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Abstract

Underthe assumptiorthatqueueingdelayswill eventuallybecomesmallrelative to prop-
agationdelays,we derive stability resultsfor afluid flow modelof end-to-endnternetconges-
tion control. Thetheoreticalresultsof the paperareintendedto be decentralizedndlocally
implemented:eachendsystemneedsknowledgeonly of its own roundtripdelay Criteriafor
local stability andrateof convergencearecompletelycharacterizefor asingleresourcesingle
usersystem.Stability criteriaarealsodescribedor networks whereall userssharethe same
roundtripdelay Numericalexperimentdnvestigateextensiongo moregeneralnetworks. Fi-
nally, throughsimulationswe areableto evaluatethe relative importanceof queueingdelays
andpropagatiordelayson network stability.

| ntroduction

Changedn communicatiometworks over the last five yearshave forced researcherso closely
examinenetwork congestioncontrol, particularly for the Internet. However, the task hasbeen
significantly complicatedby the globalizationof networks: “trial-and-error” methodsemployed
on small testbedsdo not necessarilyyield resultsscalableto a network aslarge asthe Internet.
Instead anincreasingemphasiss beingplacedon theoreticapredictionsof robustbehaior, prior
to implementation.

At the level of theoreticalabstractionwve will consider a network is comprisedof useis and
resouces Eachuserwishesto employ oneor moreresource®f the network. Within this frame-
work, our goalwill beto formulatea congestiorcontrolalgorithmwhich canremainstableunder
communicatiordelays.

Any suggestiorof new congestioncontrol algorithmsfor the Internetmustaddresgshe fol-
lowing basicquestion:will the controlbe implementedy the resourcesor by the users?As an
exampleof the differencedetweernthesechoiceswe comparethe TCP/IP modelof the Internet
with ATM networks. In TCP/IR the*intelligence” of thecongestiorcontrolis implementedy the
endusers:to signalcongestionrouterssimply drop paclets. It is left to the endsystemdo detect
thesepacletdrops,andactaccordingly Corversely in ATM networks, “quality-of-service”(QoS)
is a key concern,andensuringthat QoSrequirementsare metis a taskhandledprimarily by the
links in the network.



Whichviewpointshouldwe adopt?Argumentshave beenmadeataneconomidevel regarding
the fairnessbenefitsof endsystemcongestiorcontrol [5]: it is suggestedhatendusersare best
equippedo adjusttheir flows so asto maximizeutility, and hencecongestiorcontrol shouldbe
implementedy askingresourceso corvey informationon incipientcongestiorto intelligentend
systems.

However, it is notimmediatelyclearthatthis type of congestiorcontrolis robustundercom-
municationdelaysin the network. Communicationdelay compriseswo elements:propagation
delay andqueueingdelay The propagatiordelayis the physicaldelayin transmissiorof data
alongalengthof fiber (or throughspacefor awirelessnetwork). The queueingdelayis thedelay
experiencedy datawaiting to be senedat resourcesvithin the network.

We will work from the assumptiorthat, in the future, queueingdelayswill becomesmall
relative to propagationdelay as Kelly amguesin [10]. Routerhardware and network capacity
continueto improve rapidly, reducingqueueingdelays;on the other hand, propagationdelays
arefixed by the distancedbetweennodeson the network, andthe speedof light. In [10], Kelly
usesseveralscalingregimesat queuesn a network to supportthe claim thatqueueingdelayswill
eventuallybecomerelatively small.

Under this assumptionthe choice of congestioncontrol mechanismbecomesnuch easier
If propagationdelaysare the primary sourceof communicationdelayin the network, thenthe
choiceof congestiorcontrol mechanismmustbe ableto estimatepropagatiordelays,andadjust
the sendingratein responsdo thesedelays. The endusersare naturally placedto performthis
task; on the otherhand,resourcesvould be requiredto estimatethe delaysexperiencedoy each
flow passinghroughthem—avery difficult problemin a network on the scaleof theInternet.

Thework of Chongetal. in [2, 3] is relatedto this point. In [2, 3], Chonget al. analyzedhe
equilibrium and stability of their proposedirst-orderrate-basedlow control (FRFC) algorithm
for a single bottleneckresourceof multiple userswith diverseroundtrip delays. In the FRFC
algorithm,therateallocatedo eachuseris the differencebetweerthe obsered queuelengthand
the queuethreshold,multiplied by a control gain. To maintainstability of suchan algorithm,
however, the resourceneedsknowledgeof the propagatiordelaysexperiencedoy all users. For
thisreasonwe will insteadconsidera modelwhichimplementsend-to-endcongestiorcontrol,in
responseo simplecongestionndicationsignalsfrom resources.

In [11], Kelly et al. proposedwo complementargongestiorcontrol algorithms. The FRFC
algorithmis similar to the “dual algorithm” of [11]: it relieson the resourceto implementthe
congestiorcontrol. In this paperwe will studythe “primal algorithm” of [11], wheretheenduser
implementsa TCP-like rate control algorithm which respondso congestionindication signals
from resources.The paclet-level queueingbehaior at the resourcess not modeled;instead,a
deterministidluid flow approximations considered.

We will represent network by a setJ of resouces Let arouter be a nonemptysubsetof
J, anddenotethe setof all routesby R. We will ignorerouting choices,andthusassumeve can
identify eachuserwith oneandonly oneroute. Considetthe primal algorithmof [11], with strictly
positve gainparameterg;, r € R:

%Xr (t) =& (Wr =X (t) Z “i(t)> , TER (1)



where
Hj(t) = p; < > Xs(t)> , 1€ )
SES

Thefirst equatiordescribeshetime evolutionof x,, thesendingateof userr. Thesecondequation
describeghe generatiorof congestiorindicationsignalsat resourcej, by meansof a congestion
indication function pj(y). We will assumep;(-) is increasing,nonngative, and not identically
zero.

