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Abstract

Ensemble Kalman filters (EnKF) based on a small ensemble tend to provide

collapse of the ensemble over time. It is demonstrated that this collapse is

caused by positive coupling of the ensemble members due to use of the es-

timated Kalman gain for the update of all ensemble members at each time

step. This coupling can be avoided by resampling the Kalman gain from its

sampling distribution in the conditioning step. In the analytically tractable

Gauss-linear model finite sample distributions for all covariance matrix es-

timates involved in the Kalman gain estimate are known and hence exact

Kalman gain resampling can be done. For the general nonlinear case we in-

troduce the resampling ensemble Kalman filter (ResEnKF) algorithm. The

resampling strategy in the algorithm is based on bootstrapping of the ensem-

ble and Monte Carlo simulation of the likelihood model. We also define a

semi-parametric and parametric version of the resampling ensemble Kalman

filter algorithm. An empirical study demonstrates that ResEnKF provides

more reliable prediction intervals than traditional EnKF, on the cost of some-

what less accuracy in the point predictions.
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1. Introduction1

The Ensemble Kalman Filter (EnKF) introduced by Evensen in the pa-2

pers Evensen (1994) and Burgers et al. (1998) has found widespread use3

in evaluation of spatio-temporal phenomena like ocean modeling, weather4

forecasting and petroleum reservoir evaluation, see Bertino et al. (2002),5

Houtekamer et al. (2005), Nævdal et al. (2005) and references therein. The6

filter is popular because of easy implementation and computational efficiency.7

The filter relies on simulation based inference of hidden Markov models and8

is closely related to the traditional Kalman filter. The EnKF utilizes a lin-9

earization in the data conditioning and relies on empirical probability den-10

sities, represented as an ensemble of possible states, which allow general11

forward functions. These approximations make the ensemble Kalman filter12

computationally efficient and well suited for high-dimensional hidden Markov13

models.14

The data conditioning is based on the estimated correlation between ob-15

servations and ensemble members, which is used to update all ensemble mem-16

bers. The estimated regression weights, so called Kalman gain in the case17

with linear observation relations, is associated with finite sample uncertainty18

usually resulting in underestimated Kalman gain, see Furrer & Bengtsson19

(2007). Anderson (2001) deals with the problem by variance inflation in20

an effort to maintain variability in the ensemble statistics. One of the key21

assumptions in the data conditioning is that the ensemble members are inde-22
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pendent. However, when using the estimated Kalman gain to update every23

ensemble member, the ensemble members will be coupled over time.24

In the hierarchical ensemble Kalman filter (HEnKF) algorithm (Myrseth25

& Omre, 2010) uncertainty caused by the Kalman gain estimate is accounted26

for. The HEnKF algorithm relies on an extended model of the prior on the27

model parameters, however. Houtekamer & Mitchell (1998) use a double28

ensemble approach where one part of the ensemble is used in the estimation29

of the Kalman gain used in the update step of the other part. However, this30

ensures that the ensemble members are uncoupled after the first update step31

only. In the current paper, we propose to update every ensemble member32

individually with different estimates of the Kalman gain using a bootstrap-33

ping technique (Efron, 1979). The estimation uncertainty associated with34

the Kalman gain will then be reflected in the ensemble uncertainty. We35

also introduce formalism that handles non-linear relations between state and36

observation.37

2. Model Assumptions38

Consider an unknown, multivariate time series [x0,x1, ...,xT ,xT+1] with39

xt ∈ Rpx ; t = 0, ..., T + 1 containing the primary variable of interest and xT40

being the current state. Assume that an associated time series of observations41

[d0, ...,dT ] with dt ∈ Rpd ; t = 0, ..., T , is available.42

Define a prior stochastic model for [x0, ...,xT+1] by assuming Markov43
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properties:44

[x0, ...,xT+1]∼ f(x0, ...,xT+1)

= f(x0)
T∏

t=0

f(xt+1|x0, ...,xt)

= f(x0)
T∏

t=0

f(xt+1|xt). (1)

Let f(x0) be a known pdf for the initial state, and f(xt+1|xt) for t = 0, ..., T45

be known forward pdfs. Hence the prior model for the time series of interest46

is Markovian with each state given the past, dependent on the previous state47

only.48

Define the likelihood model for [d0, ...,dT ] given [x0, ...,xT+1] by assuming49

conditional independence and single state dependence:50

[d0, ...,dT |x0, ...,xT+1]∼ f(d0, ...,dT |x0, ...,xT+1)

=
T∏

t=0

f(dt|x0, ...,xt+1)

=
T∏

t=0

f(dt|xt) (2)

where f(dt|xt) for t = 0, ..., T are known likelihood functions. Hence, the51

likelihood model entails that the observation at time t is a function of state52

xt only and is independent of the other observations when xt is given.53

These prior and likelihood assumptions define a hidden Markov process54

as depicted by the graph in Figure 1. The resulting posterior stochastic55
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model is defined by Bayesian inversion:56

[x0, ...,xT+1|d0, ...,dT ]∼ f(x0, ...,xT+1|d0, ...,dT )

= const× f(d0, ...,dT |x0, ...,xT+1)

×f(x0, ...,xT+1)

= const× f(x0)f(d0|x0)

×
[
T−1∏

t=0

f(dt+1|xt+1)f(xt+1|xt)

]

×f(xT+1|xT ), (3)

with ‘const’ being a normalizing constant that is usually hard to assess.57

Hence the full posterior model is not easily available.58

For the hidden Markov model described, the forecast is of interest. The59

forecasting pdf is available as:60

[xT+1|d0, ...,dT ]∼ f(xT+1|d0, ...,dT )

=

∫
...

