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Abstract 
 

An important step in chart image understanding is 
to identify the type of the input image so that 
corresponding interpretation can be performed. In this 
paper, we model the chart image classification as a 
multiple-instance learning problem. A chart image is 
treated as a bag containing a set of instances that are 
graphical symbols. For both training and recognition, 
shape detection is performed and general shape 
descriptors are used to form feature vectors. For the 
training images, the correlation factor (CF) of each 
shape is calculated for each chart type. The learnt CFs 
are then used to estimate the type of a new input image. 
Comparing with traditional multiple-instance learning 
algorithms, we allow negative examples to be less 
restrictive and hence easier to provide. Using our 
method, both the type and the data components of the 
chart image can be obtained in one-pass. The 
experimental results show that our approach works 
reasonably well.   
 
 
1. Introduction 
 

Chart is one of the most commonly used types of 
infographics for presenting data etc. Chart recognition 
and understanding is a relatively young research field 
and is attracting more and more research interests in 
recent years. Some of the reported works directly deal 
with electronic charts [1-2]. On the other hand, some 
works deal with charts that are converted into raster 
images [3-6]. Through our study of the literature, we 
find out that there are two common drawbacks in the 
existing approaches. First of all, most of the methods 
make assumption on the availability of chart type 
information so that predefined structural models and 
constraints can be applied. Secondly, although there 
was a work on chart image classification proposed in 
[4], the method relies on low-level features, such as 
foreground/background transition, that are not useful 
for high-level interpretation. To interpret the content of 

the chart, the whole image needs to be re-processed 
again. Putting the problem into the context of 
document image recognition, we suggest that the 
complete schema of chart recognition should contain 
the three main steps shown in Figure 1. The efficiency 
of the system can be guaranteed if output of early steps 
becomes useful input to later steps.  
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 Figure 1. Chart image recognition schema
 

In this paper, we propose a novel approach that 
performs chart image classification and data 
component detection in one-pass based on machine 
learning. Data components are referred to as the 
graphical components in a chart that represent data. In 
a chart type, data always have a homogeneous 
representation and the representation is often shape-
based graphical symbols. Furthermore, different chart 
types represent data using different shape (or 
combination of shapes). Based on the correlations 
among shapes, data representations and chart types, we 
suggest that the chart classification problem can be 
modeled as a multiple-instance learning problem. The 
result of learning helps to answer two questions: which 
shape (or combination of shapes) represents data in a 
chart? How closely is a shape (or combination of 
shapes) correlated to the chart type? The answer to the 
first question can be used for further interpretation of 
the chart content and the answer to the second question 
is for chart image classification.  

Our approach is a modified version of the Diverse 
Density algorithm for solving multiple-instance 
learning problems [7]. The feature vector used for 
learning and matching is obtained from general shapes 



extracted from training images. We define the degree 
of correlation between a shape (or combination of 
shapes) and a chart type as the correlation factor (CF). 
The task of the learning process is to identify the 
shapes appearing in every positive example with high 
CF. Figure 2 shows the detailed steps in the proposed 
approach. The method proposed works as a key step in 
a chart image understanding system being developed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The remaining sections of the paper are organized 
as follows. Section 2 further discusses the motivation 
of applying multiple-instance learning in our approach. 
Section 3 introduces the proposed approach in details. 
Section 4 presents the results of experiments and some 
discussions about them. Section 5 concludes the paper 
by summarizing the contributions and future work. 

 
2. Why multiple-instance learning? 
 

The first design issue is that whether a learning 
approach should be applied. Most graphical symbol 
recognition methods fall into two categories: 
recognition with a known database of reference 
symbols, or recognition with a learning phase [8]. The 
choice is mainly based on two factors: whether the 
graphical symbols can be exhaustively listed and 
whether the system is expected to be self-extensible to 
new types of input. The system we are developing 
aims for handling general types of charts, and is 
expected to be extended to handle other types of 
infographics. Thus it should not make assumption on 

what kind of graphical symbols may appear, and a 
learning based approach will be more appropriate here.  