We may motivatethe algorithm(1)-(2) asfollows. Supposehatuserr generates; (t) paclets
attimet. If thetotal flow throughresourcej is y, we interpretp; (y) asthe probability a paclet
atresourcej recevesa “mark’—a congestiorindicationsignal. Then pj(t) is the probability a
paclet at resourcej recevesamark attimet. We assumea packet may only be marked at most
once.In this case,y j, pj(t) is the probability a packet from userr recevesa markattimet, and
X (t) ¥ jer mj(t) is just the expectednumberof marksuserr recevesattimet. Userr thenadjusts
X (t) to reacha tagetnumberof marksperunit time w;. (Althoughthe precedingdiscussioris at
thepacletlevel, noticethat(1)-(2)is afluid flow approximation.)

In [11], thesystem(1)-(2) is shovn to be asymptoticallystablein thelarge,andhencecorver-
gentto a uniqueequilibriumpointx givenby:

Yjer Pj (Zs:jesxs) -

The system(1)-(2) doesnot model propagationdelays. We will add propagationdelaysas
follows. Givenarouter, for eachresourcej € r we definea forward delayd; (j,r), andareturn
delaydy(j,r). Theforward delayis the delayincurredin communicationfrom the userto the
resourcethe returndelayis the delayincurredin communicatiorfrom the resourcebackto the
user In the currentinternet,eachrouteis subjectto a roundtripdelay We modelthis delay by
assumingeachroutehasan associatedlelay Dy, suchthatd;(j,r)+d2(j,r) = D, for eachj €.
Considemow thefollowing delayeddifferenceequation@nalogouso theprimal algorithm,where
we assumehatd; (j,r) anddx(j,r) areintegervalued:

Xr

(3)

Xe[t+ 1] = X [t] + Kr (Wr —X%[t—Dx] Zuj[t—dz(j,r)]> , TER, (4)
jer
where
Hilt] = pj ( > Xs[t—dl(j,S)]> , J€J. (5)
sJes

Theseare just discrete-timeequationscorrespondingo the continuous-timeequations(1)-(2).
Supposegainthatwe considerx; [t] to modelthe numberof pacletsgeneratedby userr attimet.
Thesepacletsexperienceadelayof dy ( j,r) beforearriving atresource; thereforeasbefore uj|t]
givesthe probability a paclet at resourcej recevesa markattimet. Packetsleaving resourcej
experienceadelayof dy( j,r) beforereturningto userr. Thus,thetotal expectednumberof marks
recevedby userr attimet is now givenby X[t — D] ¥ jer pj[t — d2(j,r)]. Noticethatthe number

3



of marksrecevedby userr attimet is proportionalto therateD, unitsof time ago:thisis adirect
resultof thefactthatd;(j,r) +da(j,r) = Dy for all j € r. As before,userr adjustsx[t] to reacha
targetnumberof marksperunit time w;.

Thedelaystructurewe have assumedhereis very similar to the currentoperationof TCP[9].
In TCR the sendettransmitspacletsto arecever; for every paclet receved,anacknavledgment
is transmittedoackto the sender All paclketsmake aroundtrip from sendetto recever, andback
to sender As aresult,the sumof forward andreturndelaysis fixed for all resource®n a given
route. This sumis theroundtripdelayD, encountereth our previousdevelopment.

Wewill focusin thispaperontheengineeringequirementhatthenetwork remainstableunder
communicatiordelays;in particular sincequeueinglelaysareassumedo besmall,thekey source
of instability will be the propagatiordelay ascapturedby the roundtripdelayD,. We primarily
seekdecentralizedonditionsfor stability. Givenary network with mary userstheresultsof [11]
give a global conditionfor stability of the laggedsystem.Here,we will pursueconditionswhich
eachindividual usermustsatisfyto ensurehatthe systemremainsstable.

We will considerstability conditionsof theform (approximately):

krDy < route-dependergonstant r € R. (6)

Sucha condition saysthat if the productk,D; is lessthan someconstantdependenbn route
topology and/orthe network operatingpoint, then the system(4)-(5) will be locally stable. In
a typical network wherethe roundtrip delaysmay not be known, this condition meansthat self-
clodking rate control algorithmswill work well to maintainnetwork stability. In a self-clocking
algorithm,the sendemusesan acknavledgementrom therecever to prompta stepforward. This
givesthe inversedependencef the gain k on the roundtripdelayD. (For moredetailson self-
clockingalgorithms,see[5] and[9].)

Thetype of constraintdescribedoy (6) is very desirablein alarge network suchasthe Inter-
net. Implementingend-to-endcongestiorcontrol would be very difficult if the “route-dependent
constant”involved information not availableto the user Instead,the condition(6) allows stable
behaior to resultwithout any centralcontrol. We will studythe form of the route-dependent
constantandalsoconsidemwhatthis constanimpliesfor resourcedesign.

Thepaperis organizedasfollows. In Sectionl, we studya simplifiedmodelwith oneresource,
andgive a conditionon k which ensureghe systemis asymptoticallystable.Next, we discusgate
of corvergencefor theoneresourceanodelin Section2, completelycharacterizingornvergenceo
equilibriumfor theregion of stability.

We next turn our attentionto the network scenario.In Section3, we develop conditionsfor
stability of a network whereall routeshave the sameroundtripdelay (D, = D for all r € R), by
linearizationof the equations(4)-(5). The conditionthatd;(j,r) + d2(j,r) = Dy provesto be
essentialn developingthesestability criteria. We alsosuggestwo extensiongo this model: one
wherewe addcompletelynonadaptie usersandanothemwherewe addinstantlyadaptve users.In
Sectiond4, we discussa conjectureaxtendingour resultsto networkswith diverseroundtripdelays.
This conjecturdas investigatedvith numericalexperiments.

In Section5, we give simulationresultswhich addqueueingand paclet-level behaior to the
theoreticaimodel. In particulay we areableto furtherinvestigatehow queueingdelaysandpropa-
gationdelaysaffect network stability, andwhatit meandor queueinglelaysto becomenggligible.
Finally, we commenton theimplicationsof our resultsfor future networksin Section6.