∫
f(x0, ...,xT+1|d0, ...,dT )dx0...dxT . (4)

This forecasting pdf is computable by a recursive algorithm which alternates61

a forward-in-time step and a condition-on-data step. This recursive algorithm62

makes sequential conditioning on future observations possible.63

The model described above can be summarized by the following general64

state space equations:65

x0 ∼ f(x0)

xt+1|xt = ωt(xt, ǫ
x

t )∼ f(xt+1|xt)

dt|xt = νt(xt, ǫ
d

t )∼ f(dt|xt), (5)
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where ωt(., .) is a known function R2px → Rpx and ǫxt is a random vari-66

able from the normalized px-dimensional multivariate Gaussian distribution67

Npx(0, Ipx) where Ipx is a unit diagonal covariance matrix, νt(., .) is a known68

function Rpx+pd → Rpd and ǫdt is a normalized pd-dimensional Gaussian ran-69

dom variable from Npd(0, Ipd). This construction can generate a realization70

from an arbitrary forward, f(xt+1|xt), and likelihood, f(dt|xt), model.71

3. The Ensemble Kalman Filter72

The EnKF is an algorithm that can be used to assess the forecasting73

pdf. The basic idea of the EnKF to represent an empirical distribution74

approximating the true prior by a set of realizations, so called ensemble.75

These realizations are adjusted according to the likelihood model when an76

observation occurs and the adjusted realizations are then taken through the77

forward model to the next observation time. At time t = T + 1 a set of78

approximately independent realizations are available for empirical assessment79

of f(xT+1|d0, ...,dT ). Hence, characteristics beyond the two first moments80

can be captured. Basic references for EnKF are Evensen (1994), Burgers81

et al. (1998), Evensen (2007) and references therein.82

Introduce the following notation, with83

x
u
t = [xt|d0, ...,dt−1]

x
c
t = [xt|d0, ...,dt], (6)

where indices u and c indicate unconditioned and conditioned on the obser-

vation at the current time, respectively. Define a time series of ensembles:

et : {(xu
t ,dt)

(i); i = 1, ..., ne} ; t = 0, ..., T + 1, (7)
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where x
u(i)
t = [xt|d0, ...,dt−1]

(i) are approximate realizations from f(xt|d0, ...,dt−1)

and [d
(i)
t |xu(i)

t ] = ν(x
u(i)
t , ǫ

d(i)
t ) are associated realizations of the observation

available at time t. Note that at any step t - with t omitted in the notation

- one has the expectation vector and covariance matrix:

µ
xd

=


 E{xu}

E{d}


 =


 µ

x

µ
d


 (8)

and

Σxd =


 Cov{xu} Cov{xu,d}

Cov{d,xu} Cov{d}


 =


 Σx Γx,d

Γd,x Σd


 . (9)

The traditional EnKF, see Evensen (2007), is defined with a Gauss-linear

likelihood model

dt|xt = Htxt + ǫt, (10)

with ǫt being Npd(0,Σd|x), or a linearization of a nonlinear likelihood model.84

The associated traditional EnKF algorithm is presented in Algorithm 1.85

The EnKF algorithm is recursive and each recursion consists of a condi-86

tioning operation and a forwarding operation. The conditioning expression is87

linear with weights estimated from the ensemble. The forwarding operation88

is defined by the forward pdf. This entails two implicit approximations in89

the EnKF:90

The sample space of xt is discretized and represented by a finite number of91

realizations. Initially an ensemble of iid realizations is assumed to represent92

f(x0). For high-dimensional problems a large number of ensemble members93

may be required to do so reliably.94

The data conditioning expression is linearized. Moreover, the weights95
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Algorithm 1: Traditional Ensemble Kalman filter

Initiate:
• ne = no. of ensemble members
• x

u(i)
0 ; i = 1, ..., ne iid f(x0)

• ǫ
d(i)
0 ∼ Npd(0,Σd|x) ; i = 1, ..., ne

• d
(i)
0 = H0x

u(i)
0 + ǫ

d(i)
0 ; i = 1, ..., ne

• e0 : {(xu
0 ,d0)

(i) ; i = 1, ..., ne}
for t = 0 to T do

Conditioning:
• Estimate Σ̂x from et

• Γ̂x,d = Σ̂xH
′
t

• Σ̂d = HtΣ̂xH
′
t + Σd|x

• x
c(i)
t = x

u(i)
t + Γ̂x,dΣ̂

−1
d
(dt − d

(i)
t ) ; i = 1, ..., ne

Forwarding:
• ǫ

x(i)
t ∼ Npx(0, Ipx) ; i = 1, ..., ne

• x
u(i)
t+1 = ωt(x

c(i)
t , ǫ

x(i)
t ) ; i = 1, ..., ne

• ǫ
d(i)
t+1 ∼ Npd(0,Σd|x) ; i = 1, ..., ne

• d
(i)
t+1 = Ht+1x

u(i)
t+1 + ǫ

d(i)
t+1 ; i = 1, ..., ne

• et+1 : {(xu
t+1,dt+1)

(i) ; i = 1, ..., ne}
Assess
• f(xT+1|d0, ...,dT ) from eT+1
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in the linearization are estimated from the ensemble. Note, however, that96

each ensemble member is conditioned individually and hence the lineariza-97

tion only applies to the conditioning not to the forward model. For highly98

non-Gaussian prior models and/or strongly nonlinear likelihood models this99

approximation may provide unreliable results.100

Under these approximations, however, all types of models for the hidden101

Markov process can be evaluated. Other problems arise in the EnKF which102

are caused by the use of an estimate of the Kalman gain based on et instead103

of the true weights. These problems include rank deficiency and estimation104

uncertainty due to the limited size of the ensemble, i.e., small values of ne.105

A discussion of the implications of data conditioning based on finite sample106

ensemble statistics follows.107

3.1. The conditioning step108

The conditioning step in the EnKF contains the linear approximation

that appears crucial for the success of the filter. The conditioning expression

relies on the Kalman gain K = Γx,dΣ
−1
d

, which must be estimated at each

state from the ne members of the ensemble et. In the general case with

nonlinear likelihood model, the classical covariance estimators are applied:

Γ̂x,d =
1

ne − 1

ne∑

i=1

(x
u(i)
t − µ̂

x
)(d

(i)
t − µ̂

d
)′ (11)

Σ̂d =
1

ne − 1

ne∑

i=1

(d
(i)
t − µ̂

d
)(d

(i)
t − µ̂

d
)′, (12)

with

µ̂
x
=

1

ne

ne∑

i=1

x
u(i)
t (13)
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and

µ̂
d
=

1

ne

ne∑

i=1

d
(i)
t . (14)

If et contains independent members these estimators are unbiased and con-109

sistent. The latter entails Γ̂x,d → Γx,d and Σ̂d → Σd as ne → ∞, for all110

distributional models. Moreover, K̂ = Γ̂x,dΣ̂
−1
d

→ K as ne → ∞. Note that111

in the traditional EnKF scheme defined in Algorithm 1, K̂ will be biased112

estimate of K. The consequences of this bias are thoroughly discussed in113

Furrer & Bengtsson (2007), where conditions on the size of ne for obtaining114

bounded error growth is developed. It was recommended to use a boosting115

or inflation factor to correct the variability for this bias. For finite ne, it116

is known (Huber, 1981) that the classical estimators for covariance matrices117

are notoriously unreliable due to extreme dependence on the tail behavior118

of the underlying pdf. This sensitivity is caused by the second order terms119

of the estimators. The lack of precision in K̂ may cause spurious values to120

appear in the conditioned x
c
t , which impact may be accelerated by non-linear121

forward models.122

The motivation for this study follows from a closer evaluation of the

conditioning relation

x
c(i) = x

u(i) + K̂(d− d
(i)) ; i = 1, ..., ne, (15)

where the time index is omitted for simplicity. Let the prior model for xu be

a Gaussian and the likelihood be Gauss-linear with known model parameters.

Then the Kalman gain

K = ΣxH
′(HΣxH

′ + Σd|x)
−1 (16)
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is known. For this case x
c is Gaussian with E{xc} = E{xu|d} = µx|d123

and Cov{xc} = Cov{xu|d} = Σx|d which constitutes the correct solution124

when all model parameters are known. Moreover, if the ensemble members125

x
u(i)
t ; i = 1, ..., ne are independent, the resulting x

c(i)
t ; i = 1, ..., ne will also126

be independent.127

In practice, however, the model parameters are not known and the Kalman128

gain K must be estimated from the ne members of the ensemble e. Since129

the conditioning will be based on an estimate of K, the resulting uncertainty130

in x
c will be larger than if K was known. Assume that the elements in131

e : {(xu,d)(i); i = 1, ..., ne} are independent and Gaussian and that ne > px.132

Then the standard estimator of Σx will be Wishart distributed, and estimates133

of Σx can be simulated and by applying Expression (16) realizations of K can134

be generated. Hence K can be seen as a random variable Ke ∼ f(Ke). In135

order to evaluate the characteristics of xc when Ke is random, consider the136

Taylor expansion of Expression (15) around E{Ke} = µKe
and E{d(i)} = µd:137

x
c(i) ≈ x

u(i) + µKe
(d− µd)− µKe

(d(i) − µd)

+(Ke − µKe
)(d− µd)− (Ke − µKe

)(d(i) − µd)

; i = 1, ..., ne (17)

Ke is inferred from the complete set of ensemble members, hence the depen-138

dence between Ke and each (xu,d)(i) is relatively weak. In the expressions139

calculated below the two variables are assumed to be independent.140
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The following expressions can be developed from Expression (17)

E{xc(i)} = µx + (µKe
−K)(d− µd)

Cov{xc(i)} = Σx + (µKe
−K)Σd(µKe

−K)′

+ E{(Ke − µKe
)(Σd +△d)(Ke − µKe

)′}

Cov{xc(i),xc(j)} = E{(Ke − µKe
)△d(Ke − µKe

)′} (18)

for i, j = 1, ..., ne; i 6= j, where K is the true, but unknown Kalman weight141

and △d = (d−µd)(d−µd)
′. Hence, if Ke is an unbiased estimator for K, the142

conditioned ensemble members are correctly centered at µx|d, while there is143

an additional Ke estimation term in the variance of the members. Note, that144

the cross ensemble covariance will be positive whenever there is estimation145

uncertainty in Ke. Hence the members of the conditioned ensemble will be146

positively coupled and the empirical covariance matrix based on the ensemble147

will underestimate the covariance. This is alarming since the EnKF is based148

on a sequential conditioning through time meaning that the coupling will149

grow increasingly stronger. Lastly, note that as ne → ∞ the uncertainty in150

Ke decreases and all problems disappear.151

One possible solution to avoid this coupling problem is to perform Kalman152

gain resampling:153

K(1)
e

, ..., K(ne)
e

iid f(Ke)

x
c(i) = x

u(i) +K(i)
e
(d− d

(i)) ; i = 1, ..., ne (19)

Then E{xc} and Cov{xc} will remain the same as for Expression (15), while154

Cov{xc(i),xc(j)} = 0, and hence the ensemble coupling disappears. The as-155
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sessment of f(Ke) remains a challenge of course.156

For the complete Gauss-linear model, all finite sample distributions are

known. In particular it is known that x(i) ∼ Npx(µx
,Σx) at each conditioning

step. The following resampling is reasonable:

do i = 1, ..., ne

x
(1)
. , ...,x(ne)

. iidNpx(µx
,Σx)

Σ(i)
x

=
1

ne − 1

ne∑

j=1

(x(j)
. − x̄.) (20)

K(i)
e

= Σ(i)
x
H ′(HΣ(i)

x
H ′ + Σd|x)

−1

x
c(i) = x

u(i) +K(i)
e
(d− d

(i))

end do

The resampling EnKF approach specified in Expression (20) is primar-157

ily aimed at restoring the independence between the conditioned ensemble158

members, thus improving the reliability of the prediction intervals. The vari-159

ability in the estimated Kalman gains Ke will remain and spurious values160

in x
c will still occur. The Hierarchical EnKF (HEnKF) approach, presented161

in Myrseth & Omre (2010) aims at combining a shrinkage estimator for Ke162

which reduce spurious values and the resampling approach defined above.163

The empirical study in Myrseth & Omre (2010) provides very encouraging164

results, but HEnKF requires additional modeling which can be difficult in165

large problems. In the current paper we present an empirical resampling166

approach which requires no additional modeling assumptions.167
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4. Resampling168

Resampling or simulating from a known pdf is called Monte Carlo sim-169

ulation, see Hammersley & Handscomb (1964). This is sometimes the most170

efficient way to determine the pdf of random variables that are nonlinear171

functions of random variables with known pdfs. Actually, this is exactly the172

goal of the EnKF. The bootstrap, formally introduced in Efron (1979), is a173

statistical method to assess parameter uncertainty. Here we will only give a174

short introduction to the bootstrap and Monte Carlo techniques, and refer175

the interested reader to Efron & Tibshirani (1993).176

Consider a random variable with an associated cdf, x ∼ F (x), and some177

interesting characteristic of the cdf, ξ = h(F (x)). Examples of this charac-178

teristic are the expectation E{x}, covariance Cov{x}, quantiles Prob{x ≤ c}179

for some arbitrary c etc. Assume that a set of realizations x1, ...,xn iid F (x)180

are available and define a finite sample estimator of ξ, ξ̂n = hn(x1, ...,xn),181

such that hn(x1, ...,xn)
n→∞−→ h(F (x)). The objective is to obtain the cdf of182

the finite sample estimator ξ̂n, Fn(ξ). If F (x) is fully known, then assessment183

of Fn(ξ) can be done by Monte Carlo simulation as described in Algorithm 2.184

Algorithm 2: Monte Carlo simulation

Initiate:
• m = no. of Monte Carlo replicates

for i = 1 to m do
Generate: x

∗
1, ...,x

∗
n iid F (x)

ξ̂
(i)
n = hn(x

∗
1, ...,x

∗
n)

Estimate: Fn(ξ) from ξ̂
(1)
n , ..., ξ̂

(m)
n → F̂n(ξ)

185
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Algorithm 3: Bootstrap

Initiate:
• b = no. of bootstrap replicates
• F̂ (x) = 1

n

∑n

i=1 I(xi < x)
for i = 1 to b do

Generate: x
∗
1, ...,x

∗
n iid F̂ (x)

ξ̂
∗(i)
n = hn(x

∗
1, ...,x

∗
n)

Estimate: Fn(ξ) from ξ̂
∗(1)
n , ..., ξ̂

∗(b)
n → F̂ ∗

n(ξ)

The approximation depends on the number of Monte Carlo samples, and186

the finite sample pdf can be fully determined when the number of Monte187

Carlo samples tends to infinity, F̂n(ξ)
m→∞−→ Fn(ξ).188

If F (x) is unknown, however, Monte Carlo assessment is unavailable and189

one may rely on the bootstrap technique. Consider a set of observations190

x1, ...,xn which is assumed to be iid observations from F (x) , and hence can191

be used to obtain an estimate of F (x), termed F̂ (x). When F (x) is com-192

pletely unspecified, the non parametric estimate F̂ (x) = 1
n

∑n

i=1 I(xi < x)193

can be used. The non-parametric bootstrap algorithm is given in Algo-194

rithm 3, see Efron (1979). In the EnKF setting one will naturally resample195

the ensemble members [xu(i); i = 1, ..., ne]. The bootstrap sampling may196

also be performed in a semi-parametric or parametric setting. In the EnKF197

setting semi-parametric bootstrapping could be centered at the traditional198

Kalman gain estimate Γ̂x,d(Σ̂d)
−1

, and the deviations from this K̂ could199

be bootstrapped. The exact algorithm will be described in the next section.200

Parametric bootstrapping replaces F̂ (x) with a parametric model, and in the201

EnKF setting it is natural to bootstrap x
u from Npx(µ̂x

, Σ̂x), where µ̂
x

and202

Σ̂x are estimates of µ
x

and Σx, respectively, based on the ensemble e. Note203
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that unless ne > px the estimate Σ̂x will have reduced rank. We solve this204

problem by adding a small positive number to the zero-valued eigenvalues,205

which in practice entails regularization.206

One important difference between bootstrapping and Monte Carlo simu-207

lation is that the bootstrap estimate of the finite sample pdf is not asymptot-208

ically correct when the number of bootstrap samples tends to infinity since209

sampling is done from an approximate pdf.210

5. Resampling the EnKF211

The non-parametric EnKF resampling is performed along the lines of212

Expression (19), recognizing that K = Γx,dΣ
−1
d

. Hence the cdf of relevance213

is F (xu,d) = F (d|xu)F (xu) from which the characteristics Γx,d and Σd214

can be determined. The associated finite sample estimators are the classical215

estimators given in Expressions (11) and (12). The cdf F (x) is only assessable216

through the ensemble members (xu(1), ...,xu(ne)), and may be bootstrapped217

by the nonparametric F̂ (xu), see Algorithm 3. The conditional cdf F (d|xu)218

is defined by the likelihood model ν(xu, ǫd) which is fully specified by the219

known function ν(., .) and the known pdf of ǫd. Consequently, F (d|xu) can220

be assessed by Monte Carlo simulation, see Algorithm 2.221

One resample replicate of the Kalman gain K∗ in Expression (19) is gen-222

erated by one bootstrap sample from F̂ (xu), to obtain (xu∗(1), ...,xu∗(ne)). For223

each bootstrap sample, Monte Carlo sampling from F (d|xu∗) is performed224

to obtain [(xu∗(i),d∗(i,j)); i = 1, ..., ne, j = 1, ...,m]. Based on these realiza-225

tions from F (xu,d) the estimates Γ̂∗
x,d and Σ̂∗

d
are computed to provide one226

resample replicate of the Kalman gain K∗ = Γ̂∗
x,d(Σ̂

∗
d
)−1.227
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For ne >> min(px, pd) full rank of Γ̂∗
x,d will be ensured. Note that if228

ne < min(px, pd), the rank of Γ̂∗
x,d will vary dependent on the number of229

duplicates in the bootstrap sample. The number of Monte Carlo replicates230

for each bootstrap sample can be chosen freely such that m ≥ pd, hence full231

rank of Σ̂∗
d

can be ensured.232

The number of bootstrap replicates should be identical to the num-233

ber of Kalman gain replicates required in Expression (19), i.e. K∗(i); i =234

1, ..., ne. Hence one replicate for each member in the unconditioned ensem-235

ble (xu(1), ...,xu(ne)) in order to perform the conditioning.236

The additional computational demands from the resampling strategy are237

to recompute the Kalman gain ne times in the bootstrapping step and to238

recompute the likelihood function m times in the Monte Carlo step. The239

former will normally be relatively inexpensive, while the cost of the latter240

depends on the actual likelihood model.241

The procedure described above defines the non-parametric Resample EnKF242

algorithm, coined ResEnKF, see Algorithm 4. The basis for ResEnKF is only243

the ensemble members and the given likelihood model. No additional model244

assumptions are made. The resampled Kalman gains K
∗(1)
e , ..., K

∗(ne)
e will not245

be independent due to coupling through the ensemble. They will, however,246

reproduce more of the variability than the single Kalman gain estimate K̂247

will. Consequently, the coupling will be reduced.248

The semi-parametric EnKF resampling (ResSPEnKF) is centered at the249

traditional regression line of d with respect to x, i.e., Γ̂d,xΣ̂
−1
x

. Define a250

super ensemble [(xu(i),d(i,j)); i = 1, ..., ne, j = 1, ...,m] with observations ob-251

tained from Monte Carlo simulation from F (d|x). Generate the associated252
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deviations ensemble [△(i,j) = d
(i,j) − Γ̂d,xΣ̂

−1
x
x
u(i); i = 1, ..., ne, j = 1, ...,m].253

Bootstrap (ne×m) samples from the deviations ensemble and define the semi-254

parametric bootstrap ensemble [(xu(i),d∗(i,j) = Γ̂d,xΣ̂
−1
x
x
u(i) + △∗(i,j)); i =255

1, ..., ne, j = 1, ...,m]. From this ensemble one semi-parametric bootstrap256

Kalman gain K∗ can be determined. The resampling must be repeated ne257

times to obtain K∗(i); i = 1, ..., ne. Note that the x
u entries are left un-258

changed, while the associated d
∗ values are resampled.259

The parametric EnKF resampling (ResPEnKF) is based on resampling260

of xu from Npx(µ̂x, Σ̂x), were the parameters are traditional estimates of µx261

and Σx based on the ensemble e. Simulate ne samples of x
u and Monte262

Carlo simulate associated values from F (d|xu) to obtain [(xu∗(i),d∗(i,j)); i =263

1, ..., ne, j = 1, ...,m]. Based on this set the parametric bootstrap Kalman264

gain K∗ can be computed. Repeat the procedure ne times to obtain K∗(i); i =265

1, ..., ne. Note that the x
u entries are resampled from Npx(µ̂x, Σ̂x) for each266

Kalman gain computation. The various EnKF resampling approaches are267

evaluated in an empirical study in the next section.268

6. Empirical study269

In order to evaluate the impact of the various resampling strategies in270

EnKF, we define a Gaussian prior model and two different likelihood mod-271

els, one Gauss-linear and one non-linear. The Gauss-linear model with all272

model parameters known is analytically tractable and will act as a reference.273

This model is described in Myrseth & Omre (2010). The model with a nonlin-274

ear observation likelihood demonstrates the generality of the algorithm. We275

start out, however, with a simple bivariate example and evaluate a one-step276

update. This simple case illustrates the effect of using resampling.277
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Algorithm 4: Non-parametric Resampled Ensemble Kalman Filter

Initiate:
• ne = no. of ensemble members
• m = no. of Monte Carlo replicates
• x

u(i)
0 ; i = 1, ..., ne iid f(x0)

• ǫ
d(i)
0 ∼ Npd(0, Ipd) ; i = 1, ..., ne

• d
(i)
0 = νt(x

u(i)
0 , ǫ

d(i)
0 ) ; i = 1, ..., ne

• e0 : {(xu
0 ,d0)

(i) ; i = 1, ..., ne}
for t = 0 to T do

Conditioning:
Estimate F̂ (xu

t ) =
1
n

∑n

i=1 I(x
u(i)
t < x

u
t )

for j = 1 to ne do

• x
u∗(i)
t ∼ F̂ (x) ; i = 1, ..., ne

• G = 0

• S = 0

for k = 1 to m do

• ǫ
d(i),k
t ∼ Npd(0, Ipd) ; i = 1, ..., ne

• d
(i),k
t = νt(x

u∗(i)
t , ǫ

d(i),k
t ) ; i = 1, ..., ne

• G = G+ 1
ne−2

∑ne

i=1(x
u∗(i)
t − µ̂

x
)(d

(i),k
t − µ̂

k
d
)′

• S = S+ 1
ne−1

∑ne

i=1(d
(i),k
t − µ̂

k
d
)(d

(i),k
t − µ̂

k
d
)′

• Γ̂∗
x,d = 1

m
G

• Σ̂∗
d
= 1

m
S

• x
c(i)
t = x

u(i)
t + Γ̂∗

x,d(Σ̂
∗
d
)
−1
(dt − d

(i)
t )

Forwarding:
• ǫ

x(i)
t ∼ Npx(0, Ipx) ; i = 1, ..., ne

• x
u(i)
t+1 = ωt(x

c(i)
t , ǫ

x(i)
t ) ; i = 1, ..., ne

• ǫ
d(i)
t+1 ∼ Npd(0, Ipd) ; i = 1, ..., ne

• d
(i)
t+1 = νt+1(x

u(i)
t+1 , ǫ

d(i)
t+1 ) ; i = 1, ..., ne

• et+1 : {(xu
t+1,dt+1)

(i) ; i = 1, ..., ne}
Assess
• f(xT+1|d0, ...,dT ) from eT+1

6.1. Simple bivariate example278

The minimalistic example consider a bivariate state variable x
u with279

distribution N2(µ,Σ), where the expectation vector µ = (1, 1)T and the280
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covariance matrix Σ has diagonal terms σ11 = σ22 = 1 and off-diagonal281

terms σ12 = σ21 = 0.37. The likelihood model is [d|xu] = Hx
u + ǫd with282

h11 = h22 = 1 and h12 = h21 = 0.5, while each element of the the error283

term, ǫd is independent Gaussian with zero mean and variance 0.1. The ac-284

tual observations are d
o = (−2.36,−0.79)T . Consequently, the example has285

nx = nd = 2, and we focus on the conditional state variable x
c = [xu|do]286

with associated pdf f(xc).287

We assess the pdf of interest f(xc) using both the traditional EnKF,288

Algorithm 1, and resample ResEnKF, Algorithm 4, with a range of ensemble289

sizes, ne = 6, . . . , 20. Note that for the Gauss-linear assumptions used, both290

algorithms are asymptotically correct when ne → ∞.291

The evaluation criteria for the algorithms are: Mean Square Error (MSE),292

where MSE = tr Ê[(µ̂xc − µxc)(µ̂xc − µxc)T ], and Correlation between En-293

semble Members (CEM) defined as tr Ĉorr(xc(i),xc(j)) for i 6= j. Note that294

the correlation between updated ensemble members is symmetric, see Ex-295

pression (18), hence identical for all i, j = 1, . . . , ne, i 6= j. These criteria are296

assessed by averages over 10 000 Monte Carlo simulations from the model.297

The results from the evaluation are displayed in Figure 2. The MSE and298

the CEM are displayed to the left and right respectively for ne = 6, . . . , 20.299

While the MSE is indeed higher for the ResEnKF, we observe that the CEM300

is significantly reduced compared with the traditional EnKF. An increased301

MSE for the ResEnKF scheme can be expected as the rank of the empiri-302

cally estimated covariance matrices decrease. As the ensemble size increases303

both the MSE and the CEM appear to converge. The convergences of both304

the MSE and the CEM curves are caused by both algorithms being asymp-305
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totically correct for ne → ∞. Note that in a sequential data assimilation306

setting, the increased MSE for the ResEnKF should not be critical as this307

will be corrected for at later updating steps. Introducing a large ensemble308

correlation, however, would be more critical as there will be a multiplica-309

tive effect at later updating steps, especially when considering static forward310

models. This increased ensemble coupling can eventually lead to an ensem-311

ble collapse. The consequences of sequential updating in higher-dimensional312

problems will be evaluated in the next section.313

6.2. Model description314

The variables of interest are [x0, ...,x11], where xt ∈ R100; hence xt is a315

100- dimensional time series. Observations are available at [d0, ...,d10]. The316

current time is T = 10 and the objective is the forecast [x11|d0, ...,d10]. In317

Figure 3 the reference realization of [x10,d10] is presented.318

The test case is defined as follows:

f(x0) ∼ N100(0,Σ
x
0) (21)

[xt+1|xt] = Atxt (22)

where the initial covariance matrix Σx
0 contains elements

σx
i,j = 20 exp(−3|i− j|/20) (23)

for i, j = 1, ..., 100. The forward model defined by At is a linear smoother that319

moves in steps of 5 from left to right for each time step. Consequently, the left320

part of x10 is smoother than the right part. The example has been inspired321

by a fluid flow scenario where there is a moving front where the parameters322
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are dynamic, and static surroundings. For more detail, see Myrseth & Omre323

(2010).324

The likelihood models are

[dt|xt]0 = Htxt +
√
20ǫdt (24)

and

[dt|xt]1 = (Htxt) ◦ exp(
√
0.1ǫdt ) (25)

where ǫdt ∼ N10(0, I10), Ht is time-invariant and picks 10 locations, see Fig-325

ure 3 and ◦ denotes a Schur product. The nonlinear likelihood contains a log326

normal multiplicative error structure.327

6.3. Results328

The forecast [x11|d0, ...,d10] will be used to measure the impact of resam-329

pling. The Root Mean Square Error (RMSE) of the mean forecast will be330

used to measure accuracy. The coverage will be used to measure forecast331

uncertainty which captures both accuracy and precision. A 95% coverage332

interval should include the solution 95% of the time. If the coverage is lower333

than this then the 95% forecast interval underestimates the uncertainty. The334

examples are run with the ensemble sizes ne = 30 and ne = 100 with m = 50335

Monte Carlo samples. An empirical 95% prediction interval is defined to be336

spanned by the 28 and 96 central ensemble members for the two ensemble337

sizes. We should therefore expect 87.1% and 94.1% coverage for ne = 30 and338

ne = 100, respectively, see Wilks (1962).339

6.4. Gauss-linear likelihood model340

For the Gauss-linear model, the model parameters are available through341

the traditional Kalman Filter, this exact solution is presented in Figure 4.342
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For the Gauss-linear model also the resampling approach as outlined in Ex-343

pression (20) is available. This case is termed the exact finite sample solution,344

and it captures the uncertainty due to finite size of the ensemble. The tradi-345

tional EnKF algorithm, Algorithm 1, the ResEnKF, Algorithm 4, adapted to346

a known linear likelihood, and the ResSPEnKF and ResPEnKF algorithms347

are also run on this Gauss-linear case.348

Figures 5 and 6 and Table 1 display the results obtained for the Gauss-349

linear model. In Figures 5 and 6 the prediction [x11|d1, ...,d10] with as-350

sociated 95% prediction intervals are displayed for one run of each of the351

algorithms with ensemble sizes ne = 30 and ne = 100 respectively. The352

reference x11 is also displayed. Table 1 contains statistics from 100 repeated353

runs of each algorithm on the same observations.354

Figure 4 contains the analytical solution of the Kalman Filter which is355

available for this Gauss-linear model. The reduction in prediction uncer-356

tainty around each observation is observed. Figures 5(a) and 6(a) present357

the prediction results for the exact finite sample solutions for ne = 30 and358

ne = 100, see Expression (20). Recall that the Kalman gains are resampled359

using x
u ∼ Npx(µ,Σ) which adds uncertainty relative to the analytical so-360

lution which is the limiting case as ne → ∞. The ne = 30 case has larger361

uncertainty while the ne = 100 case is very similar to the limiting case. These362

exact finite sample solutions are the reference solutions for the other ensemble363

Kalman filter runs. Figures 5(b) and 6(b) contain the results for the tradi-364

tional EnKF algorithm. The underestimation of the prediction intervals for365

ne = 30 is observed and the non-logical increase in uncertainty as ne increases366

is observed for ne = 100. We interpret the underestimation of uncertainty367

23



for ne = 30 to be caused by coupling of ensemble members due to the use of368

one common estimate of the Kalman gain, as discussed in previous sections.369

Note that all estimated matrices used in the conditioning have full rank in370

this case, since ne > nd. The fact that the exact finite sample solutions,371

which uses independent Kalman gains for each ensemble member, exposes372

decreasing uncertainty with increasing ne, supports our interpretation. Fig-373

ures 5(c) and 6(c) contain the results from the ResEnKF algorithm which374

includes full bootstrapping of the ensemble members to provide Kalman gain375

variability and reduce coupling in the conditional ensembles. The prediction376

intervals for ResEnKF are wider than for traditional EnKF and close to the377

reference exact finite sample solutions in Figures 5(a) and 6(a). This effect378

is clearly seen for ne = 30, while the results are more similar for ne = 100.379

The results for the ResSPEnKF and ResPEnKF algorithms in Figures 5(d)380

and 6(d) through 5(e) and 6(e) are similar to the ones for full bootstrapping381

in ResEnKF, although the ResEnKF seems to appear with better coverage382

of the prediction intervals at lower ensemble sizes.383

The results from the Gauss-linear model case can be summarized from384

Table 1 as follows: The traditional EnKF appears with better prediction385

accuracy than the ResEnKF algorithm, but the latter assesses the predic-386

tion uncertainty more reliably. In the traditional EnKF one uses the best387

estimate of the Kalman gain on all ensemble members to improve prediction388

accuracy, but this introduces coupling in the ensemble and hence underes-389

timation of prediction uncertainty. In ResEnKF one resamples the Kalman390

gain causing loss in prediction accuracy, but this also reduces coupling in391

the ensemble and hence improves the prediction uncertainty estimates. The392
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two alternative resampling approaches appear less reliable than ResEnKF.393

The parametric resampling EnKF has smaller RMSE and better coverage394

for small ne, however, but the geometry of the prediction intervals in Fig-395

ure 5(e) appears with too little variability. Lastly, note that these results396

are obtained on a Gauss-linear model which appears as very favorable for397

the EnKF. Hence the underestimation of the prediction uncertainty should398

cause concern in more complex models.399

6.5. Nonlinear likelihood model400

For the nonlinear likelihood the true model parameters are analytically401

intractable. However, the resampling EnKF algorithm, Algorithm 4, can402

be used without the bootstrapping loop. Then the likelihood model is lin-403

earized by Monte Carlo sampling based linearization around the ensemble.404

Hence, local ensemble dependent linearization is performed. This approach405

is termed EnKF/nonlinear likelihood. Finally, the full ResEnKF algorithm,406

Algorithm 4 and the semi-parametric, ResSPEnKF, and the parametric Re-407

sPEnKF, including both bootstrapping and Monte Carlo sampling can be408

used.409

Figures 7 and 8 and Table 2 display the results obtained for the Gaus-410

sian prior model with nonlinear likelihood model. The layout is identical411

to Figures 5 and 6, and Table 1. Figures 7(a) and 8(a) display the EnKF412

solutions with local, ensemble based linearization of the likelihood model for413

ensemble sizes ne = 30 and ne = 100. The prediction uncertainties are un-414

derestimated for ne = 30 and uncertainty increases with increasing ne which415

is non-intuitive. Figures 7(b) and 8(b) contain the results from the ResEnKF416

algorithm with full bootstrap and Monte Carlo resampling. The prediction417
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intervals for ne = 30 appear as much more reliable than for the previous al-418

gorithm, while intervals for ne = 100 are fairly similar. Figures 7(c) through419

8(d) display the results from the semi-parametric, ResSPEnKF, and para-420

metric, ResPEnKF, algorithms, and they appear as less reliable than the421

results from the ResEnKF algorithm.422

In Table 2 statistics for 100 repeated runs of each algorithm are sum-423

marized. The EnKF with local, ensemble based linearization tends to un-424

derestimate the prediction uncertainty. The ResEnKF algorithm has higher425

RMSE than the EnKF with nonlinear likelihood, but provides more reli-426

able estimates of the prediction intervals. The two alternative resampling427

approaches appear less reliable than ResEnKF.428

7. Conclusion429

The traditional EnKF is based on an ensemble representing the pdf of430

the variable of interest. The ensemble members are sequentially conditioned431

on observations and forwarded to the next time step. The conditioning to432

available observations is the challenging part, and in EnKF this conditioning433

is linearized using weights corresponding to the Kalman gain. The actual434

Kalman gain is estimated based on all ensemble members. Since the same435

Kalman gain estimate is used in all the conditioning of all ensemble mem-436

bers it can be shown that the members end up being coupled. Eventually437

this will cause the prediction intervals to be underestimated. A resampling438

strategy where the Kalman gain is generated from its sampling distribution439

is suggested. This will reduce coupling in the conditioning step.440

The resampling EnKF, ResEnKF, algorithm is defined for a model with441

both prior and the likelihood being on general nonlinear form. The coupling442
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of the ensemble members is reduced by bootstrapping the Kalman gains443

used in the conditioning step. The computational demands of ResEnKF are444

larger than for EnKF, but only slightly larger. The alternative resampling445

schemes, ResSPEnKF and ResPEnKF are also defined. The former uses a446

semi-parametric model in the resampling while the latter uses a resampling447

from a parametric model.448

The various algorithms are evaluated empirically. In a simple, bivariate449

example with one updating step, the ResEnKF algorithm is demonstrated450

to be clearly superior to the traditional EnKF algorithm in terms of reduc-451

ing the ensemble correlation. This comes at the cost of a lower prediction452

error compared to the traditional EnKF algorithm. A Gauss-linear model is453

also used and the exact finite sample prediction intervals are generated as454

reference. It is shown that the traditional EnKF algorithm severely under-455

estimates the prediction intervals for small ensemble sizes. The ResEnKF456

has significantly higher coverage of the prediction intervals on the expense457

of somewhat larger mean square error of prediction itself when compared to458

the EnKF. The alternative resampling schemes appear less reliable.459

The algorithms are also evaluated on a Gaussian prior model with nonlin-460

ear likelihood model. The ResEnKF algorithm with bootstrapping appears461

as more reliable than the traditional EnKF for small ensemble sizes. Overall462

the ResEnKF algorithm outperformed the traditional EnKF by providing463

more reliable prediction intervals on the expense of slightly lower prediction464

accuracy. The ResEnKF algorithm requires no extra modeling and has only465

slightly larger computational demands than the EnKF algorithm. None of466

the two alternative resampling schemes seem to provide results that are more467

27



reliable than the full bootstrapping algorithm ResEnKF.468
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Figure 2: Empirical evaluation of MSE and CEM, using the Traditional EnKF and Re-
sampling EnKF schemes.
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Figure 3: Reference realization: (x10,d10). Observations from the linear likelihood marked
by triangles. Observations from the nonlinear likelihood marked by circles.
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Figure 4: Exact solution for the Gauss-linear model. The reference realization (black),
predictions (solid blue) and 95% prediction intervals (hatched blue).
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Figure 5: Gauss-linear model. The reference realization (black), predictions (solid blue)
and 95%-empirical prediction intervals (hatched blue) for one run of each of the EnKF
algorithms with ensemble size ne = 30.

36



10 20 30 40 50 60 70 80 90

−10

0

10

(a) Exact finite sample solution

10 20 30 40 50 60 70 80 90

−10

0

10

(b) Traditional EnKF

10 20 30 40 50 60 70 80 90

−10

0

10

(c) ResEnKF

10 20 30 40 50 60 70 80 90

−10

0

10

(d) ResSPEnKF

10 20 30 40 50 60 70 80 90

−10

0

10

(e) ResPEnKF

Figure 6: Gauss-linear model. The reference realization (black), predictions (solid blue)
and 95%-empirical prediction intervals (hatched blue) for one run of each of the EnKF
algorithms with ensemble size ne = 100.
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Figure 7: Gauss-nonlinear model. The reference realization (black), predictions (solid
blue) and 95%-empirical prediction intervals (hatched blue) for one run of each of the
EnKF algorithm with ensemble size ne = 30.
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Figure 8: Gauss-nonlinear model. The reference realization (black), predictions (solid
blue) and 95%-empirical prediction intervals (hatched blue) for one run of each of the
EnKF algorithm with ensemble size ne = 100.

39



ne RMSE Coverage
(%)

Exact solution 2.68 95.0
Exact finite sample solution 30 2.75 97.3
Traditional EnKF 30 3.55 62.3
ResEnKF 30 3.92 74.0
ResSPEnKF 30 3.98 58.7
ResPEnKF 30 3.79 86.1
Exact finite sample solution 100 2.70 98.1
Traditional EnKF 100 2.93 88.8
ResEnKF 100 3.00 93.5
ResSPEnKF 100 3.31 83.1
ResPEnKF 100 3.52 84.8

Table 1: Gauss-linear model. RMSE and 95% empirical coverage for the different algo-
rithms with a Gauss-linear likelihood model averaged over 100 runs.
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ne RMSE Coverage
(%)

EnKF / nonlinear likelihood 30 4.67 40.1
ResEnKF 30 5.81 67.4
ResSPEnKF 30 3.92 43.1
ResPEnKF 30 5.97 80.4
EnKF / nonlinear likelihood 100 2.95 82.0
ResEnKF 100 3.10 93.0
ResSPEnKF 100 2.93 81.3
ResPEnKF 100 3.36 82.4

Table 2: Gauss-nonlinear model. RMSE and 95% empirical coverage for the different
algorithms with a nonlinear likelihood model averaged over 100 runs.
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