Another concern is that symbol recognition usually 
requires preliminary segmentation phase [8], which is 
also true in our case. As we mentioned in section 1, 
most graphical symbols used by charts are shape-based. 
Thus shape-level segmentation needs to be performed. 
Error propagation may occur during segmentation 
followed by recognition. The situation is less severe, 
however, when the inputs to be handled are schemas or 
diagrams consisting of mainly symbols and connection 
lines. As chart is a form of diagrams containing well 
structured graphical symbols, segmentation errors can 
be controlled at a reasonably low level.  
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Figure 2. Steps in the proposed method 

If shapes can be properly segmented, the most 
straightforward approach is to use a supervised 
learning, labeling every shape in the training examples. 
But it requires significant amount of human computer 
interaction and a good way of shape-level labeling, 
which increases the complexity of the system. If we 
treat the shapes as instances and the input images as 
bags, as we mentioned in the introduction, then a better 
alternative is to use multiple-instance learning, a 
variation of supervised learning. 

Multiple-instance learning problem has been 
studied by a number of researchers and its application 
in the computer vision field includes image indexing, 
retrieval and classification etc. The most popular 
algorithm used is the Diverse Density algorithm [7]. 
Lakshmi Ratan et al proposed a framework to learn 
query concepts from training images based on the 
Diverse Density algorithm [9, 10]. The learned 
"concepts" are simple templates that capture the color, 
texture and spatial properties of the class of images. 
Cheng Yang et al further improve Lakshmi’s 
framework to retrieve image from a database of natural 
images [11]. In their approach, feature vectors are 
formed instead of templates, and similarity measure 
between feature vectors of the query image and 
database images is calculated. Comparing to 
Lakshmi’s framework, the obvious advantage is that 
no pre-defined knowledge about what object to look 
for is needed. This advantage is sustained in our 
system in the way that no predefined symbol is 
required and the feature vector of every shape that 
appears is examined. 
 
3. Details of the proposed approach 
 
3.1. The modified Diverse Density algorithm 
 

The Diverse Density algorithm was proposed 
aiming at solving the multiple-instance learning 



problem. In a traditional multiple-instance learning 
problem, input vectors (xi1, xi2, …, xin) (called instances) 
are grouped together to form a bag, and they are 
collectively labeled with a y value of TRUE (positive 
bag) or FALSE (negative bag). The instances 
corresponding to y=TRUE are called positive instances, 
and the instances corresponding to y=FALSE are 
called negative instances. The Diverse Density 
algorithm requires that at least one of the instances in a 
positive bag must correspond to y=TRUE, and all of 
the instances in a negative bag must correspond to 
y=FALSE. In other words, a negative bag should not 
contain any positive instances. When applied to chart 
image classification, this requirement for the negative 
bag is too strict and may cause difficulty for the user to 
provide such cases as charts often contain a number of 
different shapes. For example, a pie chart may also 
contain rectangles and squares to illustrate legends etc. 
Further more, the algorithm looks for a single point in 
the feature space where the Diverse Density is maximal. 
So another limitation is that there might be more than 
one instance that has high Diverse Density value, but 
only one of them is selected and others are ignored. 
This is also not desirable in our case, as symbols 
representing data components may consist of more 
than one shape thus all these shapes should be 
considered as positive instances.  

To overcome these two limitations to better tackle 
the problem we are facing, the original Diverse Density 
algorithm is modified. The bags, instances and positive 
bags are defined in the same way but the definition of 
negative bags is more lenient. A selected negative 
example may contain positive instances, which makes 
the task easier for the user. Furthermore, we calculate 
the correlation factor (CF) for every instance and 
generate a rank list for matching instead of just 
choosing the one with the maximum CF. 
 
3.2. Preprocessing and feature extraction 
 

In preprocessing, each input image is converted to a 
grayscale image and several steps are carried out:  
• Text is removed from the image through 

connected component analysis [12]. Also in this 
step, the small noise components are removed.  

• Edge map is obtained through edge detection. 
• Vectorization is performed to convert image edges 

to a set of lines and arcs in the vector form.  
• Based on the vectorized lines and arcs, a graph 

G(V, E) is formed where V is the set of 
intersection points among the lines and arcs, and E 
is the set of segments (either straight line segment 
or arc segment) between intersection points. Shape 

construction is a process of finding the Minimum 
Cycle Basis (MCB) [13] on the graph G, and an 
efficient algorithm was proposed by Alfredo 
Ferreira Jr. et al [14]. However the original 
algorithm only finds polygons from a set of 
straight lines, thus some of the steps are modified 
to take care of arc segments. Figure 3 shows an 
example of graph constructed from a 3D pie chart, 
from which 7 shapes are constructed. 