1 Stability criterion: oneroute, oneresource

Considethenetwork depictedn Figurel, consistingof oneresourcandoneroute. Thedifference
equationdescribingthis systemis:

X[t + 1] = X[t] + k(w— X[t — D] p(x]t — D])), (7

whereD = d; + do. We begin by consideringthe linearizationof (7). Let the stablepoint be x,
wherew = xp(x), andsupposep is differentiableat this point with derivative p’. Thenlinearizing
with X[t] = x4+ y[t], we obtain:

ylt+1] = y[t] - k(p+xp)yit - D], (8)

neglectinghigherorderterms.Givena complex numbera, we try a solutionof theform yjt] = At.
If suchasolutionexists, it is calledanormalmode Substitutingn (8), we find thatA mustsatisfy
thefollowing equation—theharacteristicequationof (8):

APTL_AP 4 k(p+xp) =0. (9)

Thus, a solutiony[t] = A exists only for thoseA which arerootsof the characteristieequation;
but sucha solution corvergesto zeroonly if [A| < 1. Becauseary solutionof (8) is a linear
combinationof normalmodesa sufficient conditionfor the system(7) to belocally stableis that
all rootsof (9) have moduluslessthanunity. Corverselyif any onerootof (9) hasmodulusgreater
thanunity, thenthe system(7) will beunstable.

Ouir first theoremwill stateconditionswhich are essentiallynecessaryand sufiicient for the
fixedpointof the system(7) to belocally stable.The stratgy of proofis asfollows. We first shov
that the maximummaodulusof the roots of equation(9) is continuousin k. Thenwe shov that
equation(9) hasall rootswith moduluslessthanunity for k nearthe origin. Finally, we look for
thesmallest suchthatequation(9) hasa root of unit modulus.

Lemmal Let p(A, k) bea polynomialin A, with coeficientswhich are continuousfunctionsof
k (whee k maybe vectorvalued). Thenthe maximummodulusof therootsA of p(A,k) =0is
continuousn k.

Proof. The rootsof arny polynomial are continuousfunctionsof the coeficients[8]. If the
coeficientsarecontinuoudunctionsof «, thisimmediatelyimpliesthe conclusionof thelemma.
O

Lemma 2 For suficientlysmallk, equation(9) hasall rootswith moduludessthanunity.
Proof. We definethe polynomialp(A, k) by:
p(A,k) =APH1 AP 4 ka,

wherea= p+ xp’ > 0. Thenthecharacteristi@quation(9) is p(A,«) = 0. Whenk = 0, theroots
areA = 0 with multiplicity D andA = 1 with multiplicity 1. By directcomputationwe find that
0p/0A is nonzeroatA = 1, k = 0. Thus,we canapplythe Implicit FunctionTheoremto find an
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openinterval (—¢, €) anda differentiablecomplex-valuedfunction g(«) suchthat1 = g(0), and
A = g(k) satisfiesp(A, k) = 0for —e < k < €. For suchk, differentiatingp(A, k) = 0 with respect
to k yields:

(D+1)g(x)°g' (k) —Dg(x)° g (k) +a=0.

Evaluatingthis throughat k = 0 yields ¢’(0) = —a. We take a Taylor seriesexpansionof g(k)
aroundk = O:

g(k) = 1—«ka+o(k).

Thus,ask increasesway from zero,theroot A = 1 initially movesapproximatelyasl— ka, and
hencefor sufiiciently small k this root will have moduluslessthanunity. For theroot A = 0O of
multiplicity D, we notethatby taking k evensmallerif necessarywe canappealo Lemmal to
ensurethattheseD rootsremainof moduluslessthanunity ask increasesway from zero. Thus,
for sufficiently smallk, equation(9) hasall rootsof moduluslessthanunity. O

Theorem 3 Thesysten(7) is locally stableif:

k(p+xp) < 23in(2(Tn+l)) ,

andunstablef:

k(p+xp') > 2sin (2(Tn+l)> .

Proof. We caneasilychecktheresultfor D = 0 sincethelinearizedsystembecomes:

ylt+1] = (1—k(p+xp"))y(t];

soassumeD > 1 for therestof the proof. By Lemmal, the maximummodulusof the roots of
equation(9) variescontinuouslywith k. Also we know thatthe systemis locally stablefor smallk
from Lemma2. Hence for thefirst partof the theorem|t sufiicesto look for the smallestk such
that equation(9) hasa root of unit modulus. Let the root be A = €2?; thenequation(9) may be
rewritten as:

2singd (PP+1)o-1/2 — 5

wherea = k(p+xp’). Hencewe concludethat:

m 2m

2|sinf|=a, 6=
sinbl=a 0=255+1) " d+1

wheren is aninteger We choosen = 0 sincewe arelooking for the smallestpositive a suchthatA
is of unit modulus.Hence substitutingfor 6 in 2|sind| = a, we seethatthereareno solutionsfor
pifa< Zsin(z(T"H)). This givesthefirst partof thetheorem.
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For the secondpart of the theorem,it sufiicesto prove that thereexists a root A = ré? of
modulusr > 1 to equation(9) whena > 2sin(6*/2), where6* = ri/(2D + 1). From(9), notethat
A =1—ar~P, andthatasvectorsin the complex plane,the anglebetweem and1 is 6. Thus,
applyingthecosinerule, we have:

1412 _g2—20
CcosO = i or . (20)

Further by equatingmaginarypartsin (9), we have:

sin(D6)

= —=————. 11

sin((D+1)6) (11)
We know thatfor a = 2sin(6*/2), cos9* = 1— %2 andr = 1. Supposea > 2sin(6*/2). Then
the RHS of (10) is lessthancoso* for r = 1. Noticethatthe LHS of (10) decreasefrom coso*
to cogr/(D + 1)) for 6 € [6*, 57+]. To prove thataroot of modulusgreaterthanunity exists, it
sufficesto shaw thatr increasesrom 1 to « for 6 € [6*, 51| andthattheRHSof (10)is increasing
inrforr > 1.

