
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 3, MARCH 2001 1103

Capacity and Optimal Resource Allocation for Fading
Broadcast Channels—Part II: Outage Capacity

Lifang Li, Member, IEEE,and Andrea J. Goldsmith, Senior Member, IEEE

Abstract—In this two-part paper, we study three capacity re-
gions for fading broadcast channels and obtain their corresponding
optimal resource allocation strategies: the ergodic (Shannon) ca-
pacity region, the zero-outage capacity region, and the capacity re-
gion with outage. In Part I, we obtained the ergodic capacity region
of the fading broadcast channel under different spectrum-sharing
techniques. In this paper, we derive the outage capacity regions
of fading broadcast channels, assuming that both the transmitter
and the receivers have perfect channel side information. These ca-
pacity regions and the associate optimal resource allocation poli-
cies are obtained for code division (CD) with and without succes-
sive decoding, for time division (TD), and for frequency division
(FD). We show that in an -user broadcast system, the outage ca-
pacity region is implicitly obtained by deriving the outage proba-
bility region for a given rate vector. Given the required rate of each
user, we find a strategy which bounds the outage probability region
for different spectrum-sharing techniques. The corresponding op-
timal power allocation scheme is a multiuser generalization of the
threshold-decision rule for a single-user fading channel. Also dis-
cussed is a simpler minimum common outage probability problem
under the assumption that the broadcast channel is either not used
at all when fading is severe or used simultaneously for all users.
Numerical results for the different outage capacity regions are ob-
tained for the Nakagami- fading model.

Index Terms—Broadcast channels, capacity region, fading chan-
nels, optimal resource allocation, outage probability.

I. INTRODUCTION

I N mobile wireless communications, the channel character-
istics vary with time. By applying optimal dynamic power

and rate allocation strategies, the ergodic (Shannon) capacities
with channel side information (CSI) at both the transmitter and
the receiver of a single-user fading channel, a fading multiple
access channel (MAC), and a fading broadcast channel under
different spectrum-sharing techniques are obtained in [1], [2],
and Part I of this paper,1 respectively. This kind of capacity is
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1We see from Part I that the optimal power allocation problem under code
division (CD) with successive decoding for the fading broadcast channel is very
similar to that for the parallel Gaussian broadcast channel discussed in [3], [4].

a measurement of the long-term achievable rate averaged over
the time-varying channel. For real-time applications that cannot
tolerate the variable delays exhibited by the coding strategy
that achieves the ergodic capacity, we have to consider the in-
formation rate that can be maintained in all fading conditions
through optimal power control. In order to maintain a constant
rate during severe fading, much power is needed. Therefore,
given an average power constraint, the channel fading may be
so severe that no constant rate greater than zero is possible. For
example, the maximum instantaneous mutual information rate
that can be supported continuously on the single-user Rayleigh
fading channel with a finite average transmit power constraint is
zero [5]. However, if we allow some transmission outage under
severe fading conditions, the maximum instantaneous mutual
information rate that can be maintained during nonoutage will
increase. Finding the optimal resource allocation strategy that
achieves the outage capacity with a given outage probability is
tantamount to deriving the strategy that minimizes the outage
probability for a given rate vector. In [6], the minimum outage
probability problem is solved for the single-user fading channel.
In addition, it is shown that under a long-term average power
constraint, the optimal power allocation depends on the fading
statistics through a threshold-decision rule: no transmission is
allowed in a fading state where the required power is above a
threshold value.

For an -user flat-fading broadcast channel and a given rate
vector , we consider a similar minimum common outage prob-
ability problem under the assumption that the broadcast channel
is either not used at all when fading is severe or is used simulta-
neously for all users when fading is tolerable. Such a common
outage transmission strategy might be used in systems trying
to minimize probability of detection or systems where all users
must obtain information simultaneously for it to be useful (e.g.,
for a coordinated mission of the users). Under the more com-
plex assumption that an outage can be declared for each user
individually, we obtain an optimal power allocation policy that
achieves boundaries of outage probability regions for time di-
vision (TD), frequency division (FD) and code division (CD)
with and without successive decoding. This optimal power al-
location strategy is a multiuser generalization of the single-user
threshold-decision rule. Such a decision rule is a simple and in-
tuitive method to implement optimal resource allocation in prac-
tice.

As a special case, if no outage is allowed during the trans-
mission, the outage capacity with a given outage probability
becomes the zero-outage capacity. In [5], with an average
power constraint for each user, under the assumption that
CSI is available at both the transmitters and the receiver, the
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zero-outage capacity region2 and the optimal power allocation
scheme are derived for the fading MAC by exploiting the
special polymatroidal structure of the region. It is shown that
the boundary of this capacity region can be achieved through
successive decoding and applying a greedy optimal power
allocation scheme. The successive decoding order depends on
both the current fading state and the power price for each user.

In this paper, we first obtain directly the zero-outage capacity
regions and the associate optimal resource allocation strategies
of an -user flat-fading broadcast channel for TD, FD, and CD
with and without successive decoding. These results will later
be used in our derivation of the more general outage capacity
regions. For CD with successive decoding, we will show that
the superposition coding and successive decoding order depends
only on the current fading state. For the Nakagami-fading
model [7] we prove that the limiting zero-outage capacity region
converges to that of the Gaussian broadcast channel for CD with
and without successive decoding when . These results
about the zero-outage capacity region and the outage capacity
region are then extended to frequency-selective fading channels.

Part II of this paper is organized as follows: the flat-fading
broadcast channel model is briefly described in Section II. In
Section III, the zero-outage capacity regions are derived for each
of the different spectrum-sharing techniques. We derive strate-
gies to minimize the common outage probability and achieve the
boundary of the outage probability region for TD, FD, and CD
with or without successive decoding in Section IV. In Section V,
we extend our flat-fading model to the case of frequency-selec-
tive fading. Section VI shows numerical results, followed by our
conclusions in the last section.

II. THE FADING BROADCAST CHANNEL

We consider the same discrete-time -user flat-fading
broadcast channel model as in Part I, where the signal source

is composed of independent information sources
and the broadcast channel consists ofindependent fading
subchannels. The time-varying subchannel gains are denoted as

and the Gaussian noises of these subchannels are denoted as
. Let be the total average transmit

power, the received signal bandwidth, and the noise
density of , . Since the time-varying
received signal-to-noise ratio (SNR) ,

by denoting3 , we have
.

For a slowly time-varying broadcast channel, we assume that
the , are known to the transmitter and all

receivers at time. Thus, the transmitter can vary the transmit
power for each user relative to the noise density vector

2The zero-outage capacity is called “delay-limited capacity” in [5], since the
coding strategy that achieves the zero-outage capacity has a delay that is inde-
pendent of the channel variation.

3See Part I for a discussion of the caseg [i] = 0.

subject only to the average power constraint. For TD or
FD, it can also vary the fraction of transmission time or
bandwidth assigned to each user, subject to the constraint

for all . For CD, the superposition code can
be varied at each transmission. Since every receiver knows
the noise density vector , they can decode their individual
signals by successive decoding based on the known resource
allocation strategy given the noise densities. In practice, it
is necessary to send the transmitter strategy to each receiver
through either a header on the transmitted data or a pilot tone.
We call the joint fading process and denote as the
set of all possible joint fading states. denotes a given
cumulative distribution function (cdf) on .

