Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

Logic Programming for Boolean Networks

Katsumi Inoue
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
ki@nii.ac.jp

Abstract

The Boolean network is a mathematical model of
biological systems, and has attracted much atten-
tion as a qualitative tool for analyzing the regu-
latory system. The stable states and dynamics of
Boolean networks are characterized by their attrac-
tors, whose properties have been analyzed com-
putationally, yet not much work has been done
from the viewpoint of logical inference systems. In
this paper, we show direct translations of Boolean
networks into logic programs, and propose new
methods to compute their trajectories and attrac-
tors based on inference on such logic programs. In
particular, point attractors of both synchronous and
asynchronous Boolean networks are characterized
as supported models of logic programs so that SAT
techniques can be applied to compute them. Inves-
tigation of these relationships suggests us to view
Boolean networks as logic programs and vice versa.

1 Introduction

Analysis of static and dynamic behavior of systems has be-
come more and more important recently in various domains
including systems biology. The Boolean network (BN) was
proposed as a mathematical model of genetic networks and
complex adaptive systems [Kauffman, 1969; 1993], and has
been used as a discrete model of gene regulatory, signal trans-
duction and protein interaction networks. The BN offers a
simple yet powerful tool based on Boolean logic, and has
a network structure consisting of nodes that correspond to
genes or proteins. Each node in a BN takes a value of 1 or
0, meaning that the gene is or is not expressed. The value
of a node at a time step is determined according to a regu-
lation rule that is a Boolean function of the values of its in-
put nodes at the previous time step. Computational proper-
ties and physical behaviors of the BN have been well studied
in several fields including biology, physics, and bioinformat-
ics, e.g., [Kauffman, 1993; Harvey and Bossomaier, 1997,
Shmulevich et al., 2002; Gershenson, 2002; Irons, 2006;
Akutsu et al., 2007; Garg et al., 2008; Remy and Ruet, 2008].

The stable states and dynamics of BNs are characterized
by their attractors, which play an essential role in biological
systems. The number and length of attractors of a random BN

924

have been analyzed computationally [Kauffman, 1993; Irons,
20061, yet not much work has been done from the viewpoint
of logical inference systems. Recently, detection of attractors
has been investigated in bioinformatics, and several studies
connect attractor computation with various techniques based
on advances of Propositional Satisfiability (SAT) and Answer
Set Programming (ASP). These works can be classified into
two types: those simulating dynamic behaviors of systems
as trajectories of a series of inference [Fayruzov et al., 2009;
Dubrova and Teslenko, 2010] or those computing attractors
with the shortest length (i.e., point attractors) [Tamura and
Akutsu, 2009; Melkman et al., 2010]. Those algorithms can
be used for computing attractors of synchronous BNs, which
are the simplest model of BNs.

In this paper, we formalize BNs as logic programs, and
give a novel characterization of their attractors based on the
semantics of logic programs. In contrast to the previous ap-
proaches that translate individual BN-related problems into
equivalent theories, we will provide a direct encoding of BNs
into logic programs and give a semantical characterization of
BNs so that any BN-related problem can be analyzed based
on this semantics. Then, several theoretical results and com-
putational tools of logic programming can easily be trans-
ferred to BNs. In particular, point attractors of both syn-
chronous and asynchronous Boolean networks are naturally
characterized as supported models of logic programs [Apt et
al., 1988], enabling us to apply SAT techniques to compute
them. Thus, this work opens an integrated way to apply Al
techniques to various computational problems of BNs.

On the other hand, from the viewpoint of logic program-
ming, this work not only shows an important application of
logic programming to systems biology and dynamic domains,
but opens a new research direction toward a dynamic seman-
tics of logic programs. In fact, most existing semantics regard
a program as a static specification or an axiom set of a prob-
lem, and do not regard each rule as a transition function of a
dynamic system. Considering the dynamic semantics in this
work, physical behaviors that have been studied for BNs can
be transferred to analyze dynamics of logic programs.

In the rest of this paper, Section 2 reviews the BN. Sec-
tion 3 considers synchronous BNs and characterizes their at-
tractors in terms of the semantics of corresponding logic pro-
grams. Section 4 represents asynchronous BNs and their at-
tractors. Sections 5 and 6 discuss related and future work.

2 Boolean Networks

A Boolean network (BN) is a pair N (V,F), where
V = {v1,...,v,} is a finite set of nodes (or genes) and
F = {fi1,..., fn} is a corresponding set of Boolean func-
tions (called regulation functions). Let v} represent the state
of v; at time ¢, which takes the value of either 1 (expressed)

t t)

or 0 (not expressed). A vector (or state) v(t) = (vi,... v}
is the overall expression level of all nodes in IV at time step ¢.
Note that there are 2" possible states for each time step. The
state of a node v; at the next time step ¢ + 1 is determined
by vj Tt = fi(vf,,... vt), where v;, ..., v;, are the set of
input nodes of v; that are the genes directly connected to (or
regulating) v;, and the number £ is called the indegree of v;.
When the indegree of v; is 0, no update is done at any time
step. A BN is usually represented by a graph with two types
of edges, which are positive and negative, in which v; — v9
means that v} positively takes part in the regulation function
for v§+1 and v; — vo means that v} negatively takes part

in the regulation function for vé“. An example of a BN is
Ny = (W1, Fy), where Vi = {p, q,r} and F} is as follows.

p - q >
qt+1 — pt A Tt,
,,,t+l — _‘pt.

—() (1

The state of each gene can be updated either synchronously
or asynchronously. In a synchronous BN (SBN), the states
of all genes are updated simultaneously, while in an asyn-
chronous BN (ABN) not all nodes are necessarily updated at
a time. Each update of nodes in a BN N changes its state to
another. A consecutive sequence of states obtained by state
transitions is called a trajectory of N. State transition in an
SBN is deterministic, and a trajectory starting from any state
is uniquely determined. On the other hand, it is nondetermin-
istic in an ABN. Let w € {0, 1}" be a state, and R(w) be the
states reachable in all trajectories starting from w. Then, a set
of states S is an attractor if R(w) = S holds for every w € S
[Garg et al., 2008]. If any trajectory from a node in an at-
tractor .S’ composes a single loop, wyo, . . ., wp—1, wp(= wo),
where p = |S| (1 < p < 2™), S is called a point attrac-
tor (or singleton attractor) when p = 1, and is called a cycle
attractor when p > 1. The set of states that reach the same at-
tractor is called its basin of attraction [Kauffman, 1993]. For
example, when the BN V; is synchronous, starting from the
initial state v(0) = (0, 1, 1), the trajectory becomes (0, 1, 1),
(1,0,1), (0,1,0), (1,0,1), ..., and (1,0,1) — (0,1,0) —
(1,0,1) is a cycle attractor (Figure 1 below). N; has another,
point attractor (0,0, 1) (Figure 1 above) whose basin of at-
traction is {(1,1,1), (1, 1,0), (1,0,0),(0,0,0), (0,0,1)}.

Note that any state in an SBN deterministically belongs to
the basin of attraction of only one attractor, which is either
a cycle attractor or a point attractor. Several interpretations
of attractors have been reported in the literature [Kauffman,
1993; Shmulevich et al., 2002]; for example, each attractor
represents a cell type, a type of memory, or a cellular state
such as proliferation, apoptosis and differentiation.

925

U D—110—100—(000—00D)
Figure 1: State transition diagram for the BN NV}

3 Synchnorous BNs

In this section, we characterize synchronous BNs based on
the semantics of logic programming. Our concern is to ex-
press regulation functions as rules of logic programs. To this
end, we examine the appropriateness of existing semantics
for logic programs.

3.1 Normal Logic Programs

We consider a first-order language and denote the Herbrand
base (the set of all ground atoms) as A. A (normal) logic
program (NLP) is a set of rules of the form

A AAANAp A=At A A=Ay (2)

where A and A;’s are atoms (n > m > 0). For any rule
R of the form (2), the atom A is called the head of R and
is denoted as h(R), and the conjunction to the right of <
is called the body of R and we represent the positive and
negative literals in the body as b (R) = {4;,..., A} and
b= (R) = {Am+1,...,An}, respectively. Let ground(P)
be the set of ground instances of all rules in an NLP P. An
(Herbrand) interpretation I is a subset of A, and is called an
(Herbrand) model of P if I satisfies all ground rules from
P, that is, for any rule R € ground(P), b*(R) C I and
b= (R)NI = (imply h(R) € I.

One of the most important criteria that any model theoretic
semantics of logic programming should satisfy is the “sup-
portedness”. An Herbrand model I C A of an NLP P is a
supported model [Apt et al., 1988] of P if for any ground
atom A € I, there exists a rule R € ground(P) such that
@ h(R) = A, b)bT(R) C I,and () b= (R) NI = 0.
On the other hand, an Herbrand model I is a stable model
[Gelfond and Lifschitz, 1988] of P if I is the least model
of the program P! = {(h(R) + ApcprmyB) | R €
ground(P), b= (R) NI = (}. It is known that every sta-
ble model is a supported model [Marek and Subrahmanian,
1992]. For example, {p « p, ¢ + —p }, has the supported
models {p} and {q}, but only the latter is its stable model.

The following operational semantics of NLPs has been
given in [Apt ef al., 1988]. Given an NLP P and an inter-
pretation I, the immediate consequence operator (or Tp op-
erator) Tp : 2 — 24 is defined as Tp(I) = {h(R) | R €
ground(P), b*(R) C I,b=(R) NI = (}. Then, I is a
model of P iff I is a pre-fixed point of Tp, i.e., Tp(I) C I.
By definition, I is supported iff I C Tp(I). Hence, I is a sup-
ported model of P iff T is a fixpoint of Tp, i.e., Tp(I) = I.
Moreover, [is a model of Comp(P), which is the Clark’s
completion of P, iff Tp(I) = I. This means that the sup-
ported models of P are precisely the models of Comp(P).

We next show that the T’p operator is useful to character-
ize attractors of synchronous BNs. As a related concept, the

sequence of applications of the T'’» operator is considered by
Blair ef al. [1997]: For an Herbrand interpretation I, the or-

bit of I with respect to P is the sequence (Tp" (I))xe., where
Tp%(I) = I and Tp" 1 (1) = Tp(Tp*(I)) for k = 0,1,. . ..

3.2 Characterizing Trajectories and Attractors

Our idea here is to express the regulation functions of a BN as
rules of an NLP. To this end, we need to transform a Boolean
function f; for a node v; in disjunctive normal form (DNF).
Since this is always possible, in the following we assume that
any regulation function is a DNF formula. Suppose a syn-
chronous BN N = (V| F'). For each node v; € V, suppose
its regulation function f; € F'is given as a DNF formula

\/Blj’ /\U’ij A /\ﬁvz‘]kﬂ (3)

k=mj+1

where v; j € Vandn; > m; > 0forj =1,...,[;. Note
that 7 can be 0 for a node v;, that is, v; has no input nodes.
In this case, v; is called a constant node, and the indegree of
a constant node is 0. Since there is no regulation function
for a constant node, it stays in a constant state, i.e., always
expresses or never expresses. Let Vo C V be the constant
nodes of N. Notice that V- is fixed and is smaller than V.

Now, for each f; € F, let pr(f;) be the rule set defined as
either of the following sets:

{ (i(s(t)) = Bij(1)) | L <j <1},

{ (vi(s(t)) < vilt)) },
where s(t) is the successor of ¢, i.e., ¢ + 1, and each v; € V' is
now used as a predicate and B;_;(¢) is the formula obtained by
replacing every vt . appearing in B} 5 with v; j k(2). Then
the NLP for N is glven as Pr(N) = Uviev or(f).

Let V(t) = {vi(t) | vi € V}. Given a state v(t) =
(vf,...,v}) at time step ¢, the interpretation I,y C V(t)

is defined as I, ;) = {v;(t) € V(t) | vf = 1}. Then,

Proposition 3.1 Iv(s(t)) = TPT(N) (Iv(t)) NV (s(t)).
For example, for the BN N (1), the NLP Pr(N;) is

p(s(t)) <= q(t), q(s(t)) < p(t) Ar(t), r(s(t)) < —p(t).
Now, given the initial state v() = (0,1,1), the orbit of
I (0) with respect to Pr(Ny) is {q(0),7(0)}, {p(s(0))} U
{r(s"(0) [k = 1}, {g(s(s(0))}U{r(s*(0)) | (k = D)V (k =
3)}. {p(s(s(s(0)))} U {r(s*(0)) [k > 1}, Then, the
sequence (Iy (s (0)))kew 15 {(0),7(0)}, {p(s(0)),r(s(0))},
{a(s(s(0)}, {p(s(s(s(0)))), r(s(s(s(0))}. ... which
simulates the trajectory of Ny from v(0).

Since each I ;) only contains atoms that are true at time
step t, it turns out that the time argument can be omitted from
each rule in pr(f;). For each f; € F given as (3), let p(f;)
be the set of propositional rules obtained by deleting the time
arguments (¢) and s(t) from all literals appearing in p7(f;),
and define P(N) = U, ¢y p(fi). Also, for any state v(t),
put I' = {v; € V | vl =1}

Theorem 3.2 Let N be a synchronous BN, and v(t) any
state. Then, the orbit of I* with respect to P(N)) is precisely
the trajectory of N starting from v (t).

t+1

(V\Ve);
ifv; € Vg,

ifv; €

926

Theorem 3.2 implies that every attractor can be obtained as
an attracting cycle in an orbit of some initial state v(0), and
in particular that a point attractor is given as a fixed point in
such an orbit. For example, for /V;, the propositional NLP
P(Ny) is now defined as

g pATy “4)

Then, given the initial state v(0) (0,1,1), the orbit of
19 with respect to P(Ny) is {q,7}, {p,7}, {a}, {p,7}, ...,
which is exactly the trajectory of N; from v(0), indicating
that the repeat {p,r} — {q} — {p, r} corresponds to the cy-
cle attractor of N7. Similarly, starting from (1, 1, 1), the orbit
of {p, g, r} reaches the fixed point {r}, which corresponds to
the point attractor (0, 0, 1) of Ny.

p<q, T4 p.

3.3 Computing Point Attractors

To detect all attractors of a BN based on Theorem 3.2, we
need to prepare I,,(g) for each initial state v(0), but there are
2" such possible initial states. Here, we show that detection
of all point attractors of a BN can be characterized without
specifying the set of initial states.

In the following, we will identify a state v(¢) with an inter-
pretation I* at a point attractor, and denote it as I whenever
the time step is not important.

Theorem 3.3 Let N = (V, F) be a synchronous BN. Then, I
is a point attractor of N iff I is a supported model of P(N).

The proof of Theorem 3.3 can be established as follows:
(i) By Theorem 3.2 and the definition of point attractors,
I is a point attractor of N iff I = Tpy)(I) holds; (ii)
I = Tp(ny(I) iff I is a supported model of P(IV) (see Sec-
tion 3.1). Theorem 3.3 precisely characterizes the set of all
point attractors of a BN in terms of one propositional pro-
gram. As mentioned earlier, all supported models of an NLP
P(N) can be enumerated as the models of its completion
Comp(P(N)), which is given as follows.

Comp(P(N))
I
= /\ “ \/ B /\ (v; > v;)
v; €(V\Ve) = v;€Ve
l;
= A < \/ Bi; (5)
v; €(V\Veo) Jj=1

Then, using a SAT solver, computation of point attractors
can be automated by computing the models of the for-
mula (5)' without testing for each initial state one by one. In
Comp(P(N)), each completed formula for a non-constant
node v; represents the logical equivalence between the state
of v; and its previous state. On the other hand, the additional
rule (v; < v;) in p(f;) for each constant node v; € V¢ pre-
serves the truth value of v; in an initial state v(0) through
the orbit of I,,(0). This rule becomes the formula (v; <> v;)
in Comp(P(N)), and can be equivalently removed from (5).

'The same translation from a synchronous BN into SAT has been
directly suggested in [Tamura and Akutsu, 2009] without getting
through the semantics of logic programming.

The rule (v; + v;) for each v; € Vi thus prevents the deriva-
tion of —w; in Comp(P(N)), and is actually indispensable in
obtaining the supported models as the next example shows.

Example 3.1 Consider the next BN N2 = ({p, q, 7}, F»):

thrl — pt \Vi qt Vi _‘Tt,

Ry

(D)~ (6)
In N», g is a constant node. Let P be the set of rules:
P D, P g P, TDPATG (7

The supported model of P, is {p,r}, which corresponds to
the point attractor (1,0, 1). However, another point attractor
(1,1,0) cannot be obtained from P», since {p,q} is not a
supported model of P,. We see that {p, g} is a supported
model of P(Ny) = P,U{ g+ ¢}.

In Example 3.1, P(NN2) has no stable model. In fact, any
tautological rule can be ignored in the stable model seman-
tics. It is known that, [is a stable model of an NLP P iff 1
is a supported model of both P and some P’ C P such that
P’ does not have any loop in its positive dependency graph?
[Lin and Zhao, 2004]. For example, in P(N7) (4), the rules
Q ={p+q, g+« pAr}havealoop in the positive depen-
dency graph. Then, P(N1)' = P(N1)\ Q = {r < —p} has
the unique supported model {r}, which is the stable model
of P(Ny). For Py (7), {p,r} is not a supported model of
Pj = P\ {p + p}, and is not a stable model of P». We now
define a similar property for BNs: an attractor is called non-
self-dependent if any its expressing node does not depend on
itself in the positive dependency graph. We characterize this
by the stable model semantics for NLPs with choice rules®
[Simon et al., 2002]. Intuitively, the choice rule (0{p}1 +)
represents that p is or is not contained in each stable model.

Theorem 3.4 Let N = (V, F') be a synchronous BN. Then, I
is a non-self-dependent point attractor of N iff I is a stable
model of P(N) U {(0{v}1 «) |v e Vo}.*

For Example 3.1, {p, r} is neither a stable model of P(N3)
nor a stable model of P(N2) U {¢}, and hence is not a non-
self-dependent point attractor of No. On the other hand, the
stable model {p, ¢} of P(N3) U {¢} is non-self-dependent.

3.4 From NLPs to BNs

We now show a converse translation from NLPs to BNs.
For this, we assume that the Herbrand base A is finite, and
its elements can be numbered as A;,...,A,. Then, any
interpretation I C A can be identified with the n-tuple
([A1]1, - -, [An]r), where [A;]r is the truth value of A; in
I ie, [A;]; = 1iff A; € T and [4;]; = 0iff A; & I

The directed graph consisting of the positive edges in a BN N
is exactly the positive dependency graph of P(N).

3A choice rule is an instance of cardinality constraints [Simon et
al., 2002], which is explained in Section 4.

“Each rule of the form (v; < v;) for any v; € Vo can be omitted
from P(N) in the presence of choice rules in Theorem 3.4.

927

Given a propositional NLP P, construct the synchronous BN
N(P) = (A, F(P)), where F(P) is defined as follows. For
each A € A, suppose the set of rules in P whose heads are
A is given by {(A < B1),...,(A < By)}, where each B,
(1 < j < k) is a conjunction of literals. Then, the regulation
function for A is defined as A**! = (B{ v --- Vv B}) when
k > 1, and is assigned 0 when k = 0 (A is set as a 0-node).

Theorem 3.5 Let P be a propositional NLP. Then, I is a sup-
ported model of P iff I is a point attractor of N (P).

An obvious merit of representation of BNs in terms of logic
programming semantics (and vice versa) is that we can apply
rich resources of NLPs to BNs (and vice versa). Such the-
ories include complexity results, computational procedures,
and several relations between two programs such as equiva-
lence and generality. Here, we just apply a well-known com-
plexity result for NLPs to BNs. Detection of a point attractor
in a BN is known to be NP-hard [Milano and Roli, 1999],
and this holds even for a BN with the maximum indegree 2
[Tamura and Akutsu, 2009]. To the best of our knowledge,
however, the next results have never been stated in the liter-
ature, yet the problems are important to know whether some
specific genes can be expressed or not in genetic networks.

Theorem 3.6 Let N = (V, F) be a synchronous BN, and
v € V any node in N. Deciding if v is expressed in
some point attractor (resp. all point attractors) of N is NP-
complete (resp. co-NP-complete).

Theorem 3.6 is proved based on the complexity results
for the supported model semantics [Marek and Truszczynski,
1991], and the (co-)NP-completeness also holds for the same
inference problems of non-self-dependent attractors.

4 Asynchronous BNs

It has been argued in biology that asynchronous BNs (ABNs)
are closer to real biological phenomena than synchronous
BNs (SBNs), but due to their complexities to model and an-
alyze, less studies have been done for ABNs compared with
SBNs. In ABN, different genes take different time to make
the state transition from one expression level to another, and
hence delay always occurs. To model asynchronicity, sev-
eral update schemes have been proposed [Gershenson, 2002;
Garg et al., 2008], and different updating schemes may lead
to different attractors. Here, we assume that update of a state
is done by nondeterministically choosing nodes to be updated
at each time step. This update scheme is called general-
ized asynchronous in [Gershenson, 2002], and contains many
other update schemes as its special cases.

Remember that any attractor of an SBN is either a point
attractor or a cycle attractor. By contrast, in an ABN, there are
attractors (called loose attractors [Harvey and Bossomaier,
19971 or complex loops [Garg et al., 2008]) which are neither
cycle attractors nor point attractors.

Example 4.1 Consider the BN N3 = ({p,q}, F3) in Fig-
ure 2 (left). The state transition diagram of N3 with the
synchronous update is depicted as the thick lines in Fig-
ure 2 (right), while the asynchronous update has additional
transitions written in the thin lines as well as self loops cor-
responding null updates (not shown in the figure). The label

Figure 2: Synchronous and asynchronous transitions for /N3

of an arc in a thin line represents the set of selected rules in
that update. Any transition in a thick line uses the whole set
{x1,22}. Note that the next state of (0,1) or (1,0) is only
itself whichever set of rules is chosen for update.

The two point attractors, (0, 1) and (1, 0), of N3 in the syn-
chronous update are also point attractors in the asynchronous
update. The cycle attractor (0,0) — (1,1) — (0,0) in the
synchronous update is not an attractor in the asynchronous
update since there are transitions outgoing from this cycle. In
fact, the states (0,0) and (1, 1) are soon trapped by one of the
point attractors by a sequential update.

We now show a translation of ABNs into logic programs.
A cardinality constraint [Simon et al., 2002] is an expression
of the form I[{Ly, ..., L, }u, where L; (1 < i < n)is a literal
and [and w are integers such that 0 < [< u < n. Intuitively,
I{L,...,Ly,}uis satisfied by a set I of atoms if the number
of the literals satisfied by I in {L1,..., Ly} is between the
lower bound [and the upper bound w. Cardinality constraints
are used in heads and bodies of rules as a basic construct in
answer set programming (ASP).

Suppose an ABN N = (V| F') where each f; € F is given
by (3). For each v; € V, we introduce a new predicate x;
intending that z! = 1 represents that v; is chosen for update
with f; at time step ¢. For N, we define the program P2¢(N)
as the union of the rules (8) and (9) defined for each v; € (V'\
V), the rules (10) defined for each constant node ¢; € V¢,
and the rule (11):

vi(s(t)) « x;(t) AB; () forj=1,....l; (8)

vi(s(t)) + —xi(t) Awvi(t),)

ci(s(t)) + ¢lt), (10)

IX(u « , (11)
where X () = {x;(t) |vi € (V\Ve)}and 0 <[<u <n’
forn’ = |V \ V.

Here, the Boolean function f; is used to update v;(t) if
x;(t) is true by (8); otherwise (—z;(t)), the value of v; is not
updated by (9). The value of a constant node does not change
by (10). In (11), the cardinality constraint [X (¢) u represents
that between [and u nodes can be updated at each time step,
given two parameters [and v. When | = 0, null updates are
allowed, i.e., updating no node at a time step. When! = 1, at
least one non-constant node is chosen for update at each time
step. In particular, [= u = 1 represents a sequential update
[Harvey and Bossomaier, 1997; Garg et al., 2008], in which
only one node is chosen for each update. When ! = u = n/,
all non-constant nodes are updated simultaneously, hence an
SBN is expressed as a special case of ABNs.

928

For the program Pt4(N), the T operator for NLPs cannot
be directly applied since a rule with a cardinality constraint
in its head has a nondeterministic effect.’ In our case, how-
ever, the cardinality constraint appears only at the rule (11),
and then can be replaced with choice rules and integrity con-
straints. In the following, to simplify the discussion, we fix
the parameters in (11) as [= 0 and v = 7/, that is, any num-
ber of nodes can be chosen for update at each time step. Then,
(0 X (t)n' <) (11) can be replaced with

0{x;(t)}1 «+ , foreachv; € (V\ Vo).

Under the supported model semantics, the rules (12) can be
further translated into

12)

x;(t) < z;(t) foreachwv; € (V\ Vo). (13)

Let PZ(N) be the union of the rules (8), (9), (10), and (13).
Note that P{(N) is an NLP. Now, given any state v (t)
(vf,...,v}), suppose I(;y C X (t) are selected at time step
t. Then, the next state I, (5(;)) is uniquely determined as:

Proposition 4.1 Iv(s(t)) = TP%(N) (Iv(t) U Ix(t)) NV (s(t)).

Since each I, ;) only mentions a state at time step ¢, we can
drop the time argument from each literal of the form v;(¢) or
c;(t) in the rules (8), (9) and (10) of P%(N) as in the case of
SBNs. Moreover, dropping the time argument is also applied
to the selection literal x;(t)’s in the rules (8), (9), and (13).
Let PA(N) be the resulting propositional program.

Unlike Theorem 3.2 for SBNs, the propositional NLP
PA(N) cannot precisely simulate the trajectories of an ABN
N. However, point attractors of N can be identified by the
deterministic immediate consequence operator with P4 (N):

Proposition4.2 Let N = (V, F) be an ABN. Then, I is a
point attractor of N iff [= Tpany(I UY) NV for any set
Yg{fL‘Z |Ui EV\Vc}

Given a BN N = (V, F'), we can interpret N as either a
synchronous BN or an asynchronous BN. We denote it as N*
if N is synchronous, and as N¢ if asynchronous. Now, we
show the relationship between them as follows.

Proposition 4.3 I is a point attractor of N® iff I is a point
attractor of N°.

Proposition 4.3 can be proved by the fact that, for each v; €
V', either (’Ui — LL‘i/\BiJ) forj=1,...,l;or (’Ui — ﬁ{Ei/\UZ‘)
is selected. In the former case, the state of v; is not changed
in N? because [is a point attractor of N°. In the latter case,
the state of v; is not updated by (v; < v;). Then I must be a
point attractor of N*°. The converse holds by Proposition 4.2.

Although a fact similar to Proposition 4.3 has already been
stated in [Gershenson, 2002; Garg et al., 2008], we formally
obtain the result by the semantics of BNs in this paper. Hence,
computation of point attractors of an ABN N can be done by
Theorem 3.3 via the translation P(N) for the SBN. This fact
also justifies a reason why computation of point attractors is
more important in SBNs than that of cycle attractors.

SFor a program P with cardinality constraints, we could use the

A
nondeterministic consequence operator TH? : 24 — 227 in [Marek
et al., 2007] and define orbits as branching trees induced by TA%.

5 Discussion

Computing Attractors and Stable States. Several meth-
ods have recently been proposed to compute attractors of
synchronous BNs based on ASP and SAT techniques. In
[Dubrova and Teslenko, 2010], attractors are searched on
state transition diagrams of BNs with bounded model check-
ing, in which the length of trajectories is incrementally varied.
This computation process is repeated until an upper bound,
and then each obtained trajectory is checked whether an at-
tractor is included or not. In contrast, our Theorem 3.3 shows
that only one propositional formula Comp(P(N)) is neces-
sary to get all point attractors, but cycle attractors cannot be
obtained in this way.® Particular focuses are put on point at-
tractors in [Tamura and Akutsu, 2009; Melkman et al., 2010]
based on more elaborate translations of BNs into SAT. Con-
versely, SAT is translated into BNs in [Milano and Roli, 1999;
Tamura and Akutsu, 2009]. Fayruzov ef al. [2009] use ASP
for computing attractors, but their conflict resolution is dif-
ferent from the original BNs, and hence it is not clear how
complex regulation functions can be expressed in their ap-
proach. ASP is also used to analyze biological networks that
are not BNs: Gebser ef al. [2008] detect inconsistencies in bi-
ological networks, and Ray ef al. [2011] compute supported
and stable models from reaction networks that respectively
correspond to states with and without self-supporting loops.

In principle, each previous work translates a particular BN-
related problem into an equivalent computational problem at
the meta-level. For example, [Fayruzov ef al., 2009] trans-
lates a’*! = b' into activates(a,b,t) and defines several
axioms for updates, e.g., (act(Y,T + 1) « act(X,T) A
activates(X,Y,T) A =conflict(Y,T) A =mos_act_th(Y)).
In contrast, we simply map the regulation functions directly
to (a < b), and then give the semantics of them. This work
thus enables us to analyze any BN-related problem on the se-
mantics of logic programs, and provide an integrated way to
apply theories and techniques developed in logic program-
ming to various computational problems in BNs.

Control of BNs. Akutsu et al. [2007] have defined the prob-
lem to find a control strategy of a BN, which leads to the
given goal state from the given initial state. Some external
control nodes are also given and their values are manipulated
in [Akutsu er al., 2007] to achieve the goal state, which is
somewhat similar to Al planning. Viewing a BN as an NLP,
a related problem can be defined by modifying the decision
problem in Theorem 3.6 to finding of initial states of constant
nodes that realize expression of a target node v. This can be
achieved by finding a supported model containing v.

Simulation and Equivalence of BNs. Blair ef al. [1997] did
a pioneer work to view logic programs as cellular automata
(CAs), which are special cases of synchronous BNs consid-
ered in this paper, and pointed out the importance of orbits in
capturing inferential behaviors of NLPs. However, their main
concern is not on computational properties of attractors, but
is on simulation of an orbit for an NLP by an orbit for some

®We have tested our SAT-based approach to biological data in
[Dubrova and Teslenko, 2010], and obtained better performance
to get point attractors, e.g., all 7 point attractors for Drosophila
melanogaster (52 nodes) are obtained within 0.05 sec by MiniSat2.

929

Horn program. As far as attractors are concerned, we can de-
fine equivalence between two BNs with control nodes, and
can capture it by relativized equivalence under the supported
model semantics [Truszczyniski and Woltran, 2008].

Positive and Negative Loops. It has been observed that (I)
presence of positive loops in a BN is linked to multistability,
i.e., existence of multiple point attractors involved in differ-
entiation, and that (II) presence of negative loops is the source
of periodic oscillations, i.e., existence of cycle attractors in-
volved in homeostasis [Remy and Ruet, 2008]. Here, the sign
of a loop is defined as the product of the signs of its edges.
On the other hand, [You and Yuan, 1994] have shown that
(') existence of even loops in an NLP implies multiple stable
models, and that (II") existence of odd loops implies presence
of undefined literals. In (I’), however, even loops in NLPs
are assumed to be non-zero, i.e., containing at least two neg-
ative edges. As the supported models of NLPs correspond to
point attractors of BNs, by considering positive loops without
negative edges, the property (I) of BNs can be transferred to
NLPs, providing a necessary condition to have multiple sup-
ported models. In fact, supported models and stable models
are not much different from each other, with only difference
on the treatment of such positive loops [Lin and Zhao, 2004].
Relating the properties (II) of BNs and (II’) of NLPs, cy-
cle attractors in BNs are closely related to undefined literals
in regular models [You and Yuan, 1994] as well as the stable
class semantics [Baral and Subrahmanian, 1992]. For exam-
ple, P, = {p + —p} has no supported model and the BN
N (Py) has no point attractor by Theorem 3.5, but the orbit of
Iy = @ or I; = {p} with respect to P, becomes Iy, I1, I,
I, ..., and the cycle attractor (0) — (1) — (0) is found in
it. Hence, viewing an NLP as a BN, we get more informa-
tion from the program, and can get a meaning even when it is
inconsistent under the supported or stable model semantics.

6 Conclusion

We have seen that there are so many common properties be-
tween BNs and NLPs. This comparison can be promoted by
considering the similarity between the fixed points of BNs
and the T'p operator of NLPs. We have revived the notion of
orbits in this paper, but have also shown that orbits themselves
are not necessary to characterize point attractors of BNs. In
fact, supported models of logic programs are useful for that,
and this work opens an important application of the sup-
ported model semantics in which non-stable supported mod-
els play an important role. With the “attractor semantics”,
logic programs that are inconsistent under the supported or
stable model semantics can have meanings as they have cycle
attractors. Such semantics had ever been investigated in some
work on logic programming [Baral and Subrahmanian, 1992;
You and Yuan, 1994], but have not been focused on recently.

An obvious merit of NLPs compared with BN is that first-
order representation is possible in NLPs. Then, we could con-
sider first-order BNss to describe dynamics of systems with in-
finite domains or to have compact representation for common
update patterns. In the research of BNs, probabilistic BNs
[Shmulevich ez al., 2002] have been investigated, in which
multiple Boolean functions can be assigned to each node and

one function is selected randomly each time. Alternatively,
to express such nondeterminism in a non-stochastic way, we
could consider disjunctive BNs to allow indefinite effects. Re-
lating these extensions of BNs with probabilistic or disjunc-
tive logic programming is also an interesting future topic. Fi-
nally, abductive and inductive logic programming could be
applied to abduction and induction on BNs to infer miss-
ing nodes and missing regulation functions from observations
and training examples, respectively.

Acknowledgments

This research is supported in part by the 2008-2011 JSPS
Grant-in-Aid for Scientific Research (A) No.20240016. The
author would like to thank Tatsuya Akutsu, Chiaki Sakama
and Takehide Soh for their useful discussions, and anony-
mous reviewers for their helpful comments.

References

[Akutsu et al., 2007] Akutsu, T., Hayashida, M., Ching, W-
K. and Ng, M. K., Control of Boolean networks: Hardness
results and algorithms for tree structured networks, Jour-
nal of Theoretical Biology, 244:670-679, 2007.

[Apt et al., 1988] Apt, K.R., Blair, H. A. and Walker, A., To-
wards a theory of declarative knowledge, in: J. Minker
(ed.), Foundations of Deductive Databases and Logic Pro-
gramming, Morgan Kaufmann, pp.89-148, 1988.

[Baral and Subrahmanian, 1992] Baral, C. and Subrahma-
nian, V.S., Stable and extension class theory for logic
programs and default logics, Journal of Automated Rea-
soning, 8:345-366, 1992.

[Blair et al., 1997] Blair, H.A., Dushin, F. and Humenn,
P.R., Simulations between programs as cellular automata,
Proceedings of LPNMR 97, LNAI 1265, pp.115-131,
1997.

[Dubrova and Teslenko, 2010] Dubrova, E. and Teslenko,
M., A SAT-based algorithm for finding attractors in syn-
chronous Boolean networks, IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 2010.

[Fayruzov et al., 2009] Fayruzov, T., De Cock, M., Cornelis,
C. and Vermeir, D., Modeling protein interaction net-
works with answer set programming, Proceedings of
2009 IEEE International Conference on Bioinformatics
and Biomedicine, pp.99-104, 2009.

[Garg er al., 2008] Garg, A., Di Cara, A., Xenarios, 1., Men-
doza, L. and De Micheli, G., Synchronous versus asyn-
chronous modeling of gene regulatory networks, Bioinfor-
matics, 24(17):1917-1925, 2008.

[Gebser et al., 2008] Gebser, M., Schaub, T., Thiele, S., Us-
adel, B. and Veber, P., Detecting inconsistencies in large
biological networks with answer set programming, Pro-
ceedings of ICLP "08, LNCS 5366, pp.130-144, 2008.

[Gelfond and Lifschitz, 1988] Gelfond, M. and Lifschitz, V.,
The stable model semantics for logic programming, Pro-
ceedings of ICLP ’88, pp.1070-1080, MIT Press, 1988.

[Gershenson, 2002] Gershenson, C., Classification of ran-
dom Boolean networks, in: Artificial Life VIII, pp.1-8,
MIT Press, 2002.

930

[Harvey and Bossomaier, 1997] Harvey, 1. and Bossomaier,
T., Time out of joint: Attractors in asynchronous random
Boolean networks, in: Proceedings of the 4th European
Conference on Artificial Life, pp.67-75, MIT Press, 1997.

[Trons, 2006] Irons, D.J., Improving the efficiency of attrac-
tor cycle identification in Boolean networks, Physica D,
217:7-21, 2006.

[Kauffman, 1969] Kauffman, S. A., Metabolic stability and
epigenesis in randomly constructed genetic nets, Journal
of Theoretical Biology, 22(3):437-467, 1969.

[Kauffman, 1993] Kauffman, S.A., The Origins of Order:
Self-Organization and Selection in Evolution, Oxford Uni-
versity Press, 1993.

[Lin and Zhao, 2004] Lin, F. and Zhao, Y., ASSAT: comput-
ing answer sets of a logic program by SAT solvers, Artifi-
cial Intelligence, 157:115-137,2004.

[Marek et al., 2007] Marek, V.W., Niemeld, I. and
Truszczynski, M., Logic programs with monotone
abstract constraint atoms, Theory and Practice of Logic
Programming, 8(2):167-199, 2007.

[Marek and Subrahmanian, 1992] Marek, W. and Subrahma-
nian, V.S., The relationship between stable, supported,
default and autoepistemic semantics for general logic pro-
grams, Theor. Comp. Sci., 103(2):365-386, 1992.

[Marek and Truszczyriski, 1991] Marek, W. and Truszczyii-
ski, M., Computing intersection of autoepistemic expan-
sions, Proceedings of LPNMR *91, pp.37-50, 1991.

[Melkman et al., 2010] Melkman, A.A., Tamura, T. and
Akutsu, T., Determining a singleton attractor of an
AND/OR Boolean network in O(1.587™) time, Informa-
tion Processing Letters, 110(14-15):565-569, 2010.

[Milano and Roli, 1999] Milano, M. and Roli, A., Solving
the satisfiability problem through Boolean networks, Pro-
ceedings of AI*IA °99, pp.72—-83, LNAI 1792, 1999.

[Ray et al., 2011] Ray, O., Soh, T. and Inoue, K., Analyzing
pathways using ASP-based approaches, in: Proceedings
of the International Conference on Algebraic and Numeric
Biology 2010, LNCS, to appear, Springer, 2011.

[Remy and Ruet, 2008] Remy, E. and Ruet, P., From ele-
mentary signed circuits to the dynamics of Boolean regu-
latory networks, Bioinformatics, 24:220-226, 2008.

[Shmulevich et al., 2002] Shmulevich, 1., Dougherty, E.R.
and Zhang, W., From Boolean to probabilistic Boolean
networks as models of genetic regulatory networks, Pro-
ceedings of the IEEE, 90(11):1778-1792,2002.

[Simon et al., 2002] Simons, P., Niemeld, 1. and Soininen,
T., Extending and implementing the stable model seman-
tics, Artificial Intelligence, 138(1-2):181-234,2002.

[Tamura and Akutsu, 2009] Tamura, T. and Akutsu, T., De-
tecting a singleton attractor in a Boolean network utilizing
SAT algorithms, IEICE Trans., 92-A(s):493-501, 2009.

[Truszczyriski and Woltran, 2008] Truszczyriski, M. and
Woltran, S., Hyperequivalence of logic programs with
respect to supported models, Annals of Mathematics and
Artificial Intelligence, 53:331-365, 2008.

[You and Yuan, 1994] You, J.H. and Yuan, L., A three-
valued semantics for deductive database and logic pro-
grams, J. Comput. Syst. Sci., 49:334-361, 1994.