Fromequation(11),
dr _ Dsin((D+1)8)cogDe) — (D +1)cog(D +1)6)sin(D6)
de sirf((D+1)6)
>0,

sincesin(D#) > sin((D+1)6) and—cog(D+1)8) +cogDe) > Ofor 6 € [6*, 575 ]. Sor increases
from 1to o for 6 € [6*, 5i].
Differentiatingthe RHS of (10) with respector gives:

2(r2—1) + (4D +2)a’r—?P
4r2 ’

d
+(10)=

which shovsthattheRHS of (10)is increasingn r for r > 1, tendingto r /2 whenr is large. Thus
a root of modulusgreaterthanunity exists for which 6 € [6*, 5] whena > 2sin(6*/2). This
provesthesecondartof thetheorem. O

2 Rateof conver gence: oneroute, oneresource

For thesimplifiedcasewherewe have only oneresourceywe mayalsostudyrateof corvergenceo

the stablepoint. In this sectionwe considerthis problem,via the theoryof differential-diference
equations. For corvenience we restateherea resultdue to Hayes[7] taken from Bellmanand
Cooke ([1], Theorem13.8).

Lemma4 (Hayes) All therootsof be! +c—Ae! = 0, whee b andc are real, havenegativereal
partsif andonlyif: (1)b<1; and(2)b< —c< ,/a%—i- b2, whee a; is therootof a = btana suc
thatO <a< m If b=0, wetakea; = /2.



Wewill studytherateof corvergenceof thesystemn Figurel, throughthefollowing differential-
differenceequation:

%x(t) = k[w—Xx(t — D)p(x(t — D))], (12)

whereD = d; + dy. Thisis justthe continuous-timeanalogof the discrete-timeaquation(7). We
studythestability of this simplesystenviaits linearizedversion([1], Theoreml1.2).Let thefixed
pointbe (x, p) wherep = p(x) andw = xp. Thenlinearizingwith x[t] = x+ y[t], we obtain:

%y(t) = —k(p+xp)y(t—D),

neglectinghigherorderterms.Thecorrespondingharacteristiequation pbtainedoy substituting
y=¢e¥, isthus:

s=—k(p+xp)e ",
which after substitutingh = sD, reducego:
—k(p+xp)D—Arée =0. (13)

The fixed point is locally stableif all rootsof the abose equationhave negative real part ([12],
Section9.4). For eachD, we areinterestedn the maximumvalue of k suchthatthe systemis
locally stable.

Theorem 5 Thesysten(12)is locally stableif:
/ T

andunstablef:

N> L
Proof. A directapplicationof Lemma4 to equation(13) with b= 0andc = —«D(p+xp'). O

Noticethattheresultfrom the differential-diferenceequatiorapproachs justthecorrespond-
ing discrete-timeTheorem3 with 2sin(m/(4D + 2)) replacedby rr/2D. This is not surprising
sincethediscrete-timesystem(7) is anapproximatiorto the differential-diferenceequation(12).
Supposeve rewrite equation(7) in thefollowing form:

Xt +1/2] = X[t — 1/2) + k (W=X[(t = 1/2) — (D - 1/2)][(t— 1/2) - (do - 1/2))),

andlett andD takevaluesin {n/2: nodd}. Then,settingt’ =t — 1/2 andreplacingD by D — 1/2,
the boundfor Theorem3 becomegsin(rt/4D), which tendsto /2D asD — .
Definea = k(p+ xp); then,from above, thelinearizationof (12)is:

d
ay(t) =ay(t—D). (14)

Supposehesystem(14)is stable.Let A* betherootof equation13) with thesmalles{in modulus)
negative real part. Thentherateof corvergenceto the stablepointis equalto | ReA*|D~L. We will
investigatehow therateof corvergencedepend®n a in theregion of stability (0, m(2D)~1).
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Lemma6 Therate of corvergenceof the systen(14) is monotonicdeceasingfromD~* to 0 for
ac|[(eD)~1 n(2D)~Y).

Proof. LettherootbeA = —y+ i wherey > 0. Thenfrom equation(13):

ye Ycosd + 6e Vsind = aD; (15)
ye Ysind — 6e ¥ coso = 0. (16)

Notice thatif (y,d) satisfiesthe abose equationsthenso does(y,—9J). Hence,without loss of
generalitywe mayassumehatd > 0. Equation(15) gives:

o

= 17
tand’ (17)

y

which on substitutioninto (16) yields:

0 go/tans _ ap (18)
Sind

Obserethatd € [2nm, (2n+ %)rr] wheren € Z . sincetand > 0 andsind > 0 from equationg17)-
(18). Also, from (17) y is monotonicdecreasingn & from 1 to 0 for § € [0, 1/2]. Thenthe LHS
of (18) is monotonicincreasingn & from e~ to rr/2 for & € [0, 1/2]. Hence,aroot of equations
(17)-(18)existsfor & € [0,71/2] whichis decreasingn y asa increasegrom (eD)~! to m(2D) L.
It remainsto show thatthis is the root with the smallesty. Noticethatif 5/singd is larger, theny
hasto be largerfor equation(18) to be satisfied.But &/sind < n/2 for n=0ands/sind > n/2
for n> 0, sotakingn = 0 yieldstheroot with the smallesty. Then,sincetherateof corvergence
is yD~1, we have therequiredresult. O

Lemma 7 Therate of cornvergenceof the systen(14) is monotonidncreasingand corvex from0
to D1, andthe corvergenceis nonoscillatoryfor a € (0, (eD)~1].

Proof. Considerthe function —A€* when2 is real andnegative. Supposeve maximizethe
functionwith respecto A. We have:

d
—(-re) =& —2¢é
d)\ ( ) bl
which equalszerowhenA = —1, giving a maximumof e~1. Moreover, —A€ is increasingn A

for theintenal (—o, —1] andconcae decreasindgor [—1,0]. Thefunctionis shavn in Figure2,
from whichit is clearthatequation(13) has2 negative rootswhena < (eD)~! and1 negative root
whena = (eD)~1. Moreover, the modulusof the smallerroot (in modulus)increasegrom 0 to 1
asa increase$rom 0 to (eD) 1, andis clearlya corvex functionof a.

