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Abstract—Smartphones with diverse sensing capabilities are
becoming widely available and pervasive in use. With the phone
becoming a mobile personal computer, integrated applications
can use multi-sensory data to derive information about the user’s
actions and the context in which these actions occur. This paper
develops a novel method to assess daily living patterns using
a smartphone equipped with microphones and inertial sensors.
We develop a feature-space combination approach for fusion of
information from sensors sampled at different rates and present a
computationally light-weight algorithm to identify various high
level activities. Preliminary results from an initial deployment
among eight users indicate the potential for accurate, context-
aware, and personalized sensing.

Index Terms—Mobile computing, Algorithm design and anal-
ysis, Ubiquitous computing, Wearable computers, Activity iden-
tification, Activities of daily living.

I. INTRODUCTION

Smartphones, with a wide array of sensing devices, are

increasingly becoming common these days. It has been noted

in [18] that an individual’s cellphone is a personal proxy,

a context aware device, an activity inference device, and a

payment proxy. A mobile phone is increasingly becoming

popular as a personal computer.

The main challenge in detection of context and activity

using a smartphone comes from the fact that it is not primarily

designed to collect and infer activity related information. For

that purpose, custom-made mobile sensor platforms are built

and used for identification of context related to human activity

and are optimized to boost classification performance [13],

[17], [16]. In practice, however, the main challenge is the

usability of the chosen solution. Unless the user is already

familiar with the technology and/or it provides a distinct,

unique value, the adherence almost always declines rapidly

after the initial period and the user eventually discontinues to

use it.

Because of the proven value to the user, smartphones present

a natural platform for hosting context sensitive applications.

Analogous to a user owning a personal computer who is

more likely to install new software rather than buy specialized

devices for each application, a common user who already owns

a cellphone is more likely to adopt a software for a new

application rather than buy a specialized device for achieving
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this purpose. Nevertheless, the range of available embedded

sensors and the practical use of these devices in the real life

pose serious challenges to the developer of robust context

detection algorithms.

With Software Development Kits (SDKs) such as Symbian

S60 [11] and the iPhone SDK available currently, third party

applications and software for the smartphones can be more

easily developed and made available to the common user. The

vision of the cellphone being a proxy for the user and their

activities will soon become a reality.

In addition to microphones and digital cameras, today’s

smartphones are often equipped with micro-electromechanical

(MEMS) sensors, mainly accelerometers, which have a small

form factor and low power consumption advantages without

compromising on performance. As technology matures and

more sensors get integrated in smartphones, we anticipate

that an emerging category of applications will exploit the

abundance of available data and apply multi-sensor data fusion

to deliver reliable services that depend on understanding the

context in which they are used.

In this article, we take a step in the direction of designing

these robust applications in the face of the aforementioned

challenges. We specifically address the problem of the cell-

phone as an activity inference device. Human activity identifi-

cation will provide input to a rich set of new applications in the

realm of healthcare, personal record keeping, entertainment,

and safety. The rest of the paper is organized into five sections.

Section II presents the implementation details of our system

(data collection and storage). Section III presents our algorithm

for inferring human activities and Section IV summarizes

the results from our deployment. We discuss related work in

Section V and conclude with discussion of various application

scenarios and directions for future work in Section VI.

II. SYSTEM DESIGN

Smartphones are quite prevalent these days and their capa-

bilities have also increased multifold in the past few years.

Examples of such smartphones equipped with various sensors

include the Nokia N-series (N82, N95, N96), Apple iPhone,

and the BlackBerry. Many of these smartphones are equipped

with location, motion, light, audio, and video sensors. Since

Nokia provides a large number of smartphones that have a
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common operating system and APIs, we choose to use the

Nokia N95 for our work.

We design and implement a general software architecture

for the purpose of data collection on the Nokia N95. The N

series of Nokia phones use a client-server based operating

system, the Symbian OS [11], designed for resource con-

strained mobile devices. Access to lower level hardware is

provided through a request callback sequence, where servers

(abstractions of lower level hardware) respond to requests from

clients.

Hardware

Sensors (GPS, GSM) and Flash memory (SD card)

Symbian OS

Control access to hardware

and analysis

Sensor data collection Flash

control
read/write

Fig. 1. Figure depicting the various components of our software design on
the cellphone using Symbian OS.

Figure 1 shows the components of our software architecture,

which enables a generic and flexible collection of data from

various sensors. We can see from Figure 1 that the compo-

nents fall into three categories, the lowest level includes the

hardware of the cellphone (microphone, GPS, accelerometer),

abstractions of which are provided by the server components

of Symbian OS. The modules in the application layer (top

most) provide three main functionalities: (i) Data collection

from the server components, (ii) Recording data collected

from the sensors, and (iii) Reading data recorded from the

flash for upload to a PC for data analysis. Our architecture is

modular, flexible, and extensible and enables data collection

from various sensors with ease. A snapshot of the data

collection application that utilizes the above architecture is

shown in Figure 2. The application allows for tagging the

data streams being recorded with the corresponding activity

(chosen by the user from the drop down list).

Our current implementation records four different sensors:

the microphone, accelerometer, GPS, and GSM (GSM in-

formation is used to determine the user’s location when

GPS signals are unavailable) for offline analysis. While our

current inference algorithm is fairly light-weight, the initial

development focuses on a proof-of-concept implementation

of multisensor fusion for activity detection. We are currently

working on enabling such a real-time activity inference tech-

nique on the phone. Further, recording the identified activity

may be useful for long-term trend analysis, as is shown by

Fig. 2. Figure showing the application for activity tagging

smart attire [5].

III. ACTIVITY INFERENCE

In this section, we develop the method for identifying activ-

ities termed as Activities of Daily Living (ADL). ADLs [10],

[14] are of importance, especially in the medical community,

where they are used to ascertain the health of an elderly

individual. In this paper, we show that integrating sensor data

from the microphone and the acceleration sensor embedded

in the N95 is a promising approach for ADL monitoring. We

develop a feature-space-combination approach, in which we

extract information from both sensors sampled at different

rates. This is accomplished by a synchronous feature extraction

approach in which features from each sensor are computed

independently at the same, constant time-frame rate. The

extracted features are fed to a computationally light-weight

algorithm, suitable for implementation on a smartphone, such

as the N95.

In our study, the user wears the phone on the waist and

performs an activity (e.g. cooking). Before the start of the

activity, the user activates the data capture application within

the smartphone (as shown in Section II). The data collection

modules samples the acceleration sensor at 7 Hz and the mi-

crophone at 8 kHz. The low sampling rate of the acceleration

sensor is due to the Symbian OS (and we have no control

over it). The above sensor signals form the input to an ADL
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monitor. In the current solution, data processing is done offline

to facilitate rapid development of the algorithm.

We conducted an empirical study to obtain the training and

testing data set for the automated classifier. Eight distinct

ADLs and instrumental activities of daily living (IADL), as

shown in Table I, are considered in the present study. These

eight activities are chosen as they form the basic ADLs

and IADLS [10], [14]. Note that the activities in Table I

comprise of both static and dynamic activities. An activity is

“static”when there is no significant acceleration signal detected

at the waist while performing that activity. A “dynamic” ac-

tivity, on the other hand, contributes to significant acceleration

while accomplishing the activity. Hence, we can see that not

all of the activities in Table I can be differentiated based on

acceleration signals alone.

We use an hidden Markov Model (HMM), to model each ac-

tivity. Since HMMs are well known models of time series and

have been used successfully to recognize human actions [5],

we use it in the present study to identify ADLs/IADLs. We

extract the following features from the acceleration data in

overlapping time frames of 5 seconds with a 1.67 seconds

frame shift. Let us assume that the acceleration signal is

a(t), which is discrete. The identified time window is [t1, t2],
for which features are extracted from the signal. Further, the

acceleration signal has three components at any given time

(t), which are the acceleration in x-axis (ax), y-axis (ay), and

z-axis (az). We compute the features across each axis. The

first feature is the relative change in body orientation (O) in

xy-z plane with respect to a calibration phase when the user

is presumed to be standing. This is defined as follows:

θ = arctan(

√

((max
)2 + (may

)2)

maz

(1)

In Equation 1, max
is the mean of x axis acceleration, may

is the mean of the y axis acceleration, and maz
is the mean

of the z axis acceleration.

The next feature is related to the energy expended in a

particular physical activity, which is measured as the energy

of the acceleration signal in the given time window for all the

three axes. It is specified as follows:

EE = mean(
∑

x,y,z

(a2)) (2)

We also compute the skewness of the magnitude of the 3-

dimensional acceleration, given by the following equation:

SK = E[(ai − µ)3/σ3] (3)

In Equation 3, µ = mean(ai), σ is the standard deviation

of a, and E[t] represents the expected value of the quantity of

t. Finally, we compute the entropy of the acceleration, which

is given by:

H(a) = −

t2
∑

i=t1

p(ai)log2p(ai) (4)

In Equation 4, p(.) is the probability mass function of a.

Relative inclination helps in distinguishing activities that

depend on whether a person is sitting (e.g., “Eating”), standing

(e.g., “Cooking”), and lying-down (e.g., “Watching TV”).

Energy expenditure, skewness, and entropy help distinguish

between dynamic activities (e.g., “Aerobic) and static ones

(e.g., “Desk Work”). Figure III shows an example of how the

vector magnitude is different between “Aerobic” and “Desk

Work.”

The microphone data is also processed at the same frame

length. Let us assume that this is represented by s(t) and the

time duration for which the signal is processed is [t1, t2]. We

extract spectral shape features that are related to the audio

content [7]. The cepstral coefficients (c) are defined as follows:

f = fft(s, n)

x = melbank(p, n, fs)

n2 = 1 + ⌊n/2⌋

z = log(x ∗ |f(1 : n2)
2|)

c = DCT (z)

In the above equations, fft performs the Fourier transform

(FFT), n is the number of points for the FFT, melbankm
computes the mel-spaced filterbank and DCT computes the

discrete cosine transform of z. We set p = 26, n = 256, and

fs = 8000. These “cepstral coefficients” help in differentiating

between different classes of dynamic activities (e.g., “Cook-

ing” and “Hygiene”), or different classes of static activities

(e.g., “Meeting” and “Driving”). We use the first 12 cepstral

coefficients as they are well known to be the most useful in

describing the content of an audio signal [7]. Figure III shows

an example of how the spectral shape, computed using cepstral

coefficients, is significantly different between “Cooking” and

“Driving”.

IV. RESULTS

We now present the descriptive results of our empirical

study (see Section III) in this section. We recruited eight

male participants between the age groups of 20-37 years

to participate as subjects for the empirical data collection

experiments. We instructed the users to go about their regular

routine and perform their daily activities as naturally as

possible and placed no restrictions on the location or time of

the day. Users were encouraged to wear the device as much

as possible for a period of eight weeks in either their pocket

or a carrying pouch. We compensated each participant with a

$20 gift card to a local movie theater. All participants signed

an user agreement that stated that they agree to the collection

and use of microphone, acceleration, GPS (if available), and

GSM (cell information that can be used to track location) data

for research purposes.

In order to collect data to train the classification algorithm

and validate the results of classification, we modified the data

collection part of our software design (Section II) to enable

users to label their activities. Specifically, we instructed the

users to label the beginning and the end of each activity. Addi-

tionally, when the phone is switched on, the user calibrated the
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Activity

Name Type Activity Description Reference

Aerobic Dynamic Walking, running, lifting weights, etc.
Cooking Dynamic Food preparation, heating, grilling, etc.
Desk Work Static Typing, reading at desk.
Driving Static Driving in a car.
Eating Static Eating while seated or standing.
Hygiene Dynamic Washing dishes, brushing teeth, etc.
Meeting Static Present in, or attend a meeting.
Watching TV Static Watching TV while not performing any of the above activities.

TABLE I
ACTIVITIES OF DAILY LIVING CONSIDERED WITHIN THE EMPIRICAL STUDY
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(a) Vector magnitude of triaxial acceleration during “Aerobic” activity.
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(b) Vector magnitude of triaxial acceleration during “Desk Work.”

Fig. 3. Figure illustrating how the vector magnitude feature helps differentiate between dynamic and static activities.
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(a) Cepstral coefficients of an instance of “Cooking.”
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(b) Cepstral coefficients of an instance of “Driving.”

Fig. 4. Figure illustrating how the cepstral coefficients help differentiate between different static activities.
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acceleration axes by standing still for a period of 10 seconds.

The start and end of calibration was cued by making the device

vibrate.

A total of 80 hours of tagged activity data was collected.

A partial data set of 45 hours is used for developing and

training the automated classification algorithm. Eight activity-

level HMMs are trained, one for each activity listed in Table I.

All have 3 states, whose output distribution is modeled as a

mixture of 8 Gaussians. The 3 state model is chosen to model

the ‘transition-into’, the ‘steady state’, and the ‘transition-out’

of each activity. Testing is performed on a 7 hour subset of

the remaining data (i.e., data not including in training). The

rest 28 hours of data is unusable because the users did not

either calibrate the device or label the activities correctly. An

HMM toolkit, HTK [20], is used for training. During testing,

we perform a maximum-likelihood decoding to determine the

most likely activity. This form of decoding could be viewed

as a single finite state model composed of individual HMMs

with transitions between various activities classes modeled as

equally likely. We make this simplifying assumption currently

due to lack of a large dataset to model transition between

activities accurately. Note that recognition is user independent;

the data from all the users are used to construct the HMMs

and the testing does not exploit the knowledge of the user

identity.

The results, in terms of accuracy of classification, are

summarized in Table II. Accuracy refers to the portion of time

windows in which the classified and labeled activities match.

The results indicate that the recognition accuracy is quite high

for the following activities: “Aerobic,”“Cooking,” “Driving,”

and “Hygiene’.’ We find that “Eating” is hard to distinguish

from “Watching TV” because a majority of “Eating” activity

was performed when the user was “Watching TV” and hence

the audio and acceleration features are quite similar. One way

to alleviate this would be allow for “N-best” outputs from the

classifier, where “N” refers to those outputs during decoding

that exceed a threshold on their likelihoods. The low accuracy

of “Meeting” on the other hand is due to the availability

of a limited amount of our data corresponding to this class.

Table III shows the results in terms of precision and recall.

We observe from Table III that our precision results are also

quite good, except for the “Meeting” class due to the limitation

mentioned above. Overall, the results in Table II and Table III

show the potential of combining the information from the

acceleration sensor and the microphone for the identification

of ADLs. However, further evaluation is required to confirm

the statistical validity and significance of these preliminary

results.

We now present the confusion matrix in Table IV. As we

mentioned earlier, our dataset consists of people “Eating”

while “Watching TV”, and hence both these activities were

confused with each other. We also observe that “Desk Work”

and “Meeting” are confused with each other due to the open

space work environment in which these data were collected.

Finally, we provide an empirical justification regarding our

choice of the 3-state HMM. Table II also shows the accuracy

Activity Accuracy (%) Accuracy (%) Accuracy (%)
3-state 1-state 5-state

Aerobic 82 79.3 83.1
Cooking 100 100 100
Desk Work 53 34 50
Driving 87.6 96 77
Eating 12.7 12.7 14
Hygiene 99 64 43
Meeting 12.7 12.7 14
Watching TV 88 87 88

TABLE II
PERFORMANCE OF THE AUTOMATED ADL CLASSIFIER

Activity Precision % Recall %

Aerobic 76.8 81.9
Cooking 76.4 100
Desk Work 50.8 53
Driving 100 87.6
Eating 51.2 12.7
Hygiene 65.6 99
Meeting 12.5 12.7
Watching TV 55.9 88

TABLE III
PRECISION AND RECALL OF THE CLASSIFIER

results when using a Gaussian Mixutre Model (a 1-state

HMM) or a 5-state HMM for comparison. We can observe

from Table II that in terms of the average accuracy, the 3-

state HMM outperforms the 1-state and 5-state HMMs, thus

supporting our choice of using the “transition-into”, “steady”,

and “transition-out” states. We conclude that our choice of

discriminative acceleration and audio features and a 3-state

HMM provide a promising approach to identifying ADLs.

V. RELATED WORK

A Gaussian Mixture Model (GMM) based approach com-

bined with a finite state machine is developed in [6] for

the purpose of identification of early morning bathroom ac-

tivities, such as washing face, brushing teeth, and shaving.

An accelerometer strapped to the wrist is used for activity

identification. We identify a broader set of activities and use

a cellphone for identifying these activities.

RFIDs are used to identify ADLs in [13]. The authors build

a system called Proact that uses inputs from RFIDs attached to

various objects and a reader attached to a glove. These inputs

are used to create models using dynamic Bayesian networks,

that are then used for the identification of the activities. In

[17], an approach that augments the use of RFIDs with an

accelerometer mounted on the glove with the RFID reader is

presented. In this work, RFID tag readings are used to narrow

down the set of activities based on the type of object being

used. In contrast to the above paper, our work uses existing

sensors from cellphones and avoids the use of cumbersome

devices like a glove with an RFID reader attached and RFID

tags.

