Time index

RM
SE

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

M
od

el
 p

ro
ba

bi
liti

es AR(1)
AR(2)
AR(3)

AR(1) AR(2) AR(1) AR(3) AR(1)

Figure 2.15: Prediction using IMM with AR models of different orders

44

20 40 60 80 100 120 140
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Iteration number

R
M

S
E

The Average Learning Curve of Predictor

LMS
RLS(λ=1)
IMM
RLS(λ=0.9)

Figure 2.16: Performance comparison between IMM and adaptive filters (synthetic data)

size µ = 0.0035 (larger µ, e.g., 0.005, will make the filter diverge); For RLS, initial constant

δ = 0.1, forgetting factor λ ≤ 1. Note that λ = 1 corresponds to infinite memory. In Figure

2.16, case λ = 0.9 (only 10 samples in memory) has also been checked. The performance of

IMM is always better than that of LMS and RLS. A short memory will make the performance

of RLS worse.

2.6.2 Measured Data

The data in our scenario were chosen from the testing dataset obtained in Section 2.5.2. To

be more general, multi-step ahead prediction was performed in the following examples. The

tap size n of adaptive filters was chosen as 4. For LMS, step size µ = 0.1; for RLS, initial

45

constant δ = 0.1, forgetting factor λ = 1. For IMM, the transition probabilities were simply

designed as πii = 0.93, πij = 0.01, i 6= j.

50 100 150 200 250 300 350 400 450 500
−0.02

0

0.02

0.04

0.06

0.08

0.1

Iteration number

R
M

S
E

The Average Learning Curve of Predictor

LMS
RLS
IMM

 Single AR(4)
model

Figure 2.17: Performance comparison between IMM and adaptive filters (measured data)

The prediction results by different predictors are compared in Figure 2.17, which was

zoomed in to show the difference of the flat parts of the prediction errors. Note that for the

peaks, the prediction errors has the order IMM < RLS < LMS on average. The prediction

interval l was chosen as 5. The prediction errors of a single AR(4) model are also shown in

the figure as a baseline solution. Table 2.3 gives the average RMSE over time for different

prediction intervals l, which also shows that IMM significantly outperforms LMS and RLS

on average.

Note that to get the performance shown here, the parameters of LMS and RLS have to

46

Table 2.3: Average RMSE comparison

l = 1 l = 2 l = 5 l = 10

LMS 0.0657 0.0642 0.0647 0.0668

RLS 0.0584 0.0570 0.0562 0.0586

IMM 0.0458 0.0471 0.0422 0.0454

be chosen carefully; otherwise they could be much worse. For example, the learning curve

of LMS here converges very slowly; however, a larger µ will make the prediction diverge,

and a smaller µ will decrease the convergence rate further. IMM is not so sensitive to the

parameter design. In this sense, IMM is more robust than LMS and RLS.

2.7 Discussion and Conclusions

In this chapter, a novel approach to model the Internet end-to-end delay dynamics using

MM methods has been proposed. Although each model is LTI, the MM method provides a

non-stationary, nonlinear solution. It turned out that the proposed MM method performs

better for prediction, in a highly non-stationary and nonlinear case, than two well known

adaptive filters, namely, LMS and RLS.

A crucial part in the application of MM methods is model set design, which affects

the performance of the MM methods most. In our implementation, all the AR models

were chosen to have order 4 for simplicity. In fact, based on the model selection results in

the preliminary data analysis, the orders of different AR models may be different between

segments. Moreover, the structure of the model set is also fixed in the sense that none of the

47

members in the set changes over time. Considering the effectiveness, it is desirable to have

models with less overlap in the model set, so that more behavior patterns can be covered.

However, from a simulation study, we noticed that the overlap of the AR models with the

same order might be large since they have the same model structure. A probably more

reasonable design procedure is to include AR models of different orders and/or a model set

with a variable structure.

48

Chapter 3

Joint Decision and Estimation

3.1 Introduction

3.1.1 Statistical Decision

Everyday people may have to make decisions. In statistics, a decision is made based on

given hypotheses with a selected decision criterion [13]. There are quite a lot of applications

in engineering problems. For instance, in radar systems, after the reflected radio waveforms

are observed on the receiver, a decision is needed to make whether a target is present or

absent, which is so-called single target detection. In digital communications, when the digits

reach the receiver after passing through the communication channels, the measurements are

the original signals corrupted by the noise during the transmission, including channel (e.g.,

medium, shape, path) noise, thermal noise, and receiver measurement noise. Upon receiving

the observed data, we need to provide a rule to decide whether there is a signal, and/or

each digit is zero or one (for a binary signal). In speech processing, from the received voice

49

waveforms, to make a decision which speaker is among a group is also an important problem

(speaker identification). All the above examples can be formulated within statistical decision

theory.

3.1.2 Parameter Estimation

Literally, according to Wikipedia, “Estimation is the calculated approximation of a result

which is usable even if input data may be incomplete, uncertain, or noisy.” In real engineering

problems, if we consider the unknown quantity to be estimated, – let us call it estimatee [52],

there are two types of estimatees involved in estimation. If the estimatee is time-invariant or

slow-varying, it is usually called parameter estimation; if the estimatee is rapid-varying, it is

called process (or state) estimation (since we are talking about statistical random process).

Another widely-used alias for process estimation is “filtering.”

The applications of estimation are also ubiquitous. Let us consider the same areas in the

previous examples: In radar systems, besides determining the presence/absence of the target,

at most time we also want to know relatively precisely the location, velocity, acceleration,

etc. and other parameters based the observed data. In digital communications, estimating

channel parameters are very important to ensure the robustness and security. In speech

processing, an accurate estimate of speaker’s pitch acts as the leading role in most tasks.

In this dissertation, we would like to emphasize more on the time-invariant or slow-

varying, that is, the so-called parameter estimation. The results in the later example is

based on the time-invariant assumption. Nevertheless, we want to point out that, the general

formula presented here are not limited to parameter estimation, but also applicable to process

50

estimation. This scalability issue is important since in some areas, for instance, target

tracking, process estimation is more important.

3.1.3 Joint Decision and Estimation

What is the difference and relationship between decision and estimation? Let us give a more

rigorous definition firstly. Estimation is an operation to select a point from a continuous

space. And decision is an operation to select one out of a set of discrete alternatives [12].

In other words, they both try to make the “best choice,” one in a continuous space and the

other in a discrete space. Decision can be viewed as a special case of estimation since usually

we may consider a discrete space as a subspace of a continuous space. Of course people can

argue the other way around. In fact, the estimation can be done in a discrete valued-case,

the output is not necessarily one of the candidate values but some of them with probabilities.

From this point of view, these two operations are highly related and they have an overlap.

In practice, many engineering problems have to be solved by using both techniques. The

MM predictor proposed in the previous chapter can be regarded as such an example, since

to provide the prediction output, it not only employs the estimation algorithm (Kalman

filtering) but also exploits the model structure which is among a discrete candidate space.

However, as a hybrid estimation technique, the MM method has a strong favor on the

estimation part. The decision made in the algorithm provides users freedom to adaptively

adjust the model parameters so that the estimation output will be more accurate than that

from a time-invariant estimator. Although the estimation has an impact on the decision, the

final goal is still estimation. Moreover, the decision result in the MM method may not be one

51

of the candidate values, which is so-called “hard decision,” but some values obtained from

different candidate values with conditional probabilities (let us call it “soft decision”). What

is the difference between these two concepts? Consider a binary case with two candidates

“0” and “1”. In the hard decision, the decision output is either “0” or “1”; whereas in

the soft decision, the output is some value in between. As we argued before, we can even

think the soft decision as one possible way to achieve estimation. The soft decision is very

important in the MM method, especially useful when the true model is not included in the

candidate model set (for instance, in Internet end-to-end delay modeling, it might be the

case). However, in some other engineering problems, the soft decision is unacceptable, and

in this chapter we will concentrate on how to solve the problems with such requirement (hard

decision) in an optimal way.

When a problem involves both decision and estimation, and the qualities of them affect

each other, we call it a joint decision and estimation (JDE) problem. Let us start with a

ground target tracking and recognition task to illustrate the idea. Referring to Figure 3.1,

In Figure 3.1, we would like to recognize and track two possibly crossing targets (a tank and

a truck) simultaneously using data transmitted from multiple sensors (e.g., cameras, radar

onboard the aircraft and wireless acoustic sensors deployed in the field). The recognition

and tracking are joint here, in the sense that, for example, we may want to destroy the tank,

but not the truck, and therefore an accurate track (i.e., time series of state estimates) with

a wrong recognition result is a disaster, while a poor track with a correct recognition would

lead to a miss. Unfortunately, following the conventional strategy, possible decision errors

are not accounted for in estimation; on the other hand, decision is done regardless of the

result of estimation that it will lead to (maybe very poor).

52

Comm. Tower

Fusion Center

?

?

UAV

Cloud

Wireless Sensors

Figure 3.1: Joint tracking and recognition of crossing targets

Conventional solutions to JDE problems usually follow the strategy which can be char-

acterized as “decision-then-estimation.” This strategy tries to first make the best decision

and then do estimation based on the decision made as if it were correct. It does not account

for the possible decision errors in the subsequent estimation; on the other hand, decision is

made regardless of the result of estimation. The problem can also be solved by “estimation-

then-decision.” The idea has been widely used in composite hypothesis testing, such as the

so-called generalized likelihood ratio test (GLRT). The decision is made by replacing the

53

uncertain term with the maximum likelihood estimate. Usually, the decision results using

GLRT are suboptimal [25]. Due to the drawbacks in these two approaches, a joint solution

is preferred.

3.1.4 Existing Work

In 1968, Middleton and Esposito [66] proposed an integrated framework to solve decision and

estimation jointly. They called the approach “simultaneous signal detection and estimation.”

In their terms, detection and estimation are both “decision” problems since they both try

to make the right decision among their problem regions. Therefore they only talked about

“decision theory” which emphasizes the connection between decision and estimation. We

also want to highlight the difference of the two operations, unless stated otherwise, the word

“decision” is reserved for the discrete case only. From this point of view, they were handling

a JDE problem and the general model they considered (they called “signal extraction”) is

shown in Figure 3.2.

+

Detector

Estimator

),(θtS NSV ⊕=

)(tN

)(Viγ

)(V
s

γ

1,0=i

Figure 3.2: A general model of detection-estimation problem

The input to the system is either an arbitrary signal S(t, θ) corrupted in an arbitrary

fashion by a noise process N(t) (hypothesis H1), or the noise process alone (hypothesis H0).

54

In general, the purpose of the system depicted in Figure 3.2 is to provide a double judgement

(or in their word, “decision”) at its output: a detection as to the presence or absence of the

signal and, possibly, an estimate of the signal waveform S, or of the signal parameters θ.

This model includes, among other cases: 1) the usual detection problem when the estimator

is not present; 2) the usual estimation problem when the signal is present with probability

1 in the observation interval and, therefore, no detection is necessary; and 3) a new type of

estimation problem when there is no detection operation involved, but an estimate has to be

made without certainty as to the presence of the signal. The main purpose of their approach

is to improve the estimate accuracy: comparing with conventional approach, it accounts for

possible decision errors, and decision is also affected by estimation. Their solution is based

on a Bayesian setting. Since they considered the two operations identical in principle, they

used a unified Bayes risk or cost R(σ, δ) in their solution.

R(σ, δ) =

∫

Ω






σ(S)

σ(θ)






dS

dθ

∫

Γ

Fn(V|S(θ))dV

∫

∆

δ(γ|V)






C(S, γ)

C(θ, γ)





dγ (3.1)

where σ is a priori PDF of S or θ, Fn(V|S(θ)) conditional PDF of data V given S; C(S, γ),

C(θ, γ) are cost functions relating decisions γ , (γ1, γ2, ..., γM); γ in detection is in a discrete

set of values (e.g., 0, 1 in ON-OFF case), γ in estimation is in a continuum of values; δ(γ|V)

is a decision rule; Ω, Γ, ∆, are spaces for (S or θ), data V, decisions γ, respectively (here

the decision is following their definition). The optimization is done in a two-stage procedure:

Initially they assume that the estimator γ is assigned and determine the best detection rule

δ∗ (as a function of γ); then find the best estimator γ∗ that further minimizes the average

risk. This approach has been applied to some real engineering problems, e.g., matched

field processing [81]. Following a similar idea and system model, Fredriksen et al. [34]

55

provided the solution to the multiple hypotheses case. The assignments of the average Bayes

risk were also given for their example. As pointed out in [85], their solutions, as well as

that presented in [85], are all estimation-orientated. In [44], both estimation-orientated and

decision-orientated solutions to a specified example were provided.

Most applications of the existing work are in signal reception. Amplitude estimation is

one of them. It is very useful in many engineering problems: to decide the threshold in

feedback links, to determine signal-to-noise ratio in communication channels, to design the

gate sizes in tracking radars, and to verify and identify signals in pattern recognition, and

other applications related with energy levels.

One major limitation of these existing work is that their model is not so general, in the

sense that the hypotheses were not constructed in a balanced way. The H0 is kind of special:

It doesn’t need estimation since θ = 0; if we consider multiple hypotheses case, this problem

becomes more obvious. If the application is only limited to signal reception, the idea is

natural, but not in many other areas. Another critique is that there is a lack of efficient

ways to evaluate the JDE performance of the algorithms.

3.2 Bayesian Decision

In the statistical terminology, decision is known as the problem of hypothesis testing. Fol-

lowing the definition in [21], “A hypothesis is a statement about a population parameter.”

To avoid confusion, here we assume that accepting one hypothesis is equivalent to rejecting

the alternatives. The Bayesian approach to statistics has a fundamental difference from

the classical approach. In the classical approach the parameter is thought to be unknown,

56

but fixed. In the Bayesian approach the parameter is considered a quantity described in a

probabilistic setting which is called the prior distribution. The prior is subjective in general,

based on user’s belief, and given before the data. The prior is updated (using Bayes rule)

by data information. The updated prior is called the posterior distribution.

In the Bayesian setting, the optimal decision is to minimize the following Bayes risk [52]:

R̄D =
∑

i,j

cijP{“Hi”|Hj}P{Hj} (3.2)

where P{Hj} is the prior distribution of Hj, cij is the cost of “Hi” when Hj is true. Here

“Hi” means that the decision is on Hi. When i 6= j, it is the of the cost of making an

incorrect decision; while cii is the cost of a correct decision on Hi. In practice, cij are usually

selected more or less subjectively and varies in different situations. But generally speaking,

in principle, the assignment will satisfy the following condition

cij ≥ cii i 6= j

meaning that a correct decision is never more costly than the corresponding incorrect deci-

sion.

The optimal Bayes decision decides on Hi if its posterior cost

Ci(z) =
∑

j

cijP{Hj|z} (3.3)

is the smallest, that is

Ci(z) ≤ Ck(z) ∀k (3.4)

where z denotes the observations. Consider the binary case, and assume equal prior, the

test is simplified as

f(z|H1)

f(z|H0)

H1

≷
H0

c10 − c00

c01 − c11
(3.5)

57

which is known as likelihood ratio test (LRT).

3.3 Bayesian Estimation

Similarly, an optimal Bayes estimator can be regarded as a function of observations z that

minimizes the Bayes (estimation) risk R̄E = E [C(x̃)] [52], that is

x̂ = arg min
x̂(z)

E [C(x̃)] (3.6)

where R̄E is the expectation of a cost function C(x̃) of the estimation error x̃ = x − x̂.

Usually, the cost function should satisfy a set of admissibility conditions, including being

symmetric about the origin, positive (semi)definite, and nondecreasing, as well as being

convex. The most widely used Bayes risk for estimation is R̄E = E[x̃′x̃], known as mean-

square error (MSE). The corresponding optimal estimator is the posterior mean, x̂ = E[x|z],

which is known as minimum mean-square error (MMSE) estimator. When estimatee x and

observations z are jointly normal distributed, the optimal MMSE estimate is

E[x|z] = E[x] + CxzC
−1
z (z − E[z]) (3.7)

and the conditional covariance (MSE)

MSE(x̂|z) = Cx − CxzC
−1
z Czx (3.8)

where covariance matrix Cab = E [(a − E[a])(b − E[b])′], Ca = Caa, and here a, b denote two

arbitrary random variables.