It remainsto shav thattaking A to berealyieldstherootwith the smallest(in modulus)nega-
tiverealpart;thiswill alsoshow thatthecorvergences nonoscillatory Firstnotethatthemodulus
of the smallerreal root is not greaterthan1. Supposehereare complex rootsfor a < (eD)~L.
Thenusingthe sameargumentasin theproofof Lemma6, we seethattherearenorootsfor n=0,
5 # 0, sincethe LHS of equation(18) is greaterthane™!. Also, for n > 0, 5/sind > /2, sothe
complex root, if any, will have y > 1. This completeghe proof. O

We combinetheabove lemmasinto thefollowing theorem.
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Theorem 8 Themaximunrate of corvergencefor the system(14)is D~ whena = (eD)~1. The
rate of corvergenceis monotonicincreasingand corvex from 0 to D1, and the corvegenceis
nonoscillatoryfor a € (0, (eD)~1]. Therate of corvergenceis monotonicdeceasingfromD~* to
Oforac [(eD)~%, m(2D)~Y).

In particular, the maximunrate of corvergenceto the equilibriumpoint x of (12) is achieved
if andonlyif:

k(p+xp) = —
andin this case the equilibriumis nonoscillatory

Figure3illustratestheresultof Theoren8, shaving how therateof corvergencefor thesystem
(14) varieswith a € (0, m(2D) 1), theregion of stability. Usingthe analogyfrom ordinarydiffer-
entialequationsye seethatthe systemis overdampedor 0 < a < (eD) ! andunderdampedor
(eD)~! < a< n(2D)~L. Thesystemis critically dampedvhena = (eD) %, andthis alsogivesthe
optimalrateof corvergenceof D1 or “time constant’of D. Intuitively, this makessensesinceD
is theroundtripdelay

Theresultof Theorem8 hasalsobeenshavn by Chongetal. [2] usingessentialllemmad4.
However, their claim thatthe rateof corvergenceis a concae function of gaindiffersfrom what
is depictedn Figure3; in fact,by Lemma7, therateof corvergenceis corvex for a € (0, (eD)~4].

3 Stability criteria: networkswith constant roundtrip delay

Wewishnow to formulateresultsanalagouso thoseof Sectionl for generahetworks,i.e.,systems
describedoy the equationg4)-(5). Thetheoryfor multidimensionadelayeddifferenceequations
is significantlymorecomplex thanin the one-dimensionatase aswe shalldiscover; nonetheless,
it is possibleto prove a resultanalogougo Theorema3 for networks, in the specialcasewhere
D =Dforallr e R

We begin, asbefore,by linearizingthe systemaboutthe stablepoint x = (X;,r € R), givenby
(3). Forall j € J, definep; = pj(3 jesXs); assumehatat this point p;j is differentiable andlet
p’j = IO'j(ZjesXs)- Definey,[t] by X [t] = x + Kl/2 1/2
linearizationof (4)-(5) yields:

Velt+1 = yelt] — kewix tyrt — Dy (19)
-Z;A,r k23 Ajska’ a2 plyslt — da(j,9) — do(j, 1)), T ER

yi[t]; thensince ¥ jc3Ajrpj = WX 1, the

neglectinghigherorderterms. Fix A € C. We now askthe question:doesthereexist a (possibly
compl) vectora = (ar,r € R), suchthaty[t] = aA! is a solutionto this systemof equations?
If suchan a exists, the solutionis a normalmode. As before,local stability resultsif all normal
modessatisfy|A | < 1.

Our approachwill be to find the conditionsunderwhich a exists, suchthataa! is a normal
mode.Supposesuchan o exists;then,substitutingnto (19):

arAt+1 = q /\t—KrWrXr_lar/\t_Dr

-3 ;A”Kl/z X2 /B2 AR e R
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After cancellingA! throughoutmultiplying by APr, andapplyingthe definitionof D;, we have:

(AP AP o + ke x, Loy —

Z ;Ajrxﬁ/ %t/ 2A 400 Ajka/ B PA 109 plas =0, r e R (20)
Jedse

Define the following matrices: k = diag(kr,r € R); W = diagw,r € R); X = diagx,r € R);
P’ = diag(p}, j € J); andA(A) = (AjA~%U1, j € J,r € R). Thenwe can express(20) asthe
following matrix equation:

(diag()\ D+l _2Dr r e R) + kWX 1+ Kl/le/ZA(A*1)TP’A(A)X1/2K1/2) a=0.

Butthisis possiblef andonly if the determinanbf thematrix premultiplyinga is zero,i.e.,if and
only if thefollowing equationholds:

det(diag(A D+l _ADr r e R) + kWX 1+ K1/2X1/2A(/\_1)TP'A()\)X1/2K1/2) —0. (21

The equation(21) is the characteristicequationfor the system(19). A normalmodeexists only
for thoseA which arerootsof the characteristieequation.If all rootsof (21) have modulusless
thanunity, thenthe system(19) will be asymptoticallystable,andhencethe stablepointx will be
locally stablefor the system(4)-(5).

We now investigateconditionsto controlthe maximummodulusof therootsof the character
istic equation.We will write p(A, k) for theleft handsideof (21), to emphasize¢he changesn the
characteristiequationask varies.We alsomake thefollowing definition:

C(A, k) = KWX L4 k72X 2AA "D TP A(A )XY/ 2¢1/2,

We have thefollowing theoremwhich givesstability criteriain the situationwhereD, = D for
allreR

Theorem 9 SupposéD, = D for all r € R. Thesystem(4)-(5) is locally stableif the following
conditionis satisfiedfor all r € R:

. T
Ky pi+ Y P Y X | <2sin <7) . (22)
Proof. We will dividetheproofinto five steps.

Stepl. If 0 < &< 2singg 4y, thenno rootsof AP+l _ AP 1 a =0 havemodulusequalto

unity. This deductiornfollows from the proof of Theoren.

