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An Approach for Optimal
Measurements Selection on Gas
Turbine Engine Fault Diagnosis
Gas path fault diagnosis plays an important role in guaranteeing safe, reliable and cost-
effective operation for gas turbine engines. Measurements selection is among the most
critical issues for diagnostic method implementation. In this paper, an integration
approach for optimal measurements selection, which combines finger print diagrams
analysis, health parameters correlation analysis, performance estimation uncertainty
index analysis and fault cases validation based on genetic algorithm, has been proposed
and applied to assess the health condition of a two-spool split flow turbofan in test bed.
First, mathematical description of an engine gas path fault diagnosis process was given
and the influence coefficient matrix was also calculated based on a well calibrated non-
linear engine performance simulation model. Second, the number of combination candi-
dates was reduced from 782 to 256 and three measurements were picked out using the
finger print diagrams analysis and the health parameters correlation analysis. Then, the
number of the combination candidates was further narrowed down to 13 using the
performance estimation uncertainty index analysis. A nonlinear genetic algorithm fault
diagnosis method was applied to test the diagnostic ability of the remaining measurement
candidates. Finally, an optimal measurement combination was worked out which
demonstrated the effectiveness of the integration approach. This integration approach for
optimal measurements selection is also applicable to other type of gas turbine engines.
[DOI: 10.1115/1.4029171]
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1 Introduction

Gas turbine engines are complex thermal equipment due to
harsh operation environment. Engine gas path fault diagnosis
plays an important role in ensuring reliable operation, reducing
operating costs and prolonging service life. The idea of gas path
fault diagnosis is based on the fact that any degradation in engine
component performance results in a change of engine measure-
ment. If the second change is traced, the degradation can be iden-
tified with gas path analysis. Thus, the engine diagnostic ability is
not only determined by fault diagnosis methods but also by useful
information the engine measurements contain.

A large variety of diagnostic methods for aero-engine gas path
faults have been put forward in the previous literature. Generally,
the existing methods can be divided into linear and nonlinear
methods. Li provided an extensive review of these methods [1].
Based on the formation of an appropriate matrix called influence
coefficient matrix, Doel [2] and Volponi [3] presented linear least
square fault diagnosis method. Methods based on Kalman filtering
have been presented by Provost [4] to distinguish faults between
sensors and components. In order to consider the nonlinearity of
engine behavior, a nonlinear model based method combined with
conventional optimization was introduced by Stamatis et al. [5].
Unfortunately, conventional optimization is liable to get into local
minimum. To overcome this limitation, genetic algorithm was
applied to the nonlinear model based method by Zedda and Singh
[6] in the past 15 years.

No matter which diagnostic method is chosen, one critical issue
to determine the diagnostic effectiveness is the useful information

measurements contain. This issue seems to be more important
especially at the stage of designing or manufacturing a new engine
[7]. It is due to the fact that the decision for instrumenting an
engine has to be taken in order to ensure a good capability of
in-service monitoring.

In theory, more measurements are chosen, more effective infor-
mation is available. Ideally, engine measurements can be obtained
by placing sensors at the inlet and outlet sections of each compo-
nent to get a full picture of the change that a component causes to
working fluid. However, such an approach is not practical for
several reasons [8]. First, it is very expensive and complex to
place so many sensors in an engine. Second, the inclusion of sen-
sors such as thermocouples, wall taps and pitot probes causes flow
disturbances. Third, measurements may not be obtained at some
locations because of harsh local conditions (for example, at the
high pressure turbine (HPT) inlet). It is thus desirable to use a
minimum number of measurements without sacrificing the
diagnostic ability.

In the past years, several methods related to measurements
selection have been put forward by different scholars. Sensitivity
analysis was first applied by Stamatis et al. [5]. They put forward
some criteria for optimal measurements selection and health
parameters selection. In later years, Provost [4,9] employed corre-
lation matrix to examine the degree of measurements interdepend-
ence. Mathioudakis and Kamboukos [7] and Kamboukos et al. [8]
used a method based on the condition number of Jacobian matrix
for optimal measurements selection. Stamatis et al. [5] applied
performance estimation uncertainty index method to perform a
check on the values of measurements. Jasmani [10] developed
analytical methodology combined with sensitivity analysis, corre-
lation analysis and subset concept to select measurements. Simon
[11] constructed a performance metric which was defined as func-
tion of the steady state error covariance and the cost of selected
sensors.
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To perform the sensors selection, Borguet [12] put forward a
metric which combined the essential elements of the selection
problem. It included the condition number, the trace and the deter-
minant of Fisher information matrix, which can both measure the
global sensitivity of sensors with respect to the health parameters
and the overall uncertainty on the estimated parameters. Michael
[13] put forward systematic sensors selection strategy. It provided
a procedure for quantifying the value of candidate sensors based
on criteria including speed of fault detection, probability of cor-
rect fault source isolation, and overall risk reduction potential. It
was rather applied to rocket engines than aero-engines.

However, from the literature stated above, a measurements
selection criterion based on engine health parameters correlation
rather than measurements correlation has not been reported. In
addition, no one has answered whether this method based on
health parameters correlation can be integrated with other meth-
ods to provide a universal and efficient way for optimal measure-
ments selection.

In this paper, we mainly focus on a novel combined approach for
optimal measurements selection on aero-engine gas path fault diag-
nosis especially used in test bed. The remainder of this paper is
organized as follows. Section 2 describes mathematical description
of an aero-engine gas path fault diagnosis process. Section 3 speci-
fies the method of optimal measurements selection. Then, in Sec. 4
experimental results were given to verify the effectiveness of the
proposed approach. Our concluding remarks are contained in Sec. 5.

2 Fault Diagnosis Method Description

2.1 Mathematical Description. For the purpose of gas path
fault diagnosis, engine is considered as a system. Its thermody-
namic relationship can be expressed with the following equation:

y ¼ gðu; xÞ (1)

In this equation, engine operating condition is defined by means
of a set of variables, denoted as vector u. Engine component
health condition is represented through the values of a set of
appropriate health parameters, denoted as vector x. The system is
observed through a set of measurements, denoted as vector y. gðÞ
is a vector-valued function representing engine thermodynamic
behavior.

For a given operating point u, the measurements only depend
on the health condition of engine components. It can be expressed
with the following equation:

y ¼ gðxÞ (2)

When an engine is in health condition, both the health parame-
ters and the measurements have the reference values

yref ¼ gðxrefÞ (3)

In the frame of gas path fault diagnosis, the formula is rarely
used in the form denoted as Eq. (1). Instead, what we are con-
cerned about most is the deviation between the actual values and
the reference values corresponding to a healthy engine. In general,
the functional relationship between the deviation of measurements
vector dy and the deviation of component health parameters
vector dx is nonlinear. However, if deviations are small, a linear
functional relationship can be used to link them together. Then,
Eq. (2) may transform into the following equation:

dy ¼ Gdx (4)

where

G ¼ @

@x
gðxÞ (5)

is influence coefficient matrix of the engine model at the lineariza-
tion point, also named Jacobian matrix.

In order to account for the effect of measurement noise, a vec-
tor v 2 Nð0;RyÞ is added to the deterministic linearized model in
order to reconcile the observed measurements and the predictions.
Therefore, Eq. (4) transforms into the following equation:

dy ¼ Gdxþ v (6)

Equation (6) can further be scaled to a linear system with a
noise distribution ~v 2 Nð0; IÞ provided that the covariance matrix
~Ry is positive definite. The scaled model [14] is given by

~G ¼
ffiffiffiffiffi
~Ry

q� ��1

G (7)

where the scaling factor takes into account the relative accuracy
of each sensor.

There may be several orders of magnitude difference between
the values in different columns of ~G. In order to scale all columns
of the Jacobian matrix into the same magnitude to prevent the
large matrix elements from dominating, one can compute the
magnitude of each column gi of ~G as gT

i gi [15]. Premultiply ~G by

W ¼

ffiffiffiffiffiffiffiffiffiffi
gT
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(8)

Let us define

~W ¼ ~GW (9)

After the aforementioned transformation, each column of ~W
has the same magnitude. It has to be noted that this transformation
matrix forms the base for the following methods including finger
print diagrams analysis, health parameters correlation analysis
and performance estimation uncertainty index analysis.

2.2 Aero-Engine Performance Modeling. In order to work
out the transformation matrix ~W, a two-spool split flow turbofan
was chosen as a test case. The model engine was a newly design
engine still in test bed. The engine layout is shown in Fig. 1.

The engine performance was simulated on an open object-
oriented engine performance platform [16,17] developed by
Beihang University, People’s Republic of China. It has been
calibrated by test bed data at fixed operating conditions (H¼ 0,
Ma¼ 0, N1¼ 100%). Some basic engine performance parameters
are shown in Table 1.

Base on Fig. 1, there are four major engine rotating components
being diagnosed as follows:

(1) fan (FAN)
(2) high pressure compressor (HPC)
(3) HPT
(4) low pressure turbine (LPT)

For each rotating component, it needs two health parameters,
i.e., efficiency index and flow capacity index to indicate its health
condition, which are defined as follows:

efficiency index: Ei ¼ gact=gref

flow capacity index: Wi ¼ W
ffiffiffi
h
p

=d
� �

act
= W

ffiffiffi
h
p

=d
� �

ref

The set of health parameters for these four rotating components
is shown in Table 2.

In the test bed, there are 12 possible measurement candidates
through placing corresponding sensors at the engine sections. The
measurements candidates and their standard deviations are shown
in Table 3.
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It has to be noted that thrust and total air flow rate were among
the candidates since the target engine in this paper was still in test
bed and these two parameters were available. If the target engine
is installed on wing, these two candidates should be excluded
from the table.

It has to be noted that the interturbine temperature T45 in this
test case does not exceed 1150 K. Based on the current technology
level, it is not difficult to sense the temperature and pressure at
this position. Therefore, T45 and P45 were also among the
candidates.

Using the developed engine model, the influence coefficient
matrix G can be determined by implanted individually 1% devia-
tion from the referenced one, toward each component health
parameters. Measurement noise standard deviations [18,19]
(shown in Table 3) were added to transform the matrix G. Based
on Eqs. (7)–(9), it transformed into influence coefficient matrix
~W, which is shown in Table 4.

3 Measurements Selection Process

Just as mentioned above, eight component health parameters
and twelve-measurement candidates are available in the test case.
Mathematically, at least eight measurements are required in order
that all these health parameters are uniquely estimated [20]. All
possible combinations can be chosen using K-choose-M combina-
torial approach, where K means the total available measurements.
The largest number of measurements is not necessarily the best
measurements considering the factors such as sensor costs, ease of
sensor integration, the potential close correlation between the
measurements and so on. In this test case, K is 12 and the possible
number of M can be 8, 9, 10, 11, and 12. Then, the total available
number of measurement combinations is shown below:

C8
12 þ C9

12 þ C10
12 þ C11

12 þ C12
12 ¼ 782 (10)

In order to effectively select the optimal measurements, a com-
bined method is presented and described here in detail. It includes
finger print diagrams analysis, health parameters correlation anal-
ysis and performance estimation uncertainty index analysis and

Table 1 Target engine performance parameters

Design parameters Value

Total pressure ratio 7.5
Bypass ratio 1.6
Intake total air flow rate 6.3 kg/s
High turbine entry temperature 1350 K

Table 2 Health parameters for target engine

No. Component health parameters Symbol

1 FAN efficiency index E1

2 FAN flow capacity index W1

3 HPC efficiency index E2

4 HPC flow capacity index W2

5 HPT efficiency index E3

6 HPT flow capacity index W3

7 LPT efficiency index E4

8 LPT flow capacity index W4

Table 3 Measurement candidates for the target engine

No. Symbol Engine measurement candidates Standard deviation (%)

1 T22 FAN outlet total temperature 0.2
2 P22 FAN outlet total pressure 0.3
3 T3 HPC outlet total temperature 0.2
4 P3 HPC outlet total pressure 0.3
5 T45 HPT outlet total temperature 0.5
6 P45 HPT outlet total pressure 0.3
7 T5 LPT outlet total temperature 0.2
8 P5 LPT outlet total pressure 0.3
9 N2 HPC rotational speed 0.1
10 WA Total air flow rate 0.5
11 WF Fuel flow rate 0.3
12 F Thrust 0.8

Table 4 Engine influence coefficient matrix (H 5 0, Ma 5 0, N1 5 100%)

E1 W1 E2 W2 E3 W3 E4 W4

T22 �0.0785 0.0443 �0.0325 �0.0092 �0.0342 0.0302 0.0143 �0.0453
P22 0.0318 0.1284 �0.0666 �0.0227 �0.0702 0.0619 0.0377 �0.1339
T3 �0.2089 0.1368 �0.1917 �0.0753 0.0401 �0.1494 �0.1008 0.1859
P3 �0.2622 0.3259 �0.0015 �0.0012 0.0205 �0.3371 �0.2319 0.3317
T45 �0.1687 0.1107 �0.1984 �0.0625 �0.2117 0.1868 �0.1889 0.0141
P45 �0.2665 0.3261 �0.0171 0.0011 �0.0145 0.0098 �0.3149 0.1146
T5 �0.4346 0.2849 �0.5109 �0.1607 �0.5442 0.4765 �0.5458 0.1072
P5 �0.2839 0.3373 �0.0371 �0.0048 �0.0357 0.0222 �0.2883 0.3382
N2 �0.4437 0.4954 0.7229 �0.9758 0.7081 �0.6998 �0.2378 0.7538
WA �0.0027 0.1154 0.0063 0.0023 0.0078 �0.0065 �0.0032 0.0082
WF �0.5539 0.5074 �0.3631 �0.1077 �0.3835 0.3285 �0.5953 0.3508
F �0.0886 0.1653 �0.0351 �0.0094 �0.0357 0.0298 �0.0886 0.0736

Fig. 1 Two-spool split flow turbofan structure diagram
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fault cases verification with genetic algorithm. The flow chart of
the measurements selection process is shown in Fig. 2.

3.1 Finger Print Diagrams Analysis. Using the data of each
column from Table 4, finger print diagram for each measurement
can be easily plotted. It can obviously indicate the influence of a
particular measurement caused by the same perturbation of each
component health parameter. One example is shown in Fig. 3.
There are totally twelve diagrams since twelve-measurement can-
didates are available in this test case.

The criterion for measurements selection in this step is that a
particular measurement can be selected if it is far more sensitive
to a health parameter than all the other health parameters.

From Fig. 3, it can be seen that the influence of component
heath parameter W1 on the measurement total air flow rate (WA)
is far stronger than the other parameters. Therefore, WA should
be chosen since it can distinguish the heath parameter W1 from
the other health parameters. After analyzing the other eleven dia-
grams, no other measurements can meet the criterion stated above.
In conclusion, only WA can be selected in this step.

3.2 Health Parameters Correlation Analysis. From the pre-
vious literature, little attention has been paid to the health parame-
ters correlation analysis. However, it is an effective way to
discriminate similar gas path engine faults. Different from dese-
lecting measurements through measurements correlation analysis
by Provost [4,9], in this step, health parameters correlation analy-
sis is applied to measurements selection. The criterion lies in that
a particular measurement must be selected if its deviation is

responded in opposite direction by any two different health pa-
rameters with high correlation degree.

The correlation degree of any two health parameters can be
reflected by correlation coefficient RUV defined as follows:

RUV ¼ cos h ¼ UTV

Uk k2� Vk k2

(11)

where U and V are two column vectors of Table 4.
The closer the value of RUV is to one, the more relevant are the

two column vectors. In other words, these two health parameters
are similar and they are difficult to be identified. In order to iden-
tify these similar heath parameters, one should select the measure-
ments whose trends are responded in opposite direction by the
health parameters.

There are totally 28(C2
8 ¼ 28) column combinations when one,

respectively, calculate RUV between any two different columns in
Table 4. Particularly, below are two combinations whose RUV is
greater than 0.95:

(1) (E1, E4) RUV ¼ 0:972
(2) (E2, E3) RUV ¼ 0:959

It means that (E1, E4) is highly relevant and difficult to be iden-
tified from each other. The same applied to (E2, E3) In order to
identify them effectively, one should first find the difference from
the correlation diagrams. Figures 4 and 5 present the correlation
diagrams between health parameters (E1, E4), (E2, E3),
respectively.

Fig. 3 Total air flow rate (WA) finger print diagram

Fig. 4 Correlation analysis diagram between E1 and E4

Fig. 2 Flow chart of measurements selection process

Fig. 5 Correlation analysis diagram between E2 and E3
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From Fig. 4, it can be seen that if one wants to identify E1 from
E4, measurement T22 must be selected because its trend is
responded in opposite direction by the faults. Similarly, T3 must
be selected if one wants to identify E2 from E3(shown in Fig. 5).

To sum up, on the basis of health parameters correlation analy-
sis, measurements T22 and T3 were selected in this step.

3.3 Performance Estimation Uncertainty Index Analysis.
From the finger print diagrams analysis and the health parame-
ters correlation analysis stated above, three measurements have
been selected including WA, T22, and T3. However, it is not
enough for engine gas path analysis since the number of meas-
urements should be no less than the number of health parameters.
In this test case, the number of measurements should be no less
than eight. Thus, at least five measurements have to be picked
out from the remaining nine measurement candidates. Then, the
total number of measurement combinations was calculated as
below:

C5
9 þ C6

9 þ C7
9 þ C8

9 þ C9
9 ¼ 256 (12)

To further selection of the other measurements, performance
estimation uncertainty index analysis [21] was chosen in this step.

The least square estimate of dx allowing for measurement noise
was given by [21]

dx ¼ ð ~WT ~R�1
y

~WÞ�1 ~WT ~R�1
y dy (13)

where ~W is the influence coefficient matrix shown in Eq. (9), ~Ry is
the measurement covariance matrix

�H ¼ ~WT ~R�1
y

~W (14)

where �H is called information matrix
In order to evaluate the estimate effectiveness, performance

estimation uncertainty index is presented as follows [21]:

J ¼ ðtrð �H�1Þ=MÞ1=2
(15)

J is named performance estimation uncertainty index, where
trðÞ is the trace of �H�1 which is the sum of diagonal elements. M
is the number of measurements.

The value of J (also named J-value) is a kind of global root
mean square error for the information matrix [21]. Clearly, the
smaller the J-value, the more accurate is the estimate. It indicates
the amount of useful information that the measurement combina-
tions contain. Therefore, it can be used as a criterion for narrow-
ing the range of the measurement combinations.

From Eq. (12), there are 256 measurement combinations.
According to the number of measurements, all these measurement
combinations are divided into five groups (from group A to group
E). For example, all the eight-measurement combinations are put
into group A and twelve-measurement combinations are put into
group E.

In each group, J-values of all the measurement combinations
were calculated one by one and sorted. For each group, the best
three sets of measurement combinations with lowest J-value were
picked out for further validation. Table 5 presents 13 typical sets
of measurement combinations picked out from the five groups. In
the table, symbol "•" indicates the selected measurements in the
previous steps. Symbol "�" indicates the selected measurements
using performance estimation uncertainty index analysis.

Until this step, still unknown whether all these selected combi-
nations are able to identify the common engine gas path faults.
Validation with typical fault cases is necessary to obtain the best
measurement combination. The method used in the fourth step
was genetic algorithm.

3.4 Validation Process Using Genetic Algorithm

3.4.1 Brief Introduction of Genetic Algorithm. Genetic algo-
rithm follows the idea of Darwin’s natural evolution and is one of
the optimization searching techniques [22,23]. Compared with the
conventional optimization methods, longer computation time is
the main drawback of genetic algorithm. However, this penalty
can be minimized with the advent of super parallel computing
technology. In addition, it offers several unique features. It can
combine elements of directed and stochastic search. It is also a
global search to avoid getting stuck in local optima. Even non-
smooth functions can be optimized since no derivatives are
required. Due to these features, genetic algorithm is used as the
validation method here.

Genetic algorithm optimization steps normally include encod-
ing, decoding, fitness evaluation, selection, crossover and muta-
tion. Considering the nonlinear feature of the engine model as
well as searching for a better solution, an adaptive genetic algo-
rithm was utilized in this step. The uniqueness of this algorithm is
that it can automatically change the probability of crossover and
mutation when the fitness is greater than the average fitness [22].

3.4.2 Genetic Algorithm Procedure. Measurement combina-
tions validation can be regarded as searching the best solution for
an optimization problem with the help of genetic algorithm. Its
idea is shown in Fig. 6. For each measurement combination, cal-
culated measurements �̂yi are compared with target measurements
�yi. The difference between �̂yi � �yi is used by genetic algorithm to
update the estimation of the component health parameters �̂xi. Any

Table 5 Measurement combinations with lowest J-value

No.

Number of
measurement
parameters WA T22 T3 P22 P3 T45 P45 T5 P5 N2 WF F lg J

1 8 � � � � � � � � 0.915
2 � � � � � � � � 0.926
3 � � � � � � � � 0.930

4 9 � � � � � � � � � 0.856
5 � � � � � � � � � 0.866
6 � � � � � � � � � 0.876

7 10 � � � � � � � � � � 0.841
8 � � � � � � � � � � 0.852
9 � � � � � � � � � � 0.857

10 11 � � � � � � � � � � � 0.838
11 � � � � � � � � � � � 0.843
12 � � � � � � � � � � � 0.848

13 12 � � � � � � � � � � � � 0.835
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potential solution �̂xi is evaluated by means of an objective
function (OF) [23] defined in the following equation:

OF ¼ 1

M

XM

i¼1

ai �
�yi � �̂yi

�yi

����
���� � 100 (16)

where ai is weighting factors of the measurements taking into
account the measurement noise [6,24].

Generally, �yi is the measured value vector from the real engine
component fault cases. If such fault cases are unavailable, it can
be obtained through deliberately implanting component perform-
ance degradation and adding measurement noise Xnoise into a well
calibrated engine model. Component degradation can be set
through perturbing the value of component health parameters. For
example, 1% of decrease in heath parameter E1 means 1%
efficiency degradation in fan component. Measurement noise is
usually assumed to be Gaussian distribution with mean li ¼ 0.
Relative value of Xnoise [25] is defined in the following equation:

Xnoize ¼ Rðli þ 3riÞ (17)

where R is a random number between [�1, 1].
A fitness defined in Eq. (16) is used to represent the quality of

any potential solution [25] and it is maximized in the genetic algo-
rithm searching process to achieve best possible solution. A value
of fitness approaching one indicates a good solution while a value
of fitness approaching zero indicates a poor solution.

Fitness ¼ 1

1þ OF
(18)

3.4.3 Genetic Algorithm Implementation. Genetic algorithm
operating parameters were set initially as follows: (1) population
size, Popsize ¼ 100, (2) number of generation, Maxgen ¼ 2000,
(3) probability of crossover, Pc ¼ 0:75, (4) probability of
mutation, Pm ¼ 0:05, (5) probability of adaptive crossover,
Pc1 ¼ 0:9, Pc2 ¼ 0:6, and (6) probability of adaptive mutation,
Pm1 ¼ 0:1, Pm2 ¼ 0:001.

Considering the stochastic feature of genetic algorithm and better
operating efficiency, the optimal search process can be adjusted as
follow. First, the top five solutions with max fitness are selected
and stored initially in the first generation. If the solution in the next
generation has greater fitness than the last one, the solution with
less fitness is replaced by the one with higher fitness. Second, the
same operation is repeated until it reaches the maximum generation
or it reaches the maximum fitness. Finally, the top five solutions

with highest fitness in the whole generation, as well as their corre-
sponding estimate of engine component health parameters are
obtained. The average of the five estimates is the final solution.

4 Results Analysis

As to the compression components (FAN and HPC), blade foul-
ing results in the decrease of efficiency and the flow capacity [10].
In this test case, the decrease of compression components effi-
ciency and the flow capacity were assumed to be �1% and �3%,
respectively. For the expansion components (HPT and LPT),
blade erosion was used as the test case with assumed deviations of
�1% in efficiency and þ3% in flow capacity. These component
degradations were implanted into engine performance model to
simulate measurements of degraded engine for gas path analysis.

To validate the faults identification effectiveness of the measure-
ment combinations, 15 component fault cases were chosen in
Table 6. They included single component fault cases, two compo-
nents fault cases, three components fault cases and four compo-
nents fault cases. These 15 component fault cases are sufficient to
cover most common rotating component faults occurrence in the
target engine.

All these fifteen typical fault cases were validated with the
above genetic algorithm method using the thirteen different mea-
surement combinations. The diagnostic accuracies are gauged
based on the fitness shown in Eq. (18). The closer the fitness is to
one, the higher the diagnostic accuracies are. Comparison of diag-
nostic accuracies for the fault cases using the different measure-
ment combinations is shown in Table 7. From the table, some
useful conclusions can be drawn as follows:

(1) Allowing for measurement noise effect, all the fitness val-
ues are greater than 0.87. It can be concluded that the iden-
tification accuracies are within the acceptable range and the
genetic algorithm is robust.

(2) The No. 2 measurement combination (the highlight column
in the table) is the only one combination whose fitness val-
ues of all the fifteen typical fault cases are greater than
0.905. Its fitness values rank No. 1 (largest) in most fault
cases except fault cases 3, 7, 12, and 13. It demonstrates
super diagnostic ability among all the measurement combi-
nations. The measurements in this combination include
WA, T22, T3, P3, P45, T5, N2, and WF.

Figures 7–10 also presents the genetic algorithm identification
results for single component fault to four components faults,
respectively, using the No. 2 measurement combination. In the
figures, "mesh bar" means the implanted component degradations,
the adjacent "blank bar" means the genetic algorithm identifica-
tion results. The lower is the height difference between these two
bars, the higher is the diagnostic accuracy. From these figures, it

Table 6 Component fault cases

No. of fault
case

No. of
component

Degraded
components

1 1 FAN
2 1 HPC
3 1 HPT
4 1 LPT
5 2 FANþHPC
6 2 FANþHPT
7 2 FANþLPT
8 2 HPCþHPT
9 2 HPCþLPT
10 2 HPTþLPT
11 3 FANþHPCþHPT
12 3 FANþHPCþLPT
13 3 FANþHPTþLPT
14 3 HPCþHPTþLPT
15 4 FANþHPCþHPTþLPT

Fig. 6 Measurement combinations validation using genetic
algorithm
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can be seen that the identification results are acceptable although
slight difference can be found in these figures.

It should also be noted that combinations 4–13 has more meas-
urements than combinations 1–3. More measurements mean high

fault diagnosis costs. Taking into account the diagnostic ability
and cost, the No. 2 combination was the recommended measure-
ment combination including eight measurements WA, T22, T3,
P3, P45, T5, N2, and WF. This combination cannot only produce
higher accuracy in identifying the engine component faults but
also can reduce the fault diagnosis costs.

In order to demonstrate the validity of this integration approach,
a further numerical experiment was done. In this experiment, the
first two steps finger print diagrams analysis and health parameters
correlation analysis were skipped and the third step performance
estimation uncertainty index analysis(also named one-step
method) was utilized directly to search the optimal measurement
combination globally out of the total 792 candidates.

From Table 8 shown below, it can be seen that the best three
eight-measurement combinations selected from the one-step
method are different from the ones based on the method put for-
ward in this manuscript(also named three-step method). To com-
pare the faults identification effectiveness with these two
methods, genetic algorithm method was also utilized to identify
the fifteen typical component fault cases (shown in Table 6). The
diagnostic accuracies can be determined based on the genetic
algorithm average fitness of the typical fault cases. The closer the
average fitness is to one, the higher the diagnostic accuracy is.

Table 9 presents the fitness of eight-measurement combinations
from different selection methods. It can be seen that the best three
measurement combinations from the three-step method have the

Fig. 7 Single component fault identification results

Fig. 8 Two components faults identification results

Table 7 Fitness of measurement combinations in different fault cases

No. of measurement combinations

1 2 3 4 5 6 7 8 9 10 11 12 13

No. of
fault
cases

1 0.873 0.908 0.900 0.905 0.898 0.904 0.897 0.910 0.892 0.906 0.904 0.902 0.894
2 0.921 0.927 0.884 0.907 0.882 0.912 0.915 0.895 0.912 0.908 0.907 0.895 0.913
3 0.894 0.905 0.903 0.890 0.902 0.898 0.913 0.906 0.903 0.900 0.884 0.885 0.887
4 0.905 0.922 0.877 0.875 0.915 0.905 0.910 0.912 0.903 0.887 0.907 0.911 0.912
5 0.885 0.902 0.902 0.900 0.896 0.906 0.892 0.911 0.896 0.876 0.897 0.912 0.895
6 0.906 0.915 0.898 0.903 0.886 0.877 0.906 0.900 0.907 0.889 0.894 0.906 0.905
7 0.899 0.909 0.905 0.901 0.905 0.891 0.905 0.894 0.910 0.917 0.906 0.886 0.885
8 0.912 0.920 0.895 0.898 0.913 0.908 0.895 0.910 0.889 0.917 0.913 0.905 0.914
9 0.901 0.915 0.904 0.906 0.909 0.911 0.897 0.901 0.895 0.896 0.897 0.891 0.896
10 0.910 0.917 0.899 0.911 0.897 0.907 0.915 0.883 0.911 0.902 0.913 0.903 0.901
11 0.912 0.910 0.901 0.896 0.901 0.883 0.898 0.898 0.905 0.906 0.902 0.905 0.902
12 0.904 0.915 0.900 0.898 0.909 0.908 0.901 0.911 0.906 0.905 0.907 0.888 0.910
13 0.901 0.907 0.911 0.902 0.900 0.897 0.897 0.904 0.892 0.893 0.895 0.904 0.893
14 0.896 0.909 0.893 0.894 0.895 0.885 0.903 0.887 0.915 0.907 0.900 0.894 0.897
15 0.907 0.912 0.907 0.903 0.903 0.901 0.909 0.903 0.899 0.893 0.897 0.902 0.904
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highest average fitness (0.902, 0.913, and 0.899, respectively)
than the ones from the one-step method (0.875, 0.869, and 0.872,
respectively). It indicates that higher diagnostic accuracy can be
obtained using the three-step measurements selection method.
Therefore, the first two steps in this manuscript cannot be skipped
in order to select the optimal measurements selection.

5 Conclusions

In this paper, an integration approach for optimal measurements
selection has been presented for the aero-engine gas path fault

diagnosis in test bed. Through the research, some useful conclu-
sions are obtained:

(1) Finger print diagrams analysis for health parameters pro-
vides a fast way to discover the most unique measurements
for the particular engine component degradation.

(2) How to discriminate similar health parameters is critical to
increase the fault diagnostic success rate. Health parameters
correlation analysis is an efficient way to pick out the meas-
urements to distinguish similar engine faults with high
correlation.

(3) Performance estimation uncertainty index analysis can nar-
row the range of the measurement combinations by evaluat-
ing the useful information that the measurements contain.

(4) The genetic algorithm identification results, for single com-
ponent fault to multiple components faults using the No. 2
measurement combination WA, T22, T3, P3, P45, T5, N2,
and WF, are within the acceptable range. The identification

Fig. 9 Three components faults identification results

Fig. 10 Four components faults identification results

Table 8 The best three eight-measurement combinations from
different selection methods

No. Method WA T22 T3 P22 P3 T45 P45 T5 P5 N2 WF F lg J

1 One-step
method

� � � � � � � � 0.867
2 � � � � � � � � 0.884
3 � � � � � � � � 0.889

1 Three-step
method

� � � � � � � � 0.915
2 � � � � � � � � 0.926
3 � � � � � � � � 0.930

Table 9 Fitness of eight-measurement combinations from
different selection methods

No. of measurement parameter combinations

Three-step method One-step method

1 2 3 1 2 3

No. of
fault
case

1 0.873 0.908 0.900 0.876 0.867 0.874
2 0.921 0.927 0.884 0.879 0.870 0.869
3 0.894 0.905 0.903 0.875 0.868 0.873
4 0.905 0.922 0.877 0.870 0.871 0.872
5 0.885 0.902 0.902 0.873 0.870 0.873
6 0.906 0.915 0.898 0.873 0.867 0.874
7 0.899 0.909 0.905 0.876 0.870 0.869
8 0.912 0.920 0.895 0.874 0.871 0.870
9 0.901 0.915 0.904 0.874 0.866 0.877
10 0.910 0.917 0.899 0.877 0.871 0.870
11 0.912 0.910 0.901 0.877 0.868 0.871
12 0.904 0.915 0.900 0.880 0.867 0.872
13 0.901 0.907 0.911 0.875 0.870 0.871
14 0.896 0.909 0.893 0.871 0.868 0.875
15 0.907 0.912 0.907 0.874 0.871 0.870

Average
fitness

0.902 0.913 0.899 0.875 0.869 0.872
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accuracy can be further increased through future research
on improved genetic algorithm.

(5) The four-step integration approach provides a useful and
universal tool to simplify the measurements selection pro-
cess for different type gas turbine engines fault diagnosis.
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Nomenclature

gðÞ ¼ vector-valued function

G, ~G, ~W ¼ influence coefficient matrix
H ¼ altitude
I ¼ unit matrix

Ma ¼ Mach number
N1 ¼ low pressure spool relative rotational speed

Nðm;RÞ ¼ a Gaussian probability density function with mean
m and covariance R

Ry ¼ covariance
~Ry ¼ covariance matrix
u ¼ operating condition vector
v ¼ measurement noise vector

ðW
ffiffiffi
h
p

=dÞact ¼ actual corrected flow
ðW

ffiffiffi
h
p

=dÞref ¼ referenced corrected flow
x ¼ component health parameters vector
�̂x ¼ estimated component health parameters vector
y ¼ measurements vector
�y ¼ target measurements vector
�̂y ¼ simulated measurements vector

gact ¼ actual efficiency
gref ¼ referenced efficiency

r ¼ standard deviation

Subscript

1–5 ¼ aero-engine gas path station number (shown in
Fig. 1)

Superscripts

T ¼ transpose
�1 ¼ inverse
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