 
 
 
 
 
 
 
 
 
 
 
 
 

(a) The original image 

(b) Basic shapes obtained. 
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 Figure 3. Example of shape construction 

from an input image. There are seven 
shapes in (b) labeled with numbers 

 
 

 
Now a collection of shapes are obtained. The edges 

in a shape are classified into three types: (1) straight 
line, (2) circular arc or (3) elliptic arc. Although these 
three types of edges are not sufficient for general 
shapes, they can cover all the edges extracted from the 
chart images we examined since shapes in chart images 
are relatively more regular. Four shape descriptors are 
used to form the feature vector for each shape 
constructed: number of edges ni for each edge type i; 
order o among the edges (represented as a sequence of 
edges); number of parallel edge pairs np; number of 
symmetric axes ns. Thus a feature vector can be 
represented as <n1, n2, n3, o, np, ns>. We choose these 



four shape descriptors because they are all invariant to 
translation, rotation and scaling, and a combination of 
them can uniquely define a shape class.  

 
3.3. The training process 
 

To train a chart type A, a set of positive bags 
 and a set of negative 

bags  are provided by the user. 
Each bag is an image containing shapes. The first step 
is to find out the universal set of components (shapes) 
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As P(Ci) is independent of the training examples, 
we take it out from the expression in (1) to get: 
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The derivation of formula (1) can be found in [7]. 
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matching the component C

)|( +
ji BCP )|( −

ki BCP

i. calculates 
the number of shapes that match component C

),( +
ji BCNum

i in the 
positive example B+

j. As Num(Ci, B+
j) increases, P(Ci | 

B+
j) increases and is approaching 1. Num(Ci, ) 

calculates the number of shapes that match component 
C

−
kB

i in the negative example . As  

increases, decreases and is approaching 0. 
Exact matching between feature vectors is required. 

−
kB ),( −

ki BCNum

)|( −
ki BCP

  
3.4. The matching process 
 

For a new image that is also treated as a bag 
containing a number of components C’ = {Cg, g = 1, 
2, …, h}, we calculate the similarity between C’ and 
type A as: 
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where Num(Cg, C’) counts the number of occurrences 
of component Cg in the given image C’. If , 

then  is pre-computed during the training 

process, otherwise . Similarity between 
the new image and every existing chart type is 
calculated, and the chart type that results in the highest 
similarity value is deemed to be the type of the new 
image. It is also possible that the new image belongs to 
a new chart type that was not presented during the 
training process. Thus a cut-off value can be set to 
judge whether the new images belongs to any of the 
existing types. 
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 Figure 4. A 3D bar chart 
 
3.5. Detecting combination of shapes 
 

In some cases, the data components in a chart are 
represented using more complex graphical symbols 
that are combinations of shapes. This happens very 
often for 3D chart types. Figure 4 shows an example of 
3D bar chart in which the data components are 
represented as cuboids that consist of 1 rectangle and 2 
parallelograms. Based on the observation of 
homogenous representation of data in charts, the 
shapes that form a data component should have a high 
degree of co-occurrence in the set of shapes 
recognized. Another heuristic is that the shapes 
forming a single symbol are not separated, which 
means they are neighbors of each other. Thus an extra 
step to detect a complex symbol (data component) is to 
identify those shapes that are neighbors of each other 
and have high degree of co-occurrence. Two shapes 
are neighbors if they share a common edge or part of 
an edge.  

To find out the probability of a combination of 
shapes being a complex symbol, we can compute the 



degree of neighborhood DoN between two shape types 
T1 and T2. If the number of T1 shapes in a given image 
is N1 and the number of T2 shapes in the same image is 
N2, we can find out the number of T1-T2 neighboring 
pairs Nneighbor. Then DoN is calculated as: 
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Note that the value of DoN falls in interval [0, 1]. 

When none of the T1 shapes is neighbor of T2 shapes, 
Nneighbor becomes 0 and thus DoN becomes 0. In this 
situation, the two types of shape never appear together 
as neighbors. When all T1 shapes are neighbors of T2 
shapes, and N1 = N2, DoN reaches its maximum value 
of 1. In this situation, the two types of shape always 
appear together as neighbor of each other. Thus we can 
see that the higher the DoN is, the more possible that 
the two types of shapes form a complex symbol.    
 
4. Experimental results and discussions 
 

For testing purpose, we collected a set of 210 chart 
images that were either taken from the internet or 
scanned in. The chart types and number of charts in 
each type are shown in Table 1.  

 
Table 1. Images in the testing data 

Type Number of images 
2D bar chart 80 
2D pie chart 48 
3D pie chart 12 
Line chart 60 

Doughnut chart 10 
Total 210 

  
The scanned images are relatively noisier than the 

downloaded images, with blur edges, small noise 
components and skew angles etc. Figure 5 shows an 
example of scanned images.  

The experiment was carried out in 20 test runs. 
During each test run, a number of images were 
randomly chosen from each chart type to form the set 
of training images Itrain and the remaining images 
became the testing images Itest. During training process, 
one chart type was learnt at a time and the CF values 
were stored. During matching, formula (5) was applied 
and the chart type returning the highest similarity value 
was assign to the testing image. Due to the space limit, 
only the average accuracy of chart classification for the 
20 runs is presented in Table 2. In each test run, the 
accuracy is calculated as the percentage of testing 
images that were correctly classified.  

 
 
 
 
 
 
 
 
 
 
 

 
Table 2. Summary of classification results 
No. of Itrain 

per run Type No. of Itest 
per run 

Average 
Accuracy 

(%) 
2D bar 77 88.81 
2D pie 45 89.33 
3D pie 9 91.11 
Line 57 14.04 

3 

Doughnut 7 100 
2D bar 75 95.00 
2D pie 43 89.19 
3D pie 7 95.71 
Line 55 3.91 

5 

Doughnut 5 100 
 

From Table 2, we can see that the accuracy of chart 
image classification is very good for all chart types 
except line chart. This is because of the assumption we 
made in the introduction section that data are 
represented using shapes, which is not true for line 
chart where data are actually represented using x-y 
plots. Although some shapes appear occasionally, none 
of them is closely correlated to the type. The 
correlation factor of most shapes for line chart is zero, 
and as a result, the similarity value calculated is also 
zero, causing the system to fail to recognize the correct 
type for line chart images. When all the similarity 
values are too low for an input image, the type of the 
image will be “unidentified”. 

During the training process, the system also 
identified the shapes with the highest CF value. These 
shapes are the best candidates to be the representation 
of data component for each chart type, and they are 
summarized in Table 3. The first three values in the 
feature vector show the number of edges for each edge 
type. For example, a data component in 2D bar chart 
has 4 straight line edges, 0 circular arc edges and 0 
elliptic arc edges; while a data component in 2D pie 
chart has 2 straight line edges and 1 circular arc edge. 
The fourth value in the feature vector is a sequence 
among edges reflecting how the edges are ordered 
(denoting a straight line as 1, a circular arc as 2 and an 
elliptic arc as 3). Rotation is taken care of here, thus 

Figure 5. Example of scanned chart images



the order 131 is the same as 311. The last two values in 
the feature vector show the number of parallel edges 
and number of symmetric axes. 

 
Table 3. Data component identified 

for chart types 
Chart type Feature vector Sample 

shape 

2D bar <4,0,0, 1111, 2, 2> 
 

2D pie <2,1,0, 121, 0, 1> 
 

3D pie <2,0,1, 131, 0, 0> 
 

Doughnut <2,2,0, 1212, 1, 1> 
 

 
Another output of the system is the degree of 

neighborhood among shapes, calculated by formula (6). 
One restriction is that the shapes to be considered must 
have non-zero CF value, meaning that they must 
appear in all positive examples. With this restriction, 
we only found one combination of shapes whose DoN 
> 0 for all test runs: <2,0,1, 131, 0, 0> and <2,0,2, 
1331, 2, 0>. This is a typical combination of shapes in 
3D pie charts, such as shape no.1 and no. 5, or shape 
no. 3 and no. 7 in Figure 3(b). For the 2D charts, no 
common combination of shapes was found. This is 
expected, since data are represented using single shape 
in these 2D charts. 
 
5. Conclusion 
 

This paper presents a novel work of chart image 
classification based on multiple-instance learning. Our 
approach does not require pre-defined shape templates, 
instead general shape descriptors are used as feature 
vectors. Unlike traditional multiple-instance learning 
algorithm, our algorithm does not require that the 
negative examples contain no positive instances 
corresponding to the class to be learnt, thus the training 
is a lot easier for the user. Furthermore, we maintain 
the correlation factor between the instances and all 
chart types instead of just the maximal one. Finally the 
shapes learnt can also be re-used for further 
interpretation of chart contents.  

In the future, shape inheritance can be investigated 
to allow more tolerance during feature matching. Also, 
the feature vectors can be further extended to include 

other features that are not shape-based. Then our 
approach is expected to be more generally applicable 
and have more classification power. 
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