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Autoregressive Modeling for Fading
Channel Simulation

Kareem E. Baddour, Student Member, IEEE, and Norman C. Beaulieu, Fellow, IEEE

Abstract—Autoregressive stochastic models for the computer
simulation of correlated Rayleigh fading processes are investi-
gated. The unavoidable numerical difficulties inherent in this
method are elucidated and a simple heuristic approach is adopted
to enable the synthesis of accurately correlated, bandlimited
Rayleigh variates. Startup procedures are presented, which allow
autoregressive simulators to produce stationary channel gain sam-
ples from the first output sample. Performance comparisons are
then made with popular fading generation techniques to demon-
strate the merits of the approach. The general applicability of
the method is demonstrated by examples involving the accurate
synthesis of nonisotropic fading channel models.

Index Terms—Autoregressive processes, bandlimited stochastic
processes, multipath channels, nonisotropic scattering, Rayleigh
channels, simulation.

I. INTRODUCTION

THE bandlimited Rayleigh fading process, whose power
spectral density (PSD) is zero past the maximum Doppler

frequency, appears in many physical models of mobile radio
channels. Its emulation has been of theoretical and practical
interest to the wireless community for many years, as the design
and optimization of modern communication systems cannot
be carried out without computer simulations. The classical
fading simulator application is to generate a single sequence
of correlated Rayleigh variates in accordance with Clarke’s
wide-sense stationary (WSS) isotropic scattering model [1].
However, the scattering encountered in many environments is
nonisotropic, which strongly affects the second-order statistics
of the channel. A desirable simulator feature is the ability to
emulate such directional fading scenarios, for which the real
and imaginary Gaussian sequences underlying the sampled
Rayleigh channel can exhibit cross-correlations. This paper
addresses the development of a simulation methodology, which

Manuscript received April 24, 2003; revised October 24, 2003; accepted May
4, 2004. The editor coordinating the review of this paper and approving it for
publication is C. Xiao. This work was supported by a postgraduate scholarship
from the Natural Sciences and Engineering Research Council of Canada
(NSERC), by an Industry Canada Fessenden Postgraduate Scholarship, by an
Ontario Graduate Scholarship in Science and Technology, and by the Alberta
Informatics Circle of Research Excellence (iCORE). This paper was presented
in part at the 2001 Global Telecommunications Conference (GLOBECOM ’01),
San Antonio, TX, November 2001.

K. E. Baddour is with the Department of Electrical and Computer En-
gineering, Queen’s University, Kingston, ON K7L 3N6, Canada (e-mail:
baddourk@ee.queensu.ca).

N. C. Beaulieu is with the Department of Electrical and Computer En-
gineering, University of Alberta, Edmonton, AB T6G 2V4, Canada (e-mail:
beaulieu@ee.ualberta.ca).

Digital Object Identifier 10.1109/TWC.2005.850327

can be easily used to accurately synthesize such generalized flat
Rayleigh fading channels.

In the communications literature, a number of different
algorithms have been proposed for the generation of corre-
lated Rayleigh random variates (e.g., [2]–[5]). Among these,
simulators based on either a sum-of-sinusoids approach, on a
white noise filtering method, or on the inverse discrete Fourier
transform (IDFT) algorithm have become popular. Recently,
significant problems were found to exist with the stochastic
behavior of commonly used sum-of-sinusoids designs. In par-
ticular, it was shown in [6] that the classical Jakes’ simulator
produces fading signals that are not WSS. Careful redesigns
of the sum-of-sinusoids models, such as those proposed in
[7] and [8], are required to remove the stationarity problem
while maintaining the accuracy of the correlation statistics. The
IDFT technique, on the other hand, is well known to be a
high-quality and efficient fading generator [2]. Unfortunately,
a disadvantage of the IDFT method is that all samples are
generated with a single fast Fourier transform (FFT) operation.
The storage requirements of this approach can make it unattrac-
tive for the generation of a very large number of variates.
The search for a fading simulator that can produce statisti-
cally accurate variates “as they are needed” also motivates our
work herein.

In this paper, we consider the use of a general autore-
gressive (AR) modeling approach for the accurate generation
of correlated Rayleigh processes. Essentially, this technique
employs all-pole infinite-impulse response (IIR) filtering to
shape the spectrum of uncorrelated Gaussian variates. Unlike
previous white noise filtering methods, precise matching of the
theoretical statistics is possible over the order of the model for
practical finite-length implementations. Furthermore, the model
parameters are easily computed. Previously, AR models have
been used with success to predict fading channel dynamics for
the purposes of Kalman-filter-based channel estimation (e.g.,
[9]–[12]) and for long-range channel prediction [13]. They
have also been used by several authors to simulate correlated
Rayleigh fading [10], [14], though in [10] and [14], low-
order AR processes were adopted, which do not provide a
good match to the desired bandlimited correlation statistics.
In [15], the authors also attempted to use an AR fading
generator, but ran into stability problems and abandoned this
approach.

In this paper, we examine AR fading simulators in detail.
First, we demonstrate that it is the highly deterministic nature
of narrowband Doppler fading processes that leads to the
numerical problems faced by the AR method in this applica-
tion. A simple heuristic approach is proposed to enable the
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synthesis of accurately correlated bandlimited Rayleigh
variates. Startup procedures are described, which allow AR
generators to produce stationary and statistically correct
Rayleigh variates from the first output sample. Performance
comparisons are then made with popular Rayleigh fading
generators to demonstrate the merits of the AR method. The
accurate synthesis of nonisotropic Rayleigh fading models is
also demonstrated. To the best of our knowledge, no complete
study of using an AR approach to accurately generate band-
limited Rayleigh random processes has been reported in the
literature.

The remainder of this paper is organized as follows.
Section II briefly reviews correlated Rayleigh fading models
and popular variate generation techniques. Section III describes
the AR method of generating stationary bandlimited Rayleigh
processes. Section IV compares the method to both the IDFT
and a WSS sum-of-sinusoids simulator. The ability of the
AR generator to accurately simulate nonisotropic models is
also demonstrated. Section V concludes the paper.

II. FADING SIMULATION

A. Correlated Fading Models

A Rayleigh characterization of the land mobile radio chan-
nel follows from the Gaussian WSS uncorrelated scattering
fading model [16], where the fading process is modeled as
a complex Gaussian process. In this model, the variability
of the wireless channel over time is reflected in its auto-
correlation function (ACF). This second-order statistic gen-
erally depends on the propagation geometry, the velocity
of the mobile, and the antenna characteristics. A common
assumption is that the propagation path consists of a two-
dimensional isotropic scattering with a vertical monopole
antenna at the receiver [17]. In this case, the theoretical PSD
associated with either the in-phase or quadrature portion of
the received fading signal has the well-known U-shaped band-
limited form [17]

S( f) =




1

πfd

√
1−

(
f

fd

)2
, |f | ≤ fd

0, elsewhere
(1)

where fd is the maximum Doppler frequency in Hertz,
given by fd = υ/λ, υ is the mobile speed and λ is the wave-
length of the received carrier wave. The corresponding nor-
malized (unit variance) continuous-time autocorrelation of the
received signal under these conditions is R(τ) = J0(2πfdτ),
where J0(·) is the zeroth-order Bessel function of the first
kind [17]. For the purposes of discrete-time simulation of this
model, ideally generated in-phase and quadrature Gaussian
processes should each have the autocorrelation sequence

R[n] = J0(2πfm|n|) (2)

where fm = fdT is the maximum Doppler frequency normal-
ized by the sampling rate 1/T . Furthermore, in this model the

in-phase and quadrature processes must be independent and
each must have zero mean for Rayleigh fading.

Variations on the PSD in (1) have been proposed based
on more complicated propagation models. A PSD derived
without assuming that the incoming waves are only horizontal
in three-dimensional space is given in [18]. This band-
limited PSD is very similar to (1), but does not have as-
ymptotes approaching infinity at the band edges of the fading
spectrum. Improvements to this spectrum have been proposed
in [19]. A three-dimensional model with isotropic scattering
in all three directions is examined in [20]. In this model,
the PSD has flat bandlimited characteristics with a normal-
ized ACF

R[n] = sinc(2fm|n|) (3)

where sinc(x) = sin(πx)/πx. Complex Gaussian fading
models have also been proposed for nonisotropic scattering
scenarios (e.g., [21], [22]). In such environments, the Doppler
PSD is not necessarily even symmetric, which results in a
channel ACF that has an imaginary component. As a result, the
underlying real in-phase and quadrature fading processes ex-
perience cross-correlations. In general, the theoretical Doppler
power spectrum is bandlimited, since the maximum Doppler
shift is a finite quantity that is proportional to the mobile
velocity. Thus, the focus in this paper is on the accurate syn-
thesis of complex Gaussian processes with a specified band-
limited spectrum.

B. Correlated Variate Generation

Exact generation of N Gaussian variates with an arbitrary
correlation can be achieved in principle by decomposing the de-
sired N × N covariance matrix R = GGH, where GH denotes
the Hermitian transpose of G, then multiplying N independent
Gaussian variates by G [23, pp. 254–256]. The Cholesky fac-
torization, which can be performed with O(N2) operations for
Toeplitz matrices, is an efficient choice for this decomposition.
For bandlimited processes, however, an approximation using
a singular value decomposition is typically required due to
numerical problems arising from an ill-conditioned covariance
matrix. In this case factorization requires O(N3) operations,
which restricts applicability of the method to the generation of
very small sample sizes.

A popular method for modeling the Rayleigh flat fading
channel is to sum the outputs from Ns complex sinusoidal
generators [17]. In practice, the generated sequence closely
approximates a complex Gaussian process provided a suffi-
cient number of sinusoids are used. With proper choice of
the distribution of the sinusoid frequencies (see, e.g., [6]),
the process autocorrelation approaches that represented by (2)
as Ns → ∞.

Correlated Rayleigh variates can also be generated by fil-
tering two zero-mean independent white Gaussian processes
and then adding the outputs in quadrature. Here, rational trans-
fer function approximations of the nonrational PSD in (1)
are typically used to shape the spectrum. The autocorrelation
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properties of the generated sequences are determined by
the choice of filter. Many possibilities for this choice exist
(e.g., [3], [5], [15]). In general, these approaches do not provide
precise matching of the theoretical statistics.

Another popular technique for generating correlated
Rayleigh variates is Smith’s IDFT algorithm [24]. Here, the
IDFT operation is applied to sequences of uncorrelated com-
plex Gaussian variates, each sequence weighted by appropriate
filter coefficients to shape the PSD. Young and Beaulieu
[2] modified Smith’s algorithm for greater computational
efficiency and provided a statistical analysis of the method.
By considering the quality of the generated variates and the
computational effort, a comparison of the IDFT generator with
the sum-of-sinusoids technique and a finite-impulse response
(FIR) filter method concluded that the IDFT generator is
superior [2].

III. AR MODELING OF BANDLIMITED RAYLEIGH

RANDOM PROCESSES

A. Model Computation

Autoregressive models are commonly used to approximate
discrete-time random processes [25]. This is due to the simplic-
ity with which their parameters can be computed and due to
their correlation matching property. A complex AR process of
order p [AR(p)] can be generated via the time domain recursion

x[n] = −
p∑

k=1

akx[n − k] + w[n] (4)

where w[n] is a complex white Gaussian noise process with
uncorrelated real and imaginary components. For Rayleigh
variate generation, w[n] has zero mean and the simulator output
is |x[n]|. The AR model parameters consist of the filter coeffi-
cients {a1, a2, . . . , ap} and the variance σ2

p of the driving noise
process w[n]. The corresponding PSD of the AR(p) process
has the rational form [25]

Sxx(f) =
σ2

p∣∣∣∣1 +
p∑

k=1

ak exp(−j2πfk)
∣∣∣∣2

. (5)

Although the Doppler spectrum models proposed for mobile
radio are not rational, an arbitrary spectrum can be closely
approximated by an AR model of sufficiently large order. The
basic relationship between the desired model ACF Rxx[k] and
the AR(p) parameters is given by [25]

Rxx[k] =
{−

∑p
m=1 amRxx[k − m], k ≥ 1

−
∑p

m=1 amRxx[−m] + σ2
p, k = 0.

(6)

In matrix form this becomes for k = 1, 2, . . . , p

Rxxa = −v (7a)

where

Rxx =




Rxx[0] Rxx[−1] · · · Rxx[−p + 1]
Rxx[1] Rxx[0] · · · Rxx[−p + 2]

...
...

. . .
...

Rxx[p − 1] Rxx[p − 2] · · · Rxx[0]




a = [ a1 a2 · · · ap ]T

v = [Rxx[1] Rxx[2] · · · Rxx[p] ]T (7b)

and

σ2
p = Rxx[0] +

p∑
k=1

akRxx[−k]. (8)

Given the desired ACF sequence, the AR filter coefficients
can thus be determined by solving the set of p Yule–Walker
equations in (7a). These equations can in principle be solved
efficiently by the Levinson–Durbin recursion in O(p2). Since
Rxx is an autocorrelation matrix, it is positive semidefinite and
can be shown to be singular only if the process is purely har-
monic and consists of p − 1 or fewer sinusoids [27]. In all other
cases, the inverse R−1

xx exists and the Yule–Walker equations
are guaranteed to have the unique solution a = −R−1

xxv. The
generated AR(p) process has the ACF [25]

R̂xx[k] =
{

Rxx[k], 0 ≤ k ≤ p

−
∑p

m=1 amR̂xx[k − m], k > p.
(9)

That is, the simulated process has the attractive property that
its sampled ACF perfectly matches the desired sampled ACF
up to lag p. The remaining ACF extension is characterized by
the property that the generated time series is the most random
one (maximum entropy) which has the assigned first p + 1
ACF lags [25].

B. Ill Conditioning of the Yule–Walker Equations

In solving the Yule–Walker equations, the condition of the
autocorrelation matrix is an important consideration in deter-
mining the accuracy of the solution. A measure of the ill
conditioning is provided by the white noise variance parameter
σ2

p. Moreover, it can be shown that [26, p. 354]

|Rxx| =
p−1∏
m=0

σ2
m (10)

where |Rxx| denotes the determinant of Rxx and σ2
m represents

the driving white noise variance corresponding to an AR(m)
model of the process. Consequently, if the values of the σ2

m

are very small, Rxx is nearly singular so that significant errors
in the computed parameters are expected and unavoidable,
regardless of the method used to solve (7a). In these cases,
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Fig. 1. The one-step prediction MMSE for the Bessel ACF and sinc ACF versus the model order.

numerical problems in the solution typically yield unstable
model filters.

To investigate the stability and accuracy of AR models of
bandlimited processes, in the sequel we consider the behavior
of σ2

p with increasing AR order. To begin, it is useful to
note that σ2

p in the AR formulation is equivalent to the
minimum mean square error (MMSE) of a one-step-ahead
linear predictor of order p for the bandlimited process being
modeled [27]. A lower bound on the MMSE is known from
prediction theory to be given by the infinite prediction memory
case, in which case the asymptotic σ2

p can be expressed via the
Kolmogoroff–Szego formula [28, p. 491]

lim
p→∞

σ2
p = exp


 1

2π

π∫
−π

ln Sxx(e jω)dω


 (11)

where ω = 2πf , and Sxx(e jω) =
∑∞

k=−∞ Rxx[k]e−jkω is
the desired power spectrum of the process. From (11), we
find that a stochastic process whose spectrum is zero over
some finite frequency domain has a zero asymptotic prediction
error. Such a process is said to be deterministic since its
future can in principle be predicted exactly in a mean-
square sense from knowledge of all its past samples taken
greater than the Nyquist rate [29]. This implies that the rapid
time variation of a complex Gaussian fading channel process,
which is due to bandlimited Doppler spreading, is in theory
deterministic.1

A more important consideration for our stability inves-
tigation is how fast σ2

p converges to its zero asymptotic

1This paper focuses on discrete-time bandlimited processes. Related recent
work, which considers the predictability of continuous-time bandlimited fading
processes, can be found in [30] and [31].

value. In [32], a study of the behavior of linear prediction
errors as the predictor order increases was performed. The
MMSE of one-step-ahead linear prediction was observed to de-
crease exponentially to zero with increasing predictor order for
many processes with bandlimited spectra. The authors in [32]
conjectured that this rapid decay occurs for all bandlimited
processes. In the signal processing literature, the exponential
decay of the prediction error has been theoretically proven
only for flat bandlimited spectra (sinc autocorrelation) in [33].
Although it does not appear to be well known, a more general
proof of this result for any real bandlimited process can be
found in the mathematical literature in [34]. More precisely,
it can be shown in this case that for large p and bandlimit
fd, the MMSE of the one-step-ahead linear prediction van-
ishes as [34]

σ2
p ∼ k [sin(πfdT )]2p (12)

when the sampling rate 1/T is greater than the Nyquist rate
2fd and where k is a constant. With the exception of a
different constant term k, we have verified that this asymptotic
rate of decay of σ2

p holds for the bandlimited processes of
interest in mobile radio. For example, in Fig. 1, σ2

p is plotted
versus the model order for various values of fdT assuming
that the random process has the ACFs in (2) and (3). The
exponential asymptotic rate of decay of σ2

p is only a function
of the normalized Doppler bandlimit and not of the actual
process spectrum. Furthermore, since fd is typically several
orders of magnitude smaller than the sampling rate, it can be
seen that σ2

p achieves its asymptotic rate of decay beginning
at small AR orders and that this rate is very rapid. Thus,
for narrowband Doppler processes, severely ill-conditioned
Yule–Walker equations are unavoidable for all but very small
AR model orders p. In light of this fact, and since the lower



1654 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 4, JULY 2005

Fig. 2. The one-step prediction MMSE for the Bessel ACF versus the model order for various ε when fm = 0.05.

order models result in a poor match to the desired band-
limited ACF, it is not surprising that previous investigations
(e.g., [15]) concluded that an AR parameterization cannot
accurately model the J0(·) autocorrelation sequence. In the
sequel we overcome the numerical problems, making accu-
rate AR simulation viable, including the difficult J0(·) auto-
correlation sequence.

From the preceding discussion, it does not seem possible to
generate stable AR filters of large orders using finite word-
length computations to accurately model bandlimited spec-
tra. However, a simple heuristic approach that can be used
to resolve the numerical problems is to improve the condi-
tioning of the autocorrelation matrix Rxx by increasing the
values along its principal diagonal by a very small positive
amount ε. This is equivalent, of course, to adding white noise of
variance ε to the original process. The addition of this spectral
bias removes the bandlimitation of the original spectrum and
creates a nondeterministic or regular process that in some
sense closely approximates the original process. As a result,
σ2

p no longer decays exponentially to zero with increasing
model order p. In Fig. 2, σ2

p is plotted versus the model order
for various values of ε assuming that the random process has
the Bessel autocorrelation in (2). Similar curves result for
other bandlimited spectra [35]. We observe from Fig. 2 that
while σ2

p monotonically decreases with p, it now approaches
a lower bound

lim
p→∞

σ2
p = exp


 1

2π

π∫
−π

ln
[
Sxx(e jω) + ε

]
dω


 > 0 (13)

for asymptotically large p. The inequality in (13) follows since
Sxx(e jω) ≥ 0. The choice of ε represents a tradeoff between

the improved condition number of Rxx and the bias introduced
in the model. By choosing ε appropriately, the lower bound on
σ2

p can be made large enough to enable the stable computation
of a large-order AR model. The first p + 1 autocorrelation lags
of the resulting AR(p) process will then be

R̂xx[m] =
{

Rxx[0] + ε, m = 0
Rxx[m], m = 1, 2, . . . , p.

(14)

That is, while the zeroth autocorrelation lag will contain a small
additive error, the next p lags will match those of the desired
theoretical ACF.

We note that the heuristic addition of a white noise compo-
nent to overcome ill conditioning was recently used in [14].
However, a proper justification for the inclusion of the bias
ε was not provided. The singularity at the band edge of the
PSD in (1) is not the sole cause of the numerical problems,
as suggested in [14]. Moreover, the “stiffness” of the autocor-
relation matrix is manifested for any bandlimited PSD shape
and it is the deterministic nature of bandlimited processes that
is the main cause of the numerical problems experienced in
these cases.

C. Stationary Generation

The AR generator, like other rational transfer function ap-
proximation methods, produces correlated variates by filter-
ing white Gaussian noise sources. The common practice of
passing white noise through a fixed filter produces transients
due to nonstationary initial conditions. Theory dictates that
for a stationary output to be strictly achieved, the filter must
have had an input of white noise for all of n ≥ −∞ [36]. In
practice, it is necessary to run the filter for a while before
the transient effects become negligible and for the output to
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Fig. 3. The all-pole lattice representation of the AR filter.

achieve asymptotic stationarity [27]. In the sequel, we briefly
describe two startup procedures that allow the AR generator to
produce stationary variates from the first output sample. Both
methods use a time-varying IIR filter to generate the first p
stationary outputs with the correct correlation values, where p
is the desired model order. This provides the appropriate initial
conditions for the fixed pth order AR filter to subsequently
generate a sequence which is truly stationary. Such a startup
procedure is particularly useful when a large AR order is chosen
to provide accurate correlation matching, as in these cases, a
large number of variates must typically be discarded before the
transient effects decay.

The first start-up technique appears implicitly in a method
for synthesizing fractional Gaussian noise [37]. The procedure
uses the result that for a zero-mean stationary Gaussian process,
the conditional mean and variance of x[k], given the past values
x[k − 1], x[k − 2], . . . , x[0] may be written as [38]

mk =E {x[k]|x[k − 1], x[k − 2], . . . , x[0]}

= −
k∑

j=1

φkjx[k − j] (15)

vk = Var {x[k]|x[k − 1], x[k − 2], . . . , x[0]}

=Rxx[0]
k∏

j=1

(
1 − |φjj |2

)
. (16)

Here, φjj denotes the jth reflection coefficient [25] of {x[k]}
and the φkj are the AR coefficients for a kth order model.
For a particular k, the φkj coefficients for j = 1, 2, . . . , k can
be computed by an O(k2) Levinson–Durbin execution. Note
that the variance vk in (16) is equal to the variance σ2

k of the
driving noise in the context of a kth order AR process. The
start-up procedure for generating the first p stationary correlated
complex Gaussian variates is then as follows.

1) Generate a starting value x[0], whose in-phase and
quadrature components are drawn independently from a
Gaussian distribution N(0, Rxx[0]). Set v0 = Rxx[0].

2) For k = 1, . . . , p − 1, calculate the φkj coefficients for
j = 1, 2, . . . , k using the Levinson recursion. Compute
mk = −

∑k
j=1 φkjx[k − j] and vk = (1 − |φkk|2)vk−1.

Generate the next variate x[k], whose in-phase and
quadrature components are drawn independently from
N(mk, vk).

TABLE I
ORDER OF ε OBSERVED TO YIELD THE MOST ACCURATELY CORRELATED

AR SIMULATOR OUTPUTS FOR THE J0(·) ACF MODEL

The remainder of the stationary sequence can then be generated
using the fixed pth order AR filter as per (4). While this
procedure requires solving for the AR coefficient parameter set
of all orders less than and including the desired AR order p,
these parameters can be obtained at the intermediate steps of a
single Levinson–Durbin execution.

An alternative start-up method can be achieved by using
a time-varying lattice filter [39] implementation of the pth
order AR filter. Here the optimum lattice filter coefficients are
given by the reflection coefficients φjj , j = 1, . . . , p. Since the
reflection coefficients of the lower order do not change as the
AR model order is increased [28], only one set of parameters is
required. The all-pole lattice representation of the AR filter is
shown in Fig. 3. The start-up procedure consists of switching
on one stage of the lattice form at a time, with the real and
imaginary components of the complex Gaussian white noise
input at iteration k = 0, 1, . . . , p − 1 chosen independently
from a Gaussian distribution N(0, vk), where v0 = Rxx[0]
and vk = (1 − |φkk|2)vk−1. The signals in all modules greater
than the time index k should have zero value until that stage is
switched on.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the suitability of the AR gener-
ator for producing high-quality bandlimited Rayleigh variates.
Comparisons are made to a WSS sum-of-sinusoids simulator
and to the IDFT technique, which was demonstrated in [2]
to be the most efficient and highest quality method among
several popular correlated Rayleigh variate generators. The
quantitative measures that are used for this comparison are
described first.

A. Quantitative Measures

Quantitative quality measures for generated random variates
that are in a form familiar to communication engineers have
been proposed in [40]. The proposed measures represent ap-
proximately the difference in signal-to-noise ratio in decibels
predicted to meet a specified performance (error rate, outage,
etc.) when an imperfect sequence of random variates is used
during simulation rather than a statistically “ideal” sequence.
See [40] for more details. Two quality measures have been
defined in [40] as follows. The first measure, called the mean
basis power margin, is given by

Gmean =
1

σ2
xL

trace
{
CxC−1

x̂ Cx

}
(17)
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TABLE II
A COMPARISON OF THE AR, IDFT, AND SUM-OF-SINUSOIDS METHODS

OF GENERATING BANDLIMITED RAYLEIGH VARIATES FOR

COVARIANCE SEQUENCE LENGTH 200

and the second, the maximum basis power margin, is de-
fined as

Gmax =
1
σ2
x

max
{
diag

{
CxC−1

x̂ Cx

}}
. (18)

In (17) and (18), σ2
x is the variance of the reference (ideal)

distribution, Cx̂ is the L × L covariance matrix of any length-L
subset of adjacent variates produced by the stationary random
variate generator, and Cx represents the desired covariance
matrix of L ideally distributed variates. For some variate gen-
eration schemes, Cx̂ can be determined directly. For the AR
variate generation method, this is easily accomplished using
(9) and (14). Alternatively, empirical techniques can be used
to estimate this matrix from the generator output.

B. Tested Simulation Methods

1) AR Method: The method used was that of Section III.
Based on our numerical work, the value of the bias ε that yields
the most accurate AR model computation was observed to
depend mainly on the Doppler rate. Table I lists the order of the
constant ε that was empirically found to minimize (17) and (18)
for the J0(·) ACF using MATLAB on a Pentium IV machine.
The numerical conditioning of the Yule–Walker equations is
worse for smaller Doppler bandwidths, which necessitates a
larger ε. The dependence of the choice of ε on the AR model
order is not significant for typical filter lengths. The values in
Table I are recommended for model orders up to 1000. If the
AR order is much greater, then a small increase in the ε values
in Table II provides an improvement to the simulator accuracy.

Our AR implementation used the lattice start-up procedure
of Section III to generate the first p stationary variates. Since
direct IIR filtering requires fewer computations than lattice
filtering, the remainder of the variates were generated by a
direct structure using the MATLAB function filter. The
appropriate initial conditions for this filter, corresponding to
the first p generated stationary variates, were set using the
MATLAB function filtic.

2) IDFT Method: The simulator used was implemented as
described in [2]. The MATLAB function inverse FFT (IFFT)
was used for IDFT computation.
3) Sum-of-Sinusoids: The method used was the WSS-

improved Jakes’ model of [7]. Following this model, the nor-
malized low-pass discrete fading process is generated by

x[n] =xc[n] + jxs[n] (19a)

xc[n] =
1√
Ns

Ns∑
k=1

cos(2πfmn cos αk + φk) (19b)

xs[n] =
1√
Ns

Ns∑
k=1

cos(2πfmn sin αk + ϕk) (19c)

with

αk =
2πk − π + θ

4Ns
, k = 1, 2, . . . , Ns (20)

where φk, ϕk and θ are statistically independent and uni-
formly distributed on [−π, π) for all k. The statistical properties
of x[n] asymptotically approach those of Clarke’s isotropic
model as the number of sinusoids approaches infinity, while
very good approximation to the ensemble statistics has been
reported when Ns is not less than 8 [7]. For finite Ns, it is
important to point out that this WSS simulator is not auto-
correlation ergodic. That is, the infinite time-average autocor-
relation is a random variable and unlike the IDFT and AR
simulators, the statistical information contained in each output
waveform or sample function is not identical and may deviate
from the desired statistics of the theoretical model [35].

C. Performance Comparisons

The quality measures described in [40] were used to
compare the AR variate generation method to the modified
IDFT technique of [2] and to the WSS sinusoidal generator
of [7]. The results, which are presented in Table I, compare
the quality of the real part of the simulator outputs. Similar
results were achieved for the imaginary sequences and these
are omitted for brevity. Perfect variate generation corresponds
to 0 dB for both measures. In all cases, the reference ACF is
(2) with a normalized maximum Doppler of fm = 0.05. A bias
of ε = 10−8 was used to condition the Yule–Walker equations
for all AR model orders. An autocorrelation sequence length
of 200 was considered for evaluation of (17) and (18). The
theoretical (T) results for the IDFT routine were computed
as proposed in [2] for the IDFT routine, and using (9) and
(14) for the AR generator. For the empirical (E) results, time-
average correlations were calculated based on 220 generated
samples. The computed quality measures were then averaged
over 50 independent simulation trials. Plots of the empirical
correlations of the IDFT and AR generator outputs are shown
in Fig. 4. The empirical correlations for a typical simulation
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Fig. 4. Empirical autocorrelations for the AR and IDFT methods.

Fig. 5. Empirical time-average autocorrelations for the sum-of-sinusoids method.

run of the nonergodic WSS sinusoidal generator are provided
in Fig. 5.

The results demonstrate that the IDFT technique, whose
theoretical accuracy is only limited by small aliasing errors
[41], generally provides closer ACF matching over a wider
range of lags. However, the correlation matching property of
the AR method allows it to provide a more precise match to the
desired ACF over the order of the model used. Similar accuracy
can be achieved by the sinusoidal generator when a large
number of sinusoids is used. The mild benefits of this tradeoff
on the variate quality can be observed by comparing the
generator outputs with regards to other important statistics. For

example, in Fig. 6, the normalized level-crossing rate, defined
as the rate at which the envelope crosses a specified level in
the positive direction, is computed for the IDFT, AR(50), and
Ns = 64 sinusoidal generator outputs and compared with the
theoretical value given by [17, eq. (1.3–37)]. Since the LCR
statistic depends strongly on the first two moments of the
Doppler spectrum, or equivalently, the curvature of the ACF
at the zeroth lag [17], the AR simulator provides an excellent
match by virtue of its correlation matching property, better
than the match achieved with the IDFT method. A comparable
match is achieved using the WSS sinusoidal generator, but
only when a large number of sinusoids is used. We report that
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Fig. 6. Empirical level-crossing rates for the AR(50), IDFT, and Ns = 64 sum-of-sinusoids simulators.

Fig. 7. The time to generate 221 complex samples using the various generation methods.

to generate the level-crossing rate curves, 220 variates with a
normalized Doppler of fm = 0.001 were used.

To assess the relative computational effort required to
generate variates using the AR, IDFT, and WSS sum-of-
sinusoids methods, sequences of length 221 were generated
on a Pentium IV machine using routines coded in MATLAB.
The sequence length was chosen as a power of two as this
is favorable for the IDFT method [2]. The reference ACF was
(2) with fm = 0.05. Results for the time comparisons are

presented in Fig. 7. The IDFT method, owing to the inherent
efficiency of the FFT operation, is superior in this regard.
With the sinusoidal generator of [7], a large effort is required
to ensure that the quadrature components of each generated
sample function have accurate correlation statistics. Almost
30 times more time than the IDFT method was needed to
generate the variates using the accurate Ns = 64 simulator.
As for the AR approach, it can only be performed faster
than the IDFT method for short IIR filter lengths, with a
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Fig. 8. The power spectral density of the nonisotropic model with fm = 0.05, κ = 5, µ = 0, and the corresponding complex AR(50) model fit with ε = 10−5.

corresponding loss in modeling accuracy. Almost three times
more time was needed to computer the model coefficients
and generate the variates using a highly accurate AR(200)
model. However, the AR method can be considered efficient
when compared to the required effort of the sinusoidal
generator. In practical applications, it is likely that theoretically
predicted differences less than 0.2 dB will be vitiated by
implementation tolerances or limits to the theoretical models.
From this point of view, the AR(50) model may be comparable
to the IDFT method. Fig. 7 shows that the AR(50) model
requires only 1.2 times more time than the IDFT method.
The main advantage of the AR filtering and WSS sinusoidal
methods is that fading variates can be generated as they are
required. In contrast, the computational efficiency of the
IDFT approach comes at a cost in storage requirements as
all variates are generated using a single IFFT. Thus, for very
long sequence lengths, the IDFT implementation may require
unavailable memory. The AR and sinusoidal generators,
however, do not have such a limitation. One disadvantage of
the AR approach is that the model coefficients need to be
recomputed when fm is changed. For the WSS sinusoidal
method, one does not have to recalculate any coefficients.

To reduce the computational load of the AR simulator,
a multirate filtering implementation is recommended [5], [42].
With this approach, the spectrum shaping filter is cascaded
with an interpolator. This allows for the generation of the
complex channel gain at a low sampling rate, typically a few
multiples of the Doppler frequency, with correspondingly
shorter AR shaping filters. A comparatively simple FIR
interpolator (e.g., MMSE, raised cosine, etc.) can then
accurately provide the necessary rate conversion to the desired
sampling rate. When combined with the addition of a small
constant as described in Section III, interpolation proves useful
in mitigating numerical problems that occur when fitting an

AR model to a very-small-bandwidth Doppler spectrum.
Based on our simulations, interpolation is suggested for the
simulation of channels with normalized Doppler rates on the
order of fm = 0.001 or smaller.

D. Nonisotropic Fading Simulation

In this subsection, we examine the use of the AR
method for accurately synthesizing nonisotropic Rayleigh
fading channels. For directional scenarios, the nonuniform
probability density function for the angle of arrival (AOA) at
the receiver can result in a baseband Doppler PSD which is
not symmetric around the f = 0 frequency or, correspondingly,
a channel ACF, which is complex valued. The underlying
real in-phase and quadrature Gaussian processes are cross-
correlated in such cases. Such Rayleigh processes can be
well approximated using a complex AR process and following
the methodology in Section III. The complex AR coefficients
are determined using the complex form of the Levinson–
Durbin algorithm in this case. As an example, a plausible
model for the directional AOA, which conveniently results
in closed-form correlation and Doppler PSD functions, is the
parametric Von Mises/Tikhonov distribution function [22]

p(θ) =
exp[κ cos(θ − µ)]

2πI0(κ)
, θ ∈ [−π, π) (21)

where I0(·) is the zeroth order modified Bessel function [43],
µ represents the mean direction of the AOA, and κ controls
the beamwidth. This model, which includes the uniform AOA
distribution as a special case (κ = 0), was corroborated with
some empirical measurements of narrowband fading channels
in [22]. For the AOA distribution in (21), the corresponding
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Fig. 9. The empirical autocorrelation and I/Q cross-correlations corresponding to the nonisotropic simulation examples.

Fig. 10. The empirical level-crossing rates corresponding to the nonisotropic simulation examples.

sampled autocorrelation of the Rayleigh fading channel can be
shown to be [22]

R[n] = RII [n] + jRIQ[n]

=
I0

(√
κ2 − (2πfm|n|)2 + 4jκ cos(µ)πfm|n|

)
I0(κ)

(22)

where RII [n] = RQQ[n], RII [n], and RQQ[n] denote the
sampled autocorrelation of the real in-phase and quadrature
Gaussian processes, respectively and RIQ[n] denotes the cross-
correlation function. The corresponding PSD is given by
[22, eq. (3)]. Accurate simulation of such nonisotropic Rayleigh
models can be easily accomplished using a complex AR model.
For example, a complex AR(50) model was used to synthesize
fading processes with fm = 0.05 and µ = 0 for scenarios with
κ = 0 (isotropic), κ = 1 (slightly nonisotropic), and κ = 5
(highly nonisotropic). In each case, a bias of ε = 10−5 was
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used to condition the inputs to the complex Levinson recursion.
The PSD of the nonisotropic model and the AR(50) approx-
imation are shown in Fig. 8 for the directional κ = 5 case.
The empirical autocorrelations and I/Q cross-correlations are
plotted in Fig. 9 and these are found to provide a very accurate
approximation of the desired statistics. The empirical normal-
ized level crossing rates are shown in Fig. 10 and compared
to the values in [44, eq. (19)]. The excellent agreement seen
in these results serves to verify the theoretical nonisotropic
Rayleigh LCR expression derived in [44].

V. CONCLUSION

Autoregressive (AR) stochastic models were considered
for the computer simulation of correlated Rayleigh fading
channels. The numerical difficulties faced by this approach
were resolved by approximating the deterministic bandlimited
Doppler processes with regular processes. Two procedures
for eliminating the need to discard, possibly many, initial
generated samples due to transient distortion were presented.
The proposed methods enable the synthesis of stationary and
statistically accurate Rayleigh channel gain samples as they
are needed. Furthermore, the fading channel ACF is easily
specified, which makes the simulator especially suited for the
emulation of generalized flat Rayleigh fading channels. To
demonstrate the general applicability of the method, an AR
simulator for generating nonisotropic fading channel variates
was derived. This nonisotropic simulator will be useful for
emulating directional fading scenarios encountered in practical
mobile communication systems.
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