Note that in the case that the C(x̃) is not chosen as x̃′x̃, but if the posterior density

f(x|z) is symmetric about its mean and C(x̃) is symmetric and convex, we still have the

optimal estimate x̂ = E[x|z].

58

3.4 Composite Hypothesis Testing

The reason that we want to mention this topic is that this is a famous problem involving

both decision and estimation in statistics. If the parameters in the hypotheses are all known,

we call the test simple; if there are unknown parameters present in the hypotheses, the test

is called composite. Using our taxonomy, most tests for composite hypotheses belong to the

“estimation-then-decision” strategy.

There are two widely-used techniques to solve this problem [54]. One is the so-called gen-

eralized likelihood ratio test (GLRT). In this method, the hypothesized set Θi of possible pa-

rameter values is lumped into (or represented by) a single value θ̂ = θ̂ML = arg maxθ∈Θi
fi(z|θ),

that is, the maximum likelihood estimate of θ over Θi. In other words, the original compos-

ite distribution fi(z|θ), θ ∈ Θi is replaced by the most likely distribution fi(z) = fi(z|θ̂ML),

since fi(z|θ̂ML) = maxθ∈Θi
fi(z|θ). The test is then based on the simple hypothesis Hi : z ∼

fi(z|θ̂
ML).

The other method is based on the Bayes setting. If the parameter θ in the hypothesized

distribution is (assumed) random with known prior distribution f(θ), a natural way to

make the test simple is to perform marginalization; that is, replace the original composite

distribution fi(z|θ), θ ∈ Θi by its marginal distribution fi(z) via marginalization:

fi(z) = E[fi(z|θ)|θ ∈ Θi] =

∫

θ∈Θi

fi(z|θ)f(θ)dθ

that is, by its average distribution fi(z). The test is then based on the simple hypothesis

Hi : z ∼ fi(z). In the literature, sometimes this approach was still called GLRT (for instance,

in [65]), we think that it is more appropriate to name it marginalized likelihood ratio test

(MLRT).

59

3.5 General Formulation

In [54], a novel approach to the JDE problems was proposed. We will summarize the frame-

work in the following two subsections.

Consider a JDE problem in which x is the quantity to be estimated and the decision

involves M candidates: D1, . . . , DM . The complete Bayesian solution to the problem of

estimating x using data z is its posterior density f(x|z). By the same token, a complete

Bayesian solution to the problem of deciding candidates D1, . . . , DM is the set of posterior

probabilities {P{D1|z}, . . . , P{DM |z}}. We call this set of probabilities soft decisions. In

the same spirit, when x and D are not independent, we may be interested in inferring them

jointly in terms of the set of functions {P [(D, x)1|z], . . . , P [(D, x)M |z]}, where P [(D, x)i|z]

is the posterior mixed “probability-density.” Here the notation (D, x)i , (x(Di), Di(x)) is

used to emphasize the mutual dependence of x and D.

If x is not dependent on D, then P [(D, x)i|z] = P{Di(x)|x, z}f(x|z), which is the case

when x is an unknown parameter common to all models Di, as in classification of a sig-

nal or target where the hypotheses have a common unknown parameter. This suggests

an estimation-then-decision method. If Di does not depend on x, then P [(D, x)i|z] =

f(x|z, Di)P{Di|z}. An example of this case is when Di is the ith model of a system with

the state x. This justifies a decision-then-estimation strategy.

The general case in which different D may involve different x has numerous inference

examples. For target inference, this includes fusion of tracks (xi) that may correspond to

different targets (Di), joint tracking (xi) and classification (Di) of targets, and tracking (xi)

an unknown number (Di) of targets. Because of more inter-correlations are introduced,

60

usually the factorization cannot be performed as the previous case. A joint solution is

expected to achieve better inference quality.

The JDE framework in [54] is highly related to traditional Bayes decision and estimation.

Based on the analogy of the solutions to decision and estimation, the approach to JDE

problem is to minimize the following Bayes risk for joint decision and estimation

R̄ =
M∑

i=1

N∑

j=1

(αijcij + βijE[C(x̃)|Di, Hj])P{Di, Hj} (3.9)

where Di stands for the i-th decision, which is equivalent to the event {z ∈ Di}, here Di is

the decision region for Di in the data space; cij is the cost of decision Di when hypothesis

Hj is true; x̃ = x− x̂ is the estimation error; C(x̃) is the estimation cost function, which is a

convex function of x̃, e.g., x̃′x̃; E[C(x̃)|Di, Hj] is the expected cost conditioned on the case

that the decision is made on Di but Hj is true; αij and βij are relative weights of decision

and estimation costs, which can be chosen to fit different requirements given by practical

problems. When (αij, βij) = (1, 0) and (0, 1), the joint risk R̄ reduces to conventional Bayes

risk for decision and estimation, respectively. When (αij , βij) = (1, 1), R̄ is the sum of these

two conventional Bayes risks. When (αij , βij) = (0, cij), R̄ is the weighted sum of the product

of decision and estimation costs.

This new Bayes risk R̄ is a generalization of the traditional Bayes risk for decision, RD =

∑
i,j cijP{“Hi”|Hj}P{Hj}, and the traditional Bayes risk for estimation, RE = E[C(x̃)],

respectively. In general, Di 6= “Hi” because in this new formulation there need not be a

one-to-one correspondence between the set of decision regions {D1, . . . ,DM} and the set of

hypotheses {H1, . . . , HN}. As such, the decision part of this framework is more general than

hypothesis testing, which is limited to Di = “Hi”.

61

By an appropriate choice of αij and βij , this new framework is suitable for all three

classes of JDE problems: 1) decision and estimation are virtually equally important; 2)

decision-orientated (decision is primary and estimation is secondary, e.g., composite hypoth-

esis testing); and 3) estimation-orientated (estimation is primary and decision is secondary,

e.g., hybrid estimation). In other words, the relative weight of decision and estimation in a

JDE problem can be captured by the relative magnitudes of αij and βij .

Eq. (3.9) provides a basis for an integrated approach to JDE. Effective and efficient

Bayes JDE procedures can be developed in this framework.

3.6 Solution

3.6.1 Decision Part

For any given E[C(x̃)|Di, Hj], to minimize R̄ in (3.9), the optimal decision D is

D = Di if Ci(z) ≤ Ck(z), ∀k (3.10)

where the posterior cost is given by

Ci(z) =
N∑

j=1

(αijcij + βijE[C(x̃)|Di, Hj])P{Hj|z}

3.6.2 Estimation Part

Given any set of decision regions {D1, ...,DM} of the data space, the optimal estimator for

(3.9) with C(x̃) = x̃′x̃ is the following generalized conditional mean

x̂ =
∑

i,j

E[x|z, Di, Hj]P̄{Di, Hj|z} =
∑

i,j

x̂ijP̄{Di, Hj|z} (3.11)

62

where

x̂ij = E[x|z, Di, Hj] = E[x|z, Hj] , x̂j if z ∈ Di and undefined otherwise

P̄{Di, Hj|z} =
βijP{Di, Hj|z}∑
k,l βklP{Dk, Hl|z}

=
βijP{Di|Hj, z}P{Hj|z}∑

k,l P{Dk|Hl, z}P{Hl|z}
=

βij1(z;Di)P{Hj|z}∑
k,l βkl1(z;Dk)P{Hl|z}

where 1(z;Di) =






1 z ∈ Di

0 else

A Special Case:

If z ∈ Di implies z /∈ Dk, ∀k 6= i (e.g., when {D1, ...,DM} forms a partition of the

observation space), then

1(z;Di) =






1 z ∈ Di

0 z ∈ Dk, ∀k 6= i

⇒

∑

k,l

βklP{Dk, Hl|z} =
∑

l

P{Hl|z}
∑

k

βkl1(z;Dl) = 1(z;Di)
∑

l

βilP{Hl|z}

⇒

x̂ =
∑

i

∑

j

x̂ij
1(z;Di)βijP{Hj|z}

1(z;Di)
∑

l βilP{Hl|z}

=
∑

i

1(z;Di)
∑

j

E[x|z, Hj]
βijP{Hj|z}∑
l βilP{Hl|z}

thus the above optimal estimator is simplified by

x̂ =
∑

i

1(z;Di)x̌i (3.12)

63

where

x̌i = Ē[x|z, Di] ,
∑

j

E[x|z, Di, Hj]P̄{Hj|z, Di} =






∑
j x̂jP̄{Hj|z} z ∈ Di

undefined else

P̄{Hj|z, Di} =
βijP{Hj|z, Di}∑
kl βklP{Hl|z, Dk}

=






βijP{Hj |z}∑
l βilP{Hl|z}

z ∈ Di

undefined else

and

P{Hj|z, Di} =






P{Hj|z} z ∈ Di

undefined else

is the posterior probability of Hj under the ith decision.

3.6.3 A JDE Algorithm

The optimal joint decision-estimate (D, x̂) is the combination of the above optimal decision

and optimal estimate. It can be obtained by the following iterative algorithm, which always

converges.

1. Start from an arbitrary initial decision set {Di}r=0 as the initial partition {Di}, where

r denotes the iteration index.

2. Estimation update: based on {Di}r, calculate x̂ij and P̄{Di, Hj |z} to obtain the opti-

mal estimate x̂ with the corresponding conditional mean square error.

3. Decision update: calculate Ci(z) for each Di, then R̄r is obtained.

4. Compare R̄r and R̄r−1. If the difference ratio
∣∣R̄r − R̄r−1

∣∣ /R̄r−1 is small enough, stop

the iteration and Di with the smallest posterior cost at iteration r is taken as the

64

optimal decision and the corresponding x̂ is taken as the optimal estimate; otherwise

change decision regions to {Di}r and repeat step 2, 3, 4.

The convergency was proved and the simplification of this algorithm was discussed in

[54].

3.6.4 Remarks

Although a composite hypothesis testing problem is often solved by estimation first and

then decision, a JDE problem is traditionally solved in two steps: hard decision followed by

estimation. Assume there is no decision error, namely, P{Hj|Di, z} = δi−j if z ∈ Di and

undefined otherwise, where δi−j is the Kronecker delta: δi−j = 1 if i = j and 0 otherwise.

Then the optimal estimator in Eq. (3.12) reduces to

x̂ =
∑

i

1(z;Di)E[x|z, Hi] (3.13)

which is actually in the traditional “decision-then-estimation” manner. Eq. (3.13) is the

condition mean based on a single “correct” decision, whereas Eq. (3.12) is a weighted sum

of the conditional means under different decisions. In other words, Eq. (3.13) makes a

hard decision, and Eq. (3.12) draws a soft decision which takes possible decision errors into

account.

Compared with the existing works [34, 26, 23, 41], the approach in [54] is not only pro-

viding a systematically integrated framework in theory, but also coming up with an iterative

algorithm to implement with proven convergence. Comparing with [34], this approach is

more general: the decision regions and hypothesis set are not necessarily one-to-one corre-

spondent, which is the more likely case in reality. This approach is also different from hybrid

65

estimation [50] which is widely used in target tracking. In target tracking, the state estimate

with target motion uncertainty is treated as a hybrid estimation problem, which is highly

nonlinear with both continuous and discrete uncertainties. By combining the estimation

results from different (discrete known) motion models, target motion can usually be well

tracked. Although this approach implicitly improves estimation results by decision (mainly

“soft,” e.g., choose different weight on the output of different models), it is still an estimation

technique. With the framework proposed in [54], the impacts from decision and estimation

on each other are simultaneously addressed.

3.7 Performance Evaluation

The discussion in this subsection is originally from [53].

While many practical problems involve JDE, their solutions are evaluated so far only in

terms of decision performance and estimation performance, separately. We are not aware of

any measure, comprehensive or not, for evaluating joint decision and estimation performance.

In this section, we propose a systematic method and measure for evaluating a JDE algorithm

comprehensively based on statistical distance between the original data and the mock data

generated by the JDE algorithm.

A large class of JDE problems can be formulated as follows. The ground truth is that

the observation data z has a distribution F (z|s, x); that is, z ∼ F (z|s, x), where x is to

be estimated and s is unknown with discrete (or finitely many possible) values. Probably

more often, the exact form of F (z|s, x) is not known; rather, it is known that z = h(s, x, v),

where v ∼ F (v|s, x) with known F (v|s, x). A JDE problem consists of two subproblems:

66

decide on the s value and estimate x. With the assumption that s ∈ {1, 2, . . . , N}, it can be

formulated as estimating x and testing the hypotheses:

H1 vs. H2 vs. · · · vs. HN

where Hi : z ∼ Fi(z|x) and Fi(z|x) = F (z|s, x)|s=i. Let ξ = (s, x). Then the solution to a

JDE problem is ξ̂ = (d, x̂), where x̂ is the estimate of x and d ∈ {1, 2, . . . , N} is the decision.

The basic idea of our method for evaluating JDE performance is to measure some distance

between the true distribution F (z|s, x) and the distribution Fd(z|x̂) corresponding to the

JDE result if they are available, such as in a simulation-based evaluation study, or some

statistical distance between the original data z and the mock data ẑ generated by the JDE

algorithm if the distributions are not available. Here the mock data ẑ is generated randomly

by the JDE algorithm with the result (d, x̂) via either the distribution Fd(z|x̂) or the data

model that converts a JDE result to the data, such as ẑ = h(d, x̂, v) with v ∼ F (v|d, x̂).

More specifically, let

ρ(z, ẑ) =

∫ ∫ ∫
∆[f(z|s, x), fd(z|x̂)]dF (z, s, x)

where ∆[f(z|s, x), fd(z|x̂)] is the “distance” between f(z|s, x) and fd(z|x̂).

The above metric can be evaluated via Monte Carlo methods as follows:

If both s and x are random, generate ξi ∼ f(ξ), i = 1, . . . , Ni, where f(ξ) is the prior

distribution of ξ for performance evaluation determined by the evaluator, which could differ

from the one used in the JDE algorithm.

• For each pair (si, xi), generate zij ∼ f(z|si, xi), j = 1, . . . , Nj, each may be a vector

consisting of multiple pieces of data.

67

• For each zij , obtain ξ̂ij = (dij , x̂ij) = g(zij) by the JDE to be evaluated.

• Let ρ(zi, ẑij) = ∆[f(z|ξi), fdij
(z|x̂ij)], where ∆[f(z|ξi), fdij

(z|x̂ij)] is the “distance” be-

tween f(z|ξi) and fdij
(z|x̂ij). Then, compute the final performance metric

ρ(z, ẑ) =

∫ ∫
∆[f(z|s, x), fd(z|x̂)]dF (z, ξ)

≈
1

NiNj

Ni∑

i=1

Nj∑

j=1

ρ(zi, ẑij)

where ρ(zi, ẑij) = ∆[f(z|ξi), fdij
(z|x̂ij)] is the “distance” between f(z|ξi) and fdij

(z|x̂ij).

If we use the total variation distance

∆tv(Ft, Fd) =
1

2

∫
|ft(z) − fd(z)|dz

=
1

2

∑

i

|pt(zi) − pd(zi)|

where pt and pd are pmfs. ρ(z, ẑ) will have a simple form when pmfs are involved:

ρtv(z, ẑ) ≈
1

2NiNj

Ni∑

i=1

Nj∑

j=1

∑

k

|p(zik) − p̂(ẑijk)|

Remark 1 The randomness assumption of s and x is not necessary. In [53], the cases that

s, x under different assumptions were discussed in details. However, in our later implemen-

tation in the dissertation, s and x are assumed random because of the Bayesian framework.

The other case studies are omitted here since they are out of the scope of discussion.

68

Chapter 4

Joint Target Tracking and

Classification in JDE Framework

4.1 Introduction

Typical target inference problems involving both decision and estimation include:

• Joint target classification (or recognition) and tracking, including possibly crossing or

closely-spaced targets.

• Integrated track fusion, which handles track-to-track association and track-to-track

fusion jointly. It should be capable of fusing tracks with non-kinematic attributes, in-

cluding target type or class, track quality measures, and target discriminative features.

• Target tracking in the presence of various measurement-origin uncertainties due to

clutter, target-sensor geometry, sensor resolution, etc.