Logan and Healey present an approach for identifying

a minimal set of sensors for recognizing eating and meal

preparation [8]. An adaptive boosting (AdaBoost) classifier
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Activity Aerobic Cook Desk Drive Eat Hygiene Meet TV

Aerobic 1197 145 0 0 120 0 0 0
Cooking 0 523 0 0 0 0 0 0
Desk Work 329 0 958 0 0 0 519 0
Driving 33 0 0 891 7 0 0 86
Eating 0 0 333 0 241 199 0 1117
Hygiene 0 0 0 0 4 380 0 0
Meeting 0 0 596 0 0 0 87 0
Watching TV 0 17 0 0 99 0 91 1523

TABLE IV
TABLE SHOWING THE CONFUSION MATRIX

is used for separating eating and associated tasks from other

activities. Our work addresses the identification of a larger set

of activities with a limited set of sensors that are available on

the cellphone.

Zhen et al., use state change sensors installed on various

household objects such as doors, drawers, and refrigerators for

the purpose of the identification of activities such as cooking,

shopping, washing, and bathing [21]. A self-adaptive neural

network called “Growing Self-Organizing Maps” is used for

activity identification. In contrast to our work, the above paper

used inputs from objects tagged with state change sensors.

A specialized device that records various sensor readings,

such as the microphone, light, accelerometer, and barometer

is developed in [1]. An on-device inference algorithm that

identifies activities such as walking, sitting, climbing stairs,

and brushing teeth is also presented. Our work, on the other

hand, identifies a broader set of activities and does not require

a specialized device to be used. Further, the set of features

computed in the paper is quite large.

Cell phone based basic activity identification has been done

earlier [9], [15], [3]. Complementary to such applications, our

work addresses the question of identifying complex activities:

the ADLs.

VI. DISCUSSION AND CONCLUSION

We have developed a Bayesian learning based approach for

identifying ADLs using commonly available smartphones. Our

system uses two sensor modalities, the microphone and the

accelerometer to achieve activity inference. We show through

extensive experimental studies conducted across eight people

over eight weeks that our approach to activity inference is quite

robust and accurate. Note that our approach does not require

each new user to train the system. However, the performance

can be improved by adapting the models to individual users.

This can be accomplished by an unsupervised adaptation

of the HMM models to the new user data [19]. Our work

can also be viewed as context recognition using commonly

available sensors in today’s smartphones without introducing

any additional equipment. Assuming that the location of the

user can be determined via the recorded GPS and GSM data,

we focused on inferring the user’s activity as an additional

indicator of context [12]. I

Although the results are promising, a few major practical

challenges came up during data collection and testing of

the system. First, we have to collect more data to address

the following limitations: the data was collected in sparse

bursts and unevenly distributed between the various classes.

Second, there are many situations in which the phone is not

normally carried by the user, most notably at home (e.g.,

in the bathroom) where many ADLs are performed. Third,

the recorded microphone data varied significantly between the

users who were wearing the phone in the pocket versus the

users who used the carrying pouch. Finally, the sampling of

the acceleration data was done asynchronously and we noticed

that the sampling rate was affected by the sampling rate of

the microphone signal. This is a peculiarity of the Symbian

OS on the Nokia N95 phone since acceleration sampling is

implemented as a low priority task.

Our future work will address a more general concept of

sensor data fusion to improve context detection. In the first

step, we will use GPS and GSM data to determine the locality

of the user. Coarse-grained localization using GSM will be

used to boost the activity recognition performance and provide

logical maps of user’s location whereas GPS data will be

used to deliver more precise physical locality information

for applications that require such information, such as route

planning and tracking for fitness applications.

We will explore several application domains where such a

system could find use:

1) Medical monitoring to support behavior management

2) Management of mode of operation of smartphones and

user profiles on digital mobile devices based on detected

context.

3) Context-rich activity monitoring and feedback to pro-

mote behavior change and enable new ways of social

networking.

Smartphones are already being used in applications related

to health management, mostly either as data aggregation

and gateway devices or as health related content delivery

devices, or both. One powerful advantage of smartphones

is that they can deliver the content at the right place and

time, which makes them suitable for behavior modification

applications. This is especially interesting in chronic care

management where environment and psychosocial conditions

play a major role in successful treatment [4]. Compliance is

the main target of behavior modification techniques. Medical

monitoring applications can, for example, provide more ef-

fective reminder solutions that take into account the physical
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Fig. 5. Snapshot of the four categorical screens of an example fitness application

and cognitive state and the social environment of the user.

Smartphones alone will not gather all necessary information

needed to understand behavior models. However, they will

serve as a powerful component of future behavior management

solutions. On the one hand, smartphones have the capability

of discerning between many physical and social activities,

small set of which we demonstrated in the work done so far.

On the other hand, they will also be used to deliver medical

content and prompt users for actions to close the monitoring-

feedback loop. In addition, we will explore applications that

log events leading to and during incidents (e.g., falls) resulting

in physical injury to understand better the circumstances under

which these incidents happen.

Context detection allows managing notifications and re-

minders and other services on smartphones in a better way

by taking into consideration the environment and the activity

of the user within that environment. Knowing the context in

which the phone is used allows us to determine, for example,

whether or not the user can be interrupted, or if the ring

volume should be turned up in a noisy environment or turned

off in a meeting. Context can be used to automatically discover

and consume available services that are beneficial at a certain

time and place. For example, if the phone discovers that the

user is driving, it may search for a hands-free car service

to automatically subscribe to under a defined condition, such

as the number of rings, or triggered by the detection of the

phone being fumbled or dropped. Location context using GPS

and GSM information opens additional possibilities such as

switching to the silent mode in public buildings or alerting a

jogger if she veers off a planned route.

Activity and location tracking can be used to provide a

support for a variety of fitness and wellness behavior change

applications that will make use of real-time feedback that

smartphones can provide. In addition, smartphones are suitable

platforms for social networking applications because of their

ubiquitous presence and nomadic use. These two aspects

offer a unique way of promoting behavior change through

social influence. For example, one study has shown that social

networks play a significant role in spreading obesity [2]. We

envision applications that share activity information between

users in a social network to promote positive reinforcement

within a group. These groups could either be already existing,

such as family and close friends, or can be organically

formed by enabling users to discover shared interests and

goals. Smartphones will have the capability of scanning the

social neighborhood simultaneously with recording personal

activities. That way the users will be able to interact with the

groups of users who perform activities at same time and place,

which often results in reinforcing influence.

Figure 5 shows an example of one such application domain

related to personal fitness. In order to provide comprehen-

sive engagement and feedback information, we propose that

four specific operations be available to the user. They are

monitoring current activity information, recording past activity

information, recording future goals and reviewing past history

of activities. A context-sensitive menu at the bottom of the

screen provides different menu options based on the current

view that is active. The “Activity Info.” screen allows users

to view a list of features including activity name, date, begin

time, end time, duration, calories (energy expenditure), total

distance, average speed and step count. The “Record Activity”

screen allows users to record or tag additional information

about past activity by either selecting from a list of existing

activities or by entering a new activity name. The “Set Goals”

screen allows users to set personal goals for the future such as

the number of minutes that they would like to work out each

day and the frequency in terms of days per week. The user can

also set personal barriers that prohibit them from performing

physical activity and personal goals that they would like to

accomplish by performing the activity, which could be uti-

lized to provide motivational feedback. The “Activity Review”

screen allows users to review historical activity information

either in chronological order or by searching using specific

query criteria. While the “Activity Info.” screen provides real-

time feedback, the “Activity Review” screen is used to provide

reflective feedback to the user. This helps the user to track

progress toward personal goals. The application can provide

context-related information, such as workout partners and the

actual path covered on a map while performing an activity,

using the “Activity Info.” and “Activity Review” screens on
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the smartphone’s user interface.

We will not only investigate technical solutions but also

address practical challenges in these applications by investi-

gating usability and human factors aspects. We plan to conduct

user studies and develop tools for assessment of the efficacy

of such systems. Future mobile computing devices continue

to be an essential tool for communication, entertainment, and

delivery of various services which can considerably benefit

from the ability to adapt to location, nearby social network,

resources available in the proximity of the user, and the user’s

activity. The range of available embedded sensors is likely

to expand and allow development of these applications with

higher reliability.
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