Step2. Themaximummodulusof therootsA of p(A, k) = 0 is continuousin k. This follows
from Lemmal. In fact,a smallpoint of subtletyarises:p(A, k) = 0 is notimmediatelya polyno-
mial equation,asit involvestermswhich arepowersof A ~1. However, this is easilyrectified by
multiplying throughwith a suitablylarge power of A.
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Step3. Showthat for any k satisfyingthe hypothesesf thetheoem,p(A, k) = 0 hasnoroots
of modulusequalto unity. Let k satisfythe hypothese®f the theorem,and supposédhereexists
A =¢? 0< 6 < 2m suchthatp(A, k) = 0. Sincew,x 1 = YierAjrpj, [A| = 1,andall k;, W, X,
andp; arenonn@ative,the hypothesesf thetheoremyield:

"2
r
< APt S S Ay A0Sy )
Kr(¥2; irPj £§?2;| irA] sPjl
= K (Z pj + Z Z xsp’j>

JET Jersijes

-1
KrWrXr + ZJAerrXr plj
1S

Ky ZJAjr/\ dl(j’r)AjS/\ _dl(j’S)Xsplj
j€

<23in< rerR

Althoughthefirst line of this computationrseemsawkward, it is in factthe “absoluterow sum” of
row r of thematrix k(WX ~1+AA~1)TP/A(1)X). Sincethespectraradiusof ary squarematrixis
boundedby its maximumabsoluterow sum([8], Chapter8), we have thefollowing bound(where
|| - || denotespectrakadius):

ICA,K)|| = HKWX’l—i-K1/2X1/2A(/\’1)TP’A(/\)X1/2K1/2H
= [[kWXE+kAQTHTPAR)X||

< 2sin (2(Tn+l)> .

Thus,we canboundthe spectrakradiusof C(A, k) in (21). We now make thefollowing obser
vation: if D, = D, thenthecharacteristiequationcanbewritten moresimply as:

det((APT1-AP)I+C(2,k)) =0. (23)

Further asA = €?, the matrix C(A, ) is Hermitian. It is alsopositive definite, sowe canwrite
ror’ =C(A,«), wherer is unitary and @ = diag(@,r € R) is the diagonalmatrix of strictly
positive eigervaluesof C(A, k). (Notethatboth and® aredependentn A andk, thoughthishas
beensuppressedh the notation.) By the boundcomputedabove, we know that g < ZsinZ(T"H)
for all r € R. Sincer is unitary, we canfactorit out of the characteristiequation:

det(diag APt - AP+ g,r e R)) =0.

But we arenow takingthe determinanof a diagonalmatrix; andso,if A is arootof unit modulus
suchthatp(A, k) = 0, we musthave:

AP _AP g =0

for ¢ satisfying0 < ¢ < Zsinz(T"H). This contradictsStepl, andso Step3 is proven.
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Step4. Showthere existsa k satisfyingthe hypothesesf the theoem, sud that all roots A
of p(A, k) = 0 havemoduluslessthanunity. For corveniencewe assumehatR = {1,2,... ,N}.
DefineR, = {1,2,...,n}. We denoteby pn(A, k) = 0 the characteristicequationdefinedby the
subnetverk of routesin R,; mathematicallythis correspondso replacingC(A, k) with the subma-
trix C(A, k) = ([C(A,K)]rs, I, SE Ry) in (23). (Althoughthenumberof componenté k maychange
dependingon n, we will suppresshis dependencandwrite k for the vectorof gain parameters,
with the numberof componentsinderstoodrom context.) Theresultis proveninductively onn.

First supposahatn = 1. We have shavn in Theorem3 that thereexists a k1 satisfyingthe
hypothesesf thetheorenfor which all rootsof p1(A, k) = 0 have moduluslessthanunity.

Now, inductively, assuméhereexist parametergs, . .. , kn_1 suchthatall rootsA of pp_1(A, k) =
0 havemoduludessthanunity. We considerrootsof theequationpn(A, k) = 0. Letk= (k1, ... ,kn—1,0).
Thennotethefollowing relation:

pn(}\ ) k) = (A Dl _ AD) pn—l(}\ ’ K)'

This follows by decomposinghe determinantwhich definesp,. Thus, thereare a total of nD
roots: nD — 1 of theseroots have moduluslessthan unity (including A = 0 of multiplicity D),
and)A = 1 hasmultiplicity 1. If we canensurethata smallincreasean k, from zeroreduceghe
magnitudeof therootA = 1, thenanargumentexactly analogouso thecasen = 1 would shov that
kn canbechosersuchthatp, (A, k) = 0 hasall rootsof moduluslessthanunity for gainparameters
K1,...,Kn-

We proceedoy usingthelmplicit FunctionTheoremasbefore.By expandingthe determinant
which definesp,, we canwrite:

pn(/\’K) = (/\ bl _AD) pn—l(AaK) + ann—l(AaK)a

whereq,_1 is definedby:

tho1(A,k) =det| AP AP) | T LA ke s Kooty 1)

Firstwe differentiatep, with respecto A, evaluatingat (1,k):
0
a_/\pn(/\aK) = pPn—1(1, k).
(LK)

Now, sincewe know that p,—1 hasall rootsof moduluslessthanunity at (k1,...,kn—1), we can
concludethat p,-1(1,k) # 0. So, applying the Implicit Function Theorem,there exists a dif-
ferentiablecomplec-valuedfunction h(kn) ande, > 0 suchthath(0) = 1, and pn(h(kn),kn) =0
if —en < kn < &n. As before,we proceedto computethe derivative of h(k,) usingthe implicit
definitionin p,. Sinceh(0) = 1, and:

(h(Kn)D+1 - h(Kn)D) Pn—1(N(kn), k) + knn-1(h(kn), k) = O,

we conclude:
h’(O) Pn—1(1,k) +gn-1(1,«) = 0.
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But pn—_1(1,«) andgn_1(1, k) arethefollowing determinants:

pn—l(la K) = del(cn—l(L K))a and
qn_l(].7 K) = det(Cn(l, Kl, - ,Kn_]_7 l))

In both casesthesedeterminantsare strictly positive, asthey arethe determinantf positive
definitematrices.Thus,we have W' (0) = —gn-1(1, k) /pn-1(1, k) = —an, wherea, > 0. Thisleads
to thefollowing Taylor expansion:

hI(Kn) - 1— Knan + O(Kn).

Soasky increasesway from zero,theroot A = 1 decreases magnitude By the sameargument
asin the proof of Theorem3, this is sufficient to completethe inductive step: namely we can
choosea kp, satisfyingthehypothesesf thetheoremandsuchthatall rootsaA of py(A, k) =0 have
moduluslessthanunity. Q.E.D.

