
EFFICIENT ORGANIZATION AND ACCESS OF MULTI-DIMENSIONALDATASETS ON TERTIARY STORAGE SYSTEMSL.T. Chen1, R. Drach2, M. Keating2, S. Louis2, D. Rotem1, A. Shoshani11Lawrence Berkeley Laboratory, Berkeley CA 947202Lawrence Livermore Laboratory, Livermore CA 94550(Published in Information Systems Journal, April, 1995)Abstract | This paper addresses the problem of urgently needed data management techniques fore�ciently retrieving requested subsets of large datasets from mass storage devices. This problem isespecially critical for scienti�c investigatorswho need ready access to the large volume of data generatedby large-scale supercomputer simulations and physical experiments as well as the automated collectionof observations by monitoring devices and satellites. This problem also negates the bene�ts of fastnetworks, because the time to access a subset from a large dataset stored on a mass storage system ismuch greater than the time to transmit that subset over a fast network. This paper focuses on verylarge spatial and temporal datasets generated by simulation of climate models, but the techniquesdescribed here are applicable to any large multidimensional grid data. The main requirement is toe�ciently access relevant informationcontainedwithinmuch larger datasets for analysis and interactivevisualization. Although these problems are now becomingmore widely recognized, the problempersistsbecause the access speed of robotic storage devices continues to be the bottleneck. To address thisproblem, we have developed algorithms for partitioning the original datasets into \clusters" basedon analysis of data access patterns and storage device characteristics. Further, we have designedenhancements to current storage server protocols to permit control over physical placement of data onstorage devices. We describe in this paper the approach we have taken, the partitioning algorithms,and simulation and experimental results that show 1 to 2 orders of magnitude in access improvementsfor predicted query types. We further describe the design and implementation of improvements to aspeci�c storage management system, UniTree, which are necessary to support the enhanced protocols.In addition, we describe the development of a partitioning workbench to help scientists select thepreferred solutions. 1. INTRODUCTIONScientists working with spatio-temporal data do not naturally think of their data in terms of�les or collections of �les, but rather in terms of basic abstractions such as spatial and temporalvariables, multidimensional arrays, and images. This work is directed toward providing supportfor such abstractions within the context of current hierarchical mass storage systems. One of themost critical issues for scienti�c investigators is the increased volume of data generated by large-scale supercomputer simulations and physical experiments. In addition, the automated collectionof observations by monitoring devices and satellites produce vast data at increasingly faster rates.These large datasets have, in some cases, led to unreasonably long delays in data analysis. In thesesituations, the speed of supercomputers is no longer an issue; instead, it is the ability to quicklyselect subsets of interest from the large datasets that has become the major bottleneck.To address this need, we have developed algorithms for partitioning datasets into \clusters"based on anticipated data access patterns and storage device characteristics, as well as enhance-ments to current storage server protocols to permit control over physical placement of data onstorage devices. The access patterns considered in this paper are range speci�cations in the mul-tidimensional space. The techniques developed can be applied to any multidimensional datasets,although our emphasis and example applications is on spatio-temporal datasets.In order to have a practical and realistic environment, we choose to focus on developing e�-cient storage and retrieval of climate modeling data generated by the Program for Climate ModelDiagnosis and Intercomparison (PCMDI). PCMDI was established at Lawrence Livermore Na-tional Laboratory (LLNL) to mount a sustained program of analysis and experimentation withclimate models, in cooperation with the international climate modeling community [1]. To date,1

2 L.T. Chen et al.PCMDI has generated over one terabyte of data, mainly consisting of very large, spatio-temporal,multidimensional data arrays.The main requirement is to e�ciently access relevant information contained within much largerdatasets for analysis and interactive visualization. Although the initial focus of this work is onspatial and temporal data, our results can be applied to other kinds of multidimensional griddatasets.The developmental and operational site for our work is the National Storage Laboratory, anindustry-led collaborative project [2] housed in the National Energy Research Supercomputer Cen-ter (NERSC) at LLNL. The system integrator for the National Storage Laboratory, IBM FederalSector Division in Houston, has projects already in place that are investigating improved accessinterface and data reorganization techniques for atmospheric modelers at NCAR [3]. Many aspectsof our work complement the goals of the National Storage Laboratory.2. BACKGROUNDLarge-scale scienti�c simulations, experiments, and observational projects, generate large mul-tidimensional datasets and then store them temporarily or permanently in an archival mass storagesystem until it is required to retrieve them for analysis or visualization as shown in Figure 1. Forexample, a single dataset (usually a collection of time-history output) from a climate model sim-ulation may produce from one to twenty gigabytes of data. Typically, this dataset is stored onup to one hundred magnetic tapes, cartridges, or optical disks (current IBM 3480 tape cartridgetechnology, used in the storage systems at LLNL, allows 200-250 megabytes per cartridge). Thesekinds of tertiary devices (i.e., one level below magnetic disk), even if robotically controlled, arerelatively slow. Taking into account the time it takes to load, search, read, rewind, and unloada large number of cartridges, it can take many hours to retrieve a subset of interest from a largedataset.This ine�ciency generally requires that the entire set of original data be retrieved and down-loaded to a disk cache for the researcher to analyze or interactively visualize a subset of the data.Future hardware technology developments will certainly help the situation. Data transfer rates arelikely to increase by as much as an order of magnitude as will tape and cartridge capacities. How-ever, new supercomputers and massively parallel processor technologies will outstrip this capacityby allowing scientists to calculate ever �ner resolutions and more time steps, and thus generatingmuch more data. Because most of the data generated by models and experiments will still berequired to reside on tertiary devices, and because it will usually be the case that only a subset ofthat data is of immediate interest, e�ective management of very large scienti�c datasets will be anongoing concern.A similar situation exists with many scienti�c application areas. For example, the Earth Ob-serving System (EOS) currently being developed by NASA [3,4], is expected to produce very largedatasets (100s of gigabytes each). The total amount of data that will be generated is expected toreach several petabytes, and thus will reside mostly on tertiary storage devices. Such datasets areusually abstracted into so called \browse sets" that are small enough to be stored on disk (usingcoarser granularity and/or summarization, such as monthly averages). Users typically explore thebrowse sets at �rst, and eventually focus on a subset of the dataset they are interested in. Weaddress here this last step of extracting the desired subsets from datasets that are large enough tobe typically stored on tape.It is not realistic to expect commercial database systems to add e�cient support for varioustypes of tertiary storage soon. But even if such capabilities existed, we advocate an approachthat the mass storage service should be outside the data management system, and that varioussoftware systems (including future data management systems) will interface to this service througha standardized protocol. The IEEE is actively pursuing such standard protocols [6] and manycommercially available storage system vendors have stated that they will help develop and supportthis standards e�ort for a variety of tertiary devices. Another advantage to our approach is thatexisting software applications, such as analysis and visualization software, can interface directly tothe mass storage service. For e�ciency reasons, many applications use specialized internal data

Access of Multi-Dimensional Datasets on Tertiary Storage Systems 3
Problem:

Data not optimally stored for:

 Access patterns

 Storage device

 characteristics

B CA

Simulation/Experimental System

Archival Mass Storage System

. . .
B

C
A

A
B
C

Visualization/Analysis System

Problem:

Access time too long due to:

 Drive contention

 Seek delays

 Loading/unloading

 Concurrent access locks

or observations

A multi-dimensional
dataset from models

may be stored over

multiple volumes

Data Access

Data Storage

(typically 1-20 GBytes

stored on 5-100 tapes)

A multi-volume dataset

Desired subsets for

the original dataset

analysis retrieved fromFig. 1: Current Situationformats and often prefer to interface to �les directly rather than use a data management system.3. APPROACHAs mentioned above, the main problem we address is the slow access of small subsets from alarge dataset in archival storage needed for visualization and analysis. As can be seen in Figure1, this problem has a storage organization component and an access component. Naturally, thedata access depends on the method used for the initial storage of this dataset. Because a datasetis typically stored on tertiary storage systems in the order it is produced and not by the orderin which it will be retrieved, a large portion of the dataset needs to be read in order to extractthe desired subset. This leads to long delays (30 minutes to several hours is common) dependingon the size of the dataset, the speed of the device used, and the usage load on the mass storagesystem. We show schematically in Figure 1 that the desired subset (which consists of pieces A, B,C which belong to a single dataset) is scattered over multiple volumes of the Mass Storage System.We address the above problem by developing algorithms and software that facilitate the parti-tioning of a large dataset into multiple \clusters" that re
ect their expected access. For example,if many desired subsets consist of certain variables over a period of a year, then reorganizing and

4 L.T. Chen et al.partitioning the data such that the corresponding variables are stored as \yearly clusters" in con-tiguous storage locations will facilitate e�ciently reading the desired data. In general, the portionsof a dataset that satisfy a query may be scattered over di�erent parts of the dataset, or even onmultiple volumes. For example, typical climate simulation programs generate multiple �les, eachfor a period of 5 days for all variables of the dataset. Thus, for a query that requests a singlevariable (say \precipitation") for a speci�c month at ground level, the relevant parts of the datasetreside on 6 �les (each for a 5 day period). These �les may be stored on multiple volumes. Further,only a subset of each �le is needed since we are only interested in a single variable and only atground level. If we collected all the parts relevant to a query and put them into a single �le, thenwe would have the ideal cluster for that query. Of course, the problem is one of striking a balancebetween the requirements of all queries, and designing clusters that will be as close as possible tothe ideal cluster of each query.The term \partitioning algorithm" is used to indicate that as a result of the algorithm a datasetwill be partitioned (or restructured) into many such clusters. The term \cluster" is used to conveythe idea that all the data that satisfy a query should ideally reside in a single cluster. The goal isto minimize the amount of storage that has to be read when a subset of the data is needed.The way that the above techniques interact with the existing software is shown schematicallyin Figure 2. The same basic system components shown in Figure 1 also exist in Figure 2, alongwith additional components. The component labeled \Data Allocation and Storage Management"is responsible for determining how to reorganize a dataset into multiple \clusters", and for writingthe clusters into the mass storage system in the desired order. The parts of the dataset that go intoa single cluster may be originally stored in a single �le or in multiple �les (as mentioned above, atypical climate modeling dataset is stored in multiple �les, each containing 5 days worth of data).The component labeled \Data Assembly and Access Management" is responsible for accessing theclusters, and for assembling the desired subset from clusters (rather than reading the dataset).One consequence of this component is that analysis and visualization programs are handed thedesired subset, and no longer need to perform the extraction of the subset from the �le. Notethat the schematic illustration in the Archival Mass Storage System is intended to show that thedesired cluster \ABC" may be stored in contiguous storage space for e�ciency as a result of theallocation analysis. The details of the two components are shown in Figures 3 and 4.On the left of Figure 3, the Data Allocation Analyzer is shown. It accepts speci�cations ofaccess patterns for analysis and visualization programs, and parameters describing the archivalstorage device characteristics. This module selects an optimal solution and produces an AllocationDirectory that describes how the multidimensional datasets should be partitioned and stored.The Allocation Directory is used by the File Partitioning Module. This module accepts amultidimensional dataset, and reorganizes it into \clusters" that may be stored in consecutivearchival storage allocation spaces by the mass storage system. The resulting clusters are passedon to the Storage Manager Write Process. In order for the Storage Manager Write Process tohave control over the physical placement of clusters on the mass storage system, enhancements tothe protocol that de�nes the interface to the archival mass storage system were developed. Unlikemost current implementations that do not permit control over the direct physical placement ofdata on archival storage, the enhanced protocol permits forcing of \clusters" to be placed adjacentto each other so that reading adjacent \clusters" can be handled more e�ciently. Accordingly,the software implementing the mass storage system's bit�le server and storage servers, needs to beenhanced as well. More details on the modi�ed protocols are given Section 7.In Figure 4, we show the details of reading subsets from the mass storage system. Upon requestfor a data subset, the Storage Manager Read Process uses the Allocation Directory to determinethe \clusters" that need to be retrieved. Thus, reading of large �les for each subset can be avoided.Here again, the bit�le server and storage server of the mass storage system needs to be extendedto support enhanced read protocols. Once the clusters are read from the mass storage system,they are passed on to the Subset Assembly Module. Ideally, the requested data subset residesin a single cluster (especially for queries that have been favored by the partitioning algorithm).But, in general, multiple clusters will have to be retrieved to satisfy a subset request, where onlypart of each cluster may be needed. Still, the total amount of data read will typically be much

Access of Multi-Dimensional Datasets on Tertiary Storage Systems 5
Data Allocation and

Storage Management

Access Management

Data Assembly and

B CA

Simulation/Experimental System

Archival Mass Storage System

. . .ABC

Visualization/Analysis System

ABC

(See Figure 3 for details)

(See Figure 4 for details)

Frequently accessed

subsets partitioned

into clusters

Clustered data

on local disk

Goal:

Cluster data

according to

access patterns

Goal:

Faster access

of subsets from

clusters

A multi-dimensional
dataset from models

multiple volumes

may be stored over

or observations

Fig. 2: Areas of Improvementssmaller than the entire dataset. The Subset Assembly Module is responsible for accepting multipleclusters, selecting the appropriate parts from each, assembling the parts selected into a singlemultidimensional subset, and passing the result to the analysis and visualization programs.Next, we discuss some details of the partitioning and subset assembly processes, as well as themanagement of the allocation directory and associated metadata.3.1. The Partitioning ProcessThe characterization of access patterns of the analysis and visualization programs is essential forthe organization of data to achieve high access e�ciency. Of course, there may be con
icting accesspatterns. Thus, an analysis of the access patterns is needed to determine the optimal partitioningand allocation of clusters on archival storage. The partitioning algorithms use a model of the accesspatterns as well as a model of the physical device characteristics. The speci�c techniques used fordetermining the optimal allocation are given in Section 4.In an environment of typical mass storage systems we �nd a multi-level hierarchy consistingof memory, magnetic disks, and robotic devices for tapes and optical disks. Each level in thehierarchy may serve as a cache for the next level. As a by-product of our partitioning algorithms,

6 L.T. Chen et al.
B CA

Simulation/Experimental System

Data Allocation

Analyzer
Partitioning

Module

Storage Manager
(write process)

The storage manager

controls the placement

of "clusters" using the

allocation directory and

enhanced mass storage

system interface

Directory
Allocation

Access

Patterns

Hardware

Characteristics

Dataset

Structure

Archival Mass Storage System

. . .ABC

Enhanced write server
Interface and ProtocolsFig. 3: Dataset Reorganization and Partitioning Processthe volume of data cached will become smaller as we tend to retrieve data only if it matches aquery. In that way the cache will tend to only hold relevant data which is frequently accessed, thusimproving the e�ciency of the cache.3.2. The Subset Assembly ProcessAnswering a user query generally involves picking parts from various clusters in the mass storagesystem and then generating the result in the format and order needed by the application. This isthe function of the subset assembly module. Note, that we do not consider here the possibility ofassembling a single subset frommultiple datasets. Such "joining" of results is very much applicationdependent and is usually done at the application level after multiple subsets are retrieved. For thisreason, we consider the study of various ways of joining the results from multiple datasets to bebeyond the scope of this project.The best situation one can hope for is that each query matches exactly a single cluster. But,typically, a query needs to read a small number of clusters, still bene�ting from reading only asmall portion of the original dataset. It is worth noting that the assembly algorithm has somesimilarity to the well-known problem of transposing matrices on secondary and tertiary storage

Access of Multi-Dimensional Datasets on Tertiary Storage Systems 7

Visualization/Analysis System

ABC

Module
Subset Assembly

Storage Manager
(read process)Directory

Allocation

Interface and Protocols
Enhanced read server

The storage manager controls

the allocation directory and

send them through the

assembly process

the access to "clusters" using

requests

Data

Archival Mass Storage System

. . .ABC

Fig. 4: Subset Assembly Processsystems with limited bu�er space [10].As the assembly task is a crucial step in the process of forming an answer to a query, it isbene�cial to use a powerful machine (preferably one with multiple processors) with a large bu�ersize. In general, given a set of clusters, the running time of the assembly algorithm (as is the casewith transposition algorithms) is inversely related to the size of the bu�er available for the task.One can also take advantage of the potential for parallelism in the assembly algorithm due to thewell known speedups gained by parallel sorting algorithms.Although it may be desirable to have a dedicated assembly machine as an extension of themass storage system, we do not initially assume so. Rather, we assume that the assembly will bedone on the scientist's workstation. Thus, the assembly software needs to take into account thesize of available disk as well as the available bu�er space on the assembly machine. It then triesto re-arrange the data according to speci�cations with minimum number of passes over the data.Since the techniques for the assembly software are well-known [10], we do not discuss these furtherhere. Rather the focus of this paper is on the partitioning algorithms and the interface design tothe mass storage system.

8 L.T. Chen et al.3.3. Management of the Allocation Directory and Associated MetadataThe allocation directory generated by the allocation analyzer needs to be managed as well. Inaddition to the allocation directory, there is relevant metadata information associated with thevarious datasets, such as: who produced the dataset, when was it generated, variable descriptors,what regions they cover, etc. The metadata as well as the allocation directory form a relativelysmall (but important) database that needs to be managed and maintained. Such a database canbe managed by existing commercial relational database systems. However, the use of such systemsrequires expertise that may be a burden to application scientists. Scientists need to interact withthis database on a regular basis, to insert new entries and to browse the metadata. For this reason,more user friendly, perhaps customized interface systems should be used. We have developed andimplemented such a tool, called the \partitioningworkbench", for specifying dataset characteristics,query types, and for guiding the user in selecting the most desirable cluster partitioning. Detailsare presented in Section 6.4. THE DATASET PARTITIONING ALGORITHMWe describe in this section the method of partitioning datasets into clusters and the algorithmsused. Below we give a brief characterization of the problem, the assumptions made, and oursolution to the problem.Our goal is to take a multidimensional array with multiple variables and layout the data onmultiple one dimensional storage volumes, such that the retrieval response time is minimized foranticipated queries. Before we can proceed we need to characterize the dataset structure, theanticipated queries, and the hardware properties, and determine a measure for the quality of asolution.The structure of datasets must satisfy the output of typical climate simulation models and ob-servations. Each dataset is not composed of just a single multidimensional �le for several variables,but rather a collection of multidimensional �les, each for a subset of the variables. The granular-ity of the spatial and temporal dimensions are common to all variables, but some variables maycontain only a subset of these dimensions. For example, a typical dataset may have 192 points onthe X dimension, 96 points on the Y dimension, 19 points on the Z dimension (i.e. 19 elevations),and 1488 points on the T (time) dimension covering one year ((12 months) x (31 days/month) x(4 samples/day)). This dataset may contain a \temperature" variable for all X,Y,Z,T and a \pre-cipitation" variable for X,Y,T only. For the \precipitation" variable, the Z dimension is implicitlyde�ned at the ground level. A typical dataset may have close to a hundred of such variables, eachusing a di�erent subset of all the dimensions.The characterization of queries required extensive interaction with the scientists using the data.After studying the information provided by scientists, we have chosen to characterize \query types",rather than single queries. A query type is a description for a collection of queries that can bedescribed jointly. For example, a typical query type might be \all queries that request all X,Y(spatial) points, for a particular Z (height) one month at a time over some �xed subset of thevariables". Thus, assuming that the dataset covers 2 years and 20 height levels, the above querytype represents a set of 480 queries (24 months X 20 heights). It was determined that providingquery types is more natural for these applications. Further, the query type captures a large numberof example queries, and thus permits better analysis of usage patterns. In the next subsection, weelaborate on the details of specifying query types.The next issue we describe is that of de�ning a measure of \goodness" for a given solution. Weassume that the scientists working with the system specify a weight for each query type that theyde�ne. A high weight means that the associated query type is \important", in the sense that itshould be executed as fast as possible. The algorithms described here make use of these weights.We do not make a distinction between weights speci�ed by a single user or multiple users. Weassume that a single person, referred to as the designer, collects all the query types from multipleusers, and assigns weights to them. It is possible to develop interfaces that will permit joint designby multiple users, but this was not an important issue for this project.

Access of Multi-Dimensional Datasets on Tertiary Storage Systems 9We found that in practice, the speci�cation of weights is not an intuitive task. Rather, illus-trating the e�ects of the weights in terms of the estimates on actual response time to queries ismuch more meaningful to users. Consequently, we have developed an interactive \workbench"that lets the designer see the trade-o� on the performance of the set of query types for the variouspartitioning solutions. In presenting the solutions to the designer, we order the solutions using ameasure of goodness based on a formula that compares the estimates on actual response time tothe best possible time (optimal time) for each query. The designer can then evaluate the trade-o�sbetween the solutions. Once a choice is made, we derive relative weights that re
ect this choice. Wedescribe the workbench, the formula for the measure of goodness, and the assignment of weightsin Section 6.Given a weight, Wi, for a query type, Qi, the weight, wij, of a single query, qij, that belongs tothis query type is determined by dividingWi by the number of queries that belong to Qi. Thus, ifthe query type in the example above (which represented 480 queries) had a weight of 0.5, then theweight of each query that belongs to this query type is 0:5480. This assumes that all queries belongingto a query type are equally likely to be requested. The rationale for doing so is as follows. Theinterpretation that scientists we worked with gave to the weight of a query type is that this valueis assigned to the entire class of queries rather than the individual queries. This interpretationprevents query types that have a large number of queries from dominating query types that have afew queries. As mentioned above, we had to �nd a more intuitive way of deriving weights for querytypes, but once they have been derived, the above ratio is used to assign weights to individualqueries. The weights of individual queries are used in the algorithms described in Appendices Band C.Next, we describe in more detail our assumptions on the query types and the hardware model.4.1. Characterization of Query TypesEach query type is de�ned as a request for a multidimensional subset of a set of variables,where the multidimensional subset must be the same for all variables of the query type. A querytype is de�ned by selecting one of the following 4 parameters for each dimension:1. All: if the entire dimension is requested by the query type.2. Any: if one value along the dimension is requested for this query type. Note that the valueitself is not speci�ed, it is assumed that any one of the values within this dimension is equallylikely to occur.3. One(coordinate): if exactly one point (the coordinate element) of the dimension is requested.4. Range(low,high): if a contiguous range that starts at low and ends at high of the dimensionis requested.All variables in our application are de�ned over a subset of the following seven dimensions:X(longitude), Y(latitude), Z(height), Sample, Day, Month, Year. Note that the Time dimensionhas been split into 4 dimensions that specify the sample within a day, the day within a month,the month within a year, and the year. The splitting of the time dimension makes it possible tospecify \strides" in the time domain, such as \summer months of each year", the \�rst day of eachmonth", etc. Some variables may not have all dimensions de�ned. For example, \precipitation" isde�ned at ground level only, and has no height (Z) dimension.It has been determined that for our application this query type de�nition encompasses almostall possible queries that users would want in this application area. It was observed (and veri�edwith climatologists) that the One and Range parameters are not used as often as the All and Anyparameters. An example of a query type speci�cation is given below:Temperature, Pressure: All X, All Y, One(Z,0), All S, All D, Range(M,6-8), Any YThis query type speci�es that temperatures and pressures are requested over all X,Y positions,for Height 0 (ground level), but only for sample points and days in the summer months for a

10 L.T. Chen et al.single year. A query belonging to this query type can be speci�ed for any year. Thus, if thedataset is over 20 years, this query type represents 20 possible queries, each being a subset of themultidimensional space.While we believe that the above class of query types is useful for many applications, other querytypes may be necessary. For example, it is likely that scientists working on earthquake faults willbene�t from a query type that speci�es the fault line, so that tiles along the fault line will be putinto a single cluster.It is worth mentioning that in a recently published paper [7], a similar approach of partitioninglarge multidimensional arrays was taken in the context of optical jukeboxes. Although addressingthis problem for tertiary storage is a di�erent problem, it is interesting to see what assumptionswere made regarding access patterns. In that paper, the assumptions made about the query typesare di�erent than ours. Speci�cally, it was assumed that a query type is expressed by giving a rangesize for each dimension (such as range size on the X dimension is 100, etc.). The interpretationof specifying a range size is that all possible combinations on each range are equally likely (e.g.1-101, 2-102, ... etc.). The variables are considered as a additional dimension of the data array.Thus, if the range size on this dimension was 3, for example, then any 3 variables are as likely asany other 3 variable to be accessed together. While these assumptions led to a closed analyticalsolution, we found them unsuitable for our application domain. For example, certain groupings ofvariables are much more likely than others in climate modeling applications.4.2. Characterization of Tertiary Storage DevicesThe optimal partitioning depends also on the characteristics of the tertiary storage devices.Because we do not want to limit this work to a particular tertiary storage device, we identi�ed thefollowing 5 parameters that are needed to characterize any tertiary storage device for the purposeof determining the optimal partition:1. M (MegaBytes): the capacity of each tape.2. R (MB/second): sustained transfer rate, excluding any overhead for starting and stopping.3. Ts(x) (seconds): fast forward seek function. A mapping function between the distance ofthe forward seek and the time it takes. For example, if it takes 10 seconds to initialize aseek, and 20MB/s thereafter, the seek function is: Ts(x) = 10 + (x=20). In cases where it isdi�cult to determine the constant value, the seek function is simply x divided by the seekspeed.4. Tm (seconds): mount time. The time it takes to change a cartridge up to the point where wecan read the �rst byte out of the new cartridge. This time includes: unload previous tape,eject previous tape, robot time to place previous tape back on shelf, robot time to retrievenew tape from shelf, mount new tape, setup tape to be ready to read the �rst byte.5. FO (bytes): extra File Overhead. This is the overhead (in bytes) involved in breaking onelong �le into two shorter �les. If retrieving the long �le takes T2 seconds, and retrieving thetwo consecutive shorter �les requires T1 seconds, then the �le overhead FO = (T1�T2)�R,where R is the transfer rate de�ned in point 2 above.This �ve parameter model has proven to be su�cient to describe most removablemedia systemssuch as robotic tape libraries or optical disk juke boxes. In the latter case, we adjust the seek timecomponent of our cost function to zero as it is negligible compared to the time it takes to dismountand mount a new platter.4.3. The Partitioning AlgorithmHaving described the hardware and query type model, we can now describe our approachto solving the partitioning problem. It is easy to show (see Appendix A) that the problem, ingeneral, is NP-Complete. Thus, the best we can hope for is to �nd a near optimal solution within

Access of Multi-Dimensional Datasets on Tertiary Storage Systems 11
B 21

B
22

B 23

...

B 11

B 12

B 13

...

B 31

B 32

B 33

...

V3V2V1

B ij

B 32 B 33 B 13 B 11 B
22B 31

.......

V 1 V 2V 3

B 32 B 33 B 13 B
22B 31

B 11

V 1 V 2V 3

STEP 4: Break layout of clusters into "bundles"

 (using hardware characteristics)

 (using "file overhead")
STEP 3: Combine basic units into "clusters"

STEP 2: Determine the one dimensional layout of the basic units

STEP 0: Separate variables into disjoint variable sets

 (no query will access part of a basic unit)

V1 V2 V3 V4 V5 V6 V7 V8

STEP 1: For each variable Vi break dataset into "basic units"()

2
31 Q

 Q
 Q

.......

Cluster 2 Cluster i Cluster j Cluster 1

....................Cluster 2Cluster 1

Tape Volume 2Tape Volume 1Fig. 5: Dataset Partitioning Stepsa reasonable amount of time. We accomplish this by solving the problem in steps, as shown inFigure 5. We outline these steps below, and discuss details of each step in subsequent subsections.First, we split up the dataset into disjoint groups of variables, such that all variables accessedtogether by any query type are always in the same group. This preprocessing step is labeled STEP0 in Figure 5. It illustrates that variables V1, V2, V3, V4 are in the same group because of theoverlap between query types Q1 and Q2, while V5, V6, V7, V8 are in the same group becausethey are all accessed by a single query type Q3. Note that for each group of variables there isa corresponding group of query types, and that all variables in a query type are contained in asingle group of variables. Thus, we use the term \group" below as containing a set of query typesand the corresponding set of variables. This grouping of query types allows us to split the originalproblem into several smaller problems, since most query types only involve one or two variables.We can now solve the partitioning problem group by group, since each group has its own uniqueand disjoint set of variables and query types.Within each group, we solve the problem in 4 steps. STEPS 1-4 in Figure 5 illustrate this for 3variables V1, V2, and V3. First, we individually take each variable in the group and sub-partitionit into basic units. A basic unit is the largest chunk of data such that, for every possible queryof any query type in the group, the query either needs all the data in the basic unit or it needs

12 L.T. Chen et al.none of the data in the basic unit. Splitting each variable into basic units allows us to simplifythe remaining stages since we now only need to consider how to lay out the basic units, instead ofhaving to lay out the individual bytes. Note that each variable in a group may have a di�erent setof basic units depending on the queries that overlap it.After breaking all variables into basic units, the second step determines a one dimensionallayout of all the basic units, such that the weighted sum of the distance between the �rst and lastbasic unit needed by each query of all query types is minimized. The reasoning behind this step,is that tapes are fundamentally one dimensional. By trying to minimize the distance between the�rst and last basic unit needed by each query, we are designing a layout in which tape seeking andmounting time is minimized when data for the query needs to be retrieved. By using the weightof queries in the weighted sum we favor the queries with the higher weights. This step is the onlyone of the four steps that is NP-Complete (also see Appendix A). Consequently, we rely on someassumptions and use heuristics to solve this step, which are discussed in Section 4.3.2.The third step determines the optimal way to combine multiple neighboring basic units into\clusters" such that the one dimensional array of basic units becomes a one dimensional array ofclusters. This step is needed because the interface to the storage system we currently use, UniTree,assumes that the unit of retrieval is a �le. Therefore, a �le can either be completely retrieved fora query, or not retrieved at all, but it cannot be partially retrieved. Because of this, we must\cluster" basic units together into �les. Thus, the term cluster is used to represent the set of basicunits that is stored in a physical �le. The terms \cluster" and \�le" will be used interchangeablythroughout this paper. Note that in this step we need to use only the \�le overhead" parameter.No other hardware characteristics are needed.We make the assumption that each cluster resides entirely on a single tape. Usually, the size ofclusters are small relative to typical tape capacities, since the clusters are made as small as possiblein order to minimize the amount of data accessed. However, if a cluster exceeds the tape capacity,we assume that the storage system will handle that as it handles any large �le that exceeds thetape capacity.Finally, the fourth step further combines neighboring clusters into \bundles" that will each �tinto a tape volume, and thus determines which clusters should be put on the same tape volume.This last step uses the hardware characteristics, and therefore it is best if it is supported by themass storage management system. For this project, this \bundling" step was made part of theUniTree system, as discussed in some detail in Section 7.Each one of these four steps will be discussed in more detail below.4.3.1. Breaking Data Into Basic UnitsWe form basic units by individually examining the way each variable is accessed by all thequeries belonging to a query type within the group. We �rst identify which dimensions have \All"speci�ed by all query types that access the variable. We then take the multidimensional subsetformed by combining data of these dimensions together, and call this a basic unit. By doing thiswe are guaranteed that no query will ever ask for a fraction of a basic unit. The rationale forhaving this step is to minimize the number of \units" that the remaining three steps will need todeal with.4.3.2. Determining the One Dimensional Layout of Basic UnitsThe goal of this step is to layout all the basic units in one dimension such that all the units thatwill be accessed by a query will be as close together as possible. In general, because of con
ictingquery demands, the basic units for satisfying a query, might be interleaved with basic units ofother queries. If one considers all the basic units in between the �rst and last unit requested bya query, and assume that they all need to be accessed in order to answer the query, then the goalof this step is to �nd a one dimensional ordering of the basic units such that the weighted sumof the length (in bytes) of data that needs to be retrieved for each query is minimized. Since, asmentioned above, this general problem is NP-Complete, we use a heuristic to solve it suboptimallyby considering two independent subproblems:

Access of Multi-Dimensional Datasets on Tertiary Storage Systems 131. determining a linearization order for the dimensions of each variable2. determining an ordering of the variables within a groupTo solve the �rst problem, we utilize the fact that most queries either want all the data along adimension or need only one element of the dimension, and only consider layouts of variables suchthat each dimension is completely laid out before we layout the next dimension. This is similar tothe way a multidimensional array is linearized into a single dimension. Obviously the dimensionwith the fastest changing index (i.e. the last to be linearized) should be a dimension in which mostquery types ask for \all", and the dimension with the slowest changing index should be the onein which most query types ask for \any" or \one". We determine the best ordering of dimensionsby considering all possible permutations for each variable. This is possible for a small number ofdimensions. In our case, each variable has at most seven dimensions and thus there are at most 7!= 5040 possibilities.Our solution to the second problem, namely, that of ordering the variables within a group, isin
uenced by a few factors. We need to consider the subset of the variables that are requestedtogether by the same query type. Intuitively, we would like variables which are requested togetherto be close to each other in the ordering. However con
icts between queries may exist. For example,if we have 3 query types in a group, Q1, Q2, Q3, each accessing a pair of variables [V1,V2], [V2,V3],and [V1,V3], respectively, then any order of the variables will cause one of the query types to haveits two variables separated by the third. One factor that can help resolve such con
icts is querytype weights. A second factor we need to consider is the volume of data used by each variable,as this volume may a�ect the tape distances traveled for answering those queries which requestseveral variables together. Fortunately, our analysis of typical access patterns reveals that very fewvariables (typically less than three) appear in the same group and we can therefore exhaustivelyevaluate all possible orderings of the variables and use the one which minimizes the weighteddistance traveled by all queries in the group. One such ordering is shown in STEP 2 of Figure 5.4.3.3. Combining Basic Units Into ClustersAt this stage, the basic structure of the data has already been determined. Next we need todetermine which basic units should be combined into clusters and how the clusters should be laidout within tape volumes. In this step the basic units are grouped together to form clusters. Thisstep is only needed for a storage system that does not support partial �le reads. In such systems,an entire �le needs to be read even though only a portion of it is needed. Because of this, there isthe tendency to let each basic unit simply be a �le, since this guarantees that we will never readany data that is not actually needed by the query. But this would result in an enormous amountof �les, and the �le overhead associated with each extra �le would dominate the response timeof queries that retrieve lots of data. On the other hand, we could simply have all the data of avariable be stored in one �le. This would minimize the �le overhead involved in big queries, butqueries that only ask for a small portion of a �le will have to retrieve the entire �le. In order tostrike an optimal balance between these two tradeo�s, we have devised an O(N2) time algorithmthat utilizes dynamic programming to optimally solve this problem. Details of this algorithm aredescribed in Appendix B.4.3.4. Breaking The 1-D Array of Clusters into Tape Volumes (Bundling Clusters)Similar to combining neighboring basic units into clusters, we must also combine neighboringclusters into bundles that �t in a tape volume, since the one dimensional layout of clusters willnot necessarily �t on one tape. In order to do this, we have also designed an O(N2) time dynamicprogramming algorithm that �nds the optimal solution for this problem. The algorithm considersboth the seek time and the mounting time required for each query, based on all the di�erent possibleways of breaking the linear array of clusters into tape volumes. When the function describing theseek time (based on seeking distance) for the tape system is a linear function, the algorithm can befurther simpli�ed to take only O(N) time. The basic O(N2) time dynamic programming algorithmis given in Appendix C, and various variations on it appear in [8].

14 L.T. Chen et al.Capacity Transfer Rate Seek Speed Mounting File Overhead(MB) (MB/s) (MB/s) (Seconds) (MB)Exabyte 4500 0.265 31.25 315 0.064Ampex 25000 12.864 503.32 39 141.506Table 1: Measurements of Hardware Characteristics4.3.5. Reasons for Minimizing Hardware Dependency in the Algorithm's StepsThe last step of determining bundles is the only step that requires the knowledge of hardwareparameters (besides �le overhead). Also, the �le overhead is more a parameter of UniTree thana parameter of the hardware. Therefore, the �rst three steps of the partitioning process arecompletely hardware independent. Consequently, we can incorporate the dynamic programmingalgorithm of this last step into the storage system and de�ne the interface to it at a level in whichwe simply supply an ordered one dimensional array of clusters to it. This approach was taken withthe NSL-UniTree implementation, as discussed in Section 7. It permits the migration of data fromone tape system to another to be completely transparent to the user, since UniTree would takecare of the detail of trying to maintain this one dimensional order of clusters as best as it can.Even when UniTree must break this one dimensional array of clusters into multiple tape volumes,it selects the break in between clusters such as to minimize the query response time due to multipletape mounts.This notion, of postponing hardware dependency as late into the algorithm as possible, is thereason that we �rst determined a one dimensional layout of basic units for the entire dataset. Thealternative is to �rst determine how to break the dataset into multiple tape volumes, and then tryto determine the optimal layout within each tape. While this alternative method may sometimesgenerate better optimized results than ours, it makes the crucial assumption that we have fullcontrol of the storage hardware, which is impractical with most storage systems. This alternativeapproach was taken by [7], but applied to optical disks only.5. SIMULATION AND EXPERIMENTAL RESULTS5.1. Measurements on Hardware CharacteristicsWe have performed detailed timing measurements on an Exabyte Carousel Tape System aswell as an Ampex D2 Tape Library System, to validate our hardware model and also collect theappropriate parameters for the model. The results of our experiments are shown in Table 1.Note that the �le overhead for the Ampex system is quite large (11 seconds, which is equivalentto 141 MB) due to lack of control over the behavior of the robotic system y. The e�ects of thisfact will be discussed in the following sections.5.2. Response Time ResultsBased on these experimental measurements, we were able to make a comparison of the estimatedresponse time of queries before and after we apply the previously described partitioning method toan actual PCMDI dataset. The response times are expressed in minutes and are shown for a fewquery types in Table 2, where \original" and \new" refer to the times before and after partitioning,respectively. The new timings on the Ampex were actual measured times on the real system, whileall other times are calculated times based on the measured hardware model. It was impractical torun the queries before partitioning because their response time takes several hours.The dataset we experimented with, contained 57 variables (each de�ned over all or a subset ofthe seven dimensions X,Y,Z,S,D,M,Ydescribed in Section 4) and 62 query types. These query typesyRecent tuning of the UniTree system to match the characteristics of the Ampex reduced the �le overhead from11 seconds to 3.5 seconds

Access of Multi-Dimensional Datasets on Tertiary Storage Systems 15Exabyte Carousel Response TimesQuery Types for Group 1 Optimal Original New Ratio1 U,V,W for any month at ground level 6.45 174.97 6.45 27.132 U,V,W for any month at all heights 92.85 174.97 92.85 1.883 U,V for any day at any height 1.72 30.55 4.08 7.484 U for any month at all heights for any Y 7.35 174.97 92.85 1.885 V for any year at all heights for range of Y 274.27 2142.60 1118.72 1.92Query Types for Group 26 T for any month for all heights for all X,Y 32.01 174.97 40.83 4.287 T for range of 3 months at any height 6.45 535.65 6.45 83.058 T for any sample any height for range of Y 3.25 30.55 3.25 9.40Query Types for Group 39 A cloud variable for any month for all X,Y 8.44 237.30 8.44 28.12Ampex D2 Tape System Response TimesQuery Types for Group 1 Optimal Original New Ratio1 U,V,W for any month at ground level 0.75 9.80 2.73 3.592 U,V,W for any month at all heights 2.52 9.80 2.73 3.593 U,V for any day at any height 0.65 1.60 2.73 0.594 U for any month at all heights for any Y 0.65 9.80 2.73 3.595 V for any year at all heights for range of Y 3.47 117.00 29.07 4.03Query Types for Group 26 T for any month for all heights for all X,Y 1.27 9.80 10.67 0.927 T for range of 3 months at any height 0.75 29.30 1.90 15.428 T for any sample any height for range of Y 0.65 1.60 1.90 0.84Query Types for Group 39 A cloud variable for any month for all X,Y 0.72 9.80 0.72 13.61Table 2: Response Time Results for Two Di�erent Tape Systemswere derived after extensive interviews with scientists interested in this dataset. The query typeswere partitioned into groups as explained in Section 4.3, and each group was analyzed separately.Table 2 only shows the query types that access the wind velocity vector U,V,W, the temperatureT, and one cloud variable that had only a single query type associated with it. However, they arerepresentative of the response times for other query types as well. In practice, most of the variablesare accessed by a single query type, and only a few variables are accessed by 2-5 query types. Forthis particular set of query types only two groups have more than one query type. We chose toshow these two groups in the tables because they represent con
icting requirements of the querytypes. We also show one representative group with a single query type, which obviously can beoptimized.The original layout of the dataset was one where all the variables for all X,Y, and Z for a periodof 5 days was stored in a single �le. Files were stored one after another according to time, untilthe next �le would not �t on the same tape. At this point a new tape was used and the processcontinued until all the data was stored. This storage method represents the natural order thatdata was generated by the climate simulation program, which, in general, is a poor organizationfor typical access patterns. The original response times were calculated on the basis of this actualstorage of the dataset.

16 L.T. Chen et al.In order to interpret the results shown in Table 2, we discuss the results of the partitioning next.For this experiment we used equal weights for the query types, since the scientists involved wantedto see the e�ects of partitioning if all query types are equally likely. The algorithm determinedthat the optimal way to store the U,V,W group on the Exabyte Carousel is as follows: Each halfa month of U,V,W data for a single height level was assigned to a �le, and the 2 �les that forma month need to be stored right next to each other. Next, similar �les for di�erent height levels,but of the same month, are stored next to each other, and �nally, neighboring months are storedadjacent to each other. For the Exabyte, it turned out that 2 months of U,V,W data for all X,Y,and Z could be stored in single tape, with 6 tapes needed to hold the entire 1 year dataset.Next, we give an explanation of the response time results. The 2 consecutive �les that hold onemonth of data for all X,Y and one Z level, are all that needs to be retrieved for a query belongingto query type 1, and in doing so, no unnecessary data is retrieved. For queries that belong toquery type 2, all 19 Z levels must be read to retrieve the one month worth of data. This representsreading half an Exabyte tape and requires 92.85 minutes. Although this may seem long at �rst,this is inevitable since a large amount of data is requested by each query. No unnecessary data wasretrieved by queries of query type 2 under this partitioning scheme. The fact that half a month isstored in one �le was determined by the dynamic programming algorithm of Step 3, and representsa compromise between query type 3 and all the other query types that access U,V, and W. Thisis because all the other query types access at least a month worth of data, whereas query type 3only accesses data for one day. This compromise would result in roughly 15 days worth of databeing read by query type 3 when only one day is needed. This does not turn out to be a seriousproblem though, since these queries retrieve so little data anyway. A good portion of the responsetime is due to the mounting time of the tape (100 seconds), and the fact that 15 times more datawas retrieved only represented a two fold increase in response time. Query type 4 retrieves thesame amount of data as query type 2 even though only one Y value is needed, and query type 5retrieves the entire 6 tapes even though only a range of Y is needed. The response time of thesetwo query types were sacri�ced in order to speed up the �rst three query types.As for the layout of the T variable on the Exabyte tape system, the algorithm determined thateach �le should contain exactly one month of all X,Y data for one Z level. In this way, all �lescontaining the same Z level for di�erent months will be next to each other, followed by the �lesfor the next Z level, and so on. This emphasis on the \Month" dimension as a more importantdimension to keep together than the Z dimension, is the result of query type 7 requesting 3 monthsat a time. This is in contrast to what the partitioning algorithm did for U,V,W, in which packingthe Z dimension together was more important than packing the \Month" dimension together. Thenet result is that query type 7 has a very small response time under this new partition, which canbe observed from the fact that its response time improved by a factor of 83 over the original.For the Ampex tape system, the improvements in response time are not as dramatic as in thecase of the Exabyte tape system. The main reason for this is that the Ampex has a much larger �leoverhead than the Exabyte tape system (the e�ects of the �le overhead are further discussed in thenext subsection). The large �le overhead resulted in larger �les being created by the partitioningalgorithm. In the case of variables U,V,W, each �le corresponds to one month of data for all X,Y,and Z, which comes to roughly 1.5 GB of data per �le. And in the case of variable T, each �lecorresponds to roughly two Z levels of data for all X,Y, and T, which comes to roughly 700 MB ofdata per �le. The consequence is that queries that ask for a small amount of data end up readinga single large �le to answer the query. This is especially obvious for query types 3 and 8, where theresult is that the response time is even slower than with the original data organization. As will beseen in the next section, our algorithm can take advantage of partial �le reads (no �le overhead)to signi�cantly improve performance.As expected, the partitioning for the cloud variable achieved optimal time as it was tuned forthe single query type accessing it.

Access of Multi-Dimensional Datasets on Tertiary Storage Systems 17Query Type Original with F/O without F/O Old Ratio New Ratio1 9.80 2.73 0.75 3.59 13.072 9.80 2.73 2.53 3.59 3.873 1.60 2.73 0.75 0.59 13.074 9.80 2.73 2.53 3.59 3.875 117.00 29.07 24.60 4.02 4.766 9.80 10.67 8.19 0.92 1.207 29.30 1.90 0.75 15.42 39.078 1.60 1.90 0.69 0.84 2.32Table 3: E�ects of File Overhead on Results5.3. E�ects of the File OverheadThe experiments with the Ampex robotic system were performed after it was connected recentlyto NSL-UniTree. As was mentioned above, the �le overhead was found to be quite large (about11 seconds, see footnote in Section 5.1). Consequently, the size of each cluster was relatively large(the average size per cluster was about 200 MB). In general, when the �le overhead is small, andthe number of clusters is larger, the response times tend to be shorter, because less unnecessarydata is read for a given requested subset of the dataset.The reason for the high �le overhead is unimportant for our experiments, and will be �xedin the HPSS version (see section 7). The important thing to notice is that even with a large �leoverhead the overall improvement of the partitioning algorithm is very signi�cant. As was shownin Table 2, 5 of the 8 queries improved by a factor of 3.5 to 15, at the cost of 3 queries degradingby a small factor of less than 2.To understand the e�ect of the �le overhead better, we performed a simulation for the same setof query types, assuming no �le overhead at all. This can be achieved if the tape system permitspartial �le reads; that is, the system can seek to a position on the tape and read precisely thenumber of bytes requested. Thus, we can take the bundle of �les (clusters) assigned to a tape andstore them consecutively as a single physical �le. This is indeed a feature that the Ampex systemis capable of, and it will be exploited in the NSL-HPSS implementation.The simulation results are shown in Table 3, along with the original and measured responsetimes that were shown in Table 2 for comparison purposes.As can be seen, the new ratio improved for all query types, some by a factor of 4, and theresponse times for all query types are better than the original times. These simulation resultsshow that systems that permit partial �le reads perform better than systems that do not supportthat. But, even if partial �le reads are not available, the gains that can be obtained by thepartitioning algorithms are still very signi�cant, especially in cases that the �le overhead is low.5.4. E�ects of Partitioning on Unanticipated Query TypesPhysical database design is a process that often involves a trade-o� between competing needsand resources. In cases in which access patterns to the data are contradictory in terms of thephysical organization best for each, a compromise needs to be struck. What if the compromise isnot satisfactory? What will be the e�ect on unanticipated queries?In general, given a particular physical organization, it is always possible to �nd a query thatwill perform badly. Thus, considering random queries is not a valuable exercise. However, thereare several issues worth observing with respect to the above questions.1. It is important to identify characteristics of access patterns that apply to nearly all queriesof an application. In the application described here, queries typically involve one or twovariables. It is rare that three or more variables are accessed in a single query. Takingadvantage of this fact alone leads to great improvements to access e�ciency. In the case of

18 L.T. Chen et al.climate model datasets, the datasets are typically generated in time intervals. For example,the dataset in our experiments was originally partitioned into 144 �les, each containing allvariables for all x, y, and z for a period of 5 days over 2 years (in these models all monthsare represented as having 30 days). This organization is best suited for queries that needall variables for a certain time period, not for queries that require a few variables at atime. Organizing the dataset for queries involving a few variables at a time is likely to helpunanticipated queries as well.Another common characteristic access pattern is locality of access in space and/or time. Evenif no other information is available (i.e. no query types are speci�ed) one can take advantageof this information to organize the data for e�cient access. Known techniques for organizingdata for queries that have locality of reference are discussed in Section 8.1.2. The smaller the size of the clusters the better the solutions are. As explained above the sizeof the clusters depend on the �le overhead. This was observed in the experiments above,where the Exabyte system had a relatively small overhead, and thus the number of clusterswas about 3200 for the 2 year dataset. In contrast, the Ampex system had a relatively large�le overhead, and the number of clusters was 465 for the same dataset. This explains thefact that all the queries in the Exabyte experiment performed better than the original time,while in the Ampex there were three query types that did not perform as well as the originaltime. Note, however, that the overall performance was greatly improved, and that a solutioncould be chosen to favor a particular query type at the expense of others. In general, thee�ect of a large number of clusters bene�ts unanticipated queries as well.3. In cases in which a compromise solution is not satisfactory, data duplication can be con-sidered. The trade-o� between access time and space is a well known principle in physicaldatabase design. In the case of multidimensional datasets, a small percentage of duplicationof data can alleviate access pattern con
icts. This is particularly true for queries that in-volve only one or two variables. We have not studied this e�ect so far. We plan to developalgorithms that take into account a percentage increase in space requirements in order toachieve improved solutions. The designer will then have a way to evaluate the bene�ts ofdata duplication.4. Dealing with unanticipated queries is a di�cult problem with all database and �le systems.The best way of dealing with this problem is to monitor the access patterns, to collectstatistics, and to permit reorganization from time to time, especially for frequently accesseddatasets. Here again, analysis tools such as the partitioning workbench, and automaticreorganization software are needed to facilitate this fairly expensive operation.6. IMPLEMENTATION OF THE PARTITIONING ALGORITHM AND THE WORKBENCH6.1. Design Considerations of the Partitioning WorkbenchDepending on the weights assigned to queries, di�erent partitioning solutions can be found. Thechoice of a partitioning solution is very important since the process of partitioning and reorganizinga large dataset is a costly one. However, we found out that assigning weights is not a meaningfultask for the scientists, and that the assignment of weights was confusing in practice. Thus, itwas important from a practical point of view that we develop methods for facilitating the processfor selecting a solution based on intuitive measures. The result is an interactive \partitioningworkbench". The goal of the workbench is to help the scientists in designing the partitioning ofa dataset, to see the trade-o�s between possible solutions, and to make a meaningful selection ofthe most desirable solution.The di�culty with assigning weights to query types can be illustrated with an example. Supposethat we permit weight valuesWi to be between 1 and 10 (10 designating that Qi is a very importantquery type). It became clear that such assignment of values is relative. For example, assigninga value Wi=8 while the other query types are assigned values below 2, makes this query type

Access of Multi-Dimensional Datasets on Tertiary Storage Systems 19dominant. However, if all the other query types were assigned the weight 10, then this querytype is viewed as \less important". Even if we can normalize the �nal value assigned, the relativedistance between weights carries no real meaning as to their e�ect on the partitioning solution.Consequently, we decided to present the e�ects of a solution in terms of estimates on actual timesthat each query will take under a given solution. In the following, we assume that all queries thatbelong to the same query type will have the same response time. This approximation is reasonablesince each query that belongs to the same query type needs to access the same amount of data.To make the estimates on actual times meaningful it is necessary to present them relative tothe best possible time for each query that belongs to a speci�c query type Qi. The best possibletime (optimal), Oi, is calculated assuming that all the information to answer the query in Qi isin a single �le, and that the �le is positioned at the beginning of a tape. Thus, Oi is equal to thetime to mount a single tape, plus the time to read the �rst �le. For example, if the best possibletime for a query is 30 minutes, and the solution chosen results in 33 minutes, there is little to gainby increasing the weight on that query type. For comparison purposes, we calculate the originaltime that the query would have taken to run without the reorganization of the datasets (for ourexample dataset, the original organization consisted of 292 �les, where each �le contained 5 daysfor all variables).We produce the multiple solutions presented to the designer as follows. We start by assigning allqueries Qi the same weight, and run step 2 of the algorithm (described in Section 4.3.2). It producesa solution for each permutation of the dimensions. Each solution consists of the the estimates onactual response times for all query types. Thus, for each query in Qi and each solution option j,the actual response time is Aij . We then select the solution that minimizes the overall responsetime relative to best possible times. We use the formula Pi log(AijOi) to �nd the value assignedto each solution j, and select the solution with the smallest value. The reason for considering theratios is that we are interested in evaluating response times relative to the corresponding optimaltimes of queries, and not the absolute measure of response times. Further, the reason for usingthe sum of the log of these ratios (which has the same e�ect as taking the product of the ratios)is that we are interested in the improvement of ratios relative to each other. In other words, weprefer solutions where these ratios are as close as possible to each other. Thus, an improvement ofa query from 200 minutes to 100 minutes is considered equivalent to an improvement of anotherquery from 2 to 1 minutes. This is shown in Figure 6, for the �rst �ve query types described inSection 5 for the Exabyte system.As can be seen in Figure 6, the estimates on actual response times for all query types hasimproved signi�cantly relative to original times. For this solution, Q1, Q2, and Q3 are at optimalor close to optimal. Q4 is roughly a factor of 12 from optimal, and Q5 is roughly a factor of 4 fromoptimal. The usefulness of this approach can be seen by realizing that Q5 takes over 4 hours at best(it is a post-processing query type), so trying to improve it further would make little di�erence.On the other hand, improving Q4 from about 92 minutes to 7 minutes makes a big di�erence fornear-line usage.Now, suppose that the designer wishes to improve Q4. Using the workbench, he/she candisplay other solution options for Q4 to see if there are more desirable solutions. The designer canthen interactively choose other solutions and see the e�ect on the response time of other queries.We found by experience that this form of interaction is much more meaningful to scientists thanassigning weights. Seeing the trade-o�s in terms of actual times makes the choice of a solution amore straightforward process.In some cases there may be a serious con
ict between query types, in that selecting a solutionthat favors one query type may disfavor another, and vice versa. When such con
icts arise thescientist needs to make a di�cult choice or resort to some duplication of data. This is discussedfurther in Section 8.Once a desired solution is selected, the weights for each query type are calculated and usedin the remaining steps of clustering and bundling the basic units. This is described in the nextsubsection as part of the LAYOUT module.The front end of the workbench was implemented using a relational database system (ACCESS)on a PC Windows platform that presents the user with a GUI, and is used to store up to 25 tables

20 L.T. Chen et al.
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

175 175

31

175

6 46
2

7

2142

93 93

1118

93

274

0

20

40

60

80

100

120

140

160

180

200

Query 1 Query 2 Query 3 Query 4 Query 5

M
in

u
te

s Original time

Option 1

AAAA
AAAA
AAAA

Lower Bound

Fig. 6: One Partition Option for the U,V,W Groupthat contain the dataset information, the hardware characteristics, query types, and the variouspartitioning solutions calculated. The backend of the workbench is a collection of C++ programsthat calculate the partitioning solutions, and the estimated response times. These programs arediscussed next.6.2. Implementation of Partitioning Algorithms for the WorkbenchThe algorithms for data partitioning were developed and implemented. The partitioning algo-rithm was broken into three separate programs, so that the scientist's workbench can allow theuser to interact with the partitioning process. The three programs are described below:GROUP: This program �rst determines how to separate all the variables of the dataset intogroups, such that any query type that accesses multiple variables, will always access variablesof the same group. This step is separated out from the other steps so that the user may �rstexamine the grouping of variables, and then individually work on each group. This programalso computes the optimal response time Oi for each query type Qi.PERMUTE: This module performs the �rst two steps of the partitioning algorithm in whichvariables in each group are broken into basic units, and di�erent permutations of the dimen-sions are tried to determine an optimal one dimensional ordering of the basic units. Equalweights are assigned to each query type, and di�erent permutations of the dimensions aretried as options. As explained above, for each option,Pi log(AijOi) is computed to determinean ordering of the options, where options that have a smaller value represent a more desirableoption. This ordered set of options is returned to the GUI part of the workbench, for thedesigner to examine in order to select the most desirable permutation of dimensions.LAYOUT: After the user has selected the most desired permutation of dimensions (i.e., option)from the output of PERMUTE, the result is fed to this module. This module then performs

Access of Multi-Dimensional Datasets on Tertiary Storage Systems 21the dynamic programming algorithms of steps 3 and 4, in order to determine what databelongs in each cluster and which clusters should be put together into a bundle on a singletape. The weights for each query type, used in these dynamic programming algorithmsare generated by making them inversely proportional to the estimated response time of eachquery type. For example, suppose that three query types are involved, and that the estimateson actual response times are 2, 5, and 10 minutes for Q1, Q2, and Q3, respectively, thenthe relative weights are 1/2, 1/5, and 1/10 respectively. The �nal weights are obtained bynormalizing these relative weights, to yieldW1=0.625,W2=0.25, andW3=0.125, respectively.The reason for this choice of assigning weights is that in most applications it is not importantto optimize queries with long response times, as compared with queries having short responsetimes. Other weight assignment formulas can easily be used with the workbench if desired.The resulting layout is also used by the workbench to estimate the response time for anyad-hoc query, not only queries belonging to the original query types. This can be used to seethe e�ect of reorganization on unanticipated queries.7. THE STORAGE SYSTEM INTERFACE DESIGNThe implementation of the interface to the mass storage system is performed at the NationalStorage Laboratory (NSL) at Lawrence Livermore National Laboratory (LLNL). The NSL providestwo important functions: a site where experiments can be performed with a variety of storagedevices, and the support for the data structures necessary to support storage and access of multipleclusters.The �rst software system developed at the NSL features network-attached storage, dynamicstorage hierarchies, layered access to storage-system services, and extensive storage-system man-agement capabilities. A commercial version of this system, called NSL-UniTree y, was announcedlate in 1992 by IBM Federal Systems Company. Work on a second software system, called theHigh-Performance Storage System (HPSS), is also under way. A central goal of this new e�ortis to move large data �les, using parallel I/O, between storage devices and massively parallelcomputers. Another goal is the e�cient support of scienti�c data management applications.Current versions of mass storage systems strive to present clients with a �le system view, usuallyhierarchical, and compatible with widely used operating systems such as UNIX. This view is notnecessarily the most e�cient one for clients of mass storage systems that would prefer to dealwith scienti�c data objects (such as multidimensional datasets) instead of �les. The current NSL-UniTree implementation is no exception to the �le system view: access is available via standardFTP and NFS �le transfer protocols, or via a �le-oriented client application programming interface.We have developed the speci�cation for a more suitable interface between mass storage systems andapplication software to allow for better control over data storage organization and placement forthe bene�t of data management clients such as the data partitioner and subset assembler discussedhere.Enhancements necessary to support this work were made to the NSL-UniTree. In order forthe Storage Manager Write Module to have control over the physical placement of clusters on themass storage system, enhancements to the protocol that de�nes the interface to the archival massstorage system were developed. Unlike most current implementations that do not permit controlover the direct physical placement of data on archival storage, the enhanced protocol permits thepre-allocation of space for \clusters" and the piece-wise writing and reading of the \clusters". Suchprotocol enhancements were added to the NSL-UniTree.The Storage Manager Read Module supports the e�cient reading of clusters. In the case thatonly a single cluster is needed to satisfy the subset request, it needs to mount the proper volume,fast forward to the position of the cluster and read this cluster only. In the case that multipleclusters are needed to satisfy a subset request, it needs to order the reading of clusters in such away as no unnecessary rewinds of the volume take place. This capability is already supported byNSL-UniTree.yA previous version of a hierarchical storage system, called Unitree, was originally developed at LLNL, and latermarketed commercially.

22 L.T. Chen et al.7.1. Summarization of Interface RequirementsWe have designed and implemented a functional interface between the partitioning and subsetassembly engines and the mass storage system which provides the ability to control allocationof space and physical placement of data. The approach that has been taken is to de�ne several\class of service" attributes which are associated with clusters and cluster sets and provided to thestorage system via a modi�ed FTP interface. These attributes consist of:1. a cluster set ID.2. a cluster sequence number.3. a frequency of use parameter.4. a boundary break e�ciency.The cluster sequence number tells the storage system the desired order of storing the clusters. Thefrequency of use parameters indicate the desirability of storing a cluster close to the beginning of atape (or to a dismount station) to avoid seek overhead. The boundary break e�ciency is a measureof how desirable it is that a cluster stays adjacent to its predecessor. This is used to determinewhether two clusters should be split across tape volumes.A table of these attributes is provided prior to delivery of the individual clusters to the storagesystem to permit the storage system to bundle the clusters appropriately for the desired tertiarystorage device. Thus, the last step of the partitioning process, (i.e. the bundling of clusters, suchthat each bundle can �t on a tape), is done by the storage system. This point was considerednecessary to allow for the possibility that precise storage system parameters may not be known bythe partitioning engine, and to provide storage system managers with the ability to override thepartitioning engine's decisions in order to prevent storage system overload.The interface implementation in the context of NSL-UniTree is shown in Figure 7. As can beseen, this mechanism allows the partitioning engine to determine optimal data layout on a givendestination, but it also gives �nal control to the storage system. Data is transferred to the storagesystem in cluster sets. While there is no strict requirement that all clusters be contained withina cluster set, such a requirement is necessary if the bene�ts of data association are to be realized.Clusters which are provided to the storage system independently will be stored individually { asnormal �les would be.So as not to constrain the partitioning engine unnecessarily, no limits on cluster set size havebeen established. This however means that any particular cluster set may be larger than theavailable storage system disk cache. To prevent cache over
ow, the cluster sets are \bundled" intopieces which the storage system can easily manage.Once the cluster set attribute table is available in the storage system, a \bundling" function iscalled to create bundled data for internal use by the storage system migration server. This serverthen builds a bundle table and examines that table for the availability of complete bundles. Inorder to provide the necessary inter-cluster cohesion, bundles are migrated to tertiary storage levelsonly when complete. Once a complete bundle is available to the migration process, this processprovides a list of clusters (�les) to be migrated to the destination server.To ensure that clusters are stored without unnecessary volume breaks (which would result inan additional media mount penalty for the reading process), code has been added to the migrationserver to allow it to check the destination volume space availability prior to actual bundle migration.If this code �nds insu�cient available space to store the entire bundle on the destination volume,the bundle migration will be deferred for a �nite period which can be determined by a storagesystem management process. The idea behind this deferral is to allow non-bundle �les to bemigrated �rst with the hope that doing so results in the mounting of a new (empty) volume. Codehas been provided to permit storage system management to override this deferral in cases wherethe system cache space becomes exhausted.A basic implementation of the interface design was developed for NSL-UniTree. The assumedstorage objects were clusters and cluster sets. For this initial implementation, we assumed nopartial read or write operations, even though they were available through the NFS access broker

Access of Multi-Dimensional Datasets on Tertiary Storage Systems 23

Bundle Tables

Cache Management and

Migration Deferral PoliciesTertiary Stores

cluster

(Cluster Set)

Multi-Dimensional

Dataset

Disk Cache Bundle Process
Modified

Migration

Server

1. Cluster set identifiers

2. Cluster sequence numbers

4. Boundary break efficiency

 (clusters information)

3. Cluster access frequencies

NSL-Unitree FTP Interface

NSL-Unitree Storage System

Data

Control

Bundle
Migration

Dataset Partitioning
Engine

Fig. 7: NSL-Unitree Enhancements Implementationand client libraries. For this implementation data transfer was restricted to the FTP interface.This restriction will be removed as part of planned future work.8. FUTURE EXTENSIONS8.1. Partially Speci�ed Query TypesIn general, query types may be speci�c in some dimensions but non-speci�c in others. Forexample, a query type may specify that in the time domain we are interested in one month at atime (All D, Any M), and one height at a time (Any Z), but nothing about X and Y. A reasonableinterpretation of that is that the query can request any (non-speci�ed) region in the X-Y dimension.Thus, it is desirable to maintain the spatial locality in the X-Y dimensions. How should clustersbe organized in this case?To illustrate our approach to this problem, consider an extreme situation where no informationexists on query types at all. In that case the multidimensional space is partitioned into spatialhyper-cubes. The linear ordering of these hyper-cubes has been the subject of several studiesthat suggest that a z-ordering (also called Peano ordering) [11] yields the best results for random

24 L.T. Chen et al.queries. Another ordering method, called Hilbert ordering [9] was shown to be better for rangequeries [9]. We assume that if no other information exists, most query types involve range queries,and therefore we select the Hilbert ordering (H-ordering) method.Our approach is to use a hybrid of the total ordering of dimensions that are speci�ed in the querytypes and H-ordering for dimensions that are not speci�ed. For the query type example above, asolution can be represented using the following notation: Z,(X-Y),M,D. The interpretation is thatthe ordering is �rst by Z, then the X-Y dimensions are H-ordered, then by M (month), then by D(day). Thus, a particular cluster will be for a particular height, for a particular X-Y rectangularregion for that height, and will contain all days of a single month.The above method is planned to be implemented and incorporated into the partitioning softwarein a future version.8.2. Other ExtensionsAnother important extension to the partitioning methods is to permit partial duplication ofdata. In the case of query type con
icts for queries that are considered essential, it may be necessaryto duplicate some of the data. The goal is to provide the scientist with trade-o�s between additionalstored data and the improvement to the desired query types. Again, it is important to provide thescientist the ability to analyze the trade-o�s interactively, using the workbench. The problem isone of �nding the best solutions while minimizing the duplication of data.Duplication of data introduces synchronization problems between the duplicated versions whenthe data is modi�ed (updated, deleted, or new data inserted). However, the typical scienti�capplication generates the dataset once, and does not modify them.Another aspect that we plan to study in the future is the e�ect of hardware devices with di�erentfundamental characteristics than linear tapes. In particular, there is emerging new technologycalled \serpentine tape" where a single tape has multiple tracks and the data can be laid outon these tracks in a serpentine fashion [16]. This technology does not change the basic value ofpartitioning the data into clusters, but rather changes the layout of these clusters on the tracks.Finally, it is necessary to emphasize that our work applies only to data that is fundamentallyorganized as grid data (or uniform meshes). While this represents a large class of applications(earth science, environmental science, etc.) there are applications with di�erent topography. Somesimulations permit adaptive meshes that can vary from region to region, some may use irregulartopography for representing turbulence of
ow within irregular boundaries, such as rivers. Suchapplication areas are yet to be explored.It is also worth pointing out that we have considered query types that are basically rangequeries; that is queries that specify ranges on the di�erent dimensions. Some application may havedi�erent dominant style. For example, in the study of beach erosion, the desired proximity of X-Ytiles is along the patterns of the beaches. Thus, it will be desirable to store the tiles physically alongsuch patterns. A similar situation exists in the study of earthquake fault lines. Characterizing suchquery types and analyzing clustering methods for such applications is yet to be studied.9. CONCLUDING REMARKSScienti�c application that access very large datasets face a major bottleneck when they need toaccess subsets of very large datasets from tertiary storage. This state of a�airs has been the mainreason that scienti�c analysis is not currently performed on an ad-hoc basis. Analysis cannot bespontaneous if a request for an interesting subset takes hours. Further, if the mass storage systemis sharable by many users, the access of unnecessary data when subsets are requested, reduces thee�ciency of such systems. As a result, supporting a certain user load requires additional physicaldevices such as read channels or larger robotic systems.The approach we have taken is common in data management systems. To achieve highere�ciency of data access from disks, data is often clustered according to its expected use. Recentresearch on data allocation and placement based on application access patterns in the context ofparallel disks and RAID technology is reported in [15]. However, the problem is much more acute

Access of Multi-Dimensional Datasets on Tertiary Storage Systems 25when dealing with robotic tertiary systems, and the solutions are di�erent. We have chosen towork closely with a speci�c application area (climate modeling) where this problem is e�ectingthe productivity and quality of the analysis. This gave us a realistic framework to understand thenature of spatio-temporal datasets and typical access to such datasets in modeling applications.The results so far con�rm the bene�ts of this approach. In realistic examples, it was possible topinpoint typical access patterns and restructure the datasets to �t the intended use of the data. Wefound it useful to provide users with estimates of response times for making partitioning choices.Once a partitioning choice is made, users can estimate the response time to ad-hoc queries, anddecide whether they want to wait for a response. Because many of the requests are for on-linevisualization, the size of the subsets requested are small, and thus only a few clusters need to beaccessed. In such cases, response time improved by a factor of 10-100.There are many directions that one can take from this point. One is to consider the bene�tsof duplicating some of the data. In some applications, a small percentage of duplication can dra-matically improve global response time when query types have inherent data partitioning con
icts.Another area is to consider more general access patterns and query types.There is also the question of how generic such algorithms can be. We think that it will benecessary to specialize on application domains. However, selecting broad categories of data types,such as spatio-temporal data, or sequence data (e.g. time series), can make such techniquesgenerally useful. The reason that we chose to concentrate on the spatio-temporal domain is thatmany disciplines are in this domain (geology, earth science, environmental sciences, etc.) and thatspatio-temporal datasets tend to be very large (simulation data, satellite data, etc.).Another challenging area is the development of interfaces that are natural and familiar to usersof each scienti�c discipline. Experience shows that scientists are reluctant to learn new systems,new concepts and new query languages (such as SQL). This reluctance is justi�ed as learning newsystems takes away from the e�ectiveness of the scientist's work. Interfaces need to be tailored tothe application and to the discipline. The development of the scientist \workbench" was necessaryin order to facilitate the interaction with the scientists who specify the query types and select themost advantageous partitions. Similar interfaces can be designed for scientists to express queriesover datasets.Finally, it is worth mentioning that tape striping techniques are being investigated to mitigatethe slow response time of accessing data from tape systems (see, for example [14]). In this approachno knowledge of access patterns is used; rather it is intended to take advantage of multiple tapesthat are synchronized to be read in parallel. Striped tape systems will complement our partitioningtechniques, in that clusters could now be spread over multiple tapes for parallel reads. The maingains provided by partitioning will continue to be important when we use such systems becausethey reduce the data that needs to be read for a given request.REFERENCES[1] Gates, W., Potter, G., Phillips, T., Cess, R., An Overview of Ongoing Studies in Climate ModelDiagnosis and Intercomparison, Energy Sciences Supercomputing 1990, UCRL-53916, pages 14-18.[2] Coyne, R. A., Hulen, H., Watson, R. W., Storage Systems for National Information Assets,Supercomputing '92 Proceedings, Minneapolis, MN, November 1992.[3] Graf, O., Nguyen, J., WOCE-CME Data System Prototype, Overview of IBM GBSI IR&D andEarth Sciences Programs, July 1991.[4] EOS Reference Handbook, NASA document NP-202, March 1993.[5] McDonald, K. R., Calvo, S., Accessing Earth Science Data from the EOS Data and InformationSystem, Proceedings of the IEEE Symposium on Mas Storage Systems, Monterey, April 1993.[6] Coleman, S., Miller, S., Eds., Mass Storage System Reference Model, Version 4, IEEE TechnicalCommittee on Mass Storage Systems and Technology, May 1990.[7] Sarawagi, S., Stonebraker, M., E�cient Organization of Large Multidimensional Arrays, TenthInternational Conference on Data Engineering, February, 1994.

26 L.T. Chen et al.[8] Chen, L. T., and Rotem, D., Optimizing Storage of Objects on Mass Storage Systems withRobotic Devices, EDBT (Extending Database technology) 94, Cambridge, U.K.[9] Faloutsos, C. and Roseman, S., Fractals for Secondary Retrieval, Eighth ACM Symposium onPrinciples of Database Systems (PODS). March, 1989. Pages 247-252.[10] Tsuda, T. and Sato, T., Transposition of Large Tabular Data Structures with Applicationsto Physical Database Organization. Part I, Acta Informatica 19:13-33 (1983), Part II, Acta Infor-matica, 19:167-182 (1983).[11] Samet, H., The design and analysis of Spatial Data Structures, Volume I, page 14, AddisonWesley 1990.[12] Orenstein, J., Merret, A class of Data Structures for Associative Searching, PODS, 1984, Pages181-190.[13] Gary and Johnson, Computers and Intractability, W.H.Freeman and Company, San Francisco1979.[14] Drapeau, A., Katz, R., Striped Tape Arrays, Twelfth IEEE Symposium on Mass StorageSystems, 1993, pages 257- 265.[15] Scheuermann, P., Weikum, G., and Zabback, P. Data Partitioning and Load Balancing in Par-allel Disk Systems, Department Informatik, ETH Zurich, January 1994, Technical Report number209.[16] Graves, D., Major Capacity and Data Rate Advances in IBM Longitudinal Magnetic TapeRecording Technology, 13th Symposium on Mass Storage Systems, June 1994, Annecy France.Acknowledgements | We would like to thank the anonymous reviewers and the editors for their insightful anddetailed comments. This work is supported by the O�ce of Scienti�c Computing of the O�ce of Energy Research,U.S. Department of Energy. This report was issued as LBL report LBL-35441.APPENDIX A: COMPLEXITY OF THE ONE DIMENSIONAL LAYOUT PROBLEMLet us consider the simplest version of the Layout problem with one tape, equal query weightsand zero seek time on tapes. We will show that even this simpli�ed version is NP-Complete thusproving that our more complex problemwith unequal weights is also NP- complete. The complexityof the Layout problem is closely related to the problem known as Consecutive Ones Property (CO)in binary matrices. A binary matrix has the CO property if its columns can be permuted suchthat the 1's in each row appear consecutively. Given n basic units and m queries, we can thinkof our problem as a binary matrix A(aij) where aij = 1 if and only if query i needs to read basicunit j in its answer set. Assume the i'th query requests pi basic units for its answer. We measurequery response time by the distance between the �rst and last basic units needed for its answer,this may include some irrelevant basic units it has to skip through. For simplicity let us assumeeach basic unit read represents one response time unit. Then the optimum expected response timefor a given Layout problem is clearly R =Pmi=1 pi which occurs if we can permute our basic unitssuch that for every query, all its requested basic units occur consecutively. We will now show thatthe problem of arranging our basic units along one tape is NP-Complete using a reduction fromthe problem known as COMA (Consecutive Ones Matrix Augmentation [13, pg. 229].)The COMA problem is stated as follows:Given an m � n matrix A of 0's and 1's, and a constant K, �nd a matrix A' obtained from Aby changing K or fewer 0's to 1's such that A' has the CO property.Proposition 1 The Layout problem is NP-Complete.Proof. In the following we denote a sequence of consecutive 1's as a 1-block. In case a rowcontains a single 1-block the corresponding query has no overhead. Otherwise the number of 0'sseparating the 1-blocks represent overhead. Given an instance of the COMA problem we translate

Access of Multi-Dimensional Datasets on Tertiary Storage Systems 27it to the Layout problem with m queries and n basic units and ask if a solution with response timeless than R+K exists. In this case K represents the overhead. A solution with response time lessthan R+K for the Layout problem exists if we have at most a total of K 0's separating our 1-blocksover all the rows. On the other hand if COMA has a solution with K or fewer changes of 0's to1's, a solution to the Layout problem with response time less than R+K exists. 2APPENDIX B: OPTIMAL COMBINING OF BASIC UNITS INTO CLUSTERSIn Appendices B and C we describe dynamic-programming solutions to the problems of splittingthe basic units into clusters (each treated as a separate �le) and bundling the clusters (i.e. �les)into volumes. Although there are some similarities between the algorithms, the de�ning equationsturn out to be di�erent. In both Appendices, we assume that each query has an associated weightre
ecting its "importance" to the user. The method of derivation of query weights for our speci�capplication is described in Sections 4 and 6.The problem we consider here is that of breaking a linear stream ofN basic units, B1; B2; ::; BN ,into �les, such that the extra number of bytes that needs to be read by all queries is minimized.Extra bytes need to be read due to the fact that an entire �le needs to be read even though onlya portion of it is needed by the query. Extra bytes, also come from the fact that a �le overheadequivalent to reading FO bytes, is needed for each �le that needs to be retrieved by the query.A break can occur anywhere between a pair of consecutive basic units but not in the middle of abasic unit.We assume each query needs to access some subsequence of contiguous basic units from thestream B1; B2; ::; BN . Based on the information from these queries, we can collect the followinginformation for each basic unit Bi:1. Li: The length of the basic unit (in bytes).2. Yi: The sum of the weights of all queries that read Bi.3. Xi: The sum of the weights of all queries that read both Bi�1 and Bi.Given the above information, we can easily compute in O(N) time:1. Pi: The starting position (in bytes) of basic unit Bi measured from the beginning of B1. Itcan be computed by letting P1 = 0, and Pi = Pi�1 + Li�1.2. Si: The sum of weights of all queries that start reading from this basic unit. This can besimply computed by Si = Yi �Xi.3. Ei: The sum of weights of all queries that stop reading after basic unit Bi�1. This can besimply computed by Ei = Yi�1 �Xi.We now describe an O(N2) time dynamic programming algorithm to solve this problem. Ini-tially the algorithm assumes that each query simply reads the basic units that it needs and thatno �le overhead is involved (i.e 0 extra bytes are read). Then, starting from the last basic unitBN , and working our way down to B1, we start to consider the cost of the �le overhead, and theweighted extra number of bytes that needs to be read due to its existence, i.e., for each a�ectedquery we multiply its weight by the extra number of bytes it reads and sum this value over alla�ected queries. For each Bi along the way, we compute a Di that is equal to the weighted extranumber of bytes that needs to be read, under the following conditions:1. Basic units Bi�1 and Bi are split into 2 di�erent �les, and the �le overhead for splitting hereis considered.2. No extra bytes are read from basic units B1 through Bi�1, i.e., each of these i�1 basic unitsis in a �le by itself.3. Basic units Bi through BN have been split into �les in the optimal way, such that Di isminimized.

28 L.T. Chen et al.Dynamic programming can be employed e�ciently in this case, because each Di can be com-puted in O(N) time by only using Dj values where j > i, based on the following formula:Di = Xi � FO+ mini<j�N+1(Dj + U (i; j))where U (i; j) = j�1Xk=i(Sk � (Pk � Pi) +Ek � (Pj � Pk))Initially we set DN+1 = 0. Assume by induction that Dm is correctly computed for all m > i,i.e., Dm represents the additional number of bytes to be read under the optimal way to breakbasic units Bm through BN into �les. Given that there is a break between Bi�1 and Bi, let theimmediate break on the right of it be between Bj�1 and Bj for some j > i. This implies thatthe basic units Bi; Bi+1; : : : ; Bj�2; Bj�1 will be placed in one �le. The term Bi � FO re
ects theextra �le overhead needed for all the queries that access both Bi�1 and Bi. U (i; j) re
ects theextra number of bytes that needs to be read due to that fact that basic units Bi through Bj�1 arenow in one �le, and all of these basic units need to be read by any query that needs any portionof these basic units. For all queries that start reading from basic unit Bk, (Pk � Pi) extra byteswill have to be read at the beginning of the �le. Since Sk is the weighted sum of all queries thatstart reading from basic unit Bk, Sk � (Pk � Pi) will be equal to the weighted extra number ofbytes read at the beginning of the �le, by all these queries. Similarly, Ek � (Pj � Pk) representsthe weighted extra number of bytes read at the end of the �le, by all queries that stop readingwithin this �le.This formula will compute the extra number of bytes to be read under the optimal way to breakbasic units Bi through BN into �les because all possible j's, in which basic unit Bi through Bj�1can belong in one �le are considered, and because the Dj 's have been correctly computed by theinduction hypothesis.Note that U (i; j) can be accumulated while we are enumerating through the j's for each Di,this reduces the running time of the algorithm to O(N2) since each Di can be computed in O(N)time.At each step in which a new Di is computed, for each i, we record the newly found minimalvalue in Di and also record the j value jmin, that resulted in this minimal value. Let the recordedpointer be Ri (i.e. Ri = jmin). At the end, when we have �nally computed the minimal valuefor D1, we can simply follow the pointers starting from R1, in order to �nd all the positions inwhich to break the stream of basic units into �les. Since this breaking resulted in D1 obtainingits minimal value, it is guaranteed to be the optimal way to break the entire stream into multiple�les, such that the extra number of bytes to be read by all queries is minimized.APPENDIX C: OPTIMAL BUNDLING OF CLUSTERS INTO TAPE VOLUMESThe problem we consider here is that of breaking a linear stream of N clusters, C1; C2; ::; CN,into bundles such that each bundle �ts on a tape volume, and the summed weighted query responsetime in minimized. A break can occur anywhere between a pair of consecutive clusters but not inthe middle of a cluster.As before, we assume each query has a weight associated with it, and needs to access somesubsequence of contiguous clusters from the stream C1; C2; ::; CN. Based on the information fromthese queries, we can collect the following information for each cluster Ci:1. Li: The length of the cluster (in bytes).2. Yi: The sum of weights of all queries that read Ci.3. Xi: The sum of weights of all queries that read both Ci�1 and Ci.The parameter Xi can be viewed as the penalty incurred by placing the clusters Ci�1 and Ci ontwo di�erent tapes. This is because if a tape break actually occurred between clusters Ci�1 and

Access of Multi-Dimensional Datasets on Tertiary Storage Systems 29Ci, all the queries counted in Xi would have an increased response time of Tm seconds, since anew tape would need to be mounted to answer the remaining part of the query.Given the above information, we can easily compute in O(N) time:1. Pi: The starting position (in bytes) of cluster Ci measured from the beginning of C1. It canbe computed by letting P1 = 0, and Pi = Pi�1 + Li�1.2. Si: The sum of weights of all queries that start reading from this cluster. This can be simplycomputed by Si = Yi �Xi.An O(N2) time dynamic programming algorithm to solve this problem is as follows: Initiallythe algorithm assumes that all the clusters are on one long imaginary tape that can hold everything(i.e., the leftmost break is on the right of cluster CN). Let the total weighted response time underthis one tape con�guration be some constant K. Starting from the last cluster CN , and workingour way down to C1, we compute a cost Di, which is the minimal extra response time (relative toK) involved in a con�guration in which:1. There is a break between Ci�1 and Ci.2. There are no breaks between C1 through Ci�1.3. The other breaks between Ci through CN have been chosen optimally, under the constraintthat no tape contains more than M bytes.Note that Di could be a negative number, since it represents the gain or the loss in responsetime due to the placement of such breaks. Dynamic programming can be employed e�cientlybecause each Di can be computed in O(N) time by only using Dj values where j > i, based onthe following formula: Di = Xi � Tm + Pj�Pi�Mmini<j�N+1(Dj � U (i; j))where U (i; j) = j�1Xk=i Sk � (Ts(Pk)� Ts(Pk � Pi))Initially we set DN+1 = 0. Assume by induction that Dm is correctly computed for all m > i,i.e., Dm represents the additional cost of the optimal way to break clusters Cm through CN intotapes. Given that there is a break between Ci�1 and Ci, let the immediate break on the right ofit be between Cj�1 and Cj for some j > i. This implies that the clusters Ci; Ci+1; : : : ; Cj�2; Cj�1will be placed on one tape. The constraint Pj � Pi �M in the above equation guarantees that incomputing the minimum, we are only considering values of j such that these clusters do in fact �ton one tape. The term Xi � Tm re
ects the extra response time needed to mount a new tape forall the queries that access both Ci�1 and Ci. On the other hand, U (i; j) re
ects the decrease inresponse time due to that fact that the seek time for all clusters Ck in the set Ci; : : : ; Cj�1 will nowbe reduced from Ts(Pk) to Ts(Pk � Pi) since Ci is now at the beginning of a tape. Note that thisreduction in seek time only a�ects the queries that start reading from cluster Ci. This is because,a query only needs to seek once to the �rst cluster, and all other clusters are read consecutivelywithout any more seeks.This formula will compute the relative response time of the optimal way to break the clustersfrom Ci through CN , because all possible j's, in which cluster Ci through Cj�1 can �t on one tapeare considered, and because the Dj 's have been correctly computed by the induction hypothesis.Note that U (i; j) can be accumulated while we are enumerating through the j's for each Di.This reduces the running time of the algorithm to O(N2) since each Di can be computed in O(N)time.At each step in which a new Di is computed, for each i, we record the newly found minimalvalue in Di and also record the j value jmin, that resulted in this minimal value. Let the recordedpointer be Ri (i.e. Ri = jmin). At the end, when we have �nally computed the minimal value forD1, we can simply follow the pointers starting from R1, in order to �nd all the positions in which

30 L.T. Chen et al.to break the stream of clusters. Since this breaking resulted in D1 obtaining its minimal value, itis guaranteed to be the optimal way to break the entire stream into multiple tapes, such that theweighted response time for all queries is minimized.The interested reader should consult [8] for a more detailed description of this algorithm, alongwith a description of how this algorithm can be improved to require only O(N) time when thetape seeking function Ts is a linear function.