III. Z ERO-OUTAGE CAPACITY REGION

For an -user flat-fading broadcast channel with stationary
distribution and a total average power constraint, we give
the following definition for the zero-outage capacity region

, which is similar to that of the delay-limited capacity
region for the MAC in [5].

Definition 1: For a given rate vector , , ,
, if , there exists a coding delay such that for

every fading process with stationary distribution, there exist
codebooks and a decoding scheme with probability of error

, then . Moreover, the codewords can be
chosen as a function of the realization of the fading processes.

In this section, the zero-outage capacity region of an-user
flat-fading broadcast channel is obtained for CD with and
without successive decoding and for TD. For FD, using the
same argument as in [8], it can be easily shown that the
zero-outage capacity region is the same as for TD and the
optimal power and bandwidth allocation policy for FD can be
derived directly from that of TD. We will discuss extensions of
the results obtained in this section to the case of frequency-se-
lective fading channels in Section V.

A. CD

For an -user broadcast system, we first consider superposi-
tion coding and successive decoding where, in each joint fading
state, the channel can be viewed as a degraded Gaussian broad-
cast channel with noise densities and
the multiresolution signal constellation is optimized relative to
these instantaneous noises. In this case, the users with smaller
noise densities will subtract the interference from the users with
larger noise densities. Given a power allocation policy, let

be the transmit power allocated to Userfor the joint
fading state and denote as the set
of all possible power policies satisfying the average power con-
straint , where denotes the expec-
tation function. For simplicity, assume that the stationary distri-
butions of the fading processes have continuous densities,4 i.e.,

, .

4If Prfn = n g 6= 0 for somei; j then, in statennn, Useri and Userj can
be viewed as a single user and superposition coding and successive decoding
are applied toM � 1 users. The information for Useri and Userj are then
transmitted by time-sharing the channel.
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Theorem 1: When the transmitter and all the receivers have
perfect CSI, the zero-outage capacity region for the fading
broadcast channel is given by

(1)

where is the capacity region of the time-invariant
Gaussian broadcast channel. That is

(2)

where denotes the indicator function ( if is true
and zero otherwise).

Proof: See the Appendix, Section A.

For a given rate vector and a fading state , from (2)
we can calculate the minimum required power

that can support the rate vector. Specifi-
cally, let be the permutation such that

Then according to (2), we have

.

Thus, to support rate vector, we require

The minimum power required to supportfor each user is

Consequently, the minimum required total power
that can support in fading state is

(3)

For a given , if , then by (1), the minimum
required average power satisfies the total av-
erage power constraint

(4)

where is given by (3). If is on the boundary sur-
face of , then the equality in (4) is achieved. Note that
for the single-user case , if is on the boundary of

, from (3) and (4) we have

Thus,

which is the same as derived in [2].

B. CD Without Successive Decoding

In CD without successive decoding, each receiver treats the
signals for other users as interfering noise. For a given power al-
location policy , let denote the transmit power allocated
to User in the state and let denote the set of all possible
power policies satisfying the average power constraint

Then the achievable zero-outage rate region for CD without suc-
cessive decoding is given by

(5)

where is the rate region of the time-invariant
Gaussian broadcast channel using CD without successive de-
coding:

(6)

The proof of the achievability follows along the same lines as
that for the capacity region of CD given in the Appendix, Section
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A and is therefore omitted. Note that in this paper, we refer to
this achievable rate region as the zero-outage capacity region
for CD without successive decoding, though we do not have a
converse proof since the converse only applies to the optimal
transmission strategy, which is CD with successive decoding.

For a given rate vector and a fading state, we know from
(6) that

(7)

Denoting as the minimum power
required for User in order to support rate vector, by (7) we
have

Therefore, must satisfy

(8)

By defining matrix , where

if

if
(9)

we prove in the Appendix, Section B that thelinear equations
in (8) have positive solutions for all in
every fading state if and only if . Assuming that

, it is clear that the explicit solution to

is

(10)

where denotes the inverse of matrixand denotes the
transpose of vector. Thus, the minimum required total power

is

(11)

For example, in the two-user case , if , i.e.,
if , the solution for and

will be

Thus,

(12)

Therefore, a given if the average power con-
straint in (4) is satisfied with given by (11). If is
on the boundary surface of , then the equality in (4) is
achieved.

C. TD

Now we consider the TD case where, in each fading state
, the information for the users will be divided and sent in

time slots which are functions of. For a given power and time
allocation policy , let and be
the transmit power and fraction of transmission time allocated to
User , respectively, for fading state, and
let be the set of all such possible power and time allocation
policies satisfying

and

(13)

Then the achievable zero-outage capacity region for the variable
power and transmission time scheme is

(14)

where is the rate region of the time-invariant
Gaussian broadcast channel using the TD technique

(15)

The proof of the achievability follows along the same lines as
that for the capacity region of CD given in the Appendix, Section
A and is therefore omitted. Note that as in the case of CD without
successive decoding, we refer to this achievable rate region as
the zero-outage capacity region for TD, though we do not have
a converse proof due to the fact that the converse only holds
for the optimal transmission strategy for this channel, which,
according to Theorem 1, is CD with successive decoding.

For a given rate vector and a fading state, from (15) we
have

Therefore, the required total power of the users
satisfies

Let

and let be the minimum required total power of the
users for fading state, then

subject to:

(16)
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By applying the Lagrangian technique, we can find the op-
timal which achieves in (16). For example, in
a two-user system , let

and let be the solution to the nonlinear equation

Since it is easy to verify that for , , we
have

Therefore, if in (16) satisfies (4). If
is on the boundary surface of then the equality in

(4) is achieved.

D. The Limiting Zero-Outage Capacity Region for Nakagami
Fading

The Nakagami- fading model [9] can be used to describe
different fading conditions ranging from Rayleigh
to Rician channels with strong line-of-sight components. In
fact, there is a direct mapping from the Ricianfactor to the
Nakagami parameter. The Nakagami distribution also has a
more tractable mathematical form than the Rician distribution.
As the fading parameter goes to infinity, the
Nakagami- fading channel converges to an additive white
Gaussian noise (AWGN) channel. Therefore, it is expected that
the limiting zero-outage capacity region of the Nakagami-
fading broadcast channel converges to the capacity region of an
AWGN broadcast channel as . In this section, we prove
this to be true for CD with and without successive decoding
in a two-user system. These results can be easily extended to
more users.

1) CD with Successive Decoding:For a two-user broadcast
channel with fading, given rate vector , we know
by (3) that the minimum required total power to supportin
fading state is

if

if .
(17)

If is on the boundary surface of in (1), by substi-
tuting (17) into (4) with equality, we obtain

(18)

Let and be the average noise variances of the channels
for User 1 and User 2, respectively. Assuming that the signal

power is normalized to, the SNR of User for a
given channel state is

(19)

We use the following lemma to show that for Nakagami-
fading, as , (18) converges to the boundary equation
for the capacity region of an AWGN broadcast channel with
subchannel noise variances and .