Now, if wetake n= N, thenp, = p, andsowe canfind avectork = (ki,... ,kN) Satisfyingthe
hypothese®f the theoremsuchthatall rootsA of p(A, k) = 0 have moduluslessthanunity; we
will denotethis k by k*. This completesStep4.

Step5. Completiorof proof. Now supposehat,for somex satisfyingthehypothesesf thethe-
orem,p(A, k) = 0 hasarootof modulusgreatethanunity. Considethepathk (t) =tk* + (1—1)k,
for 0 <t < 1. All rootsof p(A,k(1)) = 0 have moduluslessthanunity by Step4; so, by Step2
(continuity of maximummodulusof roots),thereexistst suchthat p(A,«(t)) = 0 hasarootA of
modulusunity, i.e., |A| = 1. But, sincek(t) satisfiesthe hypothese®f the theorem(both k* and
k satisfythe hypothese®f thetheoremasdoesarny corvex combination) this is a contradiction
to Step3. Sowe concludethatno suchk exists; i.e., for all k satisfyingthe hypothese®f the
theorem,p(A, k) = 0 hasall rootsof moduluslessthanunity. O

The proof of Theorem9 fails at Step3 if all D, arenot equal;at this point, the determinant
defining(21) maynotdecompos@to aproductform. Thegeneralityin theresultgivenhereis that
the delaysd; (j,r) anddx(j,r) may be choserarbitrarily, subjectto the constraintthatd; (j,r) +
da2(j,r)=Dforall j € J,r € R Noticethatthedecompositiorof Step3 worksbecaus€(A, k) isa
Hermitianmatrixwhen|A | = 1; thispropertyis adirectresultof thefactthatd; (j,r) +da(j,r) =Dy
forall j € J, r € R, emphasizingheimportanceof theroundtripdelayin this analysis.

3.1 Nonadaptive users

The simplestextensionto the model (4)-(5) is to add userswho act at intervals of time signifi-
cantlylongerthantheroundtripdelaysDy; in fact,soslowly thattheir ratesappeaiconstanbnthe
timescaleof the D;. Intuitively, thisis the descriptionof a userwith an“infinite roundtripdelay”:
they settheir rate,thenupdateit on atime horizonfar longerthanthe updatetimesof mostusers
in thesystem.

We mayformalizethis modelasfollows. SupposéhatR = R | Ry, andconsidetthefollowing
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model:

X [t+ 1] = X [t] + K (Wr — %[t — D] Zuj[t—dz(j,r)]) ; T €Ry (24)

jer

Xult] =Xy, U€Ry; (25)

wherex, > 0 for allu € Ry, and:

uj[t]zpj( S x-S+ 5 xv>, je. (26)
scRiIjes veRyIjev

Theroutesin R, arenonadaptive they do not respondo congestionndicationsignalsfrom
theresource We will shawv thatif Dy = D for all r € Ry, Theorem9 providesa sufficient stability
conditionfor the system(24)-(26).

Asbefore Jetx= (x,r € R) bethefixedpoint, with pj = p;j (¥ scr.jesXs) andp’j = (S scrjesXs)-
Notethatthesedefinitionsincludetheroutesin bothR; andR,. We have thefollowing theorem.

Theorem 10 Suppos®, = D for all r € R;. Thesysten(24)-(26)is locally stableif thefollowing
conditionis satisfiedfor all r € Ry:

T
K pi+ S p' X <2$in(7). (27)
(zoe27.3.5) <2 (amss

Proof. The linearizationof the system(24)-(26)is givenby (19) for all r € Ry, with p; and
p’j definedasabove. Thus,the exact sameproof asusedfor Theorem9 goesthroughto give the
result. O

3.2 Instantly adaptive users

We now considerthe situationoppositeto Section3.1: usersupdatingat time intervals signifi-
cantly shorterthanthe roundtripdelaysD,. We may modelsuchusersby assuminghey reach
equilibrium quickly—indeed,instantaneously Intuitively, this is the descriptionof a userwith
“zero roundtripdelay”: equilibrium may be reachednstantaneouslpecausehereis neggligible
lagin communicatiorbetweerthe network andtheuser

We formalizethe modelasfollows. Again, let R= R;|JR>, andmodelthe setof usersin R,

by:

Wy
- MW R,. 28
Xlt] Yjeullt]’ Here (28)

Thesetof usersn R; is modeledasbefore:

X [t+ 1] = X [t] + & (Wr — X[t — Dr] Zuj[t—dz(j,r)]) , reRy. (29)

jer
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Finally, p;j[t] is definedasbefore but with the modificationthatroutesin x,[t] suffer no delay:

uj[t]=pj( FZ x[t]+ ; Xs[t—dl(j,S)]>, jed. (30)
veRsTjev scRrjes

Theexistenceanduniquenessf theequilibrium(3), demonstrated [11], shavsthe system(28)-
(30) is well defined. Theroutesin R, areinstantlyadaptive they instantaneouslachiese equi-
librium giventhe currentstateof the network. Thus,they areuserswho updateratesmuchmore
quickly thantheusersn Ry.

As before,the systemhasa uniqueequilibrium pointx = (x;,r € R). Then,definingy;[t] =

K;1/2X;1/2(Xr [t] — %) for r € Ry, andyy[t] = xy[t] — %, for u € Ry, we canlinearizeto obtain:
Vet+1] = w[t]— KrWrxier [t —Dx]
— IA\]rKl/2 1/2Ajvp] [t_dZ(jar)]

VERy J€

- ; Ajrk! 23 Ajsra! e Bl yelt — da (7, 9) — da(j, )], T € Ry;
1])€

wolt] = —xwgt AjAjuP W]
u V;ZIZJ jvAjuPjyv

+ ; AjuAjska’*x 1/2p',ys[t—d1<j,s>1), ueRy.
1])€

LetAg, (A) = (AjrA~%U0) jeJ, reRy), andletAr, = (Ajy, j €J, UE Ry). LetXr, = diag(x,r €
R1); similarly, defineWg,, kgr,, Xgr,, andWg, . We try a solutionof the form aAl. Letting aR, =
(ar,r € Ry), ar, = (ay,U € Ry), we have:

_ 1/2 1/2
(AR,P AR, + X5, Why) ar, = — A, P A, (A )XR{ KR{ ORy;

and
(diagA P~ AP € Ro) + Wk, X
i, Xe Ay (V) TP AR (V)X kg ?) o, + il g A, (A1) TP Agyam, = 0.

