

Chart Image Classification Using Multiple-Instance Learning

Weihua Huang, Siqi Zong, Chew Lim Tan
School of Computing, National University of Singapore

3 Science Drive 2, Singapore 117543
{huangwh, zongsiqi, tancl}@comp.nus.edu.sg

Abstract

An important step in chart image understanding is
to identify the type of the input image so that
corresponding interpretation can be performed. In this
paper, we model the chart image classification as a
multiple-instance learning problem. A chart image is
treated as a bag containing a set of instances that are
graphical symbols. For both training and recognition,
shape detection is performed and general shape
descriptors are used to form feature vectors. For the
training images, the correlation factor (CF) of each
shape is calculated for each chart type. The learnt CFs
are then used to estimate the type of a new input image.
Comparing with traditional multiple-instance learning
algorithms, we allow negative examples to be less
restrictive and hence easier to provide. Using our
method, both the type and the data components of the
chart image can be obtained in one-pass. The
experimental results show that our approach works
reasonably well.

1. Introduction

Chart is one of the most commonly used types of
infographics for presenting data etc. Chart recognition
and understanding is a relatively young research field
and is attracting more and more research interests in
recent years. Some of the reported works directly deal
with electronic charts [1-2]. On the other hand, some
works deal with charts that are converted into raster
images [3-6]. Through our study of the literature, we
find out that there are two common drawbacks in the
existing approaches. First of all, most of the methods
make assumption on the availability of chart type
information so that predefined structural models and
constraints can be applied. Secondly, although there
was a work on chart image classification proposed in
[4], the method relies on low-level features, such as
foreground/background transition, that are not useful
for high-level interpretation. To interpret the content of

the chart, the whole image needs to be re-processed
again. Putting the problem into the context of
document image recognition, we suggest that the
complete schema of chart recognition should contain
the three main steps shown in Figure 1. The efficiency
of the system can be guaranteed if output of early steps
becomes useful input to later steps.

 Chart
location

Document
image

Semantic
information

Chart
classification

Chart
interpretation

 Figure 1. Chart image recognition schema

In this paper, we propose a novel approach that
performs chart image classification and data
component detection in one-pass based on machine
learning. Data components are referred to as the
graphical components in a chart that represent data. In
a chart type, data always have a homogeneous
representation and the representation is often shape-
based graphical symbols. Furthermore, different chart
types represent data using different shape (or
combination of shapes). Based on the correlations
among shapes, data representations and chart types, we
suggest that the chart classification problem can be
modeled as a multiple-instance learning problem. The
result of learning helps to answer two questions: which
shape (or combination of shapes) represents data in a
chart? How closely is a shape (or combination of
shapes) correlated to the chart type? The answer to the
first question can be used for further interpretation of
the chart content and the answer to the second question
is for chart image classification.

Our approach is a modified version of the Diverse
Density algorithm for solving multiple-instance
learning problems [7]. The feature vector used for
learning and matching is obtained from general shapes

extracted from training images. We define the degree
of correlation between a shape (or combination of
shapes) and a chart type as the correlation factor (CF).
The task of the learning process is to identify the
shapes appearing in every positive example with high
CF. Figure 2 shows the detailed steps in the proposed
approach. The method proposed works as a key step in
a chart image understanding system being developed.

The remaining sections of the paper are organized
as follows. Section 2 further discusses the motivation
of applying multiple-instance learning in our approach.
Section 3 introduces the proposed approach in details.
Section 4 presents the results of experiments and some
discussions about them. Section 5 concludes the paper
by summarizing the contributions and future work.

2. Why multiple-instance learning?

The first design issue is that whether a learning
approach should be applied. Most graphical symbol
recognition methods fall into two categories:
recognition with a known database of reference
symbols, or recognition with a learning phase [8]. The
choice is mainly based on two factors: whether the
graphical symbols can be exhaustively listed and
whether the system is expected to be self-extensible to
new types of input. The system we are developing
aims for handling general types of charts, and is
expected to be extended to handle other types of
infographics. Thus it should not make assumption on

what kind of graphical symbols may appear, and a
learning based approach will be more appropriate here.

Another concern is that symbol recognition usually
requires preliminary segmentation phase [8], which is
also true in our case. As we mentioned in section 1,
most graphical symbols used by charts are shape-based.
Thus shape-level segmentation needs to be performed.
Error propagation may occur during segmentation
followed by recognition. The situation is less severe,
however, when the inputs to be handled are schemas or
diagrams consisting of mainly symbols and connection
lines. As chart is a form of diagrams containing well
structured graphical symbols, segmentation errors can
be controlled at a reasonably low level.

Preprocessing

Shape construction

Feature extraction

CF Training CF Matching

Input image

Training
image

New image

CF rank list Classification
result

Figure 2. Steps in the proposed method

If shapes can be properly segmented, the most
straightforward approach is to use a supervised
learning, labeling every shape in the training examples.
But it requires significant amount of human computer
interaction and a good way of shape-level labeling,
which increases the complexity of the system. If we
treat the shapes as instances and the input images as
bags, as we mentioned in the introduction, then a better
alternative is to use multiple-instance learning, a
variation of supervised learning.

Multiple-instance learning problem has been
studied by a number of researchers and its application
in the computer vision field includes image indexing,
retrieval and classification etc. The most popular
algorithm used is the Diverse Density algorithm [7].
Lakshmi Ratan et al proposed a framework to learn
query concepts from training images based on the
Diverse Density algorithm [9, 10]. The learned
"concepts" are simple templates that capture the color,
texture and spatial properties of the class of images.
Cheng Yang et al further improve Lakshmi’s
framework to retrieve image from a database of natural
images [11]. In their approach, feature vectors are
formed instead of templates, and similarity measure
between feature vectors of the query image and
database images is calculated. Comparing to
Lakshmi’s framework, the obvious advantage is that
no pre-defined knowledge about what object to look
for is needed. This advantage is sustained in our
system in the way that no predefined symbol is
required and the feature vector of every shape that
appears is examined.

3. Details of the proposed approach

3.1. The modified Diverse Density algorithm

The Diverse Density algorithm was proposed
aiming at solving the multiple-instance learning

problem. In a traditional multiple-instance learning
problem, input vectors (xi1, xi2, …, xin) (called instances)
are grouped together to form a bag, and they are
collectively labeled with a y value of TRUE (positive
bag) or FALSE (negative bag). The instances
corresponding to y=TRUE are called positive instances,
and the instances corresponding to y=FALSE are
called negative instances. The Diverse Density
algorithm requires that at least one of the instances in a
positive bag must correspond to y=TRUE, and all of
the instances in a negative bag must correspond to
y=FALSE. In other words, a negative bag should not
contain any positive instances. When applied to chart
image classification, this requirement for the negative
bag is too strict and may cause difficulty for the user to
provide such cases as charts often contain a number of
different shapes. For example, a pie chart may also
contain rectangles and squares to illustrate legends etc.
Further more, the algorithm looks for a single point in
the feature space where the Diverse Density is maximal.
So another limitation is that there might be more than
one instance that has high Diverse Density value, but
only one of them is selected and others are ignored.
This is also not desirable in our case, as symbols
representing data components may consist of more
than one shape thus all these shapes should be
considered as positive instances.

To overcome these two limitations to better tackle
the problem we are facing, the original Diverse Density
algorithm is modified. The bags, instances and positive
bags are defined in the same way but the definition of
negative bags is more lenient. A selected negative
example may contain positive instances, which makes
the task easier for the user. Furthermore, we calculate
the correlation factor (CF) for every instance and
generate a rank list for matching instead of just
choosing the one with the maximum CF.

3.2. Preprocessing and feature extraction

In preprocessing, each input image is converted to a
grayscale image and several steps are carried out:
• Text is removed from the image through

connected component analysis [12]. Also in this
step, the small noise components are removed.

• Edge map is obtained through edge detection.
• Vectorization is performed to convert image edges

to a set of lines and arcs in the vector form.
• Based on the vectorized lines and arcs, a graph

G(V, E) is formed where V is the set of
intersection points among the lines and arcs, and E
is the set of segments (either straight line segment
or arc segment) between intersection points. Shape

construction is a process of finding the Minimum
Cycle Basis (MCB) [13] on the graph G, and an
efficient algorithm was proposed by Alfredo
Ferreira Jr. et al [14]. However the original
algorithm only finds polygons from a set of
straight lines, thus some of the steps are modified
to take care of arc segments. Figure 3 shows an
example of graph constructed from a 3D pie chart,
from which 7 shapes are constructed.

(a) The original image

(b) Basic shapes obtained.

1
2

3

4

5

6

7

 Figure 3. Example of shape construction

from an input image. There are seven
shapes in (b) labeled with numbers

Now a collection of shapes are obtained. The edges

in a shape are classified into three types: (1) straight
line, (2) circular arc or (3) elliptic arc. Although these
three types of edges are not sufficient for general
shapes, they can cover all the edges extracted from the
chart images we examined since shapes in chart images
are relatively more regular. Four shape descriptors are
used to form the feature vector for each shape
constructed: number of edges ni for each edge type i;
order o among the edges (represented as a sequence of
edges); number of parallel edge pairs np; number of
symmetric axes ns. Thus a feature vector can be
represented as <n1, n2, n3, o, np, ns>. We choose these

four shape descriptors because they are all invariant to
translation, rotation and scaling, and a combination of
them can uniquely define a shape class.

3.3. The training process

To train a chart type A, a set of positive bags
 and a set of negative

bags are provided by the user.
Each bag is an image containing shapes. The first step
is to find out the universal set of components (shapes)
C = {C

},...,2,1,{ njBB j == ++

},...,2,1,{ mkBB k == −−

i, i = 1, 2, …, l} where . Then the
correlation factor CF(C

−+ ∪= BBC
i, A) between each Ci and a

chart type A is derived from the conditional
probability . Assuming that the training
examples are conditionally independent given the chart
type A, and by applying Bayes’ rule (assuming an
uninformative prior over the shape C

),|(−+ BBCP i

i), we can get:

),|(−+ BBCP i
1

11)(/)|()|(
−+

=
−

=
+ ∏∏=

mnm
k iki

n
j ji CPBCPBCP (1)

where

)),(exp(1)|(++ −−= jji BCiNumBCP (2)

 (3))),(exp()|(−− −= kki BCiNumBCP

As P(Ci) is independent of the training examples,
we take it out from the expression in (1) to get:

∏∏= =
−

=
+ m

k ki
n
j jii BCPBCPACCF 11)|()|(),((4)

The derivation of formula (1) can be found in [7].

Both and are exponential
functions that depend on the number of shapes
matching the component C

)|(+
ji BCP)|(−

ki BCP

i. calculates
the number of shapes that match component C

),(+
ji BCNum

i in the
positive example B+

j. As Num(Ci, B+
j) increases, P(Ci |

B+
j) increases and is approaching 1. Num(Ci,)

calculates the number of shapes that match component
C

−
kB

i in the negative example . As

increases, decreases and is approaching 0.
Exact matching between feature vectors is required.

−
kB),(−

ki BCNum

)|(−
ki BCP

3.4. The matching process

For a new image that is also treated as a bag
containing a number of components C’ = {Cg, g = 1,
2, …, h}, we calculate the similarity between C’ and
type A as:

 (5) ∑ =
=

h

g gg ACCFCCNumCASim
1

'),(),()',(

where Num(Cg, C’) counts the number of occurrences
of component Cg in the given image C’. If ,

then is pre-computed during the training

process, otherwise . Similarity between
the new image and every existing chart type is
calculated, and the chart type that results in the highest
similarity value is deemed to be the type of the new
image. It is also possible that the new image belongs to
a new chart type that was not presented during the
training process. Thus a cut-off value can be set to
judge whether the new images belongs to any of the
existing types.

CCg ∈

),(ACCF g

0),(=ACCF g

 Figure 4. A 3D bar chart

3.5. Detecting combination of shapes

In some cases, the data components in a chart are
represented using more complex graphical symbols
that are combinations of shapes. This happens very
often for 3D chart types. Figure 4 shows an example of
3D bar chart in which the data components are
represented as cuboids that consist of 1 rectangle and 2
parallelograms. Based on the observation of
homogenous representation of data in charts, the
shapes that form a data component should have a high
degree of co-occurrence in the set of shapes
recognized. Another heuristic is that the shapes
forming a single symbol are not separated, which
means they are neighbors of each other. Thus an extra
step to detect a complex symbol (data component) is to
identify those shapes that are neighbors of each other
and have high degree of co-occurrence. Two shapes
are neighbors if they share a common edge or part of
an edge.

To find out the probability of a combination of
shapes being a complex symbol, we can compute the

degree of neighborhood DoN between two shape types
T1 and T2. If the number of T1 shapes in a given image
is N1 and the number of T2 shapes in the same image is
N2, we can find out the number of T1-T2 neighboring
pairs Nneighbor. Then DoN is calculated as:

2/
21

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

N
N

N
N

DoN neighborneighbor (6)

Note that the value of DoN falls in interval [0, 1].

When none of the T1 shapes is neighbor of T2 shapes,
Nneighbor becomes 0 and thus DoN becomes 0. In this
situation, the two types of shape never appear together
as neighbors. When all T1 shapes are neighbors of T2
shapes, and N1 = N2, DoN reaches its maximum value
of 1. In this situation, the two types of shape always
appear together as neighbor of each other. Thus we can
see that the higher the DoN is, the more possible that
the two types of shapes form a complex symbol.

4. Experimental results and discussions

For testing purpose, we collected a set of 210 chart
images that were either taken from the internet or
scanned in. The chart types and number of charts in
each type are shown in Table 1.

Table 1. Images in the testing data

Type Number of images
2D bar chart 80
2D pie chart 48
3D pie chart 12
Line chart 60

Doughnut chart 10
Total 210

The scanned images are relatively noisier than the

downloaded images, with blur edges, small noise
components and skew angles etc. Figure 5 shows an
example of scanned images.

The experiment was carried out in 20 test runs.
During each test run, a number of images were
randomly chosen from each chart type to form the set
of training images Itrain and the remaining images
became the testing images Itest. During training process,
one chart type was learnt at a time and the CF values
were stored. During matching, formula (5) was applied
and the chart type returning the highest similarity value
was assign to the testing image. Due to the space limit,
only the average accuracy of chart classification for the
20 runs is presented in Table 2. In each test run, the
accuracy is calculated as the percentage of testing
images that were correctly classified.

Table 2. Summary of classification results
No. of Itrain

per run Type No. of Itest
per run

Average
Accuracy

(%)
2D bar 77 88.81
2D pie 45 89.33
3D pie 9 91.11
Line 57 14.04

3

Doughnut 7 100
2D bar 75 95.00
2D pie 43 89.19
3D pie 7 95.71
Line 55 3.91

5

Doughnut 5 100

From Table 2, we can see that the accuracy of chart
image classification is very good for all chart types
except line chart. This is because of the assumption we
made in the introduction section that data are
represented using shapes, which is not true for line
chart where data are actually represented using x-y
plots. Although some shapes appear occasionally, none
of them is closely correlated to the type. The
correlation factor of most shapes for line chart is zero,
and as a result, the similarity value calculated is also
zero, causing the system to fail to recognize the correct
type for line chart images. When all the similarity
values are too low for an input image, the type of the
image will be “unidentified”.

During the training process, the system also
identified the shapes with the highest CF value. These
shapes are the best candidates to be the representation
of data component for each chart type, and they are
summarized in Table 3. The first three values in the
feature vector show the number of edges for each edge
type. For example, a data component in 2D bar chart
has 4 straight line edges, 0 circular arc edges and 0
elliptic arc edges; while a data component in 2D pie
chart has 2 straight line edges and 1 circular arc edge.
The fourth value in the feature vector is a sequence
among edges reflecting how the edges are ordered
(denoting a straight line as 1, a circular arc as 2 and an
elliptic arc as 3). Rotation is taken care of here, thus

Figure 5. Example of scanned chart images

the order 131 is the same as 311. The last two values in
the feature vector show the number of parallel edges
and number of symmetric axes.

Table 3. Data component identified

for chart types
Chart type Feature vector Sample

shape

2D bar <4,0,0, 1111, 2, 2>

2D pie <2,1,0, 121, 0, 1>

3D pie <2,0,1, 131, 0, 0>

Doughnut <2,2,0, 1212, 1, 1>

Another output of the system is the degree of

neighborhood among shapes, calculated by formula (6).
One restriction is that the shapes to be considered must
have non-zero CF value, meaning that they must
appear in all positive examples. With this restriction,
we only found one combination of shapes whose DoN
> 0 for all test runs: <2,0,1, 131, 0, 0> and <2,0,2,
1331, 2, 0>. This is a typical combination of shapes in
3D pie charts, such as shape no.1 and no. 5, or shape
no. 3 and no. 7 in Figure 3(b). For the 2D charts, no
common combination of shapes was found. This is
expected, since data are represented using single shape
in these 2D charts.

5. Conclusion

This paper presents a novel work of chart image
classification based on multiple-instance learning. Our
approach does not require pre-defined shape templates,
instead general shape descriptors are used as feature
vectors. Unlike traditional multiple-instance learning
algorithm, our algorithm does not require that the
negative examples contain no positive instances
corresponding to the class to be learnt, thus the training
is a lot easier for the user. Furthermore, we maintain
the correlation factor between the instances and all
chart types instead of just the maximal one. Finally the
shapes learnt can also be re-used for further
interpretation of chart contents.

In the future, shape inheritance can be investigated
to allow more tolerance during feature matching. Also,
the feature vectors can be further extended to include

other features that are not shape-based. Then our
approach is expected to be more generally applicable
and have more classification power.

Acknowledgment: This research is supported by
A*STAR under grant no. 042 101 0085.

References

[1] S. Elzer, S. Carberry, I. Zukerman, D. Chester, N. Green

and S. Demir, “A Probabilistic Framework for
Recognizing Intention in Information Graphics”, IJCAI
2005, pages 1042-1047, 2005.

[2] S. Carberry, S. Elzer, N. Green, K. McCoy and D.
Chester, “Understanding Information Graphics: A
Discourse-Level Problem”, Proceedings of SIGDial, pp.
1-12, 2003.

[3] N. Yokokura and T. Watanabe, “Layout-Based Approach
for extracting constructive elements of bar-charts”,
GREC'97, pp163-174.

[4] Y. P. Zhou and C. L. Tan, “Learning-based scientific
chart recognition”, GREC2001, page 482-492, 2001.

[5] Y. P. Zhou and C. L. Tan, “Hough technique for bar
charts detection and recognition in document images”,
ICIP 2000, page 494-497, 2000.

[6] W. H. Huang, C. L. Tan and W. K. Leow, “Model based
chart image recognition”, Int. Workshop on Graphics
Recognition, GREC2003, Barcelona, 2003,.

[7] O. Maron, T. L. P´erez, “A framework for multiple-
instance learning”, Advances in Neural Information
Processing Systems, vol. 10, pp. 570-576, 1997.

[8] K. Tombre and B. Lamiroy, “Graphics recognition -
From re-engineering to retrieval”, Proc. of 7th ICDAR,
Edinburgh (Scotland, UK), pp. 148--155, August 2003.

[9] O. Maron and A. L. Ratan, “Multiple-instance learning
for natural scene classification”, Proc. 15th Int. Conf. on
Machine Learning, page 341-349, 1998.

[10] A. L. Ratan, O. Maron, W. E. L. Grimson and T. L.
P´erez, “A framework for learning query concepts in
image classification”, CVPR, 1999, pp. 423-429.

[11] C. Yang and T. L. Perez, “Image Database Retrieval
with Multiple-Instance Learning Techniques”,
International Conference on Data Engineering, ICDE,
page 233-243, 2000.

[12] K. Tombre, S. Tabbone, L. Pélissier, B. Lamiroy, and P.
Dosch, “Text/Graphics Separation Revisited”, 5th Intl.
Workshop on DAS (2002), page 200-211, 2002.

[13] M. M. Syslo, “An efficient cycle vector space algorithm
for listing all cycles of a planar graph”, SIAM Journal
on Computing, vol. 10 no. 4, page 797-808, 1981.

[14] A. Ferreira and M. Fonseca and J. Jorge, “Polygon
Detection from a Set of Lines”, Proceedings of 12
Encontro Portugu es de Computacao Gr afica (12th
EPCG), Porto, Portugal, 2003, pp. 159-162.