Lemma 1: Given and a fixed integer

Proof: See the Appendix, Section C.

For Nakagami- fading, the probability density function
(pdf) of in (19) is

(20)

Thus, from (18) and (19) we know that

(21)

where

(22)

(23)

(24)

(25)

By applyingLemma 1, we obtain the following lemma.

Lemma 2: For Nakagami- fading, assuming that

Proof: See the Appendix, Section D.

Theorem 2: As , assuming that , the
boundary of the capacity region for Nakagami-fading broad-
cast channel (21) becomes

(26)

which is the same as the boundary of the capacity region for the
AWGN broadcast channel using CD with successive decoding.

Proof: Applying Lemma 2 to (21) directly yields (26).
For the two-user degraded AWGN broadcast channel with noise
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variances and , the capacity region for
CD with successive decoding is [10], [11]

(27)

Therefore, if is on the boundary of the capacity region (27),
i.e., all the equalities in (27) are achieved, then

which means that also satisfies (26).

2) CD Without Successive Decoding:For a two-user broad-
cast channel with fading, given rate vector , we
know by (12) that the minimum required total power to support

in a fading state is

(28)

If is on the boundary surface of in (5), substituting
(28) into (4) with equality we obtain

(29)

where , , , and are as defined in
(22)–(25) for the Nakagami- fading channel. From Lemma 2
we know that

Thus, as , (29) becomes

(30)

which is the same as the boundary of the capacity region for
the AWGN broadcast channel using CD without successive

decoding, since for the two-user degraded AWGN broadcast
channel with noise variances and , the
capacity region for CD without successive decoding is [8]

IV. OUTAGE CAPACITIES AND MINIMUM OUTAGE PROBABILITY

In the previous section we have obtained the zero-outage
capacity region of an -user flat-fading broadcast channel,
where the transmitter was required to maintain a constant
rate for each user no matter how severe its fading. We now
consider the outage capacity region for this channel, where the
transmitter may suspend transmission over a subset of fading
states with a given probability. Specifically, for a given average
power constraint , the outage capacity regions
and are defined as follows.

Definition 2: Assuming that the transmission to all users is
turned on or off simultaneously so that the outage probability
for each user is the same (common outage probability), for a
given , the outage capacity region
consists of all rate vectors which can
be maintained with a common outage probability no larger than

under the power constraint.

Definition 3: Assuming that the transmission to each user is
turned on or off independently so that the outage probability for
each user may be different, for a given probability vector

, the outage capacity region
consists of all rate vectors which can
be maintained with the outage probability for Userno larger
than under the given power constraint.

With these definitions, we wish to find: a) the optimal
resource allocation strategy that achieves the boundary of the
outage capacity region ; b) the optimal resource
allocation strategy that achieves the boundary of .
The first optimization problem is equivalent to deriving the
resource allocation policy that minimizes the common outage
probability for a given rate vector and we have the following
definition for the corresponding minimum common outage
probability .

Definition 4: Assuming that the transmission to all users is
turned on or off simultaneously, the minimum common outage
probability is the smallest common outage proba-
bility with which the rate vector can be maintained under the
given power constraint .

The second optimization problem is equivalent to obtaining
the resource allocation policy that achieves the boundary of the
outage probability region or the usage probability re-
gion defined as follows.

Definition 5: Assuming that the transmission to each user is
turned on or off independently, for a given rate vector, the
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outage probability region consists of all outage prob-
ability vectors for which can be maintained for the
users under the given power constraint.

Definition 6: The usage probability region is
the complementary region of the outage probability region

, i.e., if a probability vector

then the probability vector

where

With the above definitions, it is easily seen that given
, the outage capacity region is implic-

itly obtained once the minimum common outage probability
for a given rate vector is calculated under the

optimal resource allocation, since , we can determine that
if , and

otherwise. Similarly, given a probability vector , the outage
capacity region is implicitly obtained once the
boundary of the outage probability region [and so
the whole region ] for a given rate vector is derived
through the optimal resource allocation, since , we can
determine that if , and

otherwise. We now derive the minimum
common outage probability and the corre-
sponding optimal resource allocation strategy in Section IV-A.
We obtain the outage probability region boundary of
as well as the optimal resource allocation strategy in Sec-
tion IV-B for the case of independent outage problems.

A. Minimum Common Outage Probability

Certain systems might require an outage to be declared si-
multaneously for all users, either to minimize the probability
of detection or in situations where users are coordinating based
on the transmitted information. Under the assumption that an
outage is declared for all users simultaneously, the minimum
common outage probability problem for the-user broadcast
channel is similar to that of the single-user case [6]. For each
joint fading state and a given rate vector, the minimum re-
quired total power for the users using CD with
or without successive decoding or using TD can be calculated
as in (3), (11), or (16), respectively. Thus, , we define
the sets of fading states and as

(31)

(32)

The corresponding average power over the two sets are

(33)

(34)

For a given total power , let

(35)

(36)

By using [6, Lemma 3], for each fading state, the optimal
power policy that minimizes the common outage probability is:
if , no power is assigned to any user; if ,
a total power of is assigned to the users and the
power to each user is allocated as described in Section III; if

but , then with probability , is
assigned to the users and with probability , no power is
assigned to any user. The minimum common outage probability

is

and (37)

where denotes the probability function.

B. Outage Probability Region

We now consider the case where an outage can be declared
independently for each user. From Definitions 5 and 6, it is clear
that for a given rate vector and an average power constraint

, deriving the boundary of the outage probability region
is equivalent to deriving the boundary of the usage

probability region . We will require the following
definition and lemma to derive the boundary of and
the corresponding optimal power allocation that achieves this
boundary.

Definition 7: For a given rate vector

assume that rate is maintained with probability ,
. Denoting

the total usage reward is

where with , and is the relative reward
if the information for User is transmitted.5

Lemma 3: The usage probability region of the
fading broadcast channel is convex.

This lemma can be easily shown to be true by using the time-
sharing technique. Therefore, since is convex,

with , a usage probability vector
will be on the boundary surface of if it is a solution to

(38)

where the total usage reward is defined in Definition 7.
For any given fading state, dif-

ferent combinations of the users may be transmitting over the

5Also, � can be viewed as the relative penalty if an outage is declared for
Useri.
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channel. We will represent each of these possible com-
binations of users as a vector
equal to the binary expansion of, . For each
vector , if , then
User is transmitting; otherwise, Useris not. For

, we define the set of active users relative to as

denotes the empty set (no active users). For any fading state
, suppose that the broadcast channel only transmits informa-

tion to users in the nonempty set. Then, as discussed in Sec-
tion III, we can calculate the minimum total power

required to support a subvector of
composed of the required rates of the users inunder those
different spectrum-sharing techniques. For the fading state,
let denote the probability that the broadcast channel
transmits information to the subset of users in. Then obvi-
ously

For a given rate vector and a fading state, let
be the probability that information is sent to User

(39)

where denotes the indicator function. Then the average
outage probability of User is

For a given fading state, according to (39), the total usage
reward is

(40)

where the reward for transmitting information to the users in set
is

(41)

Thus, the total usage reward averaged over the time-varying
channel is

(42)

Since in fading state , the total required minimum power to
support with usage probability for each user

is

(43)

the total required minimum average power to achieve
will be .

For a given rate vector , we wish to solve the maximiza-
tion problem (38), which is equivalent to finding the optimal

, that maximizes
in (42) under the total power constraint. That is, we can rewrite
the maximization problem (38) as

subject to:

and

(44)

where

with , and are as given in
(40) and (43), respectively, and is the total average transmit
power. The maximization problem (44) can be decomposed into
the following two problems.

1) Assuming that , is the total average power
assigned to the sets of users in state, i.e.,

we must choose so that the total usage reward in
state is maximized. That is, we must find

subject to:

and

(45)

where is given in (41).

2) After we obtain the expression by solving (45), the
remaining problem is how to assign the total power
of the sets of users for each stateso that the total
usage reward averaged over all fading states as expressed
in (42) is maximized. That is

subject to
(46)

where is the Lagrangian multiplier.

We solve the maximization problem (45) by first defining the
permutation such that
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For simplicity, we denote the reward and power needed for
transmitting information to the users in set as and ,
respectively, where

(47)

Note that the power ’s are all functions of rate vector and
fading state . For a given state , , if that
satisfies

(48)

or satisfies

(49)

then we will get a larger reward by assigning the same
power to set instead of set , .
Specifically, if (48) is true, since for , if

, then obviously by transmitting information to
users in set , we need more power and get less reward
than transmitting information to users in set . If (48)
is true and then, assuming that

, the reward we get from assigning
power to set with a fraction of the
transmission time in state is and the power
needed is , while the reward we get
from the same power by assigning power to set
with a fraction

of the transmission time will be , which is larger
than by (48). Moreover, the fraction of trans-
mission time needed for set is less than that for set ,
since when

If (49) is true, it is obvious that . Thus, to obtain the
same reward , the set requires less power than
the set . Therefore, in order to get the largest reward under
the given power constraint, we do not consider assigning any
power to those sets for which satisfying either (48) or
(49). That is, we remove them from further consideration and
set .

For example, when and the relative values of ,
, , and , , are as shown in Fig. 1, where and
correspond to the reward and power needed for set

, respectively. It is obvious that . Thus,
if the available power and we assign it to set ,
the reward we can get is the straight line ; if
and we assign it to sets and by time sharing, the re-
ward we can get is the straight line . However, in both cases,
if we assign the power to set , we get a larger re-
ward which is indicated by the straight line . Thus, no power

Fig. 1. PowerP (nnn) versus rewardJ(P (nnn)) for N = 3.

Fig. 2. PowerP (nnn) versus rewardJ(P (nnn)) for three remaining sets of users.

should be assigned to set and defined in (45) is
as shown by the solid curve in Fig. 1.

Generally, for the remaining sets of users, it is possible that
there are still some sets to which no power should be as-
signed in order to get the largest reward. For example, assume
that the remaining sets are , , and , and the rel-
ative values of , , , and , , are as shown in Fig. 2.
From this figure we see that neither (48) nor (49) is satisfied for
any since and

However, it is obvious that no power should be assigned to set
, because a larger reward can be obtained when the same

power is time-shared by sets and instead of by sets
and , or by sets and .

In the following, we use an iterative procedure to find all
the sets in the remaining sets that should be assigned
no power and remove them from further consideration [i.e., let

]. An interpretation of this procedure based on
Fig. 2 will be given shortly.

Initialization: Let .

Step 1) Denote the number of remaining sets asand let the
permutation be defined such that for the remaining

sets

(50)
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Due to the removal criterion, it must be true that

(51)

Step 2) Let and . If ,
all the sets that should be assigned no power have been
removed and the procedure terminates; if , go
to Step 3).

Step 3) For , decrease and by and
, respectively. Do not assign any power to those

sets of users for which that satisfies

and remove them from further consideration [i.e., let
]. Also remove set . In-

crease by and return to Step 1).

In this procedure, we observe that in the first iteration, from
(50) and (51) it is clear that

Since for all , when the total average

power , we get the largest reward
by assigning it to set . That is, in (45), as shown in the
example in Fig. 26

if

and we store the index of set and the tangent
in and , respectively. Next we wish to identify those
sets for which that satisfies

(52)

and we do not assign any power to them since, for ,
, , and if (52) is true, on the Power-

Reward plane as shown in Fig. 2, point will be
under the straight line formed by connecting point
and point .7 Therefore, in (45)

if

where the index is given by

(53)

After removing those sets for which (52) holds
[i.e., let ] and also removing set ,
the index in the first iteration becomes of a new
permutation in the second iteration [otherwise, (53)
cannot be true] and is stored in , and the corresponding
tangent is stored in . In the second itera-
tion, similarly, the new index that satisfies (53) will be

6Note that in this example,G = 3 and�(i) = i, i = 1; 2; 3:
7In Fig. 2, point(v ; � ) is under the straight line formed by connecting point

(v ; � ) and point(v ; � ).

identified, and new set(s) for which (52) holds will
be removed, since the point(s) will be under the
straight line formed by connecting points and

, where satisfies (52). The new index
will become in the third iteration and be stored in ,
and the corresponding tangent will be stored in

. The iterative procedure continues until all the sets that
should be assigned no power have been removed and the curve
of in (45) is obtained by connecting the origin
and points , where is
the value of when the iteration stops ( ). That is,

for some
(54)

Note that from the iterative procedure, it is clear that

(55)

(56)

(57)

where

(58)

For example, in Fig. 2, if we execute the above three-step
procedure, we will have , , ,

, and . Therefore, from (54) we
obtain

which is exactly as shown by the solid curve in Fig. 2.
Once the curve is obtained, from (46) we know that

fixed, the optimal power satisfies
if the tangent of is continuous. However, in our case,

the tangent of is discrete and cannot be deter-
mined directly. Therefore, we will use the following theorem
to find the optimal for the re-
maining sets .

Before stating the theorem, we first define some additional
notations and parameters. In (55)–(58), the indexes
are all functions of . Therefore, we will refer to them as

and for simplicity, , we denote8

(59)

8Note thatf� (i)g are also functions of the given rate vectorRRR. However,
we omit the explicit dependence onRRR in their notations for simplicity.
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Thus, (55)–(58) become

(60)

(61)

(62)

and

(63)

Moreover, we define as the set of all fading statesfor
which the final value of the loop parameteris

when the three-step iteration procedure terminates. By de-

noting , , for we define
sets and as

Thus,

where is the set of all possible fading states. For a given total
average power constraint , define as

where

Therefore, , , finding the optimal
in (44) for the remaining

sets after the iterative procedure is equivalent to
solving the maximization problem

subject to:

and

(64)

where , .

Theorem 3: , , by denoting
as the solution to the maximization problem

(64), we have

a) if , then , ;

b) if , , then
, , ;

c) if , , then ,
, , ,

where satisfies

Proof: See the Appendix, Section E.

Note that this theorem is a generalization of [6, Lemma 3],
which corresponds to . Therefore,

, given the remaining sets after the
iterative procedure, Theorem 3 determines which set(s) of users
should be chosen for transmission by solving (64), since after
removing those users to which no power should be assigned,
the maximization problems (44) and (64) are equivalent and

In particular, the theorem indicates that, based on the total power
constraint, there is a threshold power levelwhich is important
in determining the optimal set(s) of users. Moreover, in fading
states of set , at
most two sets of users are chosen and the information for the
selected two sets are sent by time-sharing the channel. In each
of the other fading states, at most one set of users is chosen.
Therefore, if the cdf is continuous, with probability ,
at most one set of users is chosen in each state, since

, , . If is
discontinuous, may be larger than zero for some

and , and the probability that two sets of users are chosen
in some fading states may be larger than zero.

C. Multimedia Outage Probability Region

In an -user broadcast system, some users may require con-
stant-rate transmission without any outage (e.g., voice users),
while other users allow certain outages in the transmission of
their information (e.g., data users). Let be the number of
those users allowing no outage. Then, the-user outage prob-
ability region contracts to an -user outage probability
region. Since in each fading state, the channel can be used for

different sets of users, by ap-
plying the same optimal strategy discussed in Section IV-B, we
can obtain the boundary of the outage probability region for the

users.
For example, in a two-user system where one user (say, User

1) allows some outage and the other user (say, User 2) requires
no outage , the minimum outage probability
problem for User 1 is a modified threshold-decision rule similar
to that of the single-user case.

For each joint fading state and a given rate
vector , if the information for User 1 is not
transmitted, we denote the minimum required total power as

and it is just the power needed to support rate
for User 2; if the information for User 1 is transmitted, we de-
note the minimum required total power as and it is

given in (3), (11), and (16) for CD with or without
successive decoding and for TD, respectively. Letbe the total
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average power and assume that in fading state, the channel
transmits the information for User 1 with probability
and for User 2 with probability (no outage). The maximization
problem

subject to:

(65)
is equivalent to

subject to:

Therefore, by substituting with
and with into the definitions

of , , , , , and in (31)–(36), we
obtain the solution to (65): if , , i.e.,
only the information of User 2 is transmitted; if ,

, i.e., the information of User 1 is transmitted
together with that of User 2; if but , then

, i.e., with probability , the information of
User 1 is transmitted with that of User 2. The minimum outage
probability for User 1 is as given in (37).

V. FREQUENCY-SELECTIVE FADING CHANNELS

In previous sections, we have derived implicitly the
zero-outage capacity region and the outage capacity region
of a flat-fading broadcast channel. The zero-outage capacity
and the ergodic capacity, discussed in Part I of this paper,
characterize two very different aspects of a fading channel.
That is, under a given average power constraint, the ergodic
capacity is the maximum average rate over all fading states
with no delay constraint; the zero-outage capacity, on the other
hand, is the maximum common rate that can be achieved in
every fading state with the given delay constraint satisfied. In
order to extend the concepts of the zero-outage capacity and
the outage capacity of a narrow-band fading channel discussed
in previous sections to that of a frequency-selective wide-band
fading channel, we first relax the delay-limited requirement and
consider a multiple time-scale fading channel characterized by
both fast fading (e.g., due to multipath) and slow fading (e.g.,
due to shadowing) [5]. For this channel, assuming that the fast
fading is fast enough to average out over the tolerable delay,
we define the zero-outage capacity with respect to the slow
fading as the maximum common rate over all subsets of fading
states, where each subset is associated with a slow-fading state.
Within each subset, dynamic rate allocation is allowed for the
fast-fading states under a given common average rate constraint
for each subset.

Specifically, for an -user fading broadcast channel, let
be the set of all joint slow states of the users, and the
set of all joint fast-fading states. Let be a joint slow- and
fast-fading state, with having stationary distribution . When
conditional on a given slow state, has stationary distribution

. For a given power allocation policy, let denote
the power assigned to User in a joint state

. Therefore, for CD with successive decoding, it can be

similarly shown as for Theorem 1 that the zero-outage capacity
region with respect to slow fading is

where is the achievable average rate (averaged over
the fast-fading states) region for the given slow-fading state
and power allocation policy , and is the set of all power poli-
cies satisfying . We obtain region

implicitly. That is, for each given rate vector, if there
exists a power allocation policy such that the average
rate vector for any slow-fading stateis , then .
Therefore, in order to determine whether or not,
we have to compute the minimum average total power
required for the users to support in each slow state, i.e.,
solving the minimization problem

subject to: (66)

where denotes the total average power of theusers in the
slow state , and is the ergodic capacity region for the
slow state under the power constraint. That is

where is the set of all power policies satisfying
.

As shown in [4], the minimization problem in (66) is equiv-
alent to

subject to:

where is the Lagrange multiplier vector (rate reward vector)
chosen such that the target rate vectoris met. For a given
slow state , from Part I of this paper we know that given a
rate reward vector and a water-filling power level ,
the optimal power allocation strategy is determined and we can
calculate the required total average powerof the users and
obtain the corresponding boundary vectorof region .
By fixing , the following algorithm is proposed in [4] to
find the appropriate such that is met:

Algorithm 1 [4]: Start the iteration at . Given the
th iteration , the th iteration is given by

the following: for each , is a rate reward for theth
user such that , when the rate rewards of the other
users remain fixed at while the reward for theth user is
adjusted.
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Therefore, given the target rate vector, once the appro-
priate rate reward vector is determined, we can obtain the
minimum average total power in (66) easily. Thus,
if , then . Otherwise,

. In addition, if we allow some transmission outage in
certain slow states, given the average outage probability con-
straint for each user, we can also determine whether rate vector

is inside the outage capacity region (with respect to slow
states) or not by using the techniques developed in Section IV.

Note that similar reasoning as that for CD with successive
decoding can be applied to TD, FD, and CD without successive
decoding as well. Since TD, FD, and CD without successive
decoding have the same ergodic capacity region for a given slow
state, it is obvious that they will also have the same zero-outage
capacity region and outage capacity region when these capacity
regions are defined with respect to slow states. This is quite
different from that of the narrow-band fading channel discussed
in the previous sections.

By applying the ideas developed for the time-varying channel
characterized by both fast fading and slow fading, we can easily
obtain the zero-outage capacity region and the outage capacity
region of the frequency-selective fading broadcast channel
discussed in Part I of this paper. Since the frequency-selective
fading channel can be viewed as a time-varying channel, where
the frequency responses of theusers are different in different
fading states, we can define the zero-outage capacity and the
outage capacity with respect to the fading states. That is, while
a common average rate is maintained for all fading states,
dynamic rate allocation is allowed for each user at different
frequencies in each fading state. The resulting optimization
problem is identical to the one studied for the time-varying
channel characterized by both fast fading and slow fading, and
so is the optimal dynamic power allocation. Therefore, we see
that wide-band systems provide the possibility of performing
dynamic power allocation over different frequencies in addition
to over different fading states, which is an advantage over
narrow-band systems.

VI. NUMERICAL RESULTS

In this section, we present numerical results for zero-outage
capacity regions, outage capacity regions, and outage proba-
bility regions of narrow-band fading broadcast channels under
different spectrum-sharing techniques. The Nakagami-flat-
fading model is used for its mathematical tractability. The total
average transmit power in the figures below is denoted as, and
the average noise density of theth subchannel is denoted as,

. We refer to the CD without successive decoding tech-
nique as CDWO. Since TD and FD are equivalent in the sense
that they have the same capacity region of any kind, all results
for TD in the figures also apply for FD.

In Fig. 3, the two-user zero-outage capacity region for
the Nakagami- fading broadcast channel is shown for

and . The SNR difference between the two
users is 20 dB and the total average power 25 dB. Similar
to the ergodic (Shannon) capacity region comparison in Part I
of this paper, optimal CD results in a much larger zero-outage
capacity region than optimal TD. But the zero-outage capacity

Fig. 3. Two-user zero-outage capacity region in Nakagami fading: 20-dB SNR
difference.

region of optimal TD is now much larger than that of the
optimal CDWO,9 the boundary of which is convex. Note that
the zero-outage capacity region increases asincreases for
all of the three types of spectrum-sharing techniques, since
smaller corresponds to more severe fading. However, unlike
using optimal CD or TD, the capacity region using CDWO
does not increase much with the increase of. Also note that
for the Rayleigh fading channel , the zero-outage
capacity region is zero, which is why it is not shown. When

, the Nakagami- fading channel approaches the
Gaussian channel and as proved in Section III-D, the limiting
zero-outage capacity region of the Nakagami-fading channel
is the same as that of the AWGN channel for CD or CDWO.

Fig. 4 shows the case where the SNR difference between the
two users is 3 dB and the total average power is 10 dB. Since
the SNR difference between the two users is relatively small,
the differences of the zero-outage capacity region between using
CD, TD, or CDWO is not so dramatic as in the previous case.
When increases, the capacity region of CDWO now increases
faster than it does in Fig. 3.

In Figs. 5–11 , as discussed in Section IV-A, for any fading
state, the broadcast fading channel is either used for all users
or not used for any user. The resulting common outage proba-
bility is denoted as . Given a common outage probability of

, the two-user capacity region for the Nakagami-
fading channel using optimal CD is shown for
3- and 20-dB SNR differences between the users in Figs. 5
and 6, respectively. In both cases, notice that the increase in
capacity obtained by allowing a nonzero outage probability is
larger for smaller . This is because a smaller corresponds

9As shown in Part I, TD and CDWO have the same ergodic capacity region.
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Fig. 4. Two-user zero-outage capacity region in Nakagami fading: 3-dB SNR
difference.

to more severe fading, which is difficult to compensate for in
the zero-outage case. In Fig. 5, since the SNR difference be-
tween the users is small, the increase ofobtained by allowing
outage is pretty much independent of. However, when the
SNR difference is large, we notice in Fig. 6 that in the region
where is large, we obtain a large increase in User 1’s rate
by allowing some outage. This increase is much smaller in the
region where is small. Since User 2 has much more noise
on the average, for large and no outage, most of the total
transmit power is used to send the information to User 2 and
allowing some common outage probability will then save rela-
tively more power for User 1 than in the case whereis small.

In Fig. 7, the capacity regions using CD in Nakagami fading
with common outage probability ,

, and are compared when the SNR difference
between the two users is 3 dB and the total average power is 10
dB. We see that by allowing even a small outage probability, we
obtain a significant capacity increase relative to the zero-outage
case. Fig. 8 shows the minimum common outage probability
as a function of the total average powerat a given rate pair

kb/s using CD under the same channel
conditions as in Fig. 7. According to (3) and (4), this rate vector
is on the boundary of the zero-outage capacity region for a total
average power 10.9 dB, as is shown in the figure.

Figs. 9 and 10 show the two-user capacity region of CDWO in
Nakagami- fading for a common outage probability of

. The SNR differences between the two users in these fig-
ures are 3 and 20 dB, respectively. Similar to the zero-outage
capacity region, when the SNR difference between the users is
small, the capacity regions with a given common outage proba-
bility increase faster with the increase of the Nakagami channel

Fig. 5. Two-user capacity region for a given common outage probability in
Nakagami fading using CD: 3-dB SNR difference.

Fig. 6. Two-user capacity region for a given common outage probability in
Nakagami fading using CD: 20-dB SNR difference.

parameter than when the SNR difference is large. However, in
both cases, the increase of the capacity region from zero outage
to an outage of for each is not that much and the dif-
ferences between the outage capacity regions with different
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Fig. 7. Two-user capacity region comparison of different common outage
probabilities in Nakagami fading using CD: 3-dB SNR difference.

Fig. 8. Minimum common outage probability for a given rate vector versus
average transmit power in Nakagami fading using CD.

are even smaller than that of the zero-outage capacity regions.
This means that the optimal power policy that allows a certain
common outage probability does not help much in increasing
the capacity region of CDWO, especially when there is a great

Fig. 9. Two-user capacity region for a given common outage probability in
Nakagami fading using CDWO: 3-dB SNR difference.

Fig. 10. Two-user capacity region for a given common outage probability in
Nakagami fading using CDWO: 20-dB SNR difference.

difference between the average channel conditions of the two
users.

In Fig. 11, the capacity region with a common outage prob-
ability using optimal TD for the Nakagami fading
channel is shown and compared to that of the CD
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Fig. 11. Two-user capacity region comparison for a given common outage
probability in Nakagami fading using CD, TD, and CDWO: 3-dB SNR
difference.

and CDWO techniques. The SNR difference between the two
users is 3 dB and the total power 10 dB. As in the case
where there is no outage, the capacity region with a common
outage probability using TD is smaller than that of CD but is
much larger than that of CDWO. Note that by allowing some
common outage probability, there is a large increase of the ca-
pacity region for both CD and TD, but the increase is relatively
small for CDWO.

In Figs. 12–15, we assume that a different outage probability
can be declared for each user. The corresponding optimal
power policy is obtained by applying the three-step procedure
described in Section IV-B and Theorem 3, which is then used
to calculate either the capacity region for a given outage prob-
ability vector or the outage probability region for a given rate
vector. We obtain the capacity regions with outage or the outage
probability regions for CD only, since the relative behavior of
TD or CDWO is similar to that of CD in these figures.

In a two-user system, let and denote the outage prob-
abilities for User 1 and User 2, respectively. Given

, the two-user capacity regions with this outage for
the Nakagami fading channels are shown in
Figs. 12 and 13 for SNR difference between the users of 3 and 20
dB, respectively. In both cases, as was true for the capacity re-
gion with a common outage probability, allowing some outage
probability for each user results in a capacity increase that is
larger for smaller . Thus, the optimal power policy is more ef-
fective in increasing the capacity region when the overall broad-
cast channel fading is more severe. For different, the differ-
ences between the capacity regions with outage are smaller than
those between the capacity regions with no outage.

Fig. 12. Two-user capacity region for a given outage probability vector in
Nakagami fading using CD: 3-dB SNR difference.

Fig. 13. Two-user capacity region for a given outage probability vector in
Nakagami fading using CD: 20-dB SNR difference.

Fig. 14 shows the two-user outage probability regions
with different total transmit power for a given rate vector

kb/s. Note that the region below each
curve is the outage probability region not achievable with the
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Fig. 14. Two-user outage probability region comparison for different average
transmit power in Nakagami fading using CD: 3-dB SNR difference.

Fig. 15. Two-user capacity region comparison for different outage probability
vectors in Nakagami fading using CD: 3-dB SNR difference.

corresponding transmit power. This nonachievable region
shrinks quickly with the increase of transmit power and
disappears when 10.9 dB since, when 10.9 dB,
according to (3) and (4), the rate vector

kb/s is on the boundary of the zero-outage capacity region.
For a given transmit power , when the outage probability

of User 2 decreases, there is a fast increase in the outage
probability of User 1, since the average channel condition
of User 2 is worse than that of User 1 and thus the total power
required to support increases fast with the decrease of its
outage probability. The intersections of the curves with the two
axes in this figure denote the minimum outage probabilities for
one user when there is no outage in the transmission for the
other user.

Fig. 15 shows the two-user capacity regions with several
different outage probability vectors and a total transmit power

10 dB. In this figure, the points , , and are
the single-user capacities of User 1 when the allowed outage
probabilities are , , and ,
respectively; the points , , and are the single-user
capacities of User 2 when the allowed outage probabilities
are , , and , respectively. Let

, , , , ,
and . The curves between points and are
the boundaries of the capacity regions when the allowed
outage probability vectors are ,

. Note that when one of the outage probabilities
and is zero, regardless of the time-varying channel

state, the information of the corresponding user is always trans-
mitted and the optimal power policy discussed in Section IV-C
will be used for the other user to achieve the demonstrated
capacity region in this figure under the constraint of its given
outage probability.

Finally, in Figs. 16 and 17, where the SNR differences be-
tween the two users are 3 and 20 dB, respectively, the capacity
regions using the optimal CD power policy with a common
outage probability as discussed in Section IV-A and
the optimal CD power policy with an outage probability vector

as discussed in Section IV-B are com-
pared in Nakagami fading . Since the outage proba-
bility for each user is using either of the two power policies,
from the figures it is clear that by allowing a separate outage dec-
laration for each user and using the corresponding optimal CD
power policy, a larger capacity region can be achieved than by
simply turning on or off the transmission for both users simul-
taneously based on the optimal power policy discussed in Sec-
tion IV-A. However, the optimal power policy for the common
outage declaration case is much less complex than that for the
independent outage declaration case.

Also shown in Figs. 16 and 17 are the ergodic capacity re-
gions of the fading broadcast channels as discussed in Part I of
this paper. We see that these regions are much larger than the
zero-outage capacity regions. Since the ergodic capacity and
the zero-outage capacity correspond to the maximum average
throughput and the maximum constant throughput of a fading
channel, respectively, the comparison between these two dif-
ferent capacity regions demonstrates the throughput loss of a
broadcast system transmitting at constant rates in any fading
condition instead of transmitting at variable rates adapted to the
fading channel states.

Note that by definition, each outage capacity region shown in
the figures of this paper represents a set of constant rate vectors
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Fig. 16. Two-user capacity regions with a common outage probability and
with an outage probability vector in Nakagami fading using CD: 3 dB SNR
difference.

Fig. 17. Two-user capacity regions with a common outage probability and
with an outage probability vector in Nakagami fading using CD: 20-dB SNR
difference.

that can be maintained with the given outage probability vector
or the given common outage probability satisfied. If we

normalize the outage capacity of each user

with in the case of independent outage declaration
and with in the case of common outage declaration,
then the normalized outage capacity region will be an average
throughput region. This average throughput region does not al-
ways include the zero-outage capacity region (maximum con-
stant throughput region) as can be verified for the cases shown
in Figs. 6, 9, 10, and 13. This is because the normalized outage
capacity region varies with the given outage probability vector

or the given common outage probability.

VII. CONCLUSION

We have obtained both the zero-outage capacity region and
the minimum-outage capacity region of fading broadcast chan-
nels for TD, FD, and CD with and without successive decoding,
assuming that perfect CSI is available at both the transmitter and
the receivers. It is shown that optimal CD has the largest zero-
outage capacity region, as expected. Moreover, we show that
the capacity region can be greatly expanded by allowing some
outage probability for each user. For a given rate vector, we have
derived the optimal power policy that minimizes the common
outage probability when transmission to all users is turned off
simultaneously. When an outage can be declared for each user
individually, we have also derived a general power allocation
strategy to achieve boundaries of the outage probability regions
under different spectrum-sharing techniques. We observe that
these regions can increase dramatically with an increase in the
total transmit power. Therefore, by applying the optimal dy-
namic power allocation strategies derived herein, tradeoffs be-
tween the maximum constant transmission rate, the outage prob-
ability for each user, and the total transmit power may be eval-
uated for the design of a broadcast communication system in a
fading environment.

APPENDIX

A. Proof of Theorem 1

Achievability of the Capacity Region:We prove the achiev-
ability of the capacity region in (1) by proving the
achievability of in (2) for each given
power allocation policy .

, for since denotes the
transmit power for User in fading state

we need to prove that for every , there exists a sequence
of codes and a coding and
decoding scheme with probability of error for every
fading process with stationary distribution, i.e., a coding
delay which is independent of the correlation structure of
the fading. We prove in the following that this is true for the
two-user case. The result can be easily generalized to the

-user case . Note that with the availability of CSI
at both the transmitter and the receivers, the codewords can be
chosen based on the realization of the fading process.

Let
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Recall that we assume , . Thus,

When the channel fading states are in, let

denote the realization of the slowly time-varying fading
process. Let and . Generate inde-
pendent codewords of length according to
the normal distribution , scaled by

For each codeword ( is called a
cluster center, ), generate independent codewords

of length according to the conditional
normal distribution , scaled by

Assuming that the source for User 1 produces integer
and the source for User 2 produces integer
, the encoder maps the pair into a

codeword

which is then transmitted. Letand be the received sequences
for User 1 and User 2, respectively. We use the decoding rule in
[12]. That is, the decoder of User 2 decodes thatfor which

is maximized (a decoding failure occurs when there is a
tie for the maximum). Let be the probability of decoding
error for User 2. The decoder for User 1 first decodes the cluster
center in the same way as the decoder of User 2 does, and then
uses its estimate of to choose the for which is
maximized. For User 1, let be the probability of decoding

error for index and let be the probability of decoding

error for index . Thus, by denoting as the probability of
decoding error for User 1, we have

(67)

Based on the above encoding and decoding rules, the proba-
bility of decoding error for User 2 is bounded by [12]10

(68)

for any , where denotes the pdf of , is
the conditional pdf of , conditional on the fading being, and

is the conditional pdf of the received sequence, con-
ditional on the codeword beingand the fading being. Since

(69)

10Note that the unit forR andR in this paper is “bits per second,” while
the unit in [12] is “bits per sample.” This is whyR in (68) is divided by2B,
the number of samples per second for the band-limited channel.

(70)

where

and

Therefore, in (70)

Substituting (69) and (70) into (68), it is easy to verify that

By assumption, such that

(71)

Thus,

(72)

since .
Similarly, we can show that

(73)

for any , where is given by (69) and
is the conditional probability density function of the received
sequence, conditional on the codeword beingand the fading
being . Since

(74)

where , as given
above, and . Therefore, in (74),

. Substituting (69) and
(74) into (73), it is easily shown that
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Since , , from (71) we obtain

Thus,

(75)

Furthermore, for User 1, the probability of decoding error
is bounded by [12]

(76)

for any , where is given in (69)

(77)

(78)

and ,

Therefore, by substituting (69), (77), and (78) into (76), it is easy
to verify that

By assumption, such that

Thus,

(79)

Denoting , then by (72) we obtain

and by (67), (75), and (79) we obtain

Therefore, when the channel fading states are in, the overall
probability of decoding error for the two users is

By taking sufficiently small, we have and
it follows that the probability of error decreases ex-
ponentially with , i.e., , , ,

.
It can be similarly shown that when the channel-

fading states are in , there exists a sequence of
codes and a coding and

decoding scheme for which the probability of error
decays exponentially with , i.e., , ,

, . Thus, , there exists
a sequence of codes and a
coding and decoding scheme for which the probability of error

as . Moreover, decreases in at a rate
independent of the correlation character of the fading, i.e., by
denoting , , ,
we have for every fading process with stationary
distribution .

Converse: Suppose that rate vectoris achievable, i.e.,
. We need to prove that cannot be outside of the re-

gion defined in (1). The proof is similar to that of the MAC ca-
pacity region [5].

Define , . Since the time-varying
noise density of each user ranges fromto , we say that
a subchannel is in state if

, where . Therefore, there are
discrete joint channel states. We denote theth
of these states as , ,
where is the base-
expansion of , with being the least important compo-
nent. That is, for all and

Note that a channel state if and only if ,
.

Consider a sequence of Markov processes defined on
by using a Markov chain which is composed of the above
mentioned channel states with transition probabilities

. The process remains in a statefor an exponential

time Exponential and then selects a new
state according to . By choosing the appropriate

and transition probabilities, we assume that the
Markov process has the required stationary distributionof
the fading channel.

For each , let be a fading process starting
with , where is a random variable with
the stationary distribution . We assume all fading processes
start with , . The initial sojourn
time in state of fading process is given by ,
where Exponential , .
The scaling constant determines the fading speed for process

. fixed, by selecting an appropriate decreasing
sequence where as , we can have

(80)
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Since , we can choose for each a code of
size for which the probability of error

under fading process goes to zero as . Let
denote a random selection of codewords from

the codebook for the users and let be the transmit

power for User . Note that can
be chosen according to the fading process . For

, let be the subset of the sample space on which
and . Let be an independent

random variable uniformly distributed on . For
, define

Then the power constraint is that

According to (80), we have

By the bounded convergence theorem, it is clear that there exists
a convergent subsequence along which if taking the limit we
obtain for and

as

Therefore

Now we define a new fading processby

where

and

Note that conditioned on , the fading process is determin-
istic. , let be the conditional
probability of error for code in the new fading channel.
Then, obviously

By assumption, as . Thus,
as . But conditional on , we have a constant

channel, and a sequence of codes satisfying the power constraint
. It follows that

(81)

where denotes the power allocation policy that assigns power
to User in channel state , and

is as given in (2).
, , define

if

Denote as the set of all power control policies that satisfy
the power constraint and are piecewise constant on each
fading state , . Denote as the power
allocation policy that assigns power to User

in each fading state, where

Thus, . Since , there exists a fading state
such that , from (81) and the

definition of we know that, for any

It follows that

where . Thus,

(82)

Now combining (82) with the achievability result which indi-
cates that

we obtain

Since the lower and upper bounds converge as , it is
clear that

B. Necessary and Sufficient Condition for Equations in (8) to
Have Positive Solutions

We show that is the necessary and sufficient condi-
tion for the linear equations in (8) to have positive solutions
for all in every fading state .

Necessary Condition:Since the equations in (8) are equiva-
lent to
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if (8) has a solution for each state, then so that
the inverse of exists and the solution to is as given
in (10). Furthermore, if [i.e., ,

] for any given , then every component of
must be nonnegative.

Define the cofactor matrix

where is the matrix formed by deleting
the th row and the th column of . Then

(83)

Given fixed, since each component of the th row of
is , by subtracting the th row from all other rows

of , it is easily seen that the expansion by theth column of
is

Thus,

(84)

since , . It can be similarly shown that
(84) holds for as well. Therefore, if every component of

must be nonnegative, from (83) we know that .
Sufficient Condition:Denote the cofactor matrix of as

, , then as shown above

(85)

Since , , and the expansion by theth
column of is

if , then

(86)

Therefore, combining (85) and (86) we get

By (83) it is clear that every component of must be posi-
tive. Consequently, from the expression for in (10) we
conclude that in every fading state .

C. Proof of Lemma 1

Since for , ,

we have

For

Because

Therefore, for fixed integer

(87)

For a given positive integer, we know that [13]

(88)

Thus, from (87) and (88) we obtain

D. Proof of Lemma 2

Since for

if

if

(89)

we have

where is given in (20). Thus,

(90)

(91)

In (20), let , then

(92)

Substituting (92) into (22) and (23) and using (89), we have
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(93)

(94)

When , applying Lemma 1 to (93) and (94), we
have

Combining these limiting expressions with (90) and (91) we
obtain

E. Proof of Theorem 3

In the following, , , for sim-
plicity we denote , , , and as , , ,
and , respectively.

For , , let

Since satisfies

, by denoting

we have

(95)

We now show from (60)–(63) that

(96)

Since , i.e., , (96) is true for .
Assuming that when , (96) is true, or equivalently,

, then because , we have

That is,

Thus, when , (96) is also true. So (96) is true for all
. Continuing the derivation in (95), we have

a) , since , from (96) we know
that , , i.e., .
Therefore, the first term in (95) will be

(97)

b) , , since
, we have

For , denoting

it is easy to verify that by using (96). Since
, , ,

, we have

Therefore, ,
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In (95), the second term will be

(98)

c) , , since
, we have

Because , ,

and , we have

Therefore, in (95), the third term will be

(99)

Therefore, substituting (97)–(99) into (95), we have

Thus, if

then
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which means that does not satisfy the total power con-
straint. Therefore,
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