
YACCA: Code Clone Detection on Multi-core Processors

Simone Livieri, Katsuro Inoue
Graduate School of Information Science and Techonology

Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

{simone, inoue}@ist.osaka-u.ac.jp

Abstract

Code clone detection is a mature topic in software engi-
neering research and, over the past decades, many methods
and tools have been proposed. Detection algorithms have
been continuously refined but tool’s implementations often
fail to exercise the full potential of contemporary hardware.
In this paper, we propose to fill this gap, and present our
new code clone detection tool.

1. Introduction

In the last decades, code clones, source code fragments
resembling each other, have attracted much attention from
the research community. As result, over the years, more and
more refined methods and tools for detecting and analysing
code clones have been proposed[1, 5, 6].

Recently, urged by the advancements in manufacturing
technology that made available and common processors in-
tegrating multiple computational cores, it has been argued
that software, not only hardware, should follow Moore’s
law and double its parallelism every two years to fully
take advantage of recent progress in personal computing
power[3].

At present, at least to the knowledge of the authors, there
is no tool for code clone detection that takes full advantage
of the new multi-core processors.

In [7], we have shown how code clone detection can be
considered an embarrassingly parallel problem – a prob-
lem than can be trivially decomposed into several parallel
and independent sub-problems – and presented a tool called
D-CCFinder, implemented to distribute the code clone
analysis of very large source code repositories over a clus-
ter of several machines.

The tool we present in this position paper stems from the
work done on D-CCFinder and wants to bridge the gap
between the available technology and the current state-of-
art in token-based code clone detection.

P a r s e r

P a r s e r T o k e n
S e q u e n c e s

R e p e a t i n g
S u b s t r i n g s
D e t e c t i o n

R e s o l u t i o nC o d e C l o n e
D a t a

P r e - p r o c e s s i n g

S i m i l a r i t y A n a l y s i s

R e p e a t i n g
S u b s t r i n g s

A l i a s i n g

T r a n s f o r m e d
S e q u e n c e s

S o u r c e
C o d e

P a r s e r

Figure 1. YACCA: System’s data flow

2. The Tool

We propose YACCA, a large-scale code clone detection
tool aimed at taking full advantage of modern multi-core
processors. Its main characteristics are summarised in the
following three points:

1. Multi-core processor support. YACCA leverages the
recently introduced multi-core processors, evenly dis-
tributing the total workload between the cores.

2. Configurable detection. YACCA uses a parameter-
ized detection algorithm that permit to detect code seg-
ments with various degrees of similarity.

3. Language independence. YACCA is able to process
files written in different languages and, to a certain ex-
tent, to detect cross-language code clones.

3. The Method

In this section we briefly describe our tool. Figure 1
shows the tool’s internal data-flow.

1

f o r (i = 0 ; i < 1 0 ; i ++) {
. . .

}
w h i l e (i < 10) {

. . .
}

f o r {
. . .

}
w h i l e {

. . .
}

l oop {
. . .

}
l oop {

. . .
}

Figure 2. Different levels of aliasing on two loop statements.

3.1. Source Code Parsing

Source code files are parsed into lexical token sequences
including data on tokens’ original positions and their asso-
ciated character sequences.

Because code clones are most useful when they are con-
tained in syntactical units, the token sequences are split into
smaller sequences corresponding to specific syntactical unit
bodies (methods, functions, etc.). Since our tool is based
on the detection of repeating substrings, having shorter se-
quences gives an upper limit to the maximum code clone’s
length and consequentially hastens the detection process.

3.2. Duplicated Code Detection

Detecting duplicated code involves three-steps.

1. Aliasing. The token sequences are transformed intro-
ducing some ambiguities (aliasing) that increase the
sequence’s similarity while keeping intact the overall
code structure (e.g., by replacing the control block of
a for-loop or a method name with a special token, see
Figure 2). Not essential code – as simple assignment
statements – can be removed during this step.

2. Repeating Substrings Detection. All the repeating
substrings in the token sequences are computed using
a parallel algorithm and divided into groups. The algo-
rithm used is straightforward and finds repeating sub-
strings by progressive refinements. More sophisticated
and faster algorithms exist but they require more space
for their executions. For example, Crochemore’s algo-
rithm [2] in its general implementation requires at least
80n bytes of storage for a string of length n. In order
to process larger amount of source code, we chose a
simpler algorithm requiring less space. Because each
refinement is independent from each other, the algo-
rithm has been easily adapted for parallel execution.

3. Resolution. The detected substring are grouped into
primitive code clone sets[4]. Each clone set is further
refined by analysing identifier’s appearance order[6,
5].

4. Impact on Global Development
Software companies tend to outsource part of their de-

velopment to other companies to reduce costs and shorten

time-to-market. This practice carries two main inherent
risks: first, different teams can create similar sets of routines
because of lack of team communications; second, deadline
pressure can lead to reuse source code released under copy-
right terms conflicting with those of the final product. Both
of these problems can be tackled with the use of code clone
detection: in the first case, code clone detection can be used
to detect similarities between source code produced by dif-
ferent teams, and refactor them into shared libraries; in the
second case, code-clone detection can be used to detect the
abuse of third-party source code, as better described in [7].

Acknowledgements
This work has been conducted as a part of StagE Project, the

Development of Next Generation IT Infrastructure, and Grant-
in-Aid for Exploratory Research(186500006), both supported by
Ministry of Education, Culture, Sports, Science and Technology
of Japan. Also it has been performed under Grant-in-Aid for Sci-
entific Research (A)(17200001) supported by Japan Society for
the Promotion of Science.

References
[1] I. D. Baxter, A. Yahin, L. Moura, M. Anna, and L. Bier.

Clone detection using abstract syntax trees. In Proc. of In-
ternational Conference on Software Maintenance ’98, pages
368–377, Bethesda, Maryland, March 1998.

[2] M. Crochemore. An optimal algorithm to compute all the rep-
etitions in a word. IPL, 12(5):244–248, 1981.

[3] I. Fried. Intel: Software needs to heed moore’s law. Website,
May 2007.

[4] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Method
and implementation for investigating code clones in a software
system. Submitted to Information and Software Technology.

[5] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-
linguistic token-based code clone detection system for large
scale source code. IEEE Transactions on Software Engineer-
ing, 28(7):654–670, July 2002.

[6] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Find-
ing copy-paste and related bugs in large-scale software code.
IEEE Transaction on Software Engineering, 32(3):176–192,
March 2006.

[7] S. Livieri, Y. Higo, M. Matushita, and K. Inoue. Very-large
scale code clone analysis and visualization of open source pro-
grams using distributed ccfinder: D-ccfinder. Proceedings of
the 29th International Conference on Software Engineering
(ICSE’07), pages 106–115, 2007.