After substitutingthefirst equationinto the secondwe obtainthe characteristi@quationfor (28)-
(30):

1/2,,1/2

det(diag(A® ™ — AP r € Ry) + kr,We Xz, + KR, XR! “Ary (A1) TP/AR (M) Xg]
1/2X1/2A (A" HTP AR, (AL P’AR2+XR2\NR2) LALP'A l(,\)xl/2 1/2) 0. (31)

12, 1/2
l

We make thefollowing definitions:

M = (P)Y2Ap,%r W_l/z, and

D(A,kry) = KRl\NRlle
Kéizxé{ZARl()‘_1)T(Pl)1/2(| —M(l + I\/ITM)_lMT)(P’)l/ZARl(/\)XéIZ Fléz.
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Thenthecharacteristiequationreducego:
det(diag(AP ™ — AP r € R)) +D(A,kg,)) = 0.
Noticethesimilar structureof D(A, kg, ) andC(A, k); thisallows usto provethefollowing theorem.

Theorem 11 Suppos®, = D for all r € R;. Thesysten(28)-(30)is locally stableif the condition
(22)is satisfiedfor all r € Ry.

Proof. D(, kg, ) is identicalin structureto C(A, k), but with P’ replacedby (P")¥?(1 — M(l +
MTM)~IMT)(P) /2 (notethe latter matrix is independentf 1). Hence we may useexactly the
sameproof asusedfor Theorem9; the only difficulty arisesin Step3, wherewe shovedthatfor
k satisfyingthe hypothesesf thetheoremandA = €9, ||C(A,k)|| < Zsin(z(T"H)). We therefore
proceedto shav thatfor kg, satisfyingthe hypothese®f the theorem,andA suchthat|A| = 1,
ID(A, kry)|| < ZSi”(z(TnH))-

We first shaw ||| =M(1 + MTM)MT|| < 1. NoteM is |J| x |R]; sowrite M =UsVT, whereU
is the |J| x |J| orthogonaimatrix of eigervectorsof MMT, V is the |R| x |R| orthogonalmatrix of
eigervectorsof MTM, ands is the |J| x |R| matrix of singularvaluesof M: 5jj = 0 for i # j, and
311> --- > Zqq, Whereg = min(|J|, |R|). Thisis thesingularvaluedecompositiof{fSVD) of M [8].
SubstitutingandusingV'vV =UTU =VvVT =UUT =1, we have:

=M +MTM)"IMT|| = |I—UzvH(+VveTsvT)~vsTuT
= Ul —=sVTV(I+2Ts) WVTv)uT
= I-=(1+=")~t=T).

The last expressionis the spectralradiusof a diagonalmatrix, whereeachentry is of the form
1-52/(1+52) < 1;hencelll —=M(I +MTM)MT|| < 1.

Theargumentabove alsoshavs thatl — M (1 +MTM)MT is positive semidefinitefurther, it is
symmetric.If [A| = 1, thenfrom thedefinitionof D(A, kg, ), we maywrite D(A,kr,) = F + G*"HG,
whereF is diagonalandpositive definite,H is real diagonalandpositive definitewith ||H|| <1,
andC(A, kgr,) = F + G*G. Usingtheboundfor ||C(A, kg, || from our proof of Theorem®:

ID(A, k)l = [IF+GHG
= max((F+G"HG)v,v)

vivj=1

= max(Fv,Vv)+ (HGv,GV)

vivj=1

(
< max{(FvV)+ (Gv,GV)
(

vi|v|=1

= max(Fv,v) + (G*Gv,v)

vivj=1

= [IC(; kry)l

< 2sin (2(Tn+1)> .

This completeghe proof. O
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The resultsof this subsectiorand the previous subsectioradd two extremesof usersto the
basicresultof Theorem9: thosewho act muchmoreslowly, andmuchmorequickly, thanusers
with roundtripdelaysD,. The resultof Theoreml1 is particularlyrevealing. By shawving that
IID(A, kry) || < |IC(A, kry||, Noticethatthe systemwith instantlyadaptve usersis, loosely “more
stable”than the basicsystem(4)-(5). This is to be expected,as instantly adaptve usersdamp
oscillationsin the system;in otherwords,the network is morestableif thereareuserswho back
off quickly whencongestiorincreases.

4 Stability criteria: networkswith diverseroundtrip delays

As wasnotedabove, the conditionthatD, = D for all r € R wasessentiato the proof of Theorem
9. We now wish to investigateaxtensiongo Theorem9, which remove the conditionof constant
roundtripdelay Giventheform of the boundsin Theorems3 and9, we may make the following
conjecture:

Conjecture 12 The system(4)-(5) is locally stableif the following conditionis satisfiedfor all
reR:

K i LY X | < 2sin (L> : 32
r (Jzer Pj + Jzer Pj S:JZES s) 2(2D; + 1) (32)

Thisis just Theorem, without the stipulationthatD, = D for all r € R.

An immediatequestionarises:doesthereexist a countergampleto Conjecturel2? To attempt
to answerthis questionwe generated 0,000“random” networks, asfollows. A randomnumber
of routes,from 1 to 5, anda randomnumberof resourcesfrom 1 to 5, werechosen.A random
A matrix wasthengenerated.For eachj andr, Dy anddi(j,r) wererandomlygeneratedyvith
D, betweenl and15; we thensetd;(j,r) = di(j,r) — D;. Finally, we chosevectorsx, p, and p/
randomly andfixedw accordingto equation(3). This allowedusto computethe critical valueof
kr for eachr € R aspredictedoy equation(32). We randomlychosex; to lie in the openinterval
betweerD andthis critical value.

For eachof thesel0,000networks, we computedthe maximummodulusof the roots of the
characteristi@quation(21). In everyinstance the maximummoduluswasstrictly lessthan 1, so
the networkwaslocally stable This experimentcertainly suggestshat Conjecturel2 might be
true,andaninterestingfuture researctproblemconcerