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Capacity and Optimal Resource Allocation for Fading
Broadcast Channels—Part Il: Outage Capacity

Lifang Li, Member, IEEEand Andrea J. Goldsmittsenior Member, IEEE

Abstract—in this two-part paper, we study three capacity re- a measurement of the long-term achievable rate averaged over
gions for fading broadcast channels and obtain their corresponding  the time-varying channel. For real-time applications that cannot
optimal resource allocation strategies: the ergodic (Shannon) ca- yg|arate the variable delays exhibited by the coding strategy
pacity region, the zero-outage capacity region, and the capacity re- that achi th di it h ¢ ider the i
gion with outage. In Part |, we obtained the ergodic capacity region a ac_ leves the ergodic capa_lm yj we . ave 1o (.:Ons' er. _e In-
of the fading broadcast channel under different spectrum-sharing formation rate that can be maintained in all fading conditions
techniques. In this paper, we derive the outage capacity regions through optimal power control. In order to maintain a constant
of fading broadcast channels, assuming that both the transmitter rate during severe fading, much power is needed. Therefore,
and the receivers have perfect channel side information. These Ca'given an average power constraint, the channel fading may be
pacity regions and the associate optimal resource allocation poli- that tant rat ,t th . ible. E
cies are obtained for code division (CD) with and without succes- SO severe that no (_:Ons a.n rate greater than Zer_o IS pOS§| €. For
sive decoding, for time division (TD), and for frequency division €xample, the maximum instantaneous mutual information rate
(FD). We show that in an M -user broadcast system, the outage ca- that can be supported continuously on the single-user Rayleigh
pacity region is implicitly obtained by deriving the outage proba-  fading channel with a finite average transmit power constraint is
bility region for a given rate vector. Given the required rate of each zero [5]. However, if we allow some transmission outage under
user, we find a strategy which bounds the outage probability region fadi ’d't' th . instant tual
for different spectrum-sharing techniques. The corresponding op- §evere a Ing conaitions, the maxmum |n§ antaneous mu ‘%a
timal power allocation scheme is a multiuser generalization of the information rate that can be maintained during nonoutage will
threshold-decision rule for a single-user fading channel. Also dis- increase. Finding the optimal resource allocation strategy that
cussed is a simpler minimum common outage probability problem - achieves the outage capacity with a given outage probability is
under the assumption that the broadcast channel is either not used tantamount to deriving the strategy that minimizes the outage
at all when fading is severe or used simultaneously for all users. bability f . t tor. In I61. th . ¢
Numerical results for the different outage capacity regions are ob- proba ' ' ytora 9'V?” rate vector. in ,[ ], the mlnlm.um outage
tained for the Nakagami-m fading model. probability problem is solved for the single-user fading channel.
In addition, it is shown that under a long-term average power
constraint, the optimal power allocation depends on the fading
statistics through a threshold-decision rule: no transmission is
allowed in a fading state where the required power is above a

. INTRODUCTION threshold value.

N mobile wireless communications, the channel character-For ani{-user flat-fading broadcast channel and a given rate

istics vary with time. By applying optimal dynamic powervectorR, we consider a similar minimum common outage prob-
and rate allocation strategies, the ergodic (Shannon) capacitégity problem under the assumption that the broadcast channel
with channel side information (CSI) at both the transmitter arid either not used at all when fading is severe or is used simulta-
the receiver of a single-user fading channel, a fading multipheously for all users when fading is tolerable. Such a common
access channel (MAC), and a fading broadcast channel undetage transmission strategy might be used in systems trying
different spectrum-sharing techniques are obtained in [1], [2h minimize probability of detection or systems where all users
and Part | of this papérrespectively. This kind of capacity is must obtain information simultaneously for it to be useful (e.g.,

for a coordinated mission of the users). Under the more com-
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zero-outage capacity regidmnd the optimal power allocation subject only to the average power constratht For TD or
scheme are derived for the fading MAC by exploiting th&D, it can also vary the fraction of transmission time or
special polymatroidal structure of the region. It is shown théandwidthr; [¢] assigned to each user, subject to the constraint
the boundary of this capacity region can be achieved throu@jj.‘il 7;[¢] = 1 for all i. For CD, the superposition code can
successive decoding and applying a greedy optimal powes varied at each transmission. Since every receiver knows
allocation scheme. The successive decoding order dependshennoise density vectatl:], they can decode their individual
both the current fading state and the power price for each ussignals by successive decoding based on the known resource
In this paper, we first obtain directly the zero-outage capacifflocation strategy given th&/ noise densities. In practice, it
regions and the associate optimal resource allocation strategiesecessary to send the transmitter strategy to each receiver
of anM -user flat-fading broadcast channel for TD, FD, and Clthrough either a header on the transmitted data or a pilot tone.
with and without successive decoding. These results will latéfe call n[i] the joint fading process and denaté as the
be used in our derivation of the more general outage capadiit of all possible joint fading state$!(n) denotes a given
regions. For CD with successive decoding, we will show thagtumulative distribution function (cdf) an.
the superposition coding and successive decoding order depends
only on the current fading state. For the Nakagamfading IIl. ZERO-OUTAGE CAPACITY REGION
model [7] we prove that the limiting zero-outage capacity region _ ) )
converges to that of the Gaussian broadcast channel for CD Wit_H:Qr ar_lM-user flat-fading broadcast channel with stationary
and without successive decoding when— oc. These results distributionQ and a total average power constraifitwe give

about the zero-outage capacity region and the outage capalify following definition for the zero-outage capacity region
P), which is similar to that of the delay-limited capacity

region are then extended to frequency-selective fading chaanS‘%_ro( ,
Part Il of this paper is organized as follows: the flat-fadinéeglon for the MAC in [5].
broadcast channel model is briefly described in Section II. In Definition 1: For a given rate vectoR = (R1, Ra, ...,

Section llI, the zero-outage capacity regions are derived for eagly, ), if V¢ > 0, there exists a coding deld such that for

of the different spectrum-sharing techniques. We derive straigrery fading process with stationary distributin there exist
gies to minimize the common outage probability and achieve thgdebooks and a decoding scheme with probability of error
boundary of the outage probability region for TD, FD, and CI»{*) « ¢, thenR € C,,.,.(P). Moreover, the codewords can be

with or without successive decoding in Section IV. In Section \bhosen as a function of the realization of the fading processes.
we extend our flat-fading model to the case of frequency-selec-

tive fading. Section VI shows numerical results, followed by our ' this section, the zero-outage capacity region of\anuser
conclusions in the last section. flat-fading broadcast channel is obtained for CD with and

without successive decoding and for TD. For FD, using the
same argument as in [8], it can be easily shown that the
zero-outage capacity region is the same as for TD and the
We consider the same discrete-tinde-user flat-fading optimal power and bandwidth allocation policy for FD can be
broadcast channel model as in Part I, where the signal sougiegived directly from that of TD. We will discuss extensions of

X[i] is composed ofM independent information sourceshe results obtained in this section to the case of frequency-se-
and the broadcast channel consistsiéfindependent fading lective fading channels in Section V.
subchannels. The time-varying subchannel gains are denoted as

A. CD
Vaulil, Vaalil, -, Vamlil

For ani/-user broadcast system, we first consider superposi-
and the Gaussian noises of these subchannels are denotegfn coding and successive decoding where, in each joint fading

as . .
fil, 2], ..., zuli]. Let P be the total average transmit ate, the channel can be viewed as a degraded Gaussian broad-
power, B the received signal bandwidth, ang the noise

cast channel with noise densities[é], ns[t], - .., nas[i] and
density of z[i], j = 1.2, ..., M. Since the time-varying the mgluresolutlon S|gngl constellgtlon is optimized re!auve to
. . . . . = - these instantaneous noises. In this case, the users with smaller
received signal-to-noise ratio (SNR)[:] = Pg;[i]/(v;B), ; " : : ;
. . . ’ noise densities will subtract the interference from the users with
Jj =12 ..., M, by denoting n;[<] = v;/g;[1], we have
v;li] = P/(n;[i] B). p

larger noise densities. Given a power allocation politylet
For a slowly time-varying broadcast channel, we assume tt}aft(.n) be the transmit power allocated to Ugefor the joint
. : ading staten = (ny, na, ..., np) and denoteF as the set
then;[il, j =1, 2, ..., M, are known fo the transmitter and all f all possible power policies satisfying the average power con-
M receivers attimeé. Thus, the transmitter can varythetransml? ) P 1\? P - 9 gep
power P 4] for each user relative to the noise density vector SFaint&n | >, Fj(n)| < P, where£[] denotes the expec-
tation function. For simplicity, assume that the stationary distri-
n[i] = (na[i], n2fi], -, naclé]) butions of the fadlng‘proc‘esses have continuous densities,
Pr{n, = n;} = 0,Vi # j.
2The zero-outage capacity is called “delay-limited capacity” in [5], since the 4if Pr{,,; = 1} 0 for somei, j then, in state, Useri and Userj can
coding strategy that achieves the zero-outage capacity has a delay that is ipgdeyiewed as a single user and superposition coding and successive decoding

pendent of the channel variation. are applied talf — 1 users. The information for Usérand Userj are then
3See Part | for a discussion of the cagéi] = 0. transmitted by time-sharing the channel.

Il. THE FADING BROADCAST CHANNEL
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Theorem 1: When the transmitter and all the receivers hav@onsequently, the minimum required total pow&F*(R, n)
perfect CSlI, the zero-outage capacity region for the faditigat can supporR in fading staten is

broadcast channel is given by

czero(ﬁ) = U ﬂ CCD(n7 P) (1)

PCFnCN

whereCep(n, P) is the capacity region of the time-invariant

Gaussian broadcast channel. That is
CCD('I‘L, 7))
Pi(n)

M ?
7‘LJB+ ; Pz(n)l[nj > 7‘LZ]

=< R: Rj < Blog| 1+

1<j<My (2

wherel[-] denotes the indicator functiodfiz] = 1 if x is true
and zero otherwise).
Proof: See the Appendix, Section A. O

For a given rate vectoR and a fading stata, from (2)
we can calculate the minimum required pow&t™(n)
(j =1,2,..., M) that can support the rate vectBr Specifi-
cally, letw(-) be the permutation such that

Nr(l) < Ng2) <0 < N (M)-

Then according to (2), we have

4

P7T 1 (n)
Ry < Blog <1 + ﬁ)

Priy(n)
i—1

ey BHY  Priy(n)

\ j=1

Ry < Blog | 1+

Thus, to support rate vectdt, we require

Pry(n) > nr)B (2B=c0/B 1)
i—1
Pe(y(n) 2 | neyB+ D Pryy(n) | (28078 — 1),
j=1
2<i< M.
The minimum power required to suppditfor each user is

P (m) = neq) B (207 — 1)

i—1
P = [ ney B+ Y P | (200 —1)
i=1

2<i< M.

M

P (Rn)=Y"

=1

=5 (n)

M-1

=y {224#1 Rt/ B (2Rw<f>/B—1) nm)B}
=1

+(2R-00/8 ~1) n () B. 3)

For a givenR, if R € C,eo(P), then by (1), the minimum
required average powds,[P™*(R, n)] satisfies the total av-
erage power constraint

En [‘Pmin(}z7 n)] S F (4)

whereP™ (R, n) is given by (3). IfR is on the boundary sur-
face ofC,..o(P), then the equality in (4) is achieved. Note that
for the single-user cagg = 1), if R; is on the boundary of
Cero(P), from (3) and (4) we have

Ey, [(2R1/B - 1) nlB} -7
Thus,

P
Ri=Blog|14+ ———
: °g< +Em[mB])

which is the same as derived in [2].

B. CD Without Successive Decoding

In CD without successive decoding, each receiver treats the
signals for other users as interfering noise. For a given power al-
location policyP, let P;(n) denote the transmit power allocated
to Usery in the staten and let# denote the set of all possible
power policies satisfying the average power constraint

M
E. |Y Pin)| <P
j=1

Then the achievable zero-outage rate region for CD without suc-
cessive decoding is given by

Czero(ﬁ) = U ﬂ CCDVVO('nv P)
PCF neN
whereCcpwo(n, P) is the rate region of the time-invariant

Gaussian broadcast channel using CD without successive de-
coding:

®)

Ccowo(n, P)

Pj(n)

M ?

n;B+ 3 Pi(n)
i=1, i

=cRR; <Blog |1+

1<j<M,. (6)

The proof of the achievability follows along the same lines as
that for the capacity region of CD given in the Appendix, Section



1106 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 3, MARCH 2001

A and is therefore omitted. Note that in this paper, we refer to Therefore, a givelR € C,...(P) if the average power con-
this achievable rate region as the zero-outage capacity regsdraint in (4) is satisfied witiP™*(R, n) given by (11). IfRis
for CD without successive decoding, though we do not haveoa the boundary surface 6f..(P), then the equality in (4) is
converse proof since the converse only applies to the optinsahieved.
transmission strategy, which is CD with successive decoding.

For a given rate vectdR and a fading state, we know from C. 7D

(6) that Now we consider the TD case where, in each fading state
M n, the information for thel/ users will be divided and sent in
Pi(n)> | n;B+ Z P;(n) (zRf/B - 1) ; time slots which are functions &f. For a given power and time
J=1, j#i allocation policyP, let P;(n) and7;(n) (0 < 7;(n) < 1) be
i=1,2,..., M. (7) thetransmitpowerand fraction oftransmission time allocated to
. min L - Userj (j =1, 2, ..., M), respectively, for fading state, and
Den(_)tmgPi (n), .(L =1,2, ..., M) as the minimum power let 7 be the set of all such possible power and time allocation
required for Usek in order to support rate vectdt, by (7) we - .
policies satisfying
have "
M E, | Y 7im)Pj(n)| <P  and
min > . min R;/B iz J J -
PM(n) n; B + | Z PJ (n) (2 1) j=1 (13)
J=1,4# M
i=1,2,..., M. Zln(n)zl, VneN.
. i Jj=
Therefore, P/ (n) must satisfy Then the achievable zero-outage capacity region for the variable
. M . power and transmission time scheme is
Bmln(,,_,) _ nZB + Z F?ﬂln(n) (2R7'/B — 1) s Czero(ﬁ) — U ﬂ CTD(n7 7)) (14)
J=1,#1 PEFneN
1=1,2,..., M. (8) whereCrp(n,P) is the rate region of the time-invariant
By defining matrixA = (a;;), i, j = 1, 2 M. where Gaussian broadcast channel using the TD technique
- 3/ bl - I Tt ?
P,
{ﬁ, ifi=7y ©) CTD(ﬂ,P):{R:RjSq(n)Blog(l—i—%), ISjSM}.
Gij = e g
—1, if 45 (15)

we prove in the Appendix, Section B that thelinear equations
in (8) have positive solutions for alP™(n) (1 < i < M) in
every fading states if and only if det A > 0. Assuming that
det A > 0, itis clear that the explicit solution to

The proof of the achievability follows along the same lines as
that for the capacity region of CD given in the Appendix, Section
Aand is therefore omitted. Note that as in the case of CD without
successive decoding, we refer to this achievable rate region as

P (n) = (P™(n), PP®(n), ..., PE%(n)) the zero-outage capacity region for TD, though we do not have
is a converse proof due to the fact that the converse only holds
for the optimal transmission strategy for this channel, which,
P (p) = A'. Bn7 (10) according to Theorem 1, is CD with successive decoding.

For a given rate vectaR and a fading state, from (15) we
whereA ! denotes the inverse of matrikandn? denotes the have

transpose of vectat. Thus, the minimum required total power S %En) L
Pmin(R’ n) is R(n) _7’LZB 25T -1 5 L—].7 2, ey M.
) M ) Therefore, the required total powét( R, n) of the M users
PR, n) =Y P™(n). (11) satisfies
=1 M

For example, in the two-user ca&ll = 2), if det A > 0, i.e., P(R, n) = i(n)Fi(n)
if 281/ B  9R2/B 5 o(FatR2)/B the solution forP*(n) and i=1

S

Pyrin(n) will be . B BR—En)
. . T —
in B (QRI/B_I)nlB+(2R1/B_1)(2R2/B_1)n23 = Ti(n)n; 2 1}.
P, (n) = =1
1 QR1/B{2Ha /B _2(H{+R2}/B Let
Pmi“(n) (28277 1 nB(2%2/ P 1) (2P —1)n, B
s e () 2 [ry(n), ma(n), ..., Tas(m)
us,

min _ min min and letP™(R, n) be the minimum required total power of the
PR, n) = P (n) + B (n) M users for fading state, then
(2(R1+R2)/B _ 2R2/B) nlB

M R;
o min —mi X . Bri(n) _
= SE/B £ 3R/ — 3R T/ pP(R, 'n)—g%g)l { > 7i(n)n;B <2 (n) 1)}

=1
(2(R1+R2)/B _ 231/3) 7’LQB ) M
subject to: (n) =1, YneN.
+ 2R./B + 2R:/B _ 9(Ri+R2)/B’ (12) ) zZ:l T(n) n

(16)
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By applying the Lagrangian technique, we can find the ojpower is normalized ta, the SNRy; of Useri (i = 1, 2) for a
timal 7(n) which achieveg>™#(R, n) in (16). For example, in given channel state is
a two-user systeriM = 2), let

1
P(r(n) 2 r(n)nB <2B7§?n> - 1)

Ry We use the following lemma to show that for Nakagami-
+(1 — 7 (n))n2B <2B<1ﬁ<">> - 1) fading, asm — oo, (18) converges to the boundary equation
for the capacity region of an AWGN broadcast channel with
subchannel noise variancesB andm, 5.

Vi = (19)

and letr (n) be the solution to the nonlinear equation

dP(n(m) _ L afed
dn(n) Lemma 1: Given0 < p < 1/2 and a fixed integer
Since it is easy to verify that fan (n) > 0, % > 0, we ] kgr i+k—1\ , 4
have e k15202< ; )P (1-pr=1
. =0
PR, n) = min P(ri(n)) ] ]
Ti(n) Proof: See the Appendix, Section C. O
=P(r{(n)). For Nakagami= fading, the probability density function

Therefore R € C,e,o( P) if P™n(R, n) in (16) satisfies (4). If (pdf) of v; in (19) is

R is on the boundary surface 6f..,(P) then the equality in (m: B)™ B

(4) is achieved. pi(vi) = W yPTlemmmBY =1 2 (20)
m — :

D. The Limiting Zero-Outage Capacity Region for Nakagamiry, is from (18) and (19) we know that

Fading '

The Nakagami fading model [9] can be used to describd’ = 27/ % (275 —1)D,(m) + (272/% — 1)Dy(m)
different fading conditions ranging from Rayleigm = 1) +2R/B(aR/B _ \D (m) + (28/B — 1)Dy(m) (21)
to Rician channels with strong line-of-sight components. In
fact, there is a direct mapping from the Rici&hfactor to the Where
Nakagamin parameter. The Nakagami distribution also has a
more tractable mathematical form than the Rician distributionl.)a(m) = Eny<ny[mB] = /

As the fading parameter. (m > 1/2) goes to infinity, the /% >7e
Y1>Y2

il pr(v)p2(y2) dy  (22)

1
Nakagamim fading channel converges to an additive whiteDs(m) = E, <n,[n2B] = —2p1(’Y1)p2(72)d’Y (23)

Gaussian noise (AWGN) channel. Therefore, it is expected that
the limiting zero-outage capacity region of the Nakagami- D.(m) = E,, ~,.,[n2B] :/ ipl(’h)m(’m) dy (24)
fading broadcast channel converges to the capacity region of an <y 12
AWGN broadcast channel @ — oc. In this section, we prove Da(m) = En, o, [11B] = /
this to be true for CD with and without successive decoding Lo
in a two-user system. These results can be easily extende%to _ . .
more users. y applyingLemma 1we obtain the following lemma.

1) CD with Successive Decodindfor a two-user broadcast Lemma 2:For Nakagamim fading, assuming that
channel with fading, given rate vect® = (R;, R;),we know 7B < 7,B
by (3) that the minimum required total power to supp&rtn

ilpl(fn)p«zm dy. (25)

v1<v2

fading staten = (n1, n2) is n}i_xg@ D,(m) =m B
2R2/B(2R1/B - 1)m B lim Dy(m)=mn2B
min + 2R2/B —Dn B, if n <n rn.—>oo
PR =3 ol Uy S i D.(m) 0
+(2R1/B —1ni B, if ny > no. lim Dy(m) =0.
a7) _ _
If Ris on the boundary surface Gf...(P) in (1), by substi- Proof: See the Appendix, Section D. -
tuting (17) into (4) with equality, we obtain Theorem 2: As m — oo, assuming thati; B < 7m» B, the
P =E,[P™™R, n)] boundary of the capacity region for Nakagamifading broad-
—oRe/Bof/B _\p Iy B cast channel (21) becomes
- 1 <naz

+ (282/B _1\E,, e, [n2B] P=2f/BoR/B _ g, By (2R/B _1ym,B  (26)

R1/B/oRy/B
+2 R//B(Z P - DEn >n,[n25] which is the same as the boundary of the capacity region for the
+ (277 = 1)Ey, 5n, [m1 B]. (18)  AWGN broadcast channel using CD with successive decoding.
Letm; B andn. B be the average noise variances of the channels Proof: Applying Lemma 2 to (21) directly yields (26).
for User 1 and User 2, respectively. Assuming that the sigriabr the two-user degraded AWGN broadcast channel with noise
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variance$y; B andn. B (1 B < n2B), the capacity region for decoding, since for the two-user degraded AWGN broadcast
CD with successive decoding is [10], [11] channel with noise variances B andn» B (n1 B < n2B), the
capacity region for CD without successive decoding is [8]

P,
Cop = {R: Ry < Blog <1 T _—1> ,
1

P
CCDVVO:{R: Rl SBlOg(l‘F_il) ’
P, o nm B+ Py
RQSBlOg<1+_—>7VP1+P2SP}
neB 4+ P Ro<Blog | 1+ L s VP+P<P
(27) 2=\ R B R ) T

Therefore, ifR is on the boundary of the capacity region (27),

.e., all the equalities in (27) are achieved, then IV. OUTAGE CAPACITIES AND MINIMUM OUTAGE PROBABILITY

P=P+P In the previous section we have obtained the zero-outage
= (231/3 —1)mB capacity region of am\/-user flat-fading broadcast channel,
Jr(215’,2/13 — 1)[mB + (2R1/B — i B] where the transmitter was required to maintain a constant

rate for each user no matter how severe its fading. We now
consider the outage capacity region for this channel, where the
transmitter may suspend transmission over a subset of fading
states with a given probability. Specifically, for a given average
2) CD Without Successive Decodin§or a two-user broad- power constraini”, the outage capacity regioi,,. (P, Pr)

cast channel with fading, given rate vec®r= (R, R»), we andC,,.(P, Pr) are defined as follows.

know by (12) that the minimum required total power to support
Rin a fading statex = (n, no) is

=2f/B(of/B _ 17 B 4 (2%/B _ 1)@, B

which means thaR also satisfies (26). O

Definition 2: Assuming that the transmission to all users is
turned on or off simultaneously so that the outage probability

. (2(Ri+Ra)/B _ 9Re/B) p B for each user is the same (common outage probability), for a
PR, n) = SR/B 4 2T/ — 3t ) B giveq 0 < Pr < 1, the outage capacity regicﬁout(f’, Pr)
(2B +R)/B _9Ri/BY 1) B consists of all rate vectol® = (R;, Ry, ..., Ry) which can

+

(28) be maintained with a common outage probability no larger than

2R /B 4 2R/ B — oBatRa)/ B Pr under the power constraii.

If Ris on the boundary surface Gi.ero(ﬁ) in (5), substituting  Definition 3: Assuming that the transmission to each user is
(28) into (4) with equality we obtain turned on or off independently so that the outage probability for
(2(R1+R2)/B 3 2R2/B) E, . [n1B] each user may be different, for a given probability ve@&er—=

P — (Pry, Pra, ..., Pryy), the outage capacity regiéi,.. (P, Pr)
2R/B 4 2Re/B — o(Ru+Ra)/B consists of all rate vecto® = (R;, R, ..., Ry) which can
(2(R1+R2)/B — 2R1/B) Ep,[n2B] be maintained with the outage probability for Ugemo larger
+ 9Ri/B | 9R2/B _ o(Ri+R2)/B thanPr; (V1 < j < M) under the given power constraift
(2(R1+R2)/B _2R2/B) [Dq(m) + Da(m)] With these definitions, we wish to find: a) the optimal
= 9Ri/B 1 9Ra/B _ 3(Ri+Fa)/B resource allocation strategy that achieves the boundary of the

outage capacity regiofi,,.(P, Pr); b) the optimal resource
allocation strategy that achieves the boundarggf, (P, Pr).

The first optimization problem is equivalent to deriving the
. . resource allocation policy that minimizes the common outage
V\égerezl;a(;n),th'Slmlz, Dc(@f’ 3.ndD‘;](m) alreFas dﬁﬂned |n2 probability for a given rate vectd® and we have the following
(22)~(25) for the Nakagamiz fading channel. From Lemma definition for the corresponding minimum common outage

we know that probability Proin (P, R).

(/B _ 988 [Dy(m) + D, ()
2R /B 4 9R:/B _ 9(R1+R3)/B

+ (29)

Jim [Dg(m) + Da(m)] =n:B Definition 4: Assuming that the transmission to all users is
lim [Dy(m) + D.(m)] =7sB. turned on or off s[nultaneously, the minimum common outage
m—o0 probabilityPr,,,i» (P, R) is the smallest common outage proba-

bility with which the rate vectoR can be maintained under the

Thus, asn — oo, (29) becomes . o=
given power constrainP.

5 (2(R1+R2)/B — 2R2/B) m B
" 9R./B + 2R2/B _ 9(R1+R:)/B
(2(R1+R2)/B — 2R1/B) e B
9R./B + 9Ry/B _ 9(R1+Rz2)/B

The second optimization problem is equivalent to obtaining
the resource allocation policy that achieves the boundary of the
(30) outage probability regio®(P, R) or the usage probability re-
gion O(P, R) defined as follows.

+

which is the same as the boundary of the capacity region forDefinition 5: Assuming that the transmission to each user is
the AWGN broadcast channel using CD without successiterned on or off independently, for a given rate vecirthe
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outage probability regio@(P, R) consists of all outage prob- For a given total poweP > 0, let

ability vectorsPr for which R can be maintained for thé&/ £ A -
users under the given power constrafht § =sup {S: P(s) < P} (35)
Definition 6: The usage probability regiol®(P, R) is w* éw_ (36)
the complementary region of the outage probability region P(s*) — P(s*)
O(P, R), i.e., if a probability vector By using [6, Lemma 3], for each fading state the optimal
_ power policy that minimizes the common outage probability is:
Pr = (Pry, Pr2, ..., Pry) € O(P, R) if n ¢ R(s*), no power is assigned to any userpifc R(s*),

a total power ofP™"(R, n) is assigned to thé/ users and the
power to each user is allocated as described in Section#If
R(s*) butn € R(s*), then with probabilityw*, P™*(R, n)is
assigned to thé/ users and with probability—w*, no power is

then the probability vector

Pro® = (P, Pry™, ..., PrS}) € O(P, R)

where assigned to any user. The minimum common outage probability
Prom(P, R) is
Pri® =1-Pr; Vi<j<M. Proin(P, R) =1 — Pr{n € R(s")}

_ o _ —w*Pr {n € R(s*) andn ¢ R(s*)} (37)
With the above definitions, it is easily seen that given

0 < Pr < 1, the outage capacity regidft,.. (P, Pr) is implic- wherePr{-} denotes the probability function.

itly obtained once the minimum common outage probabilit
Pr.io(P, R) for a given rate vector is calculated under th
optimal resource allocation, singeR, we can determine that We now consider the case where an outage can be declared
R € Oy (P, Pr)if Proin(P, R) < Pr,andR ¢ C,..(P, Pr) independently for each user. From Definitions 5 and 6, itis clear
otherwise. Similarly, given a probability vect®r, the outage that for a given rate vectaR and an average power constraint
capacity regionCo, (P, Pr) is implicitly obtained once the P, deriving the boundary of the outage probability region
boundary of the outage probability regi@(P, R) [and so O(F, R) is equivalent to deriving the boundary of the usage
the whole regiorO(P, R)] for a given rate vectoR is derived probability regionO(P, R). We will require the following
through the optimal resource allocation, sir¢d?, we can definition and lemma to derive the boundary®@{F, R) and
determine thatR € C,.(P, Pr) if Pr € O(P, R), and the corresponding optimal power allocation that achieves this
R ¢ C,..(P, Pr) otherwise. We now derive the minimumboundary.

common outage probabilityPr,,;,(P, R) and the corre-
sponding optimal resource allocation strategy in Section IV-A.

. Outage Probability Region

Definition 7: For a given rate vector

We obtain the outage probability region boundary’, R) R=(Ry, Ry,..., Ry)
as well as the optimal resource allocation strategy in Segssume that rat&; is maintained with probabilityPro*(R),
tion IV-B for the case of independent outage problems. 1 < i < M. Denoting

Pr(R) = [Pr1"(R), Pr3"(R), ..., Pry;(R)]
the total usage reward’(R) is

A. Minimum Common Outage Probability

Certain systems might require an outage to be declared
multaneously for all users, either to minimize the probability M
of detection or in situations where users are coordinating based W(R) = uPr*(R) = Z pi; Pri™ (R)
on the transmitted information. Under the assumption that an =1
outage is declared for all users simultaneously, the minimushereu € §Rf with E]M

_. ; = 1,andy; is the relative reward
common outage probability problem for té-user broadcast if the information for Uset is transmitted.
channel is similar to that of the single-user case [6]. For each
joint fading staten and a given rate vectdt, the minimum re-
quired total powe”™*(R, n) for the M users using CD with
or without successive decoding or using TD can be calculatedThis lemma can be easily shown to be true by using the time-
as in (3), (11), or (16), respectively. Thuss > 0, we define sharing technique. Therefore, sinGéP, R) is convex,v u €

Lemma 3: The usage probability regio®(P, R) of the
fading broadcast channel is convex.

the sets of fading state®(s) andR(s) as R with >3, 1i; = 1, a usage probability vectdr*"(R)
. will be on the boundary surface 6P, R) ifit is a solution to
R(s) = {n: P*(R, n) < s} 31)
B ) max _ W(R) (38)
R(s) ={n: PR, n) < s}. (32) Pren(R)€O(l, R)
] where the total usage rewa¥d(R) is defined in Definition 7.
The corresponding average power over the two sets are For any given fading state, Ei\fl (1\14) — 9M _ q dif-
in ferent combinations of th& users may be transmitting over the
P(s) = Encr(s) [P™(R, n)] (33) y g9

~ in 5Also, i; can be viewed as the relative penalty if an outage is declared for
P(s) :Enef\’.(s) [P (R, n)] . (34) useri.
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channel. We will represent each of thedé — 1 possible com- Since in fading state, the total required minimum power to
binations of users as aveclgr(k, 1), ¢(k, 2), ..., ¥(k, M)] supportR with usage probabilityPri"(R, n) for each uses
equal to the binary expansionbf1 < k < 2™ — 1. Foreach (V1 <i < M)is

vector[p(k, 1), ¥(k, 2), ..., ¥(k, M), if ¥(k, i) = 1, then oM

Useri is transmitting; otherwise, Useéris not. For0 < k < Pmin(R7 n) = Z P’znin(R7 n)wi(R, n) (43)

2M _ 1, we define the set of active usé¥s relative tok as =

Uy ={4: 0k, ))=1,1<j< M}. the total required minimum average power to achiéveR)

Il be E,[P™"(R, n
Uy denotes the empty set (no active users). For any fading stat'e_Or a g|[ven I’TElte ve)lztoR we wish to solve the maximiza-

n, suppose that the broadcast channel only transmits mfornﬁ%n problem (38), which is equivalent to finding the optimal
tion to users in the nonempty géf. Then, as discussed in Sec- wi(R,m) (1< k <2M —1,¥n € N') that maximizesV (R)

1in
t'fn<“| I;N e<ca2nj\;:alcilate th? md|nt|mum totatl powEb (? Tg‘ in (42) under the total power constraint. That is, we can rewrite
(1= = — 1) required to support a subvector the maximization problem (38) as

composed of the required rates of the user&jirunder those

different spectrum-sharing techniques. For the fading state e E.[W(R, n)] subjectto:
let wi (R, n) denote the probability that the broadcast channel ’
D . R ) . oM _q

transmits information to the subset of users4n Then obvi- E, [ prin(R, n)] <P, we(R, n) < 1 (44)
ously k=1

oM _q and 0< wk(R, n) <1

wi(R,n) =1—wo(R, n) < 1. where
= w(R, n) = [wi(R, n), wa(R, n), ..., wy(R, n)]

For a given rate vectd® and a fading state, let Pr;™(R, n)

i A M _ min R H
be the probability that information is sent to Uger with N = 2 1, W(R, n) and P™*(E, n) are as given in

(40) and (43), respectively, ard is the total average transmit

2M—1 power. The maximization problem (44) can be decomposed into
PR, n) = > wi(R, n)1fi € Uy] (39) the following two problems.
k=1

o ) 1) Assuming thatn € A, P(n) is the total average power
where 1[-] denotes the indicator function. Then the average assigned to théV sets of users in stat, i.e.

outage probabilityPr; (R) of Useri (1 < ¢ < M) is N
Pri(R) =1 — Pr{"(R) P(n) =Y wi(R,n)P"™(R, n)
—1— E.[Pr{™(R, n)]. k=1
we must choose( R, n) so that the total usage reward in

For a given fading state, according to (39), the total usage staten is maximized. That is. we must find

rewardW (R, n) is

N

M ( J(P(n)) 2 1%1ax) Z wi (R, n)my
W(R n) = uiPri™(R n) subject to: s
=1
N
oM _q Z (R ,n)Pmm(R ,n) < ‘P(,n)7 (45)
:Z“Z Zkan) [0 € Uy k=1
k=1 N
o E k(R, ’ll) < 1, and 0 < wk(R, n) <1
2M_q M \ =
= Z wi(R, n) < pilli € uk]) wherenk is given in (41).
k=1 i=1 . . .
oMy 2) After_w_e obta|glthe _exr?restsmi( -_) b)':hsoltwtngI (4\52)é tr;e
_ (R ‘ 40 remaining problem is how to assign the total pouén
; wi(B, n)m (40) of the NV sets of users for each stateso that the total
L ) , usage reward averaged over all fading states as expressed
where the reward for transmitting information to the usersinset (42) is maximized. That is
Us is '
max FE,[J(P(n))] — % E,[P(n
y {p<,.> PO = ElP)]
e 2 > pilli € Uy]. (41) subject toE, [P(n)] < P
=1

wherel is the Lagrangian multiplier.

Thus, the total usage reward averaged over the time-varyingye solve the maximization problem (45) by first defining the
channel is permutationr(-) such that

W(R) = E, [W(R, n)]. (42) 0 < 7x1) £ a(2) < -0 < (i)



LI AND GOLDSMITH: CAPACITY AND OPTIMAL RESOURCE ALLOCATION FOR FADING BROADCAST CHANNELS—PART Il 1111

For simplicity, we denote the reward and power needed for
transmitting information to the users in 2éf;, as; andv;,
respectively, where

As

. V1<i<N. (47) Az 7
v; = PH(R, n) i

A
Ai = (i)

Note that the power;’s are all functions of rate vectd® and
fading staten. For a given state, V1 < & < N, if 35 that [V A i
satisfies !

Power P(n)

E<j<N (48) o

v3

or satisfies

Fig. 1. PowerP(n) versus reward (P(n)) for N = 3.

A= Ak

A Ak
w7

j=k-1 (49)

Reward J(P(n))

___________________________

{ s

then we will get a larger reward by assigning the same
power P(n) to setif,; instead of self ), ¥V P(n) > 0.

Specifically, if (48) is true, since\, < A; for kb < j, if

v, = vy, then obviously by transmitting information to |
users in seli (), we need more power and get less reward |
than transmitting information to users in s ;. If (48)
is true andv, < w; then, assuming thab?, (R, ») # 0 i

A1

(0 < w;(k)(R, n) < 1), the reward we get from assigning
power vy, to setlfyxy with a fraction wy, (R, n) of the
transmission time in state is Ayw} (R, n) and the power
needed isP(n) = vkwjr(k)(R, n), while the reward we get
from the same poweP(n) by assigning power; to setif,;
with a fraction

-

'
]
'
i
1
'
'
]
)
'
'
]
1
i
'
1
|
'
|
'
'
'
'
'
'
|

Power P(n)

v2 U3

Fig. 2. PowetP(n) versus reward (P(n)) for three remaining sets of users.

P(n) _

vj

vRwh o (R, ) should be assigned to séf;, andJ(P(n)) defined in (45) is
as shown by the solid curve in Fig. 1.

Generally, for the remaining sets of users, it is possible that
of the transmission time will bg; - y ,whichislarger there are still some set,; to which no power should be as-
than Azw? ;) (R, n) by (48). Moreover, the fraction of trans-signed in order to get the largest reward. For example, assume
mission time needed for sét. ;) is less than that for séf i), that the remaining sets até.(1), U (2, andifr(s, and the rel-
since wheny, < v; ative values ofr, va, v3, andAg, A2, Az are as shown in Fig. 2.
From this figure we see that neither (48) nor (49) is satisfied for
anyk =1, 2, 3, since; < Az < Az and

vj

"/‘k'W:(k) (R,n)
o

vpw® (R, n
ﬂ < wh (R, ).

vj
If (49) is true, it is obvious that; < wv,. Thus, to obtain the
same reward\; = A, the set/, ;) requires less power than o . _
the setl,x). Therefore, in order to get the largest reward undé&towever, it is obvious that no power should be assigned to set
the given power constraint, we do not consider assigning affy(2), because a larger reward can be obtained when the same
power to those setd, (., for which 3; satisfying either (48) or Power is time-shared by sei,(,) andifs) instead of by sets
(49). That is, we remove them from further consideration aiék(1) andify(2), or by setdf; o) andify(s).

A A A
AL 2.5

v1 v2 v3

setw} (R, n) = 0.

For example, whenV = 3 and the relative values afj,
va, v3, @nd Ay, Ao, Az are as shown in Fig. 1, wherg and
v; correspond to the reward and power needed foil&ef,
(i = 1,2, 3), respectively. It is obvious tha} < 22. Thus,
if the available power’(n) < v; and we assign it to sét, (1),
the reward we can getis the straightlibel; if v; < P(n) < v2
and we assign it to set&, ;) andif, (2 by time sharing, the re-
ward we can get is the straight liaeB3. However, in both cases,
if we assign the poweP(n) to setl/(2), we get a larger re-
ward which is indicated by the straight liggB. Thus, no power

In the following, we use an iterative procedure to find all
the setsf, () in the remaining sets that should be assigned
no power and remove them from further consideration [i.e., let
wjr(k)(R, n) = 0]. An interpretation of this procedure based on
Fig. 2 will be given shortly.

Initialization: Letm = 1.

Step 1) Denote the number of remaining set&/asand let the
permutatiorp(-) be defined such that for the remaining
G, sets

A1) < Apz) <o < Ap(Gu)- (50)
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Due to the removal criterion, it must be true that identified, and new set(¥x[,x) for which (52) holds will
Y hY hY be removed, since the point(&),xy, A.x)) Will be under the

p(1) p(2) P(Gu) , i p(k)s Ap(k)
Up) > Vo) o2 Ve (51)  straight line formed by connecting points,.(1), A,«1y) and

(Vo)) Apii)), Where j satisfies (52). The new index(i*)
Step 2) Letpo(m) = p(1) andz,(m) = jﬂ_zllz If G, < 2, Wwillbecomep(1) in the third iteAr?Fjon and be stored jn(3),

. . oy — A . .
all the sets that should be assigned no power have beé#§l the corresponding tangeft—"2 will be stored in

. . Va(i*) ~Ve(1) .
removed and the procedure terminates;jf > 2, go  z,,(3). The iterative procedure continues until all the sets that
to Step 3). should be assigned no power have been removed and the curve

Step 3) Fol < k < G,,, decreasa,;, andv,, by A, and of J(P(.n)) in (45) is obtained by connecting the origi, Q)
v,(1), respectively. Do not assign any power to thos@Nd POINtS(v5, (1), Apy (1))~ (Vpo(ma)s Apa(mo))» Wheremy is

sets of Usersl,, ) for which 3 j that satisfies the value ofn when the iteration stops K mg < N). That s,
Aok At
p(k) S P(J)’ k< J S Gu J(P(n))
Up(k) "~ Up(y) Zpa(1) - (), 0 < P(n) < vp(1)
and remove them from further consideration [i.e., let — Apa(mo)s P(n) > vy (my)
wy 0 (B, n) = 0. Also remove setsr(,). In- Zpo() " [P() = Voo G- 1)) Upos-1) < P(”).S Ypo(4)
creasen by 1 and return to Step 1). for somej, 1 < j < ﬂz%-‘l)
In this procedure, we observe that in the first iteration, from
(50) and (51) it is clear that Note that from the iterative procedure, it is clear that
Up(1) < Up2) <+ < Vp(@,)- )\Po(l) <)\p0(2) SRR )\/70(7”0) (55)
Since vt ) forall1 < ¢ < Gy, when thegl average Vpo(1) <Upy(2) <+ < Vpy (o) (56)
ower P(n) < , we get the largest rewargt> . P
P . (n) - Ur(1) 9 . g “/—’%) (n) Zpo(1) > Zpo(2) 2 ° 70 2 Zpo(mo) (57)
by assigning it to sel[,(1))- That s, in (45), as shown in the
example in Fig. 2 where
A Aoy (1 .
J(P(n)) =22 p(n),  if P(n) < v, e, ji=1
Colt) Fpoli) = Aoq(5) =Nep(G=1) ; (58)
and we store the index1) of setif, 1) and the tangen,?% Vpo (i) Ve (i—1) 1<g=mo.
in po(1) andz,, 1), respectively. Next we wish to identify those  For example, in Fig. 2, if we execute the above three-step
Setg/lﬂ-[p(k)} (1 <k < Gru,) for WthhElJ that satisfies procedure, we will haveno = 2, pO(l) =1, p0(2) = 3,
Moy — Aoy Aoy — A . Zpo(1y = 2, andz,,zy = 23=2t. Therefore, from (54) we
A )_ A1) < P(J) — A( )’ k< j< G. (52) o/E)Otain 1 ro 3 — U1
Up(k) = Up(1)y  Up(j) = VUp(1)
and we do not assign any power to them since, ok j, L. P(n), 0< P(n) <
Up(ky < Up(iy Apky < Ap(y), @Nd if (52) is true, on the Power- 7 p(p)) = { A=\ 1pry) — P(n) <
Reward plane as shown in Fig. 2, poiat, ), A,x)) Will be (F(n) v Pm) — il n < Pln) < v
underthe straight line formed by cor_mecting PGk 1), Ap(1)) A3, P(n) > vs
and point(v,(;), A(;)).” Therefore, in (45) which is exactly as shown by the solid curve in Fig. 2.
Ap(is) = Ap(1) Once the curvg ( P(n)) is obtained, from (46) we know that
J(P(n)) = Vo) — Vo) x [P(n) =), v 1 > 0 fixed, the optimal poweP* (n) satisfies/’(P*(n)) =
if v,y < P() < v, L ifthe tangent of/ (P°(n)) is continuous. However, in our case,
o P = 7" the tangent off (P(n)) is discrete and®* (n) cannot be deter-
where the index* is given by mined directly. Therefore, we will use the following theorem
i = arg max Ap(i) = Ap(1) . (53) to f!nq the opt|malw;[p0(j)]r(7§, n) (1 < j < myg) for the re-
1<i<Gn | V) — Vp1) mainingmo SetS{Uﬂ-[pO (j)}]’j:l'

Before stating the theorem, we first define some additional
notations and parameters. In (55)—(58), the indexgéi) }-%,
are all functions ofn. Therefore, we will refer to them as
{po(%, n)}:"% and for simplicity,V 1 < ¢ < mg, we denoté

After removing those sets/,[,) for which (52) holds
[i.e., let w:[n(kﬂ(R’ n) = 0] and also removing Se&[,(1)],
the indexp(i*) in the first iteration becomep(1) of a new
permutation p(-) in the second iteration [otherwise, (53)
cannot tie trueA] and is stored jin(2), and the corresponding Ai(m) Ay
tangent 72— s stored inz,, (2. In the second itera- W@
tion, similpé{rlg/, the new index(:*) that satisfies (53) will be vi(m) = vy i) (59)

A
6 — _ N 2i(n) = Zpy i)
Note that in this example7, = 3 andp(i) = ¢,i =1, 2, 3.
“InFig. 2, point(vs, Az) is under the straight line formed by connecting point  8Note that{ p,(¢)}:-9 are also functions of the given rate vecRrHowever,
(vi, A1) and point(vs, Asz). we omit the explicit dependence dhin their notations for simplicity.
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Thus, (55)—(58) become c) if3j€{1,2 ..., mo}, = = z(n), thenui(n) = 7%,
uwi_(n)=1—71"ui(n)=0,Vi#£j j—1, 1<i<mo,
Ar(r) <Az(n) < -oo < Amy(n) (60) wherer* satisfies
vi(n) <va(n) < -+ < Uy, (0) (61) N me i
) v (n)(1—7%)Pr< L , 8"
z(n) > 2(n) > - > zp,(n) (62) W;I ]E_:l[vj( )7 i1 =) Pr { o, 57
and N _ P
PR BTOR J (63) _ _
%) = 5 y—rs ) | < j < mo. Proof: See the Appendix, Section E. O

vi(n)—v;—1(n)’
) . Note that this theorem is a generalization of [6, Lemma 3],
Moreover, we defind?,,, as the set of all fading statesfor which corresponds t&V — 1. Therefore¥n € Q,,, (1 <

which the final value of the loop parametaris mg (1 < mg < . - mo
. . .= = < N), given the remainin ; fterth
N) when the three-step iteration procedure terminates. By de® = ). given the remainingro Sets{lr, )}, after the

i A ) ) iferative procedure, Theorem 3 determines which set(s) of users
notingz,,+1(n) =0,vs > 0,forj = 1, 2, ..., mo, we define
setsL;(my, s) andL;(mg, s) as

should be chosen for transmission by solving (64), since after
removing those users to which no power should be assigned,

1 the maximization problems (44) and (64) are equivalent and
Li(mg, s) = ¢n:n € Qny, zi(n) > P zjy1(n)

w:—[pg(j)] (R7 n) = u;k(n)v 1 S 1 S mo-.
Ej(mo, 5) = {n; neQn,, 1 — Zj(n)} . In partic_ular, the t_heorem indicates that, base_d on t_hetotal power
S constraint, there is a threshold power leyeWhich is important
Thus,Vs > 0 in determining the optimal set(s) of users. Moreover, in fading
states of sef.;(mo, s) (V1 < mg < N,V1 < j < my), at
N = 1<U<1\ $himg most two sets of users are chosen and the information for the
<mo<N

selected two sets are sent by time-sharing the channel. In each
_ U U (Lj(mo, $)U L;(mo, S)) of the other_ fading states, at most one set of users is chosen.
Therefore, if the cdfF'(n) is continuous, with probabilityl,

. . . ) a} most one set of users is chosen in each state, Sifce
where/ is the set of all possible fading states. For a given tot%\l0 =

traift > 0. defines* < N, V1 < j < mo, Pr[L;(mo, s)] = 0. If Fi(n) is
average power constraift > 9, definés” as discontinuousPr[L;(mg, s)] may be larger than zero for some

s* 2 sup {s: P(s) < P} J andmy, and the probability that two sets of users are chosen
in some fading states may be larger than zero.

1<mo<N 1<j<mo

where
N m : . L .
Pls) A 0 vs(m) dF (). C. Multimedia Outage Probability Region |
:1 Z 1 JneL;(mo, 5) ! InanM-user broadcast system, some users may require con-
mo=1 j= 3J ’

stant-rate transmission without any outage (e.g., voice users),
Therefore¥n € Qn,,, 1 < mo < N, finding the optimal \hile other users allow certain outages in the transmission of
wr, (B m) (1 < j < mo) in (44) for the remainingno  their information (e.g., data users). L&f, be the number of
sets{lx,, () i after the iterative procedure is equivalent tghose users allowing no outage. Then, Meuser outage prob-

solving the maximization problem ability region contracts to afli/ — M, )-user outage probability
( N ma region. Since in each fading state, the channel can be used for
max . Fnea,, lz Aj (n)uj(n)] Zf\iIMO (M—iMo) = 2M=M> _1 different sets of users, by ap-
) mo=1 J=t plying the same optimal strategy discussed in Section IV-B, we
subject to: can obtain the boundary of the outage probability region for the
N o a (64) M — M users.
Y. FEnca., [E vi(n)u;(n)| < P, For example, in a two-user system where one user (say, User
mo=1 J=1 1) allows some outage and the other user (say, User 2) requires

no outagg M = 2, My = 1), the minimum outage probability

problem for User 1 is a modified threshold-decision rule similar

; to that of the single-user case.

whereu(n) = [u1(n), uz(n), ..., um, (0)]- For each joint fading state = (n;, n,) and a given rate
Theorem 3:¥n € Q,,,, 1 < mo < N, by denotingu(n) vectorR = (Ry, Ry), if the infprmation fqr User 1 is not

(1 < j < me) as the solution to the maximization problenfransmitted, we denote the minimum required total power as

mo
0< Z uj(n) <1, and 0 < uj(n) <1
j=1

(64), we have P.g(R, n) and it is just the power needed to support r&te
- . . _ for User 2; if the information for User 1 is transmitted, we de-
a) if 5= > z1(n), thenuj(n) = 0, V1 < j < mo; note the minimum required total power &s,(R, n) and it is

b) if 3 € {1,2, ..., mo}, zj(n) > & > z;;1(n), then P=(R, n) givenin (3), (11), and (16) for CD with or without

5

uwi(n) = 1Lui(n) =0,Vi# j, 1 <i<myg; successive decoding and for TD, respectively. Péte the total
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average power and assume that in fading statdhe channel similarly shown as for Theorem 1 that the zero-outage capacity
transmits the information for User 1 with probabilits(n, R) region with respect to slow fading is
and for User 2 with probability (no outage). The maximization .
problem Caero(P) = | [ Cen(s, P)
PCF scS
max En[w(R, n)] subject to: —  whereCcp(s, P) is the achievable average rate (averaged over
{ En{Fon(B, n)uw(R, n) + Foa (R, n)[1 — w(R, n)]} :(éDS) the fast—fa((:iing )states) region for the given slow-fading state
and power allocation policf, andF is the set of all power poli-
cies satisfyingE, n [Y72; P;(s, n)] < P. We obtain region
max E,[w(R, n)] subject to: Coexo(P) implicitly. That s, for each given rate vectd; if there
E{[Pon(R, n) — Pog(R, n)Jw(R, n)} exists a power allocation policy € F such that the average
=P — E.{P,x(R, n)}. rate vector for any slow-fading staggs R, thenR € C,c..(P).
Therefore, in order to determine whettre C,...(P) or not,
Therefore, by substituting®™»(R, n) with P.,(R,n) — we have to compute the minimum average total pait&i*(s)
P.p(R, n) andP with P — E,[P.p(R, n)] into the definitions  required for theM users to supporR in each slow stats, i.e.,
of R(s), R(s), P(s), P(s), s*, and w* in (31)—(36), we solving the minimization problem
obtain the solution to (65): ik ¢ R(s*), w(R, n) = 0, i.e., . . s .
only the information of User 2 is transmitted;nif € R(s*), min P subjectto: Re C(s, P) (66)

w(R, n) = 1, i.e., the information of User 1 is transmitted ~ .
together with that of User 2; i & R(s*) butn € 7@(3*) then where P denotes the total average power of fhleusers in the

w(R,n) = w", i.e., with probabilityw", the information of slow states, andC(s, 15) is the ergodic capacity region for the

User 1 is transmitted with that of User 2. The minimum outagséoW states under the power constraidt. That is

probability Pr,;, (P, R) for User 1 is as given in (37).

is equivalent to

C(s,P)= | { &
V. FREQUENCY-SELECTIVE FADING CHANNELS PeF,
In previous sections, we have derived implicitly the
zero-outage capacity region and the outage capacity region
of a flat-fading broadcast channel. The zero-outage capacity R;<Ep,|Blog| 1+ Pi(s, n)
and the ergodic capacity, discussed in Part | of this paper, - ' M ‘ ' ‘ ’
characterize two very different aspects of a fading channel. nJBJFZ;P”(S’ n)n; >ni]
That is, under a given average power constraint, the ergodic \
capacity is the maximum average rate over all fading states
with no delay constraint; the zero-outage capacity, on the other i=1,2,..
hand, is the maximum common rate that can be achieved in
every fading state with the given delay constraint satisfied. In /
order to extend the concepts of the zero-outage capacity afigere F, s the set of all power policies satisfying
the outage capacity of a narrow-band fading channel discusseg], [E]’.‘il Pj(s,n)] < P.
in previous sections to that of a frequency-selective wide-bandAs shown in [4], the minimization problem in (66) is equiv-
fading channel, we first relax the delay-limited requirement arxdent to
consider a multiple time-scale fading channel characterized by . ~ . ) ~
both fast fading (e.g., due to multipath) and slow fading (e.g., R D) [P TR R} subjectto: R € C(s, P)
due to shadowing) [5]. For this channel, assuming that the fasﬁ
L W
fading is fast enough to average out over the tolerable del%x,
we define the zero-outage capacity with respect to the slg . .
. ) Slow states, from Part | of this paper we know that given a
fading as the maximum common rate over all subsets of fadin S N 1
: . : . rz%e reward vectop and a water-filling power leve* = =,
states, where each subset is associated with a slow-fading Stt% e, . ! ; . A
- ) S € optimal power allocation strategy is determined and we can
Within each subset, dynamic rate allocation is allowed for the : ~
: . calgulate the required total average powenf the M users and
fast-fading states under a given common average rate constram . . . ~
obtain the corresponding boundary veckbof regionC(s, P).
for each subset. . . . . .
o . By fixing A = 1, the following algorithm is proposed in [4] to
Specifically, for anM -user fading broadcast channel, &t find the apbropriate such thatk is met:
be the set of all joint slow states of tid users, andV the ppropriate: '
set of all joint fast-fading states. L&, n) be a joint slow- and  Algorithm 1 [4]: Start the iteration a(0) = 0. Given the
fast-fading state, with having stationary distributio®. When nth iterationu(n), the(n + 1)th iterationu(n + 1) is given by
conditional on a given slow stasen has stationary distribution the following: for eacly, 11;(n + 1) is a rate reward for thgth
Q.. For a given power allocation policy, let P;(s, n) denote user such thak,;(u) = R;, when the rate rewards of the other
the power assigned to Usgr(l < 5 < M) in a joint state users remain fixed gi(n) while the reward for thgth user is

(s, n). Therefore, for CD with successive decoding, it can bedjusted.

M

v

erep is the Lagrange multiplier vector (rate reward vector)
osen such that the target rate vedibis met. For a given
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Therefore, given the target rate vectBr once the appro-

priate rate reward vectqs is determined, we can obtain the T Simam
minimum average total poweP™™"(s) in (66) easily. Thus, 8% T T OpimalCOWO J+
if E[P™in(8)] < P, thenR € C,eo(P). Otherwise,R ¢ N )

Cuero(P). In addition, if we allow some transmission outage in 160f, . P=25dbW 4
certain slow states, given the average outage probability co ~ 5=100 KHz
straint for each user, we can also determine whether rate vec 14ok* mB=l oW
~ fiaB=21 dbW

R is inside the outage capacity region (with respect to slo
states) or not by using the techniques developed in Section I\ ;5!
Note that similar reasoning as that for CD with successiv_
decoding can be applied to TD, FD, and CD without successi@mo A
decoding as well. Since TD, FD, and CD without successivg
decoding have the same ergodic capacity region for a given sic
state, it is obvious that they will also have the same zero-outay
capacity region and outage capacity region when these capac

regions are defined with respect to slow states. This is qui

80

From top to bottom:
m=Infinity (AWGN)

60

different from that of the narrow-band fading channel discusse n m=4

in the previous sections. 40t \\;\\,\\,\ 222 ]
By applying the ideas developed for the time-varying chann NN

characterized by both fast fading and slow fading, we can easi 20t AN .

obtain the zero-outage capacity region and the outage capac
region of the frequency-selective fading broadcast chann . :

discussed in Part | of this paper. Since the frequency-selecti 0 100200 %00 Rf(?(%ps) 500 600 700 800
fading channel can be viewed as a time-varying channel, where

the frequency responses of theusers are different in different Fig.3. Two-user zero-outage capacity region in Nakagami fading: 20-dB SNR
fading states, we can define the zero-outage capacity and Hg"e"ce:

outage capacity with respect to the fading states. That is, while

a common average rate is maintained for all fading staté€9ion of optimal TD is now much larger than that of the

dynamic rate allocation is allowed for each user at differefPtimal CDWO? the boundary of which is convex. Note that

frequencies in each fading state. The resulting optimizati(tJ'ﬁe zero-outage capacity region increasesrasicreases for

problem is identical to the one studied for the time-varying ©f the three types of spectrum-sharing techniques, since
channel characterized by both fast fading and slow fading, ang/lerm corresponds to more severe fading. However, unlike
so is the optimal dynamic power allocation. Therefore, we sd§INg optimal CD or TD, the capacity region using CDWO
that wide-band systems provide the possibility of performindP€S Not increase much with the increaserofAlso note that
dynamic power allocation over different frequencies in additi gr the Rayleigh fading channgln = 1), the zero-outage

to over different fading states, which is an advantage ovERPacity region is zero, which is why it is not shown. When
narrow-band systems. m — oo, the Nakagamin fading channel approaches the

Gaussian channel and as proved in Section IlI-D, the limiting
zero-outage capacity region of the Nakagamfading channel
VI. NUMERICAL RESULTS is the same as that of the AWGN channel for CD or CDWO.
. . . Fig. 4 shows the case where the SNR difference between the
In this section, we present numerical results for zero-outage . . .
. . . . 0 users is 3 dB and the total average power is 10 dB. Since
capacity regions, outage capacity regions, and outage propa-

bility regions of narrow-band fading broadcast channels un %re SNR difference between the two users is relatively small,

different spectrum-sharing techniques. The Nakaganiiat- e differences of the zero-outage capacity region between using

. : ) . . D, TD, or CDWO is not so dramatic as in the previous case.
fading model is used for its mathematical tractability. The tot . . . .
. . . . — henm increases, the capacity region of CDWO now increases
average transmit power in the figures below is denoted,and faster than it does in Fia. 3
the average noise density of tfite subchannel is denoted@as 9. o

1 =1, 2. We refer to the CD without successive decoding tech- In Figs. 5-11 , as d|sgussed n Seguon IV-A, for any fading
. . . . state, the broadcast fading channel is either used for all users
nigue as CDWO. Since TD and FD are equivalent in the sense .
not used for any user. The resulting common outage proba-

. . . I
that they have the same capacity region of any kind, all resuﬁﬁty is denoted af’r. Given a common outage probability of

for TD in the figures also apply for FD. . . Pr = 0.1, the two-user capacity region for the Nakagami-
In Fig. 3, the two-user zero-outage capacity region f%ding channe(m = 2, 3, 4) using optimal CD is shown for

the Nakagamin fading broadcast channel is shown fo ; N
m = 2. 3.4, andoo. The SNR difference between the two%' and 20-dB SNR differences between the users in Figs. 5

users is 20 dB and the total average power 25 dB. Similar and 6, respectively. In both cases, notice that the increase in

to the ergodic (Shannon) capacity region comparison in Pa&qpamty obtained by allowing a nonzero outage probability is

) . ; larger for smallem. This is because a smaller corresponds
of this paper, optimal CD results in a much larger zero-outage

capacity region than optimal TD. But the zero-outage capacity?As shown in Part I, TD and CDWO have the same ergodic capacity region.
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Fig. 4. Two-user zero-outage capacity region in Nakagami fading: 3-dB SNR
difference. Fig. 5. Two-user capacity region for a given common outage probability in
Nakagami fading using CD: 3-dB SNR difference.

to more severe fading, which is difficult to compensate for i 200 T T ' T ' i '
the zero-outage case. In Fig. 5, since the SNR difference |

——  Zero-Outage

tween the users is small, the increas&epbbtained by allowing 180F” "=~ ~ o - - - Outage:Pr=0.1 |
outage is pretty much independent®f. However, when the el T

SNR difference is large, we notice in Fig. 6 that in the regic g =~ =~~~ _ BN _
whereR; is large, we obtain a large increase in User 1's fate oS AN

by allowing some outage. This increase is much smaller in t
region whereR; is small. Since User 2 has much more nois
on the average, foR, large and no outage, most of the tota
transmit power is used to send the information to User 2 a
allowing some common outage probability will then save rel:
tively more power for User 1 than in the case wh&peis small.

In Fig. 7, the capacity regions using CD in Nakagami fadin

140

120

From top to bottom:

(m = 2) with common outage probabilififr = 0.02, Pr = 8o 2:; .
0.05, andPr = 0.1 are compared when the SNR differenci m=2

between the two users is 3 dB and the total average poweris  sof
dB. We see that by allowing even a small outage probability, v )
obtain a significant capacity increase relative to the zero-oute 40| P=25 dbW

case. Fig. 8 shows the minimum common outage probalbiity B=100 KHz
as a function of the total average powerat a given rate pair | mB=1dbW v
ngB=21 dbW A

(Ry, Ry) = (100, 130) kb/s using CD under the same channe
conditions as in Fig. 7. According to (3) and (4), this rate vect: , , , l
is on the boundary of the zero-outage capacity region for a to 0 100 200 300 R14((I)<(t)>ps)
average poweP = 10.9 dB, as is shown in the figure.

Figs. 9 and 10 show the two-user capacity region of CDWO iig. 6. Two-user capacity region for a given common outage probability in
Nakagamim fading for a common outage probability Bf = Nakagami fading using CD: 20-dB SNR difference.
0.1. The SNR differences between the two users in these fig-
ures are 3 and 20 dB, respectively. Similar to the zero-outagarametem than when the SNR difference is large. However, in
capacity region, when the SNR difference between the userd@th cases, the increase of the capacity region from zero outage
small, the capacity regions with a given common outage prolda-an outage of).1 for eachm is not that much and the dif-
bility increase faster with the increase of the Nakagami chanreftences between the outage capacity regions with different

H 1
500 600 700 800
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Fig. 7. Two-user capacity region comparison of different common outa§dd- 9- Two-user capacity region for a given common outage probability in
probabilities in Nakagami fading using CD: 3-dB SNR difference. akagami fading using CDWO: 3-dB SNR difference.
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Fig. 10. Two-user capacity region for a given common outage probability in
Fig. 8. Minimum common outage probability for a given rate vector versJiakagami fading using CDWO: 20-dB SNR difference.
average transmit power in Nakagami fading using CD.

difference between the average channel conditions of the two
are even smaller than that of the zero-outage capacity regiomsers.
This means that the optimal power policy that allows a certainIn Fig. 11, the capacity region with a common outage prob-
common outage probability does not help much in increasiadility Pr = 0.1 using optimal TD for the Nakagami fading
the capacity region of CDWO, especially when there is a gregltannel(m = 2) is shown and compared to that of the CD
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Fig. 12. Two-user capacity region for a given outage probability vector in
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Fig. 11. Two-user capacity region comparison for a given common outagigkagami fading using CD: 3-dB SNR difference.

probability in Nakagami fading using CD, TD, and CDWO: 3-dB SNR
difference.

and CDWO techniques. The SNR difference between the tw

— T mm mEe e e e e - — - Qutage
users is 3 dB and the total pow#t = 10 dB. As in the case  60r " "~~~ _ .
where there is no outage, the capacity region with a commc - h
outage probability using TD is smaller than that of CD but is ,,, N Outage: |
' Pr1=0.02

much larger than that of CDWO. Note that by allowing somg
common outage probability, there is a large increase of the c
pacity region for both CD and TD, but the increase is relativel
small for CDWO.

In Figs. 12-15, we assume that a different outage probabili_
can be declared for each user. The corresponding optirr§
power policy is obtained by applying the three-step procedusg
described in Section IV-B and Theorem 3, which is then use

180

120

100

80

From top to bottom:

T T T T

Zero—Outage

Pry=0.03

m=4

to calculate either the capacity region for a given outage prol m=3
ability vector or the outage probability region for a given rate 60} m=2 7
vector. We obtain the capacity regions with outage or the outay
probability regions for CD only, since the relative behavior of ¢ P=25 dbW i
TD or CDWO is similar to that of CD in these figures. B=100 KHz

In atwo-user system, |&tr; andPr, denote the outage prob- i B=1 dbW
abilities for User 1 and User 2, respectively. Giv@, , Pry) = 20r My B=21 dbW 1
(0.02, 0.03), the two-user capacity regions with this outage foi \
the Nakagami fading channef{s. = 2, 3, 4) are shown in 05 e W a0 e T s0o
Figs. 12 and 13 for SNR difference between the users of 3 and R1 (kbps)

dB, respectively. In both cases, as was true for the capacity re

gion with a common outage probability, allowing some outagN‘i'p

probability for each user results in a capacity increase that
larger for smallern. Thus, the optimal power policy is more ef-

. 13. Two-user capacity region for a given outage probability vector in
kagami fading using CD: 20-dB SNR difference.
g

fective in increasing the capacity region when the overall broad-Fig. 14 shows the two-user outage probability regions
cast channel fading is more severe. For differenthe differ- with different total transmit poweP for a given rate vector
ences between the capacity regions with outage are smaller th&p, R,) = (100, 130) kb/s. Note that the region below each
those between the capacity regions with no outage. curve is the outage probability region not achievable with the
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kb/s is on the boundary of the zero-outage capacity region.
For a given transmit poweP, when the outage probability
Pro of User 2 decreases, there is a fast increase in the outage
probability Pr; of User 1, since the average channel condition
of User 2 is worse than that of User 1 and thus the total power
required to supporf, increases fast with the decrease of its
outage probability. The intersections of the curves with the two
axes in this figure denote the minimum outage probabilities for
one user when there is no outage in the transmission for the
other user.

Fig. 15 shows the two-user capacity regions with several
different outage probability vectors and a total transmit power
P = 10 dB. In this figure, the pointsiy, A;, and A, are
the single-user capacities of User 1 when the allowed outage
probabilities arePr; = 0, Pr; = 0.02, andPr; = 0.09,
respectively; the pointd3y, By, and B, are the single-user
capacities of User 2 when the allowed outage probabilities
arePro, = 0, Pro = 0.03, andPr, = 0.1, respectively. Let
PCLO = 0, Pal = 0.02, PCLQ = 0.09, Pbo = 0, Pbl = 0.03,
and Pb, = 0.1. The curves between point$; and B; are
the boundaries of the capacity regions when the allowed
outage probability vectors aréPri, Pry) = (Pa;, Pb;),

i, j = 0, 1, 2. Note that when one of the outage probabilities
Pr; and Prs is zero, regardless of the time-varying channel
$tate, the information of the corresponding user is always trans-
mitted and the optimal power policy discussed in Section IV-C
will be used for the other user to achieve the demonstrated
capacity region in this figure under the constraint of its given
outage probability.

Finally, in Figs. 16 and 17, where the SNR differences be-
tween the two users are 3 and 20 dB, respectively, the capacity
regions using the optimal CD power policy with a common
outage probabilitfr = 0.1 as discussed in Section IV-A and
the optimal CD power policy with an outage probability vector
(Pr1, Pry) = (0.1, 0.1) as discussed in Section IV-B are com-
pared in Nakagami fadingn = 2). Since the outage proba-
bility for each user i$).1 using either of the two power policies,
fromthe figuresitis clear that by allowing a separate outage dec-
laration for each user and using the corresponding optimal CD
power policy, a larger capacity region can be achieved than by
simply turning on or off the transmission for both users simul-
taneously based on the optimal power policy discussed in Sec-
tion IV-A. However, the optimal power policy for the common
outage declaration case is much less complex than that for the
independent outage declaration case.

Also shown in Figs. 16 and 17 are the ergodic capacity re-
gions of the fading broadcast channels as discussed in Part | of
this paper. We see that these regions are much larger than the
zero-outage capacity regions. Since the ergodic capacity and
the zero-outage capacity correspond to the maximum average
throughput and the maximum constant throughput of a fading

Fig. 15. Two-user capacity region comparison for different outage probabilighannel, respectively, the comparison between these two dif-

vectors in Nakagami fading using CD: 3-dB SNR difference.

ferent capacity regions demonstrates the throughput loss of a
broadcast system transmitting at constant rates in any fading

corresponding transmit powe?. This nonachievable region condition instead of transmitting at variable rates adapted to the
shrinks quickly with the increase of transmit powErand fading channel states.

disappears whe® > 10.9 dB since, wher” = 10.9 dB,
according to (3) and (4), the rate vectdt,, R») = (100, 130)

Note that by definition, each outage capacity region shown in
the figures of this paper represents a set of constant rate vectors
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with 1 — Pr; in the case of independent outage declaration
and with1 — Pr in the case of common outage declaration,
then the normalized outage capacity region will be an average
throughput region. This average throughput region does not al-
ways include the zero-outage capacity region (maximum con-
stant throughput region) as can be verified for the cases shown
in Figs. 6, 9, 10, and 13. This is because the normalized outage
capacity region varies with the given outage probability vector
Pr or the given common outage probability.

VII. CONCLUSION

We have obtained both the zero-outage capacity region and
the minimum-outage capacity region of fading broadcast chan-
nels for TD, FD, and CD with and without successive decoding,
assuming that perfect CSl is available at both the transmitter and
the receivers. It is shown that optimal CD has the largest zero-
outage capacity region, as expected. Moreover, we show that
the capacity region can be greatly expanded by allowing some
outage probability for each user. For a given rate vector, we have
derived the optimal power policy that minimizes the common
outage probability when transmission to all users is turned off
simultaneously. When an outage can be declared for each user
individually, we have also derived a general power allocation
strategy to achieve boundaries of the outage probability regions

Fig. 16. Two-user capacity regions with a common outage probability anthder different spectrum-sharing techniques. We observe that

\(’j‘{iftfh an outage probability vector in Nakagami fading using CD: 3 dB SNighese regions can increase dramatically with an increase in the
Ifrerence.
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total transmit power. Therefore, by applying the optimal dy-
namic power allocation strategies derived herein, tradeoffs be-
tween the maximum constant transmission rate, the outage prob-
ability for each user, and the total transmit power may be eval-
uated for the design of a broadcast communication system in a
fading environment.

APPENDIX

A. Proof of Theorem 1
Achievability of the Capacity Regionwe prove the achiev-

ability of the capacity regior€,...(P) in (1) by proving the
achievability of R € [, Ccp(n, P) in (2) for each given
power allocation policyP € F.

VP e F,forj =1,2,..., M, sinceP;(n) denotes the
transmit power for Usej in fading staten

VRe () Cep(n, P),  R=(Ri, R, ..
neN

we need to prove that for every> 0, there exists a sequence
of ((2BT 2R:T 2BuT) T) codes and a coding and
decoding scheme with probability of errﬁ’éT) < e for every
fading process with stationary distributiag, i.e., a coding
delay 7" which is independent of the correlation structure of
the fading. We prove in the following that this is true for the
two-user case. The result can be easily generalized to the
user cas€M > 2). Note that with the availability of CSI

-, Ry)

with an outage probability vector in Nakagami fading using CD: 20-dB SNAL both the transmitter and the receivers, the codewords can be
difference.

that can be maintained with the given outage probability vector
Pr or the given common outage probabilly satisfied. If we

normalize the outage capacity of each usér =1, ..., M)

chosen based on the realization of the fading process.
Let

<I>1é{n:n1<n2,n€./\/}

Dy é{n: ny > n2, n €N}
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Recall that we assunter{n; = n;} =0, Vi # j. Thus,

T
Zu, n) = Zn |Un, T
AP plt. ) = T ol )

n=1
When the channel fading states arebin let T
= Qa(z|un, n ) (70)
N® =(N(1), N@), ..., N(T)) E[ Z
wherevVl <n < T
denote the realization of the slowly time-varying fading "
process. Lef\; = 277 and M, = 272, Generatel/, inde- Q1(un|n) ~ N(0, Py(n))
pendent codewords, , us, ..., uy, Of lengthZ according to Qa(z|ty, n) ~ N(up, Pi(n))
the normal distributionV (0, 1), scaled by and
Py(N(n)), n=1,2,...,T. p(znlz, n) ~ N(z, naB).
For each codeword; = (u; 1, u; o, - - -, u;, r) (u; is called a Therefore, in (70)
cluster centerl <¢ < Ms), generaté/; md_ependentcode_vyords Pz |tn, 1) ~ N(un, 2B + Py(n)).
14, T24, ..., T4 Of length?” according to the conditional
normal distributionV (w; ,, 1), scaled by Substituting (69) and (70) into (68), it is easy to verify that
R
P(N(n), n=1,2...,T. PY < n) e { [ T2
- VEW@) | SEPMLRE b
Assuming that the source for User 1 produces integer T
(1 < m < M) and the source for User 2 produces integer +1 Z log <1 n Py(n) )
(1 € i < Ms), the encoder maps the paim, ) into a 2 (1+p)(n2B + Pi(n)) ’
codeword By assumptiondé, > 0 such that
Tm,i = ($n17i717 Lmn,i,25 ooy xrn,i,T)

Ry < Blog <1 + A) — Bb;, VYned;. (71)

which is then transmitted. Lgtandz be the received sequences naB + Pi(n)

for User 1 and User 2, respectively. We use the decoding ruleTihus,
[12]. That is, the decoder of User 2 decodes thédr which T
p(z|u,) is maximized (a decodmg failure occurs when there is a Pf;) < exp {—p— [62 — log(1 + p)]} (72)
tie for the maximum). Let” 2 ) be the probability of decoding 2
error for User 2. The decoder for User 1 first decodes the clusince}”, ., f(n) < 1.
centen; in the same way as the decoder of User 2 does, and thetsimilarly, we can show that
uses its estimate afto choose then for which p(y|®,,. ;) is
maximized. For User 1, |e‘t’£71)2 be the probability of decoding

error for index: and IetP(TS be the probability of decodin e
e R ot ot XZ{ Z(Z@ (ulm) p(ylu. n)]1+p> (73)

error for indexm. Thus, by denotmg’i? as the probability of =
decoding error for User 1, we have '

P, < exp(pTRy/(2B))

() D ) for anyp > 0, whereQ,(u/n) is given by (69) ang(y|u, n)
Py <P+ Py (67) is the conditional probability density function of the received

Based on the above encoding and decoding rules, the progtz?nuge:cg;nccc;nd|t|onal on the codeword beimgand the fading

bility of decoding error for User 2 is bounded by [12]

P) < exp(pT Ry /(2B)) plu, ) = [ plynlun, n)
L 14p n=1
x {f ()Y <ZQ1(UIH)[p(qu, n)]m> } (68) r
nedy z » = H [Z (> $|um yﬂ|$ n)] (74)

for any p > 0, where f(n) denotes the pdf ok, Q1 (uln) is
the conditional pdf ok, conditional on the fading being, and
p(z|u, n) is the conditional pdf of the received sequerceon-
ditional on the codeword beingand the fading being. Since

whereV1l < n < T, Q2(z|un, n) ~ N(u,, Pi1(n)) as given
above, andp(y,, |z, n) ~ N(x, niB). Therefore, in (74),
P(Yn [tin, B) ~ N(u,, n1B + Pi(n)). Substituting (69) and
(74) into (73), it is easily shown that

R
Q1(uln) = H Q1 (un|n), (69) P(TI)Q_ Z f(n exp{ { Tﬁ

ned,

10Note that the unit fo?, and R, in this paper is “bits per second,” while

P(n
the unit in [12] is “bits per sample.” This is whi, in (68) is divided by2 B, Z log <1 + 2( ) ) .
the number of samples per second for the band-limited channel. el (1 + P)(”lB + P (n))
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Sincevn € @1, n; < na, from (71) we obtain By takingp sufficiently small, we havé — log(1 + p) > 0 and
Py(n) it follows that the probability of erroPe(,T)(<I>1) decreases ex-
R; < Blog <1 + m) —Bbé  Vne . ponentially with', i.e.,¥ ¢ > 0, 3T4(®1) > 0,VT > Ty(®1),

PE(@) < e
It can be similarly shown that when the channel-
pI) < or ) fading states are in®,, there exists a sequence of
e,12 = OXP {_7 [62 —log(1 + p)]}' (75)  ((@RT 9RT  9RuTY T codes and a coding and
decoding scheme for which the probability of erlﬂ?)(%)
0&ecays exponentially witll’, i.e., Ve > 0, 3T4(®3) > 0,
VT > Ty(P2), Pe(,T)(<I>2) < e. Thus,Yn € N, there exists

Thus,

Furthermore, for User 1, the probability of decoding err
P), is bounded by [12]

a sequence of (2T 2R:T 2RuT) T} codes and a
Pe(,Tl)l < exp(pT R, /(2B)) x Z f(n) Z Q1 (uln) coding and decoding scheme for which the probability of error
7 neEd, u Pe(,T) — 0asT — oo. Moreover,Pe(,T) decreases iff” at a rate

L\ e independent of the correlation character of the fading, i.e., by
i, denotingZy = max{Ty(®1), Ty(P2)}, Ve > 0, VT > Ty,
><§ E Q2(z|u, n)[p(ylz, n)]1+r (76) 4 A . )
" <w 2(] dad ) ) } we haveP!") < ¢ for every fading process with stationary

o . distribution Q. O
for anyp > 0, whereQ(u|n) is given in (69)
Converse: Suppose that rate vectBris achievable, i.eR €

d Cuero(P). We need to prove tha® cannot be outside of the re-
Q2(z|u, n) = li[l Q2(zn|tn, m) (77) gion (de)fined in (1). The proof is similar to that of the MAC ca-
" pacity region [5].
L Definev; = %L =0,1,2, ..., ml.Since the time-varying
pylz, n) = [ plunlzn, n) (78)  noise density:; of each user ranges fromto oo, we say that
n=1 a subchannel isinstatg, i = 0,1, 2, ..., mI if v; < n; <
andvl<n < T, Viy1, Wherev,, 711 2 . Therefore, there aen + )M = N
Q2(x |tn, 1) ~ N(tn, Pi(n)) discrete joint channel states. We denoteittg0 < k£ < N—1)
p(yn|-75n7 ,n) ~ N(.Tn, nlB) of theseN states a§k = [S¢(k71), S¢(k72), . S¢(k7 ]\4)],

where[¢(k, 1), ¢(k, 2), ..., ¢(k, M)] is the basdmI + 1)
Therefore, by substituting (69), (77), and (78) into (76), itis easpansion of, with ¢(k, 1) being the least important compo-

to verify that nent. Thatisp < ¢(k, j) < mlforalll < j < M and
T
Pe(,, )< > fn) M
ne ; k=2 ¢k, j)- (ml+1y7"
- exXpl—p _T&J’_l log 1_1’_& B =1
2B 2 (14p)n1 B ) .
n=1 Note that a channel state € Sy if and only if n; € Sy, 5,
By assumptiond é; > 0 such that V1<j< M.
Pi(n) Consider a sequence of Markov processes definedvon
R, < Blog <1 t 5 ) —Bb, Vne . by using a Markov chain which is composed of the above
! mentioned N channel states with transition probabilities
Thus, t(S;, Si). The process remains in a st&tefor an exponential
. A .
(T) A time 7(8;) = ExponentialA\(S,)) and then selects a new
LRI eXp{ 2 [61 10g(1+p)]}' (79) state according ta(S;, Si.). By choosing the appropriate

{r(8;)};=" and transition probabilities, we assume that the
Markov process has the required stationary distributidof
(T) oT ) the fading channel.
Feo sexp {_7 [6 —log(1 + p)]} For e(ag:ﬁf =1,2, ... letN‘® pe afading process starting
: with N**7(0) = N(0), whereN(0) is a random variable with
1), (7 7 ’
and by (67), (75), and (79) we obtain the stationary distributio®®. We assume all fading processes

Denotingé = min{é;, 62}, then by (72) we obtain

PP <2 exp {_E [6 — log(1 +p)]} _ s.tart.withN(T)(O) =N(©0), T =1, 2,T. .. The initial sojourn
’ 2 time in stateV (0) of fading proces® *” is given byr;(N(0)),
Therefore, when the channel fading states are;inthe overall Whererr(S;) < ExponentialrrA(S;)),j =0, 1, ..., N—1.

probability of decoding eerPF(T)((I)l) for the two users is The scaling constamt determines the fading speed for process
ND v§ > 0 fixed, by selecting an appropriate decreasing

T T
PI)(®y) < Pf, P+ Pe(,, } sequencdrr 5, whererp — 0 as? — oo, we can have

iz !
§3-exp{—?[5—108(1+P)]}- Pr(VT, 7p(8;) >T) > 1—¢, 0<j<N-1. (80)
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SinceR € C,...(P), we can choose for each a code of channel, and a sequence of codes satisfying the power constraint
size2? . 2TR ... 9T R for which the probability of error {V;(Sx)}Z, . It follows that
p(T2 under fading proces¥ ‘™ goes to zero a¥ — oc. Let
{XT(n)}T_, denote a random selection of codewords from

the codebook for thé/ users and 'epj(T)(”) be the transmit \yhere) denotes the power allocation policy that assigns power
power for Userj (1 < j < M). Note that{X ")(n)}2_, can V;(8}) to Userj (1 < j < M) in channel stateS, and

be chosen according to the fading procéé@). ForO0 < k< Cep(,, -) is as given in (2).

N — 1, let 2(S}) be the subset of the sample space on whichy P ¢ F,¥n € N, define

N(0) € 8, andVT, 7(85x) > T. Let @ be an independent

R e Ccp (n'(Sh), V), VO<E<N-1 (81)

random variable uniformly distributed df, 7. For1 < j < Cil(n, P)=Cep(n!(81),P),  ifneSy, 0<SESN-1.
M, define DenoteFy, 5 as the set of all power control policies that satisfy
Vi(Sy, T)=Eq [P;T)(Q)‘ Q(Sk):| ';he_ power constrain{% and are piecewise constant on each
ading stateS, 0 < &k < N — 1. DenotePy s as the power
Wy(S, T)=Eo [P;T)(Q)‘ [N(O)ESk]—Q(Sk)} allocation policy that assigns powé" °(n) to User;j (1 <

Jj < M) in each fading state, where
Z;i(8k, T)=V;(8r, T) Pr{VT, 70 (81) >T|N(0) €Sy} N_1

+W;(8k, T)Pr{IT: 70 (S%) < TIN(0)€ Sy} pj\":é(n) = Z V;(Si)1[n € S4].

. . k=0
Then the power constraint is thaf’ _ _ _
Thus,Py s € Fn,s. SinceVn € N, there exists a fading state

N—-1 M
_ S, (0 < k < N —1)such thate € S}, from (81) and the
‘ (S <P I (N
Z p(Sk) Z Zi(Si, T) s P definition ofC(CAD)(-, -) we know that, for any > 0

k=0 j=1
According to (80), we have VYneN, Re 5(01;;)(11, Pn,s)-
%—:1 (50) i ( ) P It follows that
p(S} V; S, T) < ——. (N
i purt 1-¢ Re |J () Cohm. P

.. . PCFN neN
By the bounded convergence theorem, itis clear that there exists v

a convergent subsequence along which if taking the limit weghereFx = Fi, o. Thus,
obtainforl < j< Mand0O< k< N -1

— —(N
CaoP)S | [ Tt im, P). (82)
Vi(8k, T) — V;(81), asT — oc. PEFN nEN
Therefore Now combining (82) with the achievability result which indi-
cates that
N—-1 M ﬁ
> P8k Y VilSk) £ 75 U N Py | () Conn, P) C Crano(P)
k=0 j=1 PEFN neN PEF neN
Now we define a new fading proces by we obtain
N-1 y5l AV)
CCD("’7 7)) g Czero(P) g c (In‘v 7))
N(n) =" 1[N(0) € SiJn!(S) Pg ,.DN pgqf >
k=0
Since the lower and upper bounds convergévas— oo, it is
where clear that
n'(81) = [0} (1), nb(8i). ... nhy(S0)] CooelP) = |J (] Conln, P). =
and PCF nCN
ﬂé’(sk)é%(k,j), 1<j<M.

. , ) . B. Necessary and Sufficient Condition for Equations in (8) to
Note that conditioned oV (0), the fading process is determin-j, e positive Solutions

istic. VO < k < N — 1, let g(T]|Q(S%)) be the conditional
probability of error for codeX ™ in the new fading channel.
Then, obviously

We show thatlet A > 0is the necessary and sufficient condi-
tion for the M linear equations in (8) to have positive solutions
for all P*™(n) (1 <4 < M) in every fading state.

p(T) = p(QSy))q(T|QSk)). Necessary ConditionSince the equations in (8) are equiva-
lent to
By assumptionp(T) — 0 asT — oo. Thus,q(T|Q2(Sx)) — 0

asT — oo. But conditional onf2(S}), we have a constant A-P™(n) = Bn
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if (8) has a solution for each statg thendet A # 0 so that For0 < p < 1/2
the inverse of4 exists and the solution t8™*"(n) is as given

in (10). Furthermore, iP™™(n) > 0[ie, V1l < i < M, <i+]f_1> p1-p)< Z 2i k=15 (1 _p)k
PP (n) > 0] for any givenn > 0, then every component of ;7711 t imhtril
A~1 must be nonnegative. ka1
Define the cofactor matrix — L 2k =L(1—p)*
L 1-2p
cof A= [(—1)"" det 4;] , i,j=1,2 ..., M (2p)+
_ _ k
whereA;; is the(M — 1) x (M — 1) matrix formed by deleting - 2(1-2p) lp(1=p)I"
thesth row and thejth cqurrlm of A. Then Becauselp(1 —p) < [p+ (1 — p)J2 = 1
71 = — T B .
AT = qopa (ot A (83) Jim [4p(1 - p)I* =0.
Giveni < j fixed, since each component of the— 1)th row of ) .
A;; is —1, by subtracting thé;j — 1)th row from all other rows Therefore, for fixed integer
e . . > i+ k—1 .
of A_”, it is easily seen that the expansion by ftrecolumn of lim Z <L + ‘ ) Pl —p) =0. (87)
A“ IS k—oo | ?
1=k+r+1
det A;; = (—1)1+ H (arr + 1). For a given positive integet, we know that [13]
ki, >, i—i—k—l) 4 x
: p(l-p)=1 (88)
Thus, ; < t
(=1)7 det Aij = H (e +1) > 0 (84) Thus, from (87) and (88) we obtain
i k+r .
ki, j . i+k—1 i I3
lim . p'(1—p)
sinceV1 < k < M, axi, > 0. It can be similarly shown that *=> i=g ’
(84) holds for: > j as well. Therefore, if every component of . o0 itk —1\ .
A~! must be nonnegative, from (83) we know tdat A > 0. =1- lim > < ; )P (1-p~=1 10O
Sufficient Condition: Denote the cofactor matrix afi as i=ktr+tl
cof A=C= (¢4 7=1,2,..., M, then as shown above
.y o D. Proof of Lemma 2
Cij = (—1)' 7 det A“ > 0, Vi j. (85) .
) i Since forn = 1, 2, ...
Sincevl < k < M, axr, > 0, and the expansion by tHgh nol g
column of A is o0 ~*(p — 1)! —, if x>0
M / e tdr =1 (=) i=o ! ! (89)
detA:akk-ckk— Z Cilk * (ﬂ—l)!, ifz=0
i=1, i#k we have
if det A > 0, then / pi( ) iy = m 7B, =12
1 M 0 Vi m—1
crp =— - | det A+ > ca wherep;(v;) is given in (20). Thus,
Kk i=1, ixk m
>0, VI<k<M. (86) Da(m) + Da(m) = =5 m B (%0)
Therefore, combining (85) and (86) we get Dy(m) + D.(m) = m . T2 B. (91)
m—
cij >0 V1<i,j< M. In (20), letv; = mm; B;, then
By (83) it is clear that every component Afl must be posi- (0r) = 1 me—1 —u, i—1.9 92)
tive. Consequently, from the expression " (n) in (10) we pi\vi) = (m — 1)! i ¢ T
conclude thal™"(n) > 0 in every fading state (n > 0). [ gypstituting (92) into (22) and (23) and using (89), we have
C. Proof of Lemma 1 Dy (m)
. . P RO e mm B
Since fork > 0,¢ > 0, :/ /ﬁ 5 Ull p1(v1)p2(ve) duy dua
i k— . 0 == s
%l<z+k—1> e n2B
=2 B i
=\ S . mp, 2 (B
we have = / mBe TP 1
0 m—1 . 1

<'i +k— 1) < gitk—1
; <

X P2 (112) dvg
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m—2 L +m— 1 7. B [ N mo
B : = i dF
711 Z — 1 14! <ﬁ1B+ﬁ2B) Z /nEA(mO) ; viu;d (n)

mo=1
y n.B m (93) N mgo mo
v S ()
mo=1 j=1 neL;(mo,s*)
) :
oo oo mﬁgB N mo mo . .
= L Jus, o p1(v1)pa(ve) dvy dug + Z Z Z vty — v 7" —vi—1 (1 —77)
nz B mo=1 j=1 Li=1
[ - _ (— ) N x Pr(L;(mo, 5%)). (95)
_m mnoB
_ / Z "2 pa(v2)dva W now show from (60)~(63) thatn € 2,
0 o 2
YD Vil .
— < 1, 1=2,3, ..., m. (96)
m 7 U; Vi—
m ({+m—2) n B !
T m—1 2B Z (m—2)1i! \ 7B+ n.B Sincez; > =z, i€, 3t > fz , (96) is true fori = 2.
=0 Assuming that when = k&, (96) is true, or equivalently,
< 7o B )(ml) (0 Mol < 2k then becausey.sy < 2, we have
ﬁlB +ﬁ2B ) )\k-l—l — )\k )\k — )\k—l )\k
\é\g\wlznﬁlB < 7B, applying Lemma 1 to (93) and (94), we — < or— < .
That is,
lim D,(m)=mDB
m— oo )\k+1 < ﬁ
n}I_I)ICl)O Dy(m) =n2B. Uhpl Uk
Combining these limiting expressions with (90) and (91) wehus, wheni = k + 1, (96) is also true. So (96) is true for all
obtain i =2,3, ..., mg. Continuing the derivation in (95), we have
nllféo De(m) =0 a) Vn € A(my), sincet > z = f—i from (96) we know
lim Dd(m)IO that\V/L = 1 2 , Mo, % > I)‘—?, |e U; > )\73*
m—0o Therefore, the f|rst term in (95) will be
E. Proof of Theorem 3 N Ll
In the following, V1 < mg < N,V1 < j < my, for sim- = Jncaimo)

plicity we denote);(n), v;(n), z;(n), andu;(n) as;, v;, z,,
andu;, respectively.

Formo=1,2, ..., N,Vn € Q.,, let > Z / AS“ dF (n)
mo=1 €A(mo) 1= 1

wt Sl g, ]
U é [U’la U2, o0y U’nlo]' Z / )\77117 dF(n) (97)
Sincew* satisfies mo=1 Y neA(mo) = 1
Z Enca iv b) Vn € Lj(mo, s*),j = 1,2,..., m, sincez; > L+ >
mo=1 e " Zj+1, W€ have
N mo . Vj+1 > v+ ()\j+1 — )\j)s*
T 0+ (1—7%)v;—1]| Pr(L; (myg, s* *
n;; " Jeimal PriLsmo, 57) vi1 > v+ (A1 — A)s™
_P Fori # j, 1 < i < my, denoting
Yu # w*, by denoting o A Aj— A
Uy — U

Ame) 2 dnine Qpy,
(mo)= sn:m € Qpy ey >z it is easy to verify that;; > 2,41 by using (96). Since
We have Tj—1 = 2, Tipn = Zip1, Ve = 1,25 = 1,

N mao Vk=7+14j+2, ..., mg, we have
Z EnEQmO Z VU

mg=1

N mq
= E Enca,, E Vil
=1

mo=1

1
-Ti>_*>-77k-
S

Z Eneﬂm0

mo=1

["’0 ] Therefore¥i # j, 1 < i < my,

sz

v > v+ ()\Z — )\J)S*



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 3, MARCH 2001

1126
In (95), the second term will be [ mg mo
N mq mq = Z Z Z )\ZS*UIZ o )\‘18*(1 o UIJ)
Z Z/ <Z vt — ) Fn) mo=1j=1 | \asty,i=1
mo=1 j=1 €L ;(mg, s*) R
+ (A= A-1)(1=7")s™ | Pr(L;(mo, 7))
> Z /
mo=1 j=1 nel; (rng, St) N mg mq
™o = Z Z Z )\Zs*uz —i—)\js*(uj — 7'*)
Z [v; + (A — Aj)s™ | + vju; — v, | dF(n) mo=1 j=1 i#j—1, i, i=1
i#j,i=1
N mo mo + At = (1 =77
=> > / > (= A)stus | dF(n)
mo=1j=1 /nCLi(mo, ) \ i1 x Pr(L;(mo, 5))
/ N mg ™Mo
’nlg—l j=1 ncl; ('rnO,s ) =S Z Z Z )\zuz +)\j(uj — T )
mo=1j=1 i#j—1,1#£5,i=1
mo
Z )\78*11,7 — )\js*[l — U,j] dF(n) + )\j—l[uj—l _ (1 _ T*)]
ij,i=1
N x Pr(L;(mq, s*)). (99)

=% Z Z /nthj(rng,s*)

mo=1 j=1

Z A — N1 —uy] | dF(m).
i, i=1
¢) Vn € Lij(mo, s*),j = 1,2, ..., mq, sincet =

x;_1, we have
vj1 =i+ (A1 = A)s"
Becaus&/i=1,2,...
1
Ti> — > Tk
S
Vi #4j—1,jandl <4 < mg, we have
v > v+ ()\i — )\j)s*.
Therefore, in (95), the third term will be

N mg mq
Z Z Zviui—va*—vj,l(l—T*)
mo=1j=1 Li=1
x Pr(L;(mg, s*))
N mg mg
>33 DD i (= AT vy
mo=1j=1 |izj,i=1

—v; 7 — v 1(1 = 7%) | Pr(L;(mo,

N mg

=22

mo=1 j=1 |i#j,i=1

x Pr(L;(mo, 5*))

mo

=2 Vk=j+1,542, ...,

8*)) Z Eneﬂm0

Therefore, substituting (97)—(99) into (95), we have

mo
©8) S B [z v
mo=1
2 = N mo
mo=1 "EA("lO) i=1
mo mo
mo, +Z/ > Nui=Aj[l-w] | dF(n)
nCL;(mg,s*) i, i=1
mq mq
+Z Z i +)\j,1[u]',1—(1—7'*)]
G=1 | \iggj—1,ij,i=1

+)\j(u]' —T*) Pr(f/j(mo, 8*))

i
- Z Ene Qg

mo=1

{ Z EnEQmo

mo=1

el

£

Thus, if

lgo:)\ u;

> Z Ene Qg

mo=1 mo=1

then

> (A=) s ui+ (v v (1-77)

N
E EInCQmO

mo=1

mo
E ViU
=1
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which means that does not satisfy the total power con- [4] D. N. Tse, “Optimal power allocation over parallel Gaussian broadcast

straint. Thereforey v # u*

mo mo

N N
Z Eneq.,, Z)\iui < Z Ere,., Z)\Zuf . O
=1 i=1

mo=1 mo=1
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