69

Target tracking and classification (recognition) are both important problems in surveil-

lance systems. Many applications can be found in aircraft control, ground transportation

management, and building safety and alarm systems. Generally speaking, these two opera-

tions are coupled. But in most current approaches, they are handled independently due to

the different sensor measurements and available techniques. For instance, in many target

tracking problems, tracking algorithms are mainly based on kinematic sensing devices (e.g.,

radar, sonar) and associated models. On the other hand, target classification is usually

handled using the data from identity or attribute sensing devices (e.g., electronic support

measure (ESM), high resolution radar; in the wireless sensor networks community, features

extracted from acoustic, passive infrared, and seismic modalities are widely used for identity

purpose). To overcome the potential drawbacks, how to utilize the coupling between the

two operations more effectively has received increasing attention in recent years (see, e.g.,

[8, 17, 23, 25, 35, 40, 41, 42, 48, 64, 67, 71, 79]).

In the literature, efforts were made to construct a single unified framework to handle the

two problems jointly. For instance, target dynamics (class-dependent kinematic models) were

exploited to help classification by Jacobs and O’Sullivan [42]. In [23], the coupling between

tracking state and target identity was taken into account to improve tracking result based on

IMM filter [55]. However as a hybrid estimation techniques, this approach emphasizes more

on estimation and no hard decision is made (sometimes it is needed). Another example using

hybrid estimation techniques has been described in [17]. In [8, 41] sequential Monte Carlo

algorithms and particle filtering were utilized to provide integrated solutions. Similarly, those

approaches also pay more attention on the estimation.

70

These existing work either only considers one-way dependence (decision to estimation or

vice versa), or emphasizes one aspect of the two at a time even if the two-way dependence

is considered. Here we provide a JDE solution following the framework in [54] to a simple

example in target tracking and classification to illustrate how the data are fully utilized

in a joint manner, and both tasks are performed in a relatively more balanced way. We

consider a simple yet representative JTC example, where three types of data are available:

the first type is useful for both tracking and classification; the second is particularly good for

classification but not directly useful for tracking, the third is particularly good for tracking

but not directly useful for classification. We present optimal decision, optimal estimation,

decision-then-estimation, estimation-then-decision, and our proposed JDE solution in the

Bayesian setting for this example. In this way, we demonstrate how the proposed JDE

solution work and contrast its performance with the existing methods.

While the JDE solution proposed in [54] is general, it relies on several design parameters.

Only simple guidelines have been presented in [54]. Here a case study is conducted concerning

these design parameters that make a trade-off between decision and estimation performance.

Also, we adopt a general method of evaluating performance of joint decision and es-

timation in a comprehensive way [56]. To our knowledge, it is the only method, be it

comprehensive or not, available that evaluates joint decision and estimation performance.

71

4.2 JDE Solution to JTC problem

4.2.1 Problem Formulation

Consider three types of data z1, z2, z3 having the same size from three different sensors that

are perfectly synchronized. For simplicity, our presentation below is for the case in which

each piece of data is a scalar quantity, but the approach works for the general vector case

without difficulty. The first type is obtained from infrared imagers (or other energy-selective

sensing devices) modeled as

z1j = θx + vj , j = 1, ..., n (4.1)

where vj ∼ N (0, σ2
v) is i.i.d. Gaussian noise; x denotes the target state, which has a normal

prior N (x̄, σ2
x) and is independent of v; and the modulation term θ has two possible values,

H0 : θ = θ0

H1 : θ = θ1

(4.2)

which correspond to two possible classes of objects, e.g., humans and moving vehicles, re-

spectively, since different classes of objects have different infrared features, assumed to be

reflected in amplitude modulation.

The second type of data is obtained from ESM sensors (or some devices based on image,

acoustic, or seismic features). The readings are in identity type and used to indicate different

72

target classes with certain probabilities:

P{z2j = θ0|θ = θ0} = 1 − p0

P{z2j = θ1|θ = θ0} = p0

P{z2j = θ0|θ = θ1} = 1 − p1

P{z2j = θ1|θ = θ1} = p1

j = 1, ..., n (4.3)

Assume z21, . . . , z2n are independent.

The third type of data is obtained from kinematic sensing devices, say, radar, modeled

as

z3j = x + wj, j = 1, ..., n (4.4)

where wj ∼ N (0, σ2
w) is independent Gaussian noise.

The objective is not only to track the moving target x (with continuous uncertainty) but

also to determine the target type θ. Note that type 2 and type 3 data do not provide direct

information for tracking and classification, respectively. As a result, it is difficult to use type

2 data for tracking or use type 3 data for classification without joint decision and estimation.

4.2.2 Conditional Independence

It is assumed that measurement errors from different sensors are independent and thus the

three types of data are conditionally independent; that is,

f(z1, z2, z3|Hi, x) = f(z1|Hi, x)f(z2|Hi, x)f(z3|Hi, x)

= f(z1|Hi, x)f(z2|Hi)f(z3|x)

73

It turns out that type 1 and type 2 data are independent conditioned on the hypothesis

(without x):

f(z1, z2|Hi) = f(z2|Hi)f(z1|Hi)

which follows from

f(z1, z2|Hi) =

∫
f(z1, z2|Hi, x)f(x|Hi)dx

=

∫
f(z1|Hi, x)f(z2|Hi)f(x)dx

= f(z2|Hi)f(z1|Hi) (4.5)

Similar conditional independence holds between type 3 and type 2 data and between type 2

data and type 1 and type 3 data

f(z2, z3|Hi) = f(z2|Hi)f(z3|Hi) (4.6)

f(z1, z2, z3|Hi) = f(z2|Hi)f(z1, z3|Hi) (4.7)

but in general type 1 and type 3 data are not independent conditioned on the hypothesis

(without x)

f(z1, z3|Hi) =

∫
f(z1|Hi, x)f(z3|x)f(x)dx

=

∫
N (z1; θix1, σ2

vI)N (z3; x1, σ2
wI)N (x; x̄, σ2

x)dx (4.8)

where 1 = 1n = [

n︷ ︸︸ ︷
1, . . . , 1]′.

74

4.2.3 Likelihood Functions

Based on the data models, it can be derived (see Appendix A) that

f(z1|Hi) =

∫
f(z1|Hi, x)f(x)dx

=

∫
N (z1; θix1, σ2

vI)N (x; x̄, σ2
x)dx

= c exp

[
−

1

2σ2
v

n∑

j=1

(ẑ1 − z1j)
2 −

(z̄i − x̄)2

2(σ2
zi + σ2

x)

]
(4.9)

f(z3|Hi) =

∫
f(z3|x)f(x)dx

=

∫
N (z3; x1, σ2

wI)N (x; x̄, σ2
x)dx

= c′ exp

[
−

1

2σ2
w

n∑

j=1

(ẑ3 − z3j)
2 −

(ẑ3 − x̄)2

2(σ2
w/n + σ2

x)

]
(4.10)

f(z1, z3|Hi) = c′′ exp

[
−

1

2σ2
v

n∑

j=1

(ẑ1 − z1j)
2

−
1

2σ2
w

n∑

j=1

(ẑ3 − z3j)
2

−
σ2

w(x̄ − z̄i)
2 + σ2

zi(x̄ − ẑ3)
2 + σ2

x(z̄i − ẑ3)
2

2 (σ2
wσ2

zi + σ2
xσ

2
w + σ2

xσ
2
zi)

]
(4.11)

where N (y; ȳ, σ2
y) stands for the pdf of a Gaussian variable y with mean ȳ and variance σ2

y ,

ẑ1 = 1
n

∑n
j=1 z1j and ẑ3 = 1

n

∑n
j=1 z3j .

Also, we clearly have

f(z2|Hi) = f(z21, . . . , z2n|Hi)

=
n∏

j=1

[piδz2j−θ1
+ (1 − pi)δz2jk−θ0

] (4.12)

75

4.2.4 Classification by Bayesian Decision

The optimal Bayes decision minimizes the so-called Bayes risk

R̄D =
∑

i,j

cijP{“Hi”|Hj}P{Hj}

which is a special case of (3.9). It decides on the hypothesis Hi with the smallest posterior

cost, that is, Ci(z) ≤ Cl(z), ∀l, where Ck(z) =
∑

j ckjP{Hj|z} and z = (z1, z2, z3).

In our example, we choose c00 = c11 = 0, c01 = c10 = 1. With this choice, the Bayes risk

R̄D becomes the probability of decision error

Pe =
∑

i6=j

P{“Hi”|Hj}P{Hj}

and thus the optimal Bayes decision becomes the minimum decision-error decision. It is well

known that this amounts to maximum a posteriori (MAP) decision, which decides on the

hypothesis having the maximum posterior probability.

It follows from Bayes’ theorem that the posterior probabilities are

P{H0|z} = P{H0}f(z|H0)
P{H0}f(z|H0)+P{H1}f(z|H1)

P{H1|z} = 1 − P{H0|z}

(4.13)

While type 3 data z3 is potentially helpful for decision (through some kind of estimation),

it is not clear how it should be used in a purely decision setting. For example, if type 3 data

is independent of the other types of data conditioned on x, as is the case for our problem,

the likelihood ratio of H1 to H0 conditioned on x remains unchanged with or without type 3

data. As a result, in an implementation of the optimal Bayes decision, type 3 data is often

ignored in practice (although it can actually be used to help decision) and only the first two

types of data (z1 and z2) are used. Now let z = (z1, z2) be the data used for decision.

76

Since each element in z2 is Bernoulli distributed, to make decision on θ is actually to

infer Bernoulli parameter p. It is known that ẑ2 = 1
n

∑n
j=1 z2j is a sufficient statistic for p

[21]. Note that nẑ2 counts the number γ of z2js that equals 1. Thus, nẑ2 has a binomial

(n, p) distribution:

P{ẑ2 = γ/n|Hi} =




n

γ



 pγ
i (1 − pi)

n−γ

Thus, it follows from the conditional independence of type 1 and type 2 data that

f(z|Hi) = f(z1|Hi)f(z2|Hi) = f(z1|Hi)P{ẑ2 = γ/n|Hi}

= c exp

[
−

1

2σ2
v

n∑

j=1

(ẑ1 − z1j)
2 −

(z̄i − x̄)2

2(σ2
zi + σ2

x)

]

·




n

γ



 pγ
i (1 − pi)

n−γ

where σ2
zi = σ2

v/(nθ2
i) and z̄i = ẑ1/θi. By assuming equal priors of both hypotheses, e.g.,

P{H0} = P{H1}, from (4.13) it follows

P{H0|z} =

[
1 +

(
p1

p0

)γ (
1−p1

1−p0

)n−γ

exp
{

1
2
S
}]−1

P{H1|z} = 1 − P{H0|z}

(4.14)

where

S =
(z̄0 − x̄)2

σ2
z0 + σ2

x

−
(z̄1 − x̄)2

σ2
z1 + σ2

x

The MAP decision decides on Hi if P{Hi|z} > P{Hj|z}. As such, the decision rule is

S + 2 ln

[(
p1

p0

)γ (
1 − p1

1 − p0

)n−γ
]

H0

≶
H1

2 ln
c10 − c00

c01 − c11
(4.15)

77

4.2.5 Tracking by Bayesian Estimation

The optimal Bayes estimator is the conditional mean x̂ = E[x|z]. By the total expectation

theorem,

x̂ = E[x|z] =
∑

i=0,1

E[x|z, Hi]P{Hi|z} =
∑

i=0,1

x̂iP{Hi|z}

MSE(x̂|z) =
∑

i=0,1

[MSE(x̂i|z, Hi) + (x̂ − x̂i)(x̂ − x̂i)
′] P{Hi|z}

By a similar argument as for the Bayesian decision, in Bayesian estimation, only the first type

of data z1 and third type of data z3 are used directly and thus in the practical implementation,

z = [z′1, z
′
3]

′. Under each hypothesis data are normal distributed and from linear models

z = Hx + υ, where

H0 : H = H0 = [θ01
′, 1′]′

H1 : H = H1 = [θ11
′, 1′]′

and υ = [v′, w′]′ with R = cov(υ) = diag(σ2
vIn, σ2

wIn). It is well known that for Gaussian

distributions, the conditional mean and its MSE matrix are given by, under Hi,

x̂i = E[x|z, Hi] = x̄ + CxziC
−1
zi (z − z̄i)

MSE(x̂i|z, Hi) = Cx − CxziC
−1
zi C ′

xzi

where

Cxzi = σ2
xH

′
i = σ2

x[θi1
′, 1′]

Czi = HiCxH
′
i + R

= σ2
x[θi1

′, 1′]′[θi1
′, 1′] + diag(σ2

vIn, σ2
wIn)

z̄i = [θi1
′, 1′]′, Cx = σ2

x

78

For equal prior probabilities of hypotheses, we have

P{H0|z} =
P{H0}f(z|H0)

P{H0}f(z|H0) + P{H1}f(z|H1)

=
f(z|H0)

f(z|H0) + f(z|H1)

P{H1|z} = 1 − P{H0|z}

where f(z|Hi) was given by (4.11).

4.2.6 Classification before Tracking (Decision then Estimation)

In this traditional approach to JDE, a decision (target classification) is first made concerning

the hypotheses H0 and H1, as in Sec. 4.2.4, and then the target state x is estimated, as in

Sec. 4.2.5. More specifically, the data space is partitioned as {D0,D1} by the decision rule

first and the target state estimator is

x̂ =
∑

i

1(z;Di)E[x|z, Hi]

In other words, if the decision is “Hi”, which follows Sec. 4.2.4, then the estimate is x̂i =

E[x|z, Hi] and MSE(x̂i|z, Hi), given in Sec. 4.2.5.

4.2.7 Tracking before Classification (Estimation then Decision)

In this approach to JDE, the target state x is estimated first, as in Sec. 4.2.5, and then

a decision (target classification) is made concerning the hypotheses H0 and H1, as in Sec.

79

4.2.4. More specifically, let x̂ be the Bayes target state estimator of Sec. 4.2.5. Then

f(z|Hi) := f(z|Hi, x̂) = f(z1|Hi, x̂)f(z2|Hi, x̂)

= N (z1; θix̂1, I)P{ẑ2 = γ/n|Hi}

=
1

(2πσ2
v)

n/2
exp

{

−
1

2σ2
v

n∑

j=1

(z1j − θix̂)2

}

·




n

γ



 pγ
i (1 − pi)

n−γ

The Bayes test then decides on H1 if

f(z|x̂, H1)

f(z|x̂, H0)
> λ =

(c10 − c00)P{H0}

(c01 − c11)P{H1}

Our choice (c00, c01, c10, c11) = (0, 1, 1, 0) and equal prior probabilities of hypotheses P{H0} =

P{H1} lead to λ = 1. Then the test can be simplified as

n (θ1 − θ0) x̂[ẑ1 − (θ1 + θ0) x̂/2]

+ ln

[(
p1

p0

)γ (
1 − p1

1 − p0

)n−γ
]

H0

≶
H1

0

where the sample mean ẑ1 =
∑n

j=1 z1j .

The procedure described here is not the same as the widely-used GLRT since the estimate

is an MMSE instead of MLE. However this is a common process in radar systems: perform

tracking algorithms (say, IMM filter) then use the tracking results to help determine the

target ID.

4.2.8 Joint Tracking and Classification

The first type of data can serve both tracking and classification purposes directly. The second

type is useful for decision but has no direct impact on estimation; the third type is useful for

80

estimation but has no direct impact on decision. As a result, in the usual implementations of

the traditional Bayes decision, Bayes estimation, and the two-stage approaches, one type of

data is not used directly for either classification (decision) or tracking (estimation). However,

our proposed joint approach uses all data without difficulty. Its performance is generally

superior since more information is used.

The joint solution can be achieved by iteration. Although the iteration may start from any

decision/estimation results, we choose the one with smaller JDE cost from the conventional

solutions. For the choice of JDE cost weights {αij , βij} in (3.9), the values of αij will modify

the decision cost in details, and generally speaking, we would like to choose β01, β10 < β00, β11,

which intends to take the estimation error costs into account (otherwise the generalized Bayes

risk will be dominated by the cost associated with decision errors).

For simplicity, here our JDE algorithm starts from the Bayes decision results: If the

decision is “Hi”, i.e., z ∈ Di, from (3.12), we have

x̂ = x̌i = Ē[x|z, Di]

=
∑

j

E[x|z, Di, Hj]P̄{Hj |z, Di} =
∑

j

x̂jP̄{Hj|z}

where

P̄{Hj|z} =
βijP{Hj|z}

βi0P{H0|z} + βi1P{H1|z}
, z ∈ Di

Then

x̌i = x̂0P̄{H0|z} + x̂1P̄{H1|z}

=
x̂0βi0P{H0|z} + x̂1βi1P{H1|z}

βi0P{H0|z} + βi1P{H1|z}

81

To calculate the posterior JDE cost

R(z) =
∑

i

∑

j

(cij + βijE[x̃′x̃|Di, Hj, z])P{Di, Hj|z}

the key is to obtain the part imported by estimation. As derived in [54],

mse(x̂|Di, Hj, z) , E[x̃′x̃|Di, Hj, z]

= mse(x̂ij |z, Di, Hj) + (x̂ij − x̂)′(x̂ij − x̂)

where

x̂ij = E[x|z, Di, Hj] = E[x|z, Hj] if z ∈ Di

mse(x̂ij |z, Di, Hj) = mse(x̂ij |z, Hj) if z ∈ Di

and x̂ is obtained by (3.12). Since under z ∈ Di

x̂ij − x̂ = x̂j −
∑

i

1(z;Di)x̌i = x̂j − x̌i

we have

Eij , mse(x̂|Di, Hj)

= E[mse(x̂ij |z, Di, Hj)|Di, Hj]

+ E[(x̂ij − x̂)′(x̂ij − x̂)|Di, Hj]

= mse(x̂ij |Di, Hj) + E
[
(x̂j − x̌i)

′ (x̂j − x̌i) |Di, Hj

]

= mse(x̂j |Di, Hj) + E
[
(x̂j − x̌i)

′ (x̂j − x̌i) |Di, Hj

]

For each decision region,

mse(x̂ij |z, Di, Hj) = mse(x̂j |z, Hj)

= σ2
x − (σ2

x)
2H′

jC
−1
zj Hj , if z ∈ Di

82

Since it does not depend on observations, we have

mse(x̂ij |Di, Hj) = E[mse(x̂ij |z, Di, Hj)]

= mse(x̂j |z, Hj)

Note that under z ∈ Di

x̂j − x̌i = x̂j −
∑

k

x̂k
βikP{Hk|z}∑

l βilP{Hl|z}

=

∑
k(x̂j − x̂k)βikP{Hk|z}∑

l βilP{Hl|z}

Therefore

Ẽij , E
[
(x̂j − x̌i)

′ (x̂j − x̌i) |Di, Hj

]

=

∫

z∈Di

(x̂j − x̌i)
′ (x̂j − x̌i) dF (z|Hj)

= E

[
ỹ′

iỹi

(
∑

l βilP{Hl|z})2
|Di, Hj

]

where ỹi =
∑

k(x̂j − x̂k)βikP{Hk|z}. It can be obtained by the Monte-Carlo method numer-

ically

Ẽij ≈
1

Li

Li∑

k=1

[
x̂j(z

(i)
k) − x̌i(z

(i)
k)

]′ [
x̂j(z

(i)
k) − x̌i(z

(i)
k)

]

where L and Li are the measurement counts in the Monte Carlo simulation: Generate data

points z1, . . . , zL with the distribution F (z|Hj) in the measurement space. Use the decision

part to collect all the points z
(i)
1 , . . . , z

(i)
Li

in Di, where
∑

i Li = L.

Let c′ij = αijcij + βijEij . If c′10 > c′00 and c′01 > c′11, for the next iteration, decide on H1 if

S + 2 ln

[(
p1

p0

)γ (
1 − p1

1 − p0

)n−γ
]

> 2 ln
c′10 − c′00
c′01 − c′11

83

otherwise the decision rule is to decide on H1 if

(c′01 − c′11)

(
p1

p0

)γ (
1 − p1

1 − p0

)n−γ

e
1

2
S > (c′10 − c′00)

The most straightforward stopping criterion is to check the difference of R̄ in two adja-

cent iterations, which is not easy to calculate. Alternatively, we may stop the iteration

if maxi,j |E
(k)
ij − E (k+1)

ij | is below a threshold and there is no change in the decision (i.e.,

z ∈ (D(k)
i ∩ D(k+1)

i)).

4.2.9 Performance Evaluation

In this example,

f(z1|θ, x) = N (z1; θix1, σ2
vI)

f(z2|θ, x) =
n∏

j=1

[piδz2j−θ1
+ (1 − pi)δz2jk−θ0

]

f(z3|θ, x) = N (z3; x1, σ2
wI)

f(z1, z2, z3|θ, x) = f(z1|θ, x)f(z2|θ, x)f(z3|θ, x)

Let

f̂(z|θ̂, x̂) = f(z|θ, x)|(θ,x)=(θ̂,x̂)

Considering pmf, we have

g(z|θi, x) = f1(z1|θ, x)p2(z2|θ, x)f3(z3|θ, x)

= N (z1; θix1, σ2
vI)N (z3; x1, σ2

wI)

·
n∏

j=1

[piδz2j−θ1
+ (1 − pi)δz2jk−θ0

]

84

and

ĝ(z|θ̂, x̂) = N (z1; θ̂x̂1, σ2
vI)N (z3; x, σ2

w)

·
n∏

j=1

[p̂iδz2j−θ1
+ (1 − p̂i)δz2jk−θ0

]

4.3 Remarks

The results in the previous section are all derived using density functions which involve

relatively tedious math. An alternative and better way is the following.

Under each hypothesis, type 1 and type 3 data, z = [z′1, z
′
3]
′, follow a linear model

z = Hx + υ, where

H0 : H = [θ01
′, 1′]′

H1 : H = [θ11
′, 1′]′

and υ = [v′, w′]′ with R = cov(υ) = diag(σ2
vIn, σ2

wIn). Under each hypothesis, x and z are

jointly Gaussian because they are two weighted sums of jointly Gaussian random variables

x and υ (since they are independent Gaussian). As such, z is Gaussian. Under Hi,

E[[z′1, z
′
3]
′|Hi] = [θi1

′, 1′]′x̄ = [z̄′i, z̄
′
3]

′

cov([z′1, z
′
3]
′|Hi) = [θi1

′, 1′]′σ2
x[θi1

′, 1′] + R

=




θ2

i σ
2
x11′ + σ2

vIn θ2
i σ

2
x11′

θ2
i σ

2
x11′ σ2

x11′ + σ2
wIn





=




Ci θ2

i σ
2
x11′

θ2
i σ

2
x11′ C3



 = Ci3

where z̄3 = x̄1, C3 = σ2
x11′ + σ2

wIn, and, for i = 0, 1,

z̄i = θix̄1, Ci = θ2
i σ

2
x11′ + σ2

vIn

85

It thus follows that

f(z1, z3|Hi) = N ([z′1, z
′
3]
′; [z̄′i, z̄

′
3]
′, Ci3) (4.16)

f(z1|Hi) = N (z1; z̄i, Ci) (4.17)

f(z3|Hi) = N (z3; z̄3, C3) (4.18)

Note that clearly f(z1, z3|Hi) 6= f(z1|Hi)f(z3|Hi).

Based on the above likelihood functions, the corresponding solutions can be derived more

easily than using the method in the previous section. The details can be found in [56].

4.4 Simulation Results

In our simulation example, the following parameter values were used

θ0 = 1, θ1 = 2, p0 = 0, p1 = 0.65,

x̄ = 1, σ2
x = 0.52, σ2

v = 1, σ2
w = 0.5

Let data length n = 10, the simulation results are based on M = 500 Monte Carlo runs.

4.4.1 Scenario 1: Data generated from H0

In this case, the simulated data is generated from H0 (humans). The inference results are

listed in Table 4.1.

To obtain the above results, the weights of JDE cost are chosen as αij = α = 1, i, j = 0, 1,

and β01 = β10, β00 = β11. We add the constraint
∑

i βij = B for comparison purpose. Notice

that the maximum possible mse (all classification results are incorrect) is around 0.35, to

balance the decision and estimation impact, we chose B = 3.

86

In the upper part of table, the RMSE is the root-mean-square errors of tracking the target

state, and PC is the probability of correct classification. Using the above two conventional

performance metrics (RMSE and PC) can only evaluate one aspect of the problem at a time.

But how about the overall performance? The proposed JDE performance metric ρ can give

us a quantitative measure. Let Ni = 200, Nj = 5, the results are shown in the lower part in

Table 4.1.

Consider tracking errors. In the ideal case (always identify the target correctly) the

root-mean square error is RMSEideal = 0.1767; for tracking without classification or tracking

before classification, RMSEE = RMSEE→D = 0.2532, which equals RMSEJDE when βij/βii =

1, as they should be; for classification before tracking, RMSED→E = 0.2403. This indicates

that decision (classification) helps estimation (tracking) noticeably.

Consider classification performance now. For classification without tracking or perform

classification before tracking, the probability of correct classification PC = 0.798, which

equals (PC)JDE when βij/βii = 1, as they should be; for tracking before classification, PC =

0.894. This indicates that estimation (tracking) also helps decision (classification).

These results for tracking and classification verify that in the H0 case for this example,

performing either decision or estimation will help the other. However, it is hard to compare

the overall performance of the different strategies since none of the strategies is always better

than the others in terms of both decision and estimation results. The JDE performance index

ρ is extremely useful in such a case since we would like to have an overall rating output.

We calculated the ρ values for the two conventional strategies: For classification before

tracking, ρD→E = 0.9976×10−2; for tracking before classification, ρE→D = 1.0105×10−2. As

a distance measure, a smaller ρ value indicates a better performance. Therefore we conclude

87

Table 4.1: Simulation results in JDE solutions (truth is H0)

βij/βii 0 10−3 .01 .1 .5 1 2 10 ∞

RMSE 0.1864 0.1865 0.1877 0.2042 0.2386 0.2532 0.2680 0.3030 0.3210

PD 0.886 0.886 0.886 0.872 0.826 0.798 0.790 0.786 0.782

ρ(×10−2) 0.8327 0.8331 0.8401 0.8979 1.0700 1.1873 1.3114 1.5671 1.7051

that decision then estimation is indeed better than estimation then decision in terms of JDE

performance.

By checking the ρ values of the proposed JDE solution listed in the table, we can see

clearly that, the JDE solution with βij/βii = 0 which has the smallest ρ value outperforms

the two existing strategies, although its decision result is worse than the tracking before

classification strategy. This weight choice agrees with our intuition: β01, β10 should be smaller

than β00, β11.

Table 4.2: Simulation results in JDE solutions (truth is H1)

βij/βii 0 10−3 .01 .1 .5 1 2 10 ∞

RMSE 0.1372 0.1372 0.1368 0.1365 0.1415 0.1470 0.1543 0.1769 0.3311

PD 0.904 0.902 0.904 0.900 0.890 0.884 0.880 0.862 0.856

ρ(×10−2) 0.7809 0.7809 0.7810 0.7950 0.8391 0.8872 0.9496 1.1166 1.9436

88

4.4.2 Scenario 2: Data generated from H1

In this case, the simulated data is generated from H1 (moving vehicles). The inference results

are listed in Table 4.2.

The weights of JDE cost are the same as those in Scenario 1. For the tracking errors,

RMSEideal = 0.1280; RMSEE = RMSEE→D = 0.1470; and RMSED→E = 0.1493. This time,

decision (classification) does not help estimation (tracking). For the classification results,

for classification without tracking or classification before tracking, PC = 0.884; for tracking

before classification, PC = 0.882. Estimation (tracking) does not help decision (classification)

either. This indicates that in this case, the conventional strategies cannot utilize the coupling

between decision and estimation well to improve the inference results.

By checking the upper part of the table, we found that the JDE solution with βij/βii = 0

outperforms the decision-then-estimation and estimation-then-decision in decision and esti-

mation performance concurrently. Then we check the comprehensive performance index ρ:

For classification before tracking, ρD→E = 0.8122 × 10−2; for tracking before classification,

ρE→D = 0.8740× 10−2. By comparing the corresponding ρ values of the JDE solution listed

in the table, we can also draw the same conclusion that the JDE solution with βij/βii = 0 is

better than the two existing strategies in terms of the overall performance.

4.5 Conclusions and Discussion

In this chapter, we applied the new proposed JDE framework on a joint target tracking and

classification problem. The performance of the JDE solution was compared with two other

existing strategies using both conventional methods and a joint performance index proposed

89

by us. With an appropriate weight choice of the JDE cost, the JDE solution outperforms

the other two strategies by overall evaluation. Note that the weight choice of the JDE cost

are problem dependent and subject to change based on the user’s preference. For instance,

if we want to pay more attention on estimation part, we should increase the values of βijs

(or equivalently decrease αijs) to achieve better performance on estimation; and vice versa.

For simplicity, the idea was illustrated by batch processing. The solution to the dynamic

case is still under investigation.

90

Chapter 5

Vehicle Surveillance Testbed

5.1 Introduction

Many existing surveillance systems can be categorized into two classes: those using fixed

(usually wired) sensing devices to cover a surveillance area [24, 38] and those using massively

deployed wireless sensors to collaboratively collect data, communicate, and monitor the

scene [92]. In recent years, advances in hardware and low-level software have made the

second approach more powerful and cost effective than before [93]. The wired sensors have

relatively high sensing accuracy with stable power supply, so they have been widely used in

conventional radar and camera-based surveillance systems. However, due to the high cost

and some physical/geometric restrictions on the deployment, those sensors are more or less

fixed at certain locations. Therefore, data collected by them are usually limited in spatial

coverage and nonadaptive to environmental change. On the other hand, deploying a large

number of wireless sensors (due to the low cost and flexibility) will provide a large amount

of data at the price of adding a significant portion of data processing to the system. The

91

bottleneck of a sensor network surveillance system mainly resides in the limited energy for

each sensing node to perform sensing, data processing and communication for a long period

of time. A more complete view of the sensing field can be obtained by exploiting the data

from both wired and wireless sensors.

Deploying wireless sensor nodes to cover a large area uniformly is usually not a good

choice. It is not only inefficient, but also hard to achieve accurate and robust performance:

although each sensor node has low cost and low energy consumption, the total cost for

collaborative sensing and data processing can be prohibitive. In addition, how to organize

and maintain sensors into collaborative groups (decide which sensors should be invoked and

how to propagate information to the appropriate nodes, etc.) in a large area is challenging

largely due to the limited computaional/communication capability of the sensor nodes. In

regard to the pros and cons of both approaches, a natural choice of system design is to

have a combination of fixed (mostly wired) devices which persistently cover the region of

interest and wireless sensors which can provide more detailed information as needed. To

illustrate this, we are in the process of developing a surveillance testbed with a combination

of both wired and wireless sensors to obtain multiresolution sensory data from the surveil-

lance area. In the testbed, the targets of interest are remotely-controlled vehicles; sensor

types include radar (range/speed), video cameras (wired/wireless), and many small, wire-

less acoustic/seismic/image sensors (Mica motes [3]) deployed around the indoor or outdoor

areas.

One major surveillance task is to detect and track moving targets (e.g., vehicles, people,

etc.). We refer to this task as target inference which includes not only target localiza-

tion and tracking, but also target detection and recognition. Since data are from multiple

92

sensing devices, how to combine the sensed/processed data for the same sources is also an

important problem. Such issues arise in track-to-track association (determining the origin

of the track) and track-to-track fusion (obtaining the estimate based on data from multiple

sources). In all these problems, decision and/or estimation (filtering) are the key elements

[11, 12]. They are usually coupled, e.g., local track estimates will affect the decision on

whether they are from a common origin; decision on target type will affect target motion

model being used to estimate the position and velocity. Previous work mainly focuses on

solving one problem conditioned on a solution of the other: “decision-then-estimation” or

“estimation-then-decision.” One of the major objectives of the development of our ground

vehicle surveillance testbed, is to provide a practical base for the Bayes approach [54], which

we discussed in previous two chapters, to the joint decision and estimation (JDE) problem.

We will focus on its application to target inference problem and study the tradeoff between

decision and estimation errors by designing different scenarios using the testbed. We will

discuss how such a joint solution differs from the conventional approaches and its impact on

the target inference with sensors of different types.

In a surveillance system using both wired and wireless sensors, how should networked

sensors be integrated? This is a typical problem of information fusion. In simple words,

information fusion is to combine information (data, decisions, estimates, identities, votes,

etc.) from multiple sources (sensors or data processing nodes, etc.) to achieve better inference

than could be achieved by the use of a single source [37]. In our experimental study, we first

use only wireless sensors to do the inference, and high-resolution video cameras to construct

the ground truth. We plan to evaluate the performance of the wireless sensors by comparing

their inference results with the “ground truth” obtained by the video cameras. It is an

93

intermediate step in the development of the testbed. At this stage, we try to quantitatively

analyze the capability and limitation of both types of sensing devices. The analysis results

will be used as a guideline for parameter design in the integrated target inference, which is

the next task of our testbed development.

5.2 Sensor Fusion with Practical Constraints

When different sensors/processors carry out JDE with local data, some inference results, e.g.,

state estimates, target types, may correspond to the same target, which leads to a (decision

or estimation) fusion problem. Fusion techniques with various practical constraints have to

be considered in real target inference problems. For a JDE problem, the data need be sent

from each local processor to the fusion center. They include {x̂k,msek, Dk}, where x̂k and

msek are the estimate and mean square error, respectively, Dk is the decision result which

could be hard decision (the hypothesis chosen) or soft decision (e.g., a probabilistic choice),

all at a local processor k. The corresponding weight {αk, βk} chosen at each local processor

should also be transmitted if the requirements of the task need to be tuned in real-time.

Compared with the conventional approaches, in which different local processors (for de-

cision or estimation, separately) only need the information either for decision or estimation,

the JDE solution requires more data flow at a time in the whole network. Finding efficient

way to transmit data among local processors and the fusion center is another major task for

the testbed development.

94

5.2.1 Data Fusion among Sensors of Different Types

Data fusion in a surveillance system using wireless sensor networks and one with video cam-

eras (wired and wireless) poses quite a few challenges in both decision fusion and estimation

fusion. Existing works [20, 59] mainly focused on how to organize distributed sensors (infor-

mative ones) into collaborative group, then perform localization techniques to initiate the

tracks, and run filters to maintain them. This approach usually requires the geographic

information of the deployed sensors, measurement synchronization, and relatively accurate

resolution of sensors. Moreover, to achieve better performance, the computational load of

the sensor management nodes will be fairly high due to the nonlinear nature of target mo-

tion [12]. Unlike previous work in the literature [20, 59, 93, 16], we would like to treat the

measurements from networked wireless sensors as a type of data different from conventional

sensor data. These data will be processed cooperatively with the conventional sensor data,

rather than do the inference independently. Due to low sensor resolution and poor image

registration, we do not use this type of data to track targets directly. Instead, for instance,

they are used for feature extraction. By examining the spectrum of acoustic signals from

wireless sensors, different types of vehicles can be discriminated. Without the proposed in-

tegrated JDE framework, this data can only help classification or recognition. Through our

JDE framework, the resulting solution will have the potential to improve the performance

of decision and estimation simultaneously.

95

5.2.2 Hierarchical Fusion

A large-scale target inference task can not be carried out in a fully centralized manner, which

is inefficient, costly and vulnerable to the failure of the central node. On the other hand, it

is also uncommon to implement the system in a “fully” distributed manner which will lead

to a lot of data redundancy, heavy computational load and communication cost, especially

when one faces geometry/physical constraints/limited regions of interest. In regard to the

distributed nature of the data (from sensor networks), an on-demand procedure to determine

the infrastructure of information fusion is preferred [10].

To be more specific, we expect the fully-developed testbed to work in this manner: The

high-resolution video cameras consistently monitor the interested field, and the networked

sensors remain in the energy-saving mode most of the time. The sensing nodes are divided

into groups. Once any target is detected by one or more sensing devices in one group, the

adjacent sensors in the same group will be invoked. The data collected at the nodes in

the group will be sent to a local management unit. After distributed signal processing at

each local management unit, the processed outputs (e.g., the probabilistic decision results,

local estimates) will be collected at the fusion center. This stage-by-stage data processing

procedure is what here “hierarchical fusion” stands for. By hierarchical data processing and

fusion, we emphasize not only utilizing different types of sensing devices in an effective way

but also choosing an appropriate architecture of the fusion procedure. The inference results

will be improved in terms of accuracy, response time, and target acquisition range.

96

5.3 Target Surveillance Testbed with Networked Sen-

sors

Low Resolution
Sensors

High Resolution
Sensors

Integrated Acoustic, Image,
and Seismic sensors

Wired Cameras

Wireless
Cameras

Remote-Controlled Vehicle

Directional Speed
Radars

Sensor Fusion
under Constraint

Integrated Target
Inference

JDE

Different-Level
Sensor fusion

Feature Extraction

Vehicle Type Vehicle Motion
EstimationDecision

Figure 5.1: JDE with integrated target inference testbed

To address the challenges described in the previous sections, we have developed a tar-

get surveillance testbed for small-scale illustration of the automated vehicle detection and

tracking using various algorithms. The testbed will allow the research in different areas in-

cluding target information processing, integrated sensing and data fusion, network control,

communication and computing systems. A unique feature of the testbed is the integration

97

of sensing and data processing in a dynamic network environment with multiple moving

vehicles performing cooperative tasks. The equipment being used to develop the testbed

system includes:

• Remote control vehicles: each of them works at one of 6 different control channels; the

size is 1:10 comparing with real ones.

• Two desktop computers and two laptops: for collecting data and doing local processing.

• Two work stations: located in different rooms and used as fusion centers.

• Wireless sensor nodes and developing kits (Micaz Mote-Kit2400 [3]): the programming

board is connected to a desktop via a serial-USB convertor.

• Overhead cameras and a surveillance center (currently built on a high performance

desktop).

• Wireless cameras: the video streams are collected via TV tuner cards.

• Wireless routers (802.11b/g).

• Two speed radars: the effective range is up to 250 feet for the vehicles we use; the

speed range is 1 to 100 mph; the radar data are sent to a desktop via serial (RS-232)

ports.

As one possible configuration of the testbed, Figure 5.1 shows how the JDE framework

is applied to the scenarios designed upon the target surveillance testbed with networked

sensors. One or more remotely-controlled vehicles will be monitored by different sensors. The

wired video cameras are mounted on fixed locations, recording video streams and directly

98

communicating to a desktop. The wireless video cameras are placed on fixed locations that

are not convenient for wiring. The video data from wireless cameras are collected by a

multi-channel wireless receiver connected to the desktop. The two speed radars (collecting

two dimensional readings) are connected via serial ports of a PC. These sensors are used as

high resolution sensors for inference. The Mica motes with acoustic sensors are used as low

resolution sensors to be deployed into the experimental area. After fusing data under limited

communication constraints (e.g., maximum rate of 76.8 kbps for each Mica mote), data of

different types can be used in the JDE framework for integrated target inference. The final

output of the system includes both the vehicle types and the fused state estimates related

to the vehicle motion. With different maneuver motion scenarios, we want to illustrate how

data of different types can be fully exploited through this integrated approach. For instance,

Mica motes (only for decision without JDE) can help motion estimation, and speed radars

(only for estimation without JDE) can improve the accuracy of target recognition.

Figure 5.3 illustrates a sample indoor placement: A vehicle moves along a straight line.

On its path, there is a set of Micaz motes deployed to obtain the environment observations.

Based on the sensory data, target detection, localization and tracking can be performed

depending on the task requirement. In Figure 5.2, to obtain the details of vehicle dynamics,

two Micaz motes were attached on the top of the vehicle.

5.4 Experimental Results

In this section, we present an illustrative scenario of vehicle detection and tracking with

multiple sensors.

99

Figure 5.2: A moving vehicle with motes on top

5.4.1 Hardware Description

Micaz Motes

In these experiments, we used Micaz motes to construct the wireless sensor network. The

Micaz has been developed by the researchers in the University of California, Berkeley and

released by Crossbow, Inc. [3]. It is an open hardware and software platform for environment

sensing and with support for plug-in sensor boards (see Figure 5.4). It is a 2.4 GHz, IEEE

802.15.4 compliant, Mote module used for enabling low-power, wireless, sensor networks.

With enhancement on the overall functionality of Crossbow’s Mica family of wireless sensor

networking products, the Micaz Mote features several new capabilities [3]:

• IEEE 802.15.4/ZigBee compliant RF transceiver

• 2.4 to 2.4835 GHz ISM band

100

Figure 5.3: A vehicle moves along a straight line

• Direct sequence spread spectrum radio

• 250 kbps data rate.

Before the experiments, the Micaz Motes had been programmed with TinyOS firmware

and ready to collect data periodically.

MTS310CA/MTS300CA Sensor Board

The sensor board attached on each Micaz is MTS310CA or MTS300CA, which are flexible

sensor boards with a variety of sensing modalities. These modalities can be exploited in

developing sensor networks for a variety of applications including vehicle detection, low-

101

Figure 5.4: A Micaz mote

performance seismic sensing, movement, acoustic ranging, robotics, and other applications

[3]. The detailed sensing modalities are illustrated in Figure 5.5.

Note the sounder is not a sensor, but an output. It is useful in unmanned safety and

security systems.

The MTS310CA/MTS300CA sensor board has the following modalities:

• Microphone

• Light and Temperature

• 2-Axis Magnetometer (only for MTS310CA)

• 2-Axis Accelerometer (only for MTS310CA)

The sensor board is connected to the Micaz via the standard 51-pin expansion connector

(refer to Figure 5.6). We only used microphone and light sensors for the current setting.

102

Microphone

Magnetometer

Accelerometer

Sounder

Temperature
sensor

Light sensor

Figure 5.5: MTS310CA sensor board

The microphone works as a tone detector. And the light sensor is a simple CdSe photocell.

Wireless Sensor Network Gateway

The MIB510 gateway allows for the aggregation of sensor network data on a PC. In addition

to data transfer, the MIB510 also provides an RS-232 serial programming interface. In our

implementation, we used a serial-USB adapter to connect to a laptop. With an onboard

processor, it is capable of programming Micaz and Mica2DOT processor radio boards. In

programming, the USB port is identified as a com port. The data collection can be invoked by

programming with TinyOS. There is also a GUI tool, MoteView (refer to Figure 5.7), available

from Crossbow Inc. The Micaz motes can also be programmed using the MoteConfig in the

GUI tool (refer to Figure 5.8) instead of typing in command line in TinyOS.

All the visualization tools in MoteView require being connected to a database. This

103

Figure 5.6: Micaz mote with sensor board attached

database can reside on the PC (“localhost”), or a remote server. The database used in our

experiments is PostgreSQL 8.0. The tables stored in the database were dumped to text files,

then further convert to excel files.

Figure 5.9 shows how the gateway connects other components: Besides the AC adapter

and RS-232/serial cable (or serial-USB adapter), one Micaz mote, which was labeled as 0,

attached on the top via the connector and acts as the base station. On the other side, a

sensor board can also be attached.

Video Cameras

The video surveillance systems in our experiments was an EZWatch Pro system customized

by Automated Video Systems [1]. The video cameras in use were SONY BU 581SRW color

bullet cameras (see Figure 5.10).

The specifications of the video cameras are listed in Table 5.1. All the video cameras

104

Figure 5.7: MoteView GUI tool

were connected to a desktop PC. Since they were all using the local time on the PC, there

is no synchronization problem involved when collaboration is needed.

The trajectories obtained by video cameras are used to create the ground truth. The

objective of the scenario is to detect the presence of the vehicle and find the locations at

different time instants by using the measurements from wireless sensors. The ground truth

obtained by the camera measurements will be used in performance evaluation.

5.4.2 Scenario Setup

The experiment was carried out in a dark room. The coverage area of all the sensing devices

is about 20 ft×4 ft. Five sensors are placed 4 feet apart along both sides of the coverage area.

The placement of the sensors is shown in Figure 5.11. A remotely controlled vehicle with

105

Figure 5.8: MoteConfig in MoteView GUI tool

two sensors and a flash light onboard was used. Three video cameras and a digital camera

are used to provide the scenes of surveillance area and possibly the position information of

the vehicle. The laptop enables the processing of the sensor programming board which is

collecting sensing data from each Micaz mote. The three video cameras are placed at 0ft,

15ft and 23ft along x-axis respectively.

We intended to create a simple motion at a nearly constant velocity. However since

the motion of the vehicle is controlled by a remote controller, it depends heavily on the

operation of the remote controller with timely acceleration and deceleration. During the

experiment, the vehicle moved roughly along straight lines both in the forward and the

backward directions. The duration of the experiment is approximately 52.9 seconds.

106

(A) MIB510CA Programming Board

(B) MIB510CA with Micaz and sensor board

Figure 5.9: MIB510 serial gateway

107

Figure 5.10: BU 581SRW - SONY CCD bullet camera

5.4.3 Preliminary Sensor Data Processing

We used the light and acoustic sensors on the Micaz motes to detect the presence of the

vehicle and estimate the locations periodically. Without any object passing by, the reading

of each sensor (light or acoustic) is around a base value which can be treated as constant.

Because of our objective of the scenario, we care more about the relative change in the

reading, and therefore we did not perform strict calibration for light and acoustic sensors.

When the vehicle with the flashlight passes the sensor (see Figure 5.12), with fairly high

probability there is a significant change in the sensor reading. If this value exceeds a threshold

value chosen as 20 in analog-to-digital converter (ADC) readings in the scenario, then we

declare the vehicle’s presence. Unfortunately, the sensor readings are not always accurate —

there were cases of missed detection and false alarms.

Figure 5.13 shows all the measurements of one particular light sensor placed along the

coverage area during the experiment. We can observe that there is one peak over the thresh-

108

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

vehicle

Figure 5.11: Sensor placement (units in feet)

old, which clearly indicates the vehicle’s presence in the range of the sensor. However in

some cases, the peak is either not large enough or is comparable with the noise level. In

fact, sometimes there is no peak at all even when the vehicle passes by. By observing these

phenomena, it is reasonable to construct a probabilistic measurement model which is a func-

tion of the sensing range. The parameters of the models need to be determined by a further

study.

In our experiments, we also mounted two Micaz motes onboard to gain the knowledge of

the true accelerations invoked by the remote controller, which is helpful to create the ground

truth. However, the result is not so attractive: There is quite noticeable time delay between

the sensor reading and the truth, and the delay time is unpredictable. This is mainly due

to the limit of the transmission rate of the sensors. Meanwhile, there is also no clear way

how the temperature sensor can serve our purpose. Therefore in our implementation, only

the light and acoustic sensors are emphasized.

109

Figure 5.12: Vehicle passes by a mote node

5.4.4 Camera Calibration

Camera calibration is a process to estimate the intrinsic and/or extrinsic parameters of a

camera given the values of the reference points in both the image coordinates and the world

coordinates. For a single camera, a calibration procedure can be found in [82]. However, this

method require many reference points (6 at least, the more the better, in practice people

may use hundreds of reference points to achieve a very accurate result). In practice, if there

is more than one camera in use, the required number of reference points can be significantly

reduced. This is an interesting open topic in image processing and also important to the

development of the testbed. However this is beyond the scope of the dissertation, and we

will not go into technical details here.

In our experiment setup, we have three different cameras positioned at different locations,

covering partially the scene for the duration of the experiment. From the video sequence

110

0 10 20 30 40 50 60
480

500

520

540

560

580

600

620

640

660

Time (sec)

Li
gh

t (
A

D
C

)
re

ad
in

gs

Light Sensor

Figure 5.13: Measurements from a Light sensor for the entire experiment

obtained by each video camera, a set of image coordinates representing the centroids of the

moving vehicle were calculated. The sampling rate is once per second.

The location and orientation of the three cameras with respect to the real world coordi-

nate are measured prior to the experiments and they were assumed known perfectly. Two

reference points with known image and world coordinates with respect to all three cameras

are used to calculate their intrinsic and extrinsic parameters, which are used to obtain the

mapping between the image coordinates and the world coordinates.

The plots in Figure 5.14 shows the trajectories formed by the image coordinates of the

vehicle centroid for each camera. We can observe from the three plots that the vehicle moves

more or less in a straight line.

Camera calibration can be performed individually following the procedure described in

[82]. Figure 5.15 shows the calibration results for each individual camera. Note that not all

3 cameras can see the vehicle all the time.

111

Camera 1

Forward
Return

Camera 2

Forward
Return

Camera 3

Forward
Return

Figure 5.14: Plots of vehicle centroid as observed from three cameras

112

0 2 4 6 8 10 12 14 16 18 20
0.5

1

1.5

2

2.5

3

3.5

4

X axis (ft)

Y
 a

xi
s

(f
t)

2−D Vehicle Location

Camera 1 − onward
Camera 1 − return
Camera 2 − onward
Camera 2 − return
Camera 3 − onward
Camera 3 − return

Figure 5.15: Calibration results for each individual camera

As we see from the above figure, the cameras are not very well calibrated using the single

camera calibration method because the reference points are few.

To improve the accuracy of the estimates of the vehicles in the world coordinates from

three cameras, we could use an iterative procedure to calibrate them. The basic idea of the

procedure is described as follows.

Start from one arbitrary camera, calibrated individually using single camera calibration

method with the two known reference points. This result is used to obtain the world coor-

dinate values of several points. Then these points are used as additional reference points to

calibrate other cameras. After the unknown parameters of the other cameras are obtained by

each single camera calibration, the world coordinates of these points from different cameras

are compared. If the result are quite different, the new world coordinates of the additional

reference points are used to calibrate the previous camera. The values of camera parame-

ters will be refined by iteratively repeating the above steps. The iterative procedure stops

113

when the corresponding values are close enough (by comparing the difference with a preset

threshold). There is a multiple camera calibration example of implementing this idea in [87].

Figure 5.16 shows the calibration results for all three cameras.

0 2 4 6 8 10 12 14 16 18 20
0.5

1

1.5

2

2.5

3

3.5

4

X axis (ft)

Y
 a

xi
s

(f
t)

2−D Vehicle Location

Camera 1 − onward
Camera 1 − return
Camera 2 − onward
Camera 2 − return
Camera 3 − onward
Camera 3 − return

Figure 5.16: Calibration results for multiple cameras

To check the accuracy of the calibration, we compared the sample standard deviation σ̂ of

each estimated location for the cases before and after the calibration: Before calibration, the

averaged σ̂, denoted as σ̄, is 0.84ft; after calibration, σ̄ = 0.42ft. If we look into the details

for both axes, σ̄x = 0.83ft and σ̄y = 0.10ft before calibration, σ̄x = 0.41ft and σ̄y = 0.08ft

after calibration. From Figure 5.16, we observed that after calibrating the cameras iteratively

using the other calibrated cameras in a few steps, we still do not have a single trajectory that

can be used to represent the ground truth of the vehicle’s motion, which actually means the

iteration should go on. To make it simple, we take the arithmetic average of the estimates

from the three cameras at all the common time instants. The trajectory of the ground truth

obtained after combining the estimates from the three cameras is shown in Figure 5.17,

114

where we use a 4th degree polynomial equation that best fits the given data set, i.e. the

estimates of the vehicle location, to obtain a smooth representation of the vehicle’s motion.

The trajectory shown in the figure is close to a straight line, which agrees with what we

observed.

0 2 4 6 8 10 12 14 16 18 20
0.5

1

1.5

2

2.5

3

3.5

4

X axis (ft)

Y
 a

xi
s

(f
t)

2−D Vehicle Location

Forward Direction
Polynomial Curve Fit − forward
Return Direction
Polynomial Curve Fit − return

Figure 5.17: Vehicle locations estimated by video cameras

5.4.5 Localization by Wireless Sensors

As we show in the Figure 5.11, the coverage area has 10 sensors placed on both sides and at

approximately 4 feet apart. Significant changes in the light and acoustic sensor readings are

observed when the vehicle passed by the sensors correspondingly. Such changes in the sensor

readings indicate the time instants (both forward and reverse directions) when the vehicle

passes by the sensors. The vehicle locations can be estimated from the locations of the Micaz

motes which have a significant increase in sensor readings (mic, light, etc) corresponding to

the vehicle’s presence in the vicinity of all the sensors.

115

Once we have the approximate time instants for both forward and return paths, the next

step would be to describe the motion of the vehicle, and hence the location of the vehicle, at

any particular time instant. With the available distance and time instants, one possible way

to describe the vehicle motion in both forward and reverse directions is to fit to the existing

data in the least-squares sense, as applied in [87].

The curve fitting process fits equations of approximating curves to the raw field data.

Nevertheless, for a given set of data, the fitted curves of a given type are generally not unique.

For simplicity, a curve with a minimal deviation from all data points is desired. This best-

fitted curve can be obtained by the method of least squares. Detailed fitting results by the

least squares were presented in [87]. The estimation error is about 0.77 ft on average. This

error is relatively large compared with the sensing range (20 ft × 4 ft). One major reason is

that the data rate is quite limited.

5.4.6 Remarks

As a testbed serving both decision and estimation purposes, only the estimation operation

was described so far. Here the decision part is to determine whether there is a target present.

This decision is coupled with the estimation presented in the previous subsection. Therefore

we can treat these two parts as a JDE problem. In our implementation, we were following

a conventional strategy, namely, decision-then-estimation, to solve this joint problem. The

localization was done by assuming we always make the correct decision, i.e., the locations of

the vehicle were estimated based on the known sensor locations once the target was declared

present. The observations used for decision are the light readings. When one reading is over

116

the threshold, we declared there was a target present. The constant velocity model of the

vehicle was assumed.

For the detection part, as we mentioned in the preliminary analysis, the peak in the sensor

readings (if any) usually has a quite noticeable delay after the vehicle passes by. Apparently,

only depending on these wireless sensors, the inference results are not quite satisfactory.

The bottleneck here is the communication constraint of the mote sensors. There are two

ways to improve: 1) Cooperate with high precision sensing devices by fusion techniques;

2) Implement the JDE framework to exploit the data for both purposes interactively and

more effectively. In [56], we provided a solution to a joint target tracking and classification

(JTC) example based on the JDE framework proposed in [54]. The assignment of the weight

{αij, βij} in the Bayes risk was discussed by comparing the results in different situations

of the example. Besides the conventional probability of correct decision and root mean

squares errors for decision and estimation respectively, a comprehensive performance index

for JDE was used to evaluate the performance of the JDE solution. Here we need to point

out that our current decision-then-estimation strategy in the testbed implementation is a

special case of the JDE setting. If βij ≡ constant, the estimation will not have any impact

on decision and the JDE solution degrades to this decision-then-estimation strategy. One

hidden problem in [56] is that if we want to implement the algorithm on our testbed, we

may need a new version of the comprehensive JDE performance index to evaluate the results,

since the Monte Carlo method used there is time-consuming and may not be suitable for a

real-time implementation. In [56], a general guideline for the weight assignment for the JTC

problem was given based on the simulation results, which agrees with our intuition. If we

can draw the same conclusion based on the testbed implementation, it is beneficial for our

117

theoretical development.

Our current solution is still centralized in nature. However if we treat the existing place-

ment as a group of the system, it is possible to extend our work to a hierarchical setting.

Another problem is that the measurement model of the sensors used here is over simpli-

fied. A more meaningful probabilistic model, rather than the current energy-based binary

indicator, is needed to improve the inference results. For instance, in [56], one data model

with confusion matrix was assumed in the problem setting. We expect that through further

experimental study based on JDE, more realistic measurement models and better design

of the algorithms can be achieved. These are several important directions for the future

development of our testbed.

5.5 Discussion and Conclusions

In this chapter, we have presented the development of a surveillance testbed with networked

sensors. Based on this testbed, we have illustrated how to detect a moving vehicle and find

its trajectory in the sensing field based on the change of lighting and acoustic readings from

Micaz motes. In order to obtain the ground truth with better accuracy for algorithm compar-

ison, three video sequences were collected via high-resolution video cameras. Each camera

was calibrated with limited reference points. Although the presented example scenario only

addressed data processing in different data types, the usage of the testbed is not limited to

such simple problem settings. For instance, fusion with limited communication constraints

can be addressed. The readings of the acoustic sensors used in the experiments are quite

rough: they only act as tone detectors and the resolution is quite poor, sometimes even

118

when the vehicle passes by their adjacent area there are no readings at all. The sampling

rate of the sensors is also too low compared with that of traditional devices (say, radars). By

introducing more accurate and diverse sensing devices into the testbed, we should be able to

attack more realistic problems in target inference. Because of the specific interest in the JDE

problem setting, in the next step we will focus on the development of the JDE scenarios using

the testbed. Another important future topic is to develop meaningful performance metrics

to evaluate the outputs from various algorithms based on the moving vehicle scenarios.

119

Table 5.1: BU 581SRW - SONY CCD bullet camera

Image Sensor Sharp 1/3” Color CCD Sensor

Horizontal Effective Pixels 768 pixel(s)

Vertical Effective Pixels 492 pixel(s)

CCD Size 1/3 inch

CCD Type Color

Resolution 480 TV Line

Power Type DC

Power Source 12V

Power Consumption 120 mA

Scanning Frequency 15.734Khz (H), 59.94Hz (V)

Scanning System 2:1 Interlace

Video Output BNC / 75 Ohm

Lens Type Standard

Lens 4mm Fixed Lens (85 degree view angle)

Diameter 30 mm

Height 100 mm

Weight 290 g (approx.)

120

Chapter 6

Summary and Future Work

The dissertation mainly focuses on solving statistical inference problems with both decision

and estimation components in engineering applications.

A novel approach to model the Internet end-to-end delay dynamics using MM methods

has been proposed. Although each model is LTI, overall the MM method provides a non-

stationary, nonlinear solution. The proposed MM method performs better for prediction,

in a highly non-stationary and nonlinear case (which corresponds to the Internet traffic at

daytime), than two well known adaptive filters, namely, LMS and RLS.

An integrated approach to JDE based on proposed generalized Bayes risks has been

studied in detail. Our goal is to provide a general systemic solution to this type of prob-

lems. One example in joint target tracking and classification was solved using the integrated

approach. The performance of the inference results was evaluated using the conventional

indices and a newly proposed comprehensive index for the JDE problem. A vehicle surveil-

lance testbed with networked sensors for integrated target inference is being developed to

build a connection between theory and practice.

121

In my future research work, there are several possible directions worth pursuing:

• Further extension of the JTC example. This topic is two fold: one is to apply our JDE

framework in a similar setting to other signal processing and communication problems

(for instance, user detection and parameter estimation, signal extraction and system

identification); the other is to consider the dynamic case.

• Model selection. This dissertation started from an estimation-oriented application, and

later mainly focused on a more or less balanced Bayes framework. One important part

of the general JDE problems, inference with decision in primary place (or estimation-

oriented inference), has not been studied in detail. It will be interesting to see what role

the JDE Bayes risk can play in this type of questions. As one of the most well-known

questions in this category, hopefully model selection can give us deeper understanding

by applying this generalized risk.

• JDE performance evaluation in practical problems. As we addressed in the previous

chapter, it will be beneficial for both theoretical development and experimental design

of the testbed.

122

Appendix A

Likelihood Functions in JTC Example

Since

f(z1|Hi) =

∫
f(z1|Hi, x)f(x)dx

=

∫
N (z1; θix1, σ2

vI)N (x; x̄, σ2
x)dx

where

N (z1; θix1, σ2
vI) =

1

(2σ2
v)

n/2
exp

[
−

1

2σ2
v

n∑

j=1

(z1j − θix)2

]

N (x; x̄, σ2
x) =

1

(2σ2
x)

1/2
exp

[
−

(x − x̄)2

2σ2
x

]

therefore

−2 lnN (z1; θix1, σ2
vI) =

θ2
i

σ2
v

n∑

j=1

(z1j/θi − x)2 + c

=
1

nσ2
zi

n∑

j=1

[(x − z̄i) + (z̄i − z1j/θi)]
2 + c

=
1

σ2
zi

[
(x − z̄i)

2 +
1

n

n∑

j=1

(z̄i − z1j/θi)
2

]
+ c

123

−2 lnN (x; x̄, σ2
x) =

1

σ2
x

(x − x̄)2 + c̄

where c is a function of σv and c̄ is a function of σx. Ignoring these two additive constants

that do not depend on x or z,

− 2 ln
[
N (z1; θix1, σ2

vI)N (x; x̄, σ2
x)

]

=
1

σ2
x

(x − x̄)2 +
1

σ2
zi

[
(x − z̄i)

2 +
1

n

n∑

j=1

(z̄i − z1j/θi)
2

]

=
1

σ2
x

(x2 − 2xx̄ + x̄2) +
1

σ2
zi

(
x2 − 2xz̄i + z̄2

i

)
+

1

nσ2
zi

n∑

j=1

(z̄i − z1j/θi)
2

=
1

σ2
x

(x2 − 2xx̄ + x̄2) +
1

σ2
zi

(
x2 − 2xz̄i + z̄2

i

)
+

1

σ2
v

n∑

j=1

(θiz̄i − z1j)
2

=

(
1

σ2
x

+
1

σ2
zi

)
x2 − 2x

(
x̄

σ2
x

+
z̄i

σ2
zi

)
+

x̄2

σ2
x

+
z̄2

i

σ2
zi

+
1

σ2
v

n∑

j=1

(θiz̄i − z1j)
2 (A.1)

We define

σ2
xi =

(
1

σ2
x

+
1

σ2
zi

)−1

=
σ2

xσ
2
zi

σ2
x + σ2

zi

x̂ = σ2
xi

(
x̄

σ2
x

+
z̄i

σ2
zi

)

To complete square for first two terms in Eq. (A.1) we have

(
σ2

xi

)−1 [
x2 − 2xx̂ + x̂2

]
−

(
σ2

xi

)−1
x̂2

therefore

− 2 lnN (z1; θix1, σ2
vI)N (x; x̄, σ2

x)

=
(x − x̂)2

σ2
xi

+
x̄2

σ2
x

+
z̄2

i

σ2
zi

−
x̂2

σ2
xi

+
1

σ2
v

n∑

j=1

(θiz̄i − z1j)
2

124

After integration, the first term become constant, then

∫
N (z1; θix1, σ2

vI)N (x; x̄, σ2
x)dx = c exp

[
−

1

2σ2
v

n∑

j=1

(θiz̄i − z1j)
2 −

1

2

(
x̄2

σ2
x

+
z̄2

i

σ2
zi

−
x̂2

σ2
xi

)]

= c exp

[
−

1

2σ2
v

n∑

j=1

(ẑ1 − z1j)
2 −

1

2

(
x̄2

σ2
x

+
z̄2

i

σ2
zi

−
x̂2

σ2
xi

)]

since

x̄2

σ2
x

+
z̄2

i

σ2
zi

−
x̂2

σ2
xi

=
x̄2

σ2
x

+
z̄2

i

σ2
zi

−

(
x̄

σ2
x

+
z̄i

σ2
zi

)2
σ2

xσ
2
zi

σ2
x + σ2

zi

=
x̄2

σ2
x

+
z̄2

i

σ2
zi

−
(σ2

zix̄ + σ2
xz̄i)

2

(σ2
x + σ2

zi)σ2
xσ

2
zi

=
x̄2σ2

zi (σ
2
x + σ2

zi) + z̄2
i σ

2
x (σ2

x + σ2
zi) − (σ2

zix̄ + σ2
xz̄i)

2

σ2
xσ

2
zi (σ

2
x + σ2

zi)

=
x̄2σ2

zi (σ
2
x + σ2

zi) + z̄2
i σ

2
x (σ2

x + σ2
zi) − (σ2

zi)
2
x̄2 − (σ2

x)
2
z̄2

i − 2σ2
zix̄σ2

xz̄i

σ2
xσ

2
zi (σ

2
x + σ2

zi)

=
x̄2

[
σ2

zi (σ
2
x + σ2

zi) − (σ2
zi)

2
]

+ z̄2
i

[
σ2

x (σ2
x + σ2

zi) − (σ2
x)

2
]
− 2σ2

zix̄σ2
xz̄i

σ2
xσ

2
zi (σ

2
x + σ2

zi)

=
x̄2σ2

ziσ
2
x + z̄2

i σ
2
xσ

2
zi − 2σ2

ziσ
2
xx̄z̄i

σ2
xσ

2
zi (σ

2
x + σ2

zi)
= σ2

ziσ
2
x

x̄2 + z̄2
i − 2x̄z̄i

σ2
xσ

2
zi (σ

2
x + σ2

zi)

=
(x̄ − z̄i)

2

σ2
x + σ2

zi

then the first likelihood is

f(z1|Hi) =

∫
N (z1; θix1, σ2

vI)N (x; x̄, σ2
x)dx

= c exp

[
−

1

2σ2
v

n∑

j=1

(ẑ1 − z1j)
2 −

(x̄ − z̄i)
2

2 (σ2
x + σ2

zi)

]
(A.2)

Similarly, for the second likelihood,

f(z3|Hi) =

∫
N (z3; x1, σ2

wI)N (x; x̄, σ2
x)dx

125

and

−2 lnN (z3; x1, σ2
wI) =

1

σ2
w

n∑

j=1

(z3j − x)2 + c′

=
1

σ2
w

n∑

j=1

[(z3j − ẑ3) + (ẑ3 − x)]2 + c′

=
1

σ2
w/n

[

(x − ẑ3)
2 +

1

n

n∑

j=1

(z3j − ẑ3)
2

]

+ c′

where c′ is a function of σw. Then ignoring the additive constants

− 2 ln
[
N (z3; x1, σ2

wI)N (x; x̄, σ2
x)

]

=
1

σ2
x

(x − x̄)2 +
n

σ2
w

[
(x − ẑ3)

2 +
1

n

n∑

j=1

(z3j − ẑ3)
2

]

=
1

σ2
x

(x2 − 2xx̄ + x̄2) +
1

σ2
w/n

(
x2 − 2xẑ3 + ẑ2

3

)
+

1

σ2
w

n∑

j=1

(z3j − ẑ3)
2

=

(
1

σ2
x

+
1

σ2
w/n

)
x2 − 2x

(
x̄

σ2
x

+
ẑ3

σ2
w/n

)
+

x̄2

σ2
x

+
ẑ3

σ2
w/n

+
1

σ2
w

n∑

j=1

(z3j − ẑ3)
2 (A.3)

After observing the similarity between Eq. (A.1) and Eq. (A.3), we replace σ2
zi in Eq.

(A.1) by σ2
w/n, z̄i by ẑ3, then the second likelihood is

f(z3|Hi) =

∫
N (z3; x1, σ2

wI)N (x; x̄, σ2
x)dx

= c′ exp

[
−

1

2σ2
w

n∑

j=1

(ẑ3 − z3j)
2 −

(ẑ3 − x̄)2

2(σ2
w/n + σ2

x)

]
(A.4)

For the third likelihood

f(z1, z3|Hi) =

∫
N (z1; θix1, σ2

vI)N (z3; x1, σ2
wI)N (x; x̄, σ2

x)dx

since

− 2 lnN (z1; θix1, σ2
vI)

=
1

σ2
zi

[
(x − z̄i)

2 +
1

n

n∑

j=1

(z̄i − z1j/θi)
2

]
+ c

126

−2 lnN (x; x̄, σ2
x) =

1

σ2
x

(x − x̄)2 + c̄

−2 lnN (z3; x1, σ2
wI) =

1

σ2
w

n∑

j=1

(z3j − x)2 + c′

Ignoring the additive constants that do not depend on x or z,

− 2 lnN (z1; θix1, σ2
vI)N (z3; x1, σ2

wI)N (x; x̄, σ2
x)

=
1

σ2
x

(x − x̄)2 +
1

σ2
zi

[
(x − z̄i)

2 +
1

n

n∑

j=1

(z̄i − z1j/θi)
2

]
+

1

σ2
w

n∑

j=1

[
(x − ẑ3)

2 + (ẑ3 − z3j)
2
]

=
1

σ2
x

(x2 − 2xx̄ + x̄2) +
1

σ2
zi

(
x2 − 2xz̄i + z̄2

i

)
+

1

nσ2
zi

n∑

j=1

(z̄i − z1j/θi)
2

+
1

σ2
w

(x2 − 2xẑ3 + ẑ2
3) +

1

σ2
w

n∑

j=1

(ẑ3 − z3j)
2

Complete square for x

1

σ2
x

(x2 − 2xx̄ + x̄2) +
1

σ2
zi

(
x2 − 2xz̄i + z̄2

i

)
+

1

σ2
w

(x2 − 2xẑ3 + ẑ2
3)

=

(
1

σ2
x

+
1

σ2
zi

+
1

σ2
w

)
x2 − 2x

(
x̄

σ2
x

+
z̄i

σ2
zi

+
ẑ3

σ2
w

)
+

x̄2

σ2
x

+
z̄2

i

σ2
zi

+
ẑ2
3

σ2
w

=
(
σ2

xi

)−1 [
x2 − 2xx̂ + x̂2

]
−

(
σ2

xi

)−1
x̂2 +

x̄2

σ2
x

+
z̄2

i

σ2
zi

+
ẑ2
3

σ2
w

then

− 2 lnN (z1; θix1, σ2
vI)N (x; x̄, σ2

x)

=
(x − x̂)2

σ2
xi

+
x̄2

σ2
x

+
z̄2

i

σ2
zi

+
ẑ2
3

σ2
w

−
x̂2

σ2
xi

+
1

σ2
w

n∑

j=1

(ẑ3 − z3j)
2 +

1

σ2
v

n∑

j=1

(θiz̄i − z1j)
2

We define

σ2
xi =

(
1

σ2
x

+
1

σ2
zi

+
1

σ2
w

)−1

x̂ = σ2
xi

(
x̄

σ2
x

+
z̄i

σ2
zi

+
ẑ3

σ2
w

)

127

After integration, the first term become constant, then

∫
N (z1; θix1, σ2

vI)N (z3; x1, σ2
wI)N (x; x̄, σ2

x)dx

= c′′ exp

[

−
1

2σ2
v

n∑

j=1

(θiz̄i − z1j)
2 −

1

2σ2
w

n∑

j=1

(ẑ3 − z3j)
2 −

1

2

(
x̄2

σ2
x

+
z̄2

i

σ2
zi

+
ẑ2
3

σ2
w

−
x̂2

σ2
xi

)]

= c′′ exp

[
−

1

2σ2
v

n∑

j=1

(ẑ1 − z1j)
2 −

1

2σ2
w

n∑

j=1

(ẑ3 − z3j)
2 −

1

2

(
x̄2

σ2
x

+
z̄2

i

σ2
zi

+
ẑ2
3

σ2
w

−
x̂2

σ2
xi

)]

where c′′ is a function of σv and σw. Since

x̄2

σ2
x

+
z̄2

i

σ2
zi

+
ẑ2
3

σ2
w

−
x̂2

σ2
xi

=
x̄2

σ2
x

+
z̄2

i

σ2
zi

+
ẑ2
3

σ2
w

−

(
x̄

σ2
x

+
z̄i

σ2
zi

+
ẑ3

σ2
w

)2 (
1

σ2
x

+
1

σ2
zi

+
1

σ2
w

)−1

=
x̄2

σ2
x

+
z̄2

i

σ2
zi

+
ẑ2
3

σ2
w

−
σ2

xσ
2
wσ2

zi

σ2
wσ2

zi + σ2
xσ

2
w + σ2

xσ
2
zi

·
(σ2

wσ2
zix̄ + σ2

xσ
2
wz̄i + σ2

xσ
2
ziẑ3)

2

(σ2
xσ

2
wσ2

zi)
2

=
(σ2

wσ2
zi + σ2

xσ
2
w + σ2

xσ
2
zi) (σ2

wσ2
zix̄

2 + σ2
xσ

2
wz̄2

i + σ2
xσ

2
ziẑ

2
3) − (σ2

wσ2
zix̄ + σ2

xσ
2
wz̄i + σ2

xσ
2
ziẑ3)

2

(σ2
wσ2

zi + σ2
xσ

2
w + σ2

xσ
2
zi)σ2

xσ
2
wσ2

zi

notice that

(
σ2

wσ2
zix̄ + σ2

xσ
2
wz̄i + σ2

xσ
2
ziẑ3

)2
=

(
σ2

wσ2
zi

)2
x̄2 +

(
σ2

xσ
2
w

)2
z̄2

i +
(
σ2

xσ
2
zi

)2
ẑ2
3

+ 2σ2
wσ2

zix̄σ2
xσ

2
wz̄i + 2σ2

xσ
2
wz̄iσ

2
xσ

2
ziẑ3 + 2σ2

wσ2
zix̄σ2

xσ
2
ziẑ3

and

(
σ2

wσ2
zi + σ2

xσ
2
w + σ2

xσ
2
zi

)
σ2

wσ2
zix̄

2 −
(
σ2

wσ2
zi

)2
x̄2 = σ2

wσ2
zi

(
σ2

xσ
2
w + σ2

xσ
2
zi

)
x̄2

(
σ2

wσ2
zi + σ2

xσ
2
w + σ2

xσ
2
zi

)
σ2

xσ
2
wz̄2

i −
(
σ2

xσ
2
w

)2
z̄2

i = σ2
xσ

2
w

(
σ2

wσ2
zi + σ2

xσ
2
zi

)
z̄2

i

(
σ2

wσ2
zi + σ2

xσ
2
w + σ2

xσ
2
zi

)
σ2

xσ
2
ziẑ

2
3 −

(
σ2

xσ
2
zi

)2
ẑ2
3 = σ2

xσ
2
zi

(
σ2

wσ2
zi + σ2

xσ
2
w

)
ẑ2
3

128

and for the numerator

σ2
wσ2

zi

(
σ2

xσ
2
w + σ2

xσ
2
zi

)
x̄2 + σ2

xσ
2
w

(
σ2

wσ2
zi + σ2

xσ
2
zi

)
z̄2

i + σ2
xσ

2
zi

(
σ2

wσ2
zi + σ2

xσ
2
w

)
ẑ2
3

− 2σ2
wσ2

zix̄σ2
xσ

2
wz̄i − 2σ2

xσ
2
wz̄iσ

2
xσ

2
ziẑ3 − 2σ2

wσ2
zix̄σ2

xσ
2
ziẑ3

= σ2
wσ2

ziσ
2
xσ

2
wx̄2 + σ2

xσ
2
wσ2

wσ2
ziz̄

2
i − 2σ2

wσ2
zix̄σ2

xσ
2
wz̄i

+ σ2
wσ2

ziσ
2
xσ

2
zix̄

2 + σ2
xσ

2
ziσ

2
wσ2

ziẑ
2
3 − 2σ2

wσ2
zix̄σ2

xσ
2
ziẑ3

+ σ2
xσ

2
wσ2

xσ
2
ziz̄

2
i + σ2

xσ
2
ziσ

2
xσ

2
wẑ2

3 − 2σ2
xσ

2
wz̄iσ

2
xσ

2
ziẑ3

= σ2
wσ2

ziσ
2
xσ

2
w(x̄ − z̄i)

2 + σ2
wσ2

ziσ
2
xσ

2
zi(x̄ − ẑ3)

2 + σ2
xσ

2
wσ2

xσ
2
zi(z̄i − ẑ3)

2

therefore

x̄2

σ2
x

+
z̄2

i

σ2
zi

+
ẑ2
3

σ2
w

−
x̂2

σ2
xi

=
σ2

wσ2
ziσ

2
xσ

2
w(x̄ − z̄i)

2 + σ2
wσ2

ziσ
2
xσ

2
zi(x̄ − ẑ3)

2 + σ2
xσ

2
wσ2

xσ
2
zi(z̄i − ẑ3)

2

(σ2
wσ2

zi + σ2
xσ

2
w + σ2

xσ
2
zi)σ2

xσ
2
wσ2

zi

=
σ2

w(x̄ − z̄i)
2 + σ2

zi(x̄ − ẑ3)
2 + σ2

x(z̄i − ẑ3)
2

(σ2
wσ2

zi + σ2
xσ

2
w + σ2

xσ
2
zi)

the third likelihood is

f(z1, z3|Hi) =

∫
N (z1; θix1, σ2

vI)N (z3; x1, σ2
wI)N (x; x̄, σ2

x)dx

= c′′ exp

[

−
1

2σ2
v

n∑

j=1

(ẑ1 − z1j)
2 −

1

2σ2
w

n∑

j=1

(ẑ3 − z3j)
2

−
σ2

w(x̄ − z̄i)
2 + σ2

zi(x̄ − ẑ3)
2 + σ2

x(z̄i − ẑ3)
2

2 (σ2
wσ2

zi + σ2
xσ

2
w + σ2

xσ
2
zi)

]
(A.5)

129

Bibliography

[1] Automated Video Systems. http://www.ezwatchstore.com/.

[2] CAIDA: Cooperative Association for Internet Data Analysis. Available:

http://www.caida.org/Tools/.

[3] Crossbow technology INC. http://www.xbow.com/.

[4] NetDyn: Monitoring tool used. Available: http://www.cs.umd.edu/ suman/netdyn/.

[5] H. Akaike. A new look at the statistical model identification. IEEE Tran. on Automatic

Control, 19:716–723, 1974.

[6] M. Allman and V. Paxson. On estimating end-to-end network path properties. In

SIGCOMM, pages 263–274, 1999.

[7] J. Andren, M. Hilding, and D. Veitch. Understanding end-to-end Internet traffic dy-

namics. In Proc. IEEE GLOBECOM, pages 1118–1122, Sydney, Australia, Nov. 1998.

[8] D. Angelova and L. Mihaylova. Sequential Monte Carlo algorithms for joint target track-

ing and classification using kinematic radar information. In P. Svensson and J. Schubert,

editors, Proceedings of the Seventh International Conference on Information Fusion,

130

volume II, pages 709–716, Mountain View, CA, Jun 2004. International Society of In-

formation Fusion.

[9] A. F. Atiya and A. G. Parlos. New results on recurrent networking training: Unifying the

algorithms and accelerating convergence. IEEE Trans. on Neural Networks, 11(3):697–

709, May 2000.

[10] Y. Bar-Shalom. On hierarchical tracking for the real world. IEEE Trans. on Aerospace

and Electronic Systems, 42(3):846–850, July 2006.

[11] Y. Bar-Shalom and X. R. Li. Multitarget-Multisensor Tracking: Principles and Tech-

niques. YBS, Storrs, CT, 1995.

[12] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation with Applications to Tracking

and Navigation: Theory, Algorithms, and Software. Wiley, New York, 2001.

[13] M. Barkat. Signal Detection and Estimation. Artech House, 2005.

[14] G. Beligiannis, L. Skarlas, and S. Likothanassis. A generic applied evolutionary hybrid

technique. IEEE Signal Processing Magazine, 21(3):28– 38, May 2004.

[15] J. S. Bendat and A. G. Piersol. Random Data: Analysis and Measurement Procedures.

John Wiley & Sons, Inc., 1971.

[16] P. K. Biswas and S. Phoha. A sensor network test-bed for an integrated target surveil-

lance experiment. In Proc. of the 29th Annual IEEE International Conference on Local

Computer Networks (LCN’04), Tampa, FL, Nov. 2004.

131

[17] Y. Boers and H. Driessen. Integrated tracking and classification: An application of

hybrid state estimation. In Proc. of SPIE Signal and Data Processing of Small Targets,

volume 4473, pages 198–209, 2001.

[18] J. Bolot. Characterizing end-to-end packet delay and loss in the Internet. Journal of

High Speed Networks, 2(3):305–323, Dec. 1993.

[19] G. E. P. Box and G. M. Jenkins. Time-Series Analysis: Forecasting and Control. Holden

Day, San Francisco, 1976.

[20] R. R. Brooks, P. Ramanathan, and A. M. Sayeed. Distributed target classification and

tracking in sensor networks. Proc. of the IEEE, 91(8):1163 – 1171, Aug. 2003.

[21] G. Casella and R. L. Berger. Statistical Inference. Duxbury Press, Belmont, CA, 1990.

[22] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu. Network tomography: Recent

developments. Statistical Science, Mar. 2003.

[23] S. Challa and G. W. Pulford. Joint target tracking and classification using radar and

ESM sensors. IEEE Trans. on Aerospace and Electronic Systems, 37(3):1039–1055,

2001.

[24] S. Chaudhuri and D. R. Taur. High-resolution slow-motion sequencing: How to generate

a slow-motion sequence from a bit stream. IEEE Signal Processing Magazine, 22(2):16–

24, Mar. 2005.

132

[25] H. Chen, X. R. Li, and Y. Bar-Shalom. On joint track initiation and parameter estima-

tion under measurement origin uncertainty. IEEE Trans. on Aerospace and Electronic

Systems, 40(2):675–694, Apr. 2004.

[26] R. Chen, X. Wang, and J. S. Liu. Adaptive joint detection and decoding in flat-fading

channels via mixture kalman filtering. IEEE Trans. on Information Theory, 46(6):2079–

2094, Sep. 2000.

[27] V. Cherkassky and F. Mulier. Learning from Data : Concepts, Theory, and Methods.

Wiley-Interscience, March 1998.

[28] K. Claffy, G. Polyzos, and H-W. Braun. Measurement Considerations for Assessing

Unidirectional Latencies. Internetworking: Research and Experience, 4(3):121–132, Sep.

1993.

[29] D. D. Clark. Supporting realtime applications in an integrated services packet network:

Architecture and mechanism. In Proc. ACM Sigcomm’92, pages 14–26, Baltimore, MD,

Aug. 1992.

[30] M. Coates, A. O. Hero III, R. Nowak, and B. Yu. Internet tomography. IEEE Signal

Processing Magazine, pages 47–65, May 2002.

[31] M. J. Coates and R. D. Nowak. Sequential Monte Carlo inference of internal delays in

nonstationary data networks. IEEE Trans. on Signal Processing, 50(2):366–376, Feb.

2002.

[32] P. De Leon and C. J. Sreenan. An adaptive predictor for media playout buffering. In

Proc. ICASSP’99, pages 3097–3100, Phoenix, AZ, Mar. 1999.

133

[33] N. G. Duffield, J. Horowitz, F. Lo Presti, and D. Towsley. Multicast topology inference

from measured end-to-end loss. IEEE Trans. on Information Theory, 48:26–45, Jan.

2002.

[34] A. Fredriksen, D. Middleton, and V. VandeLinde. Simultaneous signal detection and

estimation under multiple hypotheses. IEEE Trans. on Information Theory, 18(5):607–

614, Sep. 1972.

[35] N. Gordon, S. Maskell, and T. Kirubarajan. Efficient particle filters for joint tracking

and classification. In Proc. of SPIE Signal and Data Processing of Small Targets, pages

439–449, 2002.

[36] D. Gross and C. M. Harris. Fundamentals of Queueing Theory. John Wiley & Sons,

New York, NY, Third edition, 1998.

[37] D. L. Hall and J. Llinas. An introduction to multisensor data fusion. Proc. of IEEE,

85(1):6–23, Jan. 1997.

[38] A. Hampapur, L. Brown, J. Connell, A. Ekin, N. Haas, M. Lu, H. Merkl, and

S. Pankanti. Smart video surveillance: Exploring the concept of multiscale spatiotem-

poral tracking. IEEE Signal Processing Magazine, 22(2):38–51, Mar. 2005.

[39] A. C. Harvey. Time Series Models. The MIT Press, Cambridge, Massachusetts, second

edition, 1992.

[40] S. Herman and P. Moulin. A particle filtering approach to FM-band passive radar

tracking and automatic target recognition. In Proc. of the IEEE Aerospace Conference,

volume 4, pages 1789–1808, 2002.

134

[41] S. M. Herman. A Particle Filtering Approach to Joint Passive Radar Tracking and

Target Classification. PhD thesis, Univ. of Illinois at Urbana-Champaign, 2002.

[42] S. P. Jacobs and J. A. O’Sullivan. High resolution radar models for joint tracking and

recognition. In IEEE International Radar Conference, pages 99–104, Syracuse, NY,

May 1997.

[43] V. Jacobson. Congestion avoidence and control. In Proc. ACM Sigcomm’88, pages

314–329, Stanford, CA, Aug. 1988.

[44] T. T. Kadota. Optimal, causal, simultaneous detection and estimation of random signal

fields in a gaussian noise field. IEEE Trans. On Information Theory, IT-24(3):297–308,

May 1978.

[45] L. Kleinrock. Computer Applications, volume 2 of Queueing Systems. Wiley-

Interscience, New York, 1976.

[46] A. Kos, B. Klepec, and S. Tomazic. Techniques for performance improvement of VoIP

applications. In Proc. of 11th IEEE Mediterranean MELECON 2002, pages 250–254,

May 2002.

[47] D. G. Lainiotis. Partitioning: A unifying framework for adaptive systems I: Estimation.

Proc. IEEE, 64(8):1126–1143, 1976.

[48] A. D. Lanterman. Tracking and recognition of airborne targets via commercial television

and FM radio signals. In Proc. of SPIE 3692 Conference on Acquisition, Tracking, and

Pointing XIII, Orlando, FL, Apr. 1999.

135

[49] Q. Li and D. L. Millis. Jitter-basd delay-boundary prediction of wide-area networks.

IEEE Trans. on Networking, 9(5):578–590, Oct. 2001.

[50] X. R. Li. Hybrid estimation techniques. In C. T. Leondes, editor, Control and Dynamic

Systems: Advances in Theory and Applications, volume 76, pages 213–287, San Diego,

1996. Academic Press.

[51] X. R. Li. Engineer’s guide to variable-structure multiple-model estimation for tracking.

In Y. Bar-Shalom and W.D. Blair, editors, Multitarget-Multisensor Tracking: Applica-

tions and Advances, volume 3, pages 499–567, Boston, 2000. Artech House.

[52] X. R. Li. Applied Estimation and Filtering. University of New Orleans, New Orleans,

LA, 2002.

[53] X. R. Li. Information and Systems Laboratory internal seminar, University of New

Orleans, 2006.

[54] X. R. Li. Optimal Bayes joint decision and estimation. In Proc. of the 10th Int. Conf.

on Information Fusion, Québec, 2007. to appear.

[55] X. R. Li and V. P. Jilkov. Survey of maneuvering target tracking – Part V: Multiple-

model methods. IEEE Trans. on Aerospace and Electronic Systems, 41(4):1255–1321,

Oct. 2005. Available: http://ece.engr.uno.edu/isl/MTTSurveys.htm.

[56] X. R. Li, M. Yang, and J.-F. Ru. Joint tracking and classification based on Bayes joint

decision and estimation. In Proc. of the 10th Int. Conf. on Information Fusion, Québec,

2007. to appear.

136

http://ece.engr.uno.edu/isl/MTTSurveys.htm

[57] X. R. Li, Z.-L. Zhao, and X. B. Li. General model-set design methods for multiple-model

approach. IEEE Trans. on Automatic Control, 50(9):1260–1276, Sep. 2005.

[58] Y. Linde, A. Buzo, and R. M. Gray. An algorithm for vector quantizer design. IEEE

Trans. on Communications, pages 702–710, Jan. 1980.

[59] J. J. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao. Distributed group management

for track initiation and maintenance in target localization applications. In Proc. of 2nd

International Workshop on Information Processing in Sensor Networks (IPSN’03), Apr.

2003.

[60] L. Ljung. System Identification – theory for the user. N.J.: Prentice Hall, Englewood

Cliffs, 1987.

[61] S. H. Low, F. Paganini, and J. C. Doyle. Internet congestion control. IEEE Control

Systems Magazine, 22(1):28–43, Feb. 2002.

[62] D. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge Uni-

versity Press, 2003.

[63] S. Makridakis. A survey of time series. Int. Stat. Rev., 44(1):29–70, 1976.

[64] W. Mei, G.-L. Shan, and X. R. Li. An efficient bayesian algorithm for joint target

tracking and classification. In Proc. of the Seventh International Conference on Signal

Processing, Beijing, China, Aug. 31 - Sept. 4 2004.

[65] D. Middleton. An Introduction to Statistical Communication Theory. McGraw-Hill,

New York, 1960.

137

[66] D. Middleton and R. Esposito. Simultaneous optimum detection and estimation of

signals in noise. IEEE Trans. on Information Theory, IT-14(3):434–444, May 1968.

[67] M. I. Miller, A. Srivastava, and U. Grenander. Conditional-mean estimation via jump-

diffusion process in multiple target tracking/recognition. IEEE Trans. on Signal Pro-

cessing, 43(11):2678–2690, 1995.

[68] D. Morato, J. Aracil, L. A. Diez, M. Izal, and E. Magana. On linear prediction of

Internet traffic for packet and burst switching networks. In Proc. Of ICCCN 2001,

pages 138 –143, Oct. 2001.

[69] H. Ohsaki, M. Morita, and M. Murata. On modeling round-trip time dynamics of the In-

ternet using system identification. In The 16th International Conference on Information

Networking (ICOIN-16), Jan. 2002.

[70] H. Ohsaki, M. Murata, and H. Miyahara. Modeling end-to-end packet delay dynamics of

the Internet using system identification. In Proceedings of the International Teletraffic

Congress 17, pages 1027–1038, Dec. 2001.

[71] J. A. O’Sullivan, S. P. Jacobs, M. I. Miller, and D. L. Synder. A likelihood-based ap-

proach to joint target tracking and identification. In Proc. of Twenty-Seventh Asilomar

Conference on Signals, Systems and Computers, pages 290–294, Nov. 1993.

[72] A. G. Parlos. Identification of the Internet end-to-end delay dynamics using multi-step

neuro-predictors. In Proc. Of the 2002 Int. Joint Conf. On Neural Networks, IJCNN

’02, Honolulu, HI, May 2002.

138

[73] V. Paxson. End-to-end Internet packet dynamics. IEEE/ACM Transactions on Net-

working, 7(3):277–292, 1999.

[74] M. Pourahmadi. Foundations of Time Series Analysis and Prediction Theory. John

Wiley & Sons, Inc., 2001.

[75] N. S. V. Rao. Overlay networks of in-situ instruments for probabilistic guarantees on

message delays in wide-area networks. IEEE Journal on Selected Areas in Communica-

tions, 22(1):79–90, Jan. 2004.

[76] J. Rissanen. Universal coding, information, prediction, and estimation. IEEE Trans.

on Information Theory, (4):629–636, July 1984.

[77] A. Sang and S.-Q. Li. A predictability analysis of network traffic. In INFOCOM (1),

pages 342–351, 2000.

[78] G. Schwartz. Estimating the dimension of a model. Annals of statistics, 6(461-464),

1978.

[79] P. Smets and B. Ristic. Kalman filter and joint tracking and classification in the TBM

framework. In P. Svensson and J. Schubert, editors, Proceedings of the Seventh Interna-

tional Conference on Information Fusion, volume I, pages 46–53, Mountain View, CA,

Jun 2004. International Society of Information Fusion.

[80] C. J. Sreenan, J.-C. Chen, P. Agrawal, and B. Narendan. Delay deduction techniques

for playout buffering. IEEE Trans. on Multimedia, 2(2):88–100, June 2000.

139

[81] E. J. Sullivan and D. Middleton. Estimation and detection in matched field processing.

In Proc. of IEEE ICASSP, volume III, pages 70–74, 1993.

[82] E. Trucco and A. Verri. Introductory Techniques for 3-D Computer Vision. Prentice

Hall PTR, Upper Saddle River, NJ, USA, Mar. 1998.

[83] Y. Tsang, M. Coates, and R. D. Nowak. Network delay tomography. IEEE Trans. on

Signal Processing, 51(8):2125– 2136, Aug. 2003.

[84] Y. Vardi. Network tomography: Estimating source-destination traffic intensities from

link data. J. Amer. Stat. Assoc., 91(433):365–377, 1996.

[85] P. K. Varshney and A. H. Haddad. A receiver with memory for fading channel. IEEE

trans. on Communications, COM-26(2):278–283, Feb. 1978.

[86] J. W. Wong. Queueing network modeling of computer communication networks. Com-

puting Surveys, 10(3):343–351, Sept. 1978.

[87] M. Yang, H. Chen, S. Bandarupalli, and X. R. Li. A surveillance testbed with networked

sensors for integrated target inference. In Proc. of IEEE TridentCom 2007, Orlando,

2007. to appear.

[88] M. Yang and X. R. Li. Predicting end-to-end delay of the Internet using time series

analysis. Technical report, University of New Orleans, Lakefront, Nov. 2003. Available:

http://ece.engr.uno.edu/isl/Yang/.

140

http://ece.engr.uno.edu/isl/Yang/

[89] M. Yang, X. R. Li, H. Chen, and N. S. V. Rao. Predicting Internet end-to-end delay:

An overview. In Proc. of 36th IEEE Southeastern Symposium on Systems Theory, pages

210–214, Atlanta, Mar. 2004.

[90] M. Yang, J.-F. Ru, H. Chen, A. Bashi, X. R. Li, and N. S. V. Rao. Predicting Internet

end-to-end delay: A statistical study. Annual Review of Communications, Vol. 58:665–

677, 2005.

[91] M. Yang, J.-F. Ru, X. R. Li, H. Chen, and A. Bashi. Predicting Internet end-to-end

delay: A multiple-model approach. In Proc. of IEEE INFOCOM 2005, volume 4, pages

2815–2819, Miami, Mar. 2005.

[92] F. Zhao and L. Guibas. Wireless Sensor Networks: An Information Processing Ap-

proach. Morgan Kaufmann Publishers, May 2004.

[93] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich. Collaborative signal and information

processing: An information directed approach. Proc. of the IEEE, 91(8):1199–1209,

2003.

141

VITA

Ming Yang received the B.S. degree from Peking University, Beijing, China, in 1997, and

M.S. degree from the Institute of Acoustics, Chinese Academy of Sciences (IAAS), Beijing,

China, in 2000, both in Electrical Engineering.

From Oct. 1996 to Oct. 2000, he was a research assistant in the Speech & Communi-

cation Laboratory, IAAS. His research was mainly on speech recognition, speech synthesis,

speech coding and communications, including algorithm development and DSP real-time

implementation. Since Aug. 2001 he has been a research assistant in University of New

Orleans. His current work area is data fusion and its applications in communications. He

has authored and coauthored 10 journal and conference proceedings papers.

142

	University of New Orleans
	ScholarWorks@UNO
	12-15-2007

	When Decision Meets Estimation: Theory and Applications
	Ming Yang
	Recommended Citation

	Introduction
	Motivation
	Hybrid Systems and Hybrid Estimation
	Multiple-Model Methods
	Predicting Internet End-to-End Packet Delay

	Joint Decision and Estimation
	Thesis Outline

	MM Prediction of Internet End-to-End Packet Delay
	Introduction
	Problem Description
	End-to-End Delay of the Internet
	Introduction to Prediction Theory
	Internet End-to-End Delay Prediction: Relevant Issues

	Existing Work
	Queueing Network Modeling
	System Identification Approach
	Time Series Approach
	Learning and Prediction

	Preliminary Data Analysis
	Data Collection
	Packet Loss
	Round Trip Times

	The Multiple-Model Approach
	Multiple-Model Predictor
	Model Set Design

	Numerical Results
	Synthetic Data
	Measured Data

	Discussion and Conclusions

	Joint Decision and Estimation
	Introduction
	Statistical Decision
	Parameter Estimation
	Joint Decision and Estimation
	Existing Work

	Bayesian Decision
	Bayesian Estimation
	Composite Hypothesis Testing
	General Formulation
	Solution
	Decision Part
	Estimation Part
	A JDE Algorithm
	Remarks

	Performance Evaluation

	Joint Target Tracking and Classification in JDE Framework
	Introduction
	JDE Solution to JTC problem
	Problem Formulation
	Conditional Independence
	Likelihood Functions
	Classification by Bayesian Decision
	Tracking by Bayesian Estimation
	Classification before Tracking (Decision then Estimation)
	Tracking before Classification (Estimation then Decision)
	Joint Tracking and Classification
	Performance Evaluation

	Remarks
	Simulation Results
	Scenario 1: Data generated from H0
	Scenario 2: Data generated from H1

	Conclusions and Discussion

	Vehicle Surveillance Testbed
	Introduction
	Sensor Fusion with Practical Constraints
	Data Fusion among Sensors of Different Types
	Hierarchical Fusion

	Target Surveillance Testbed with Networked Sensors
	Experimental Results
	Hardware Description
	Scenario Setup
	Preliminary Sensor Data Processing
	Camera Calibration
	Localization by Wireless Sensors
	Remarks

	Discussion and Conclusions

	Summary and Future Work
	Likelihood Functions in JTC Example
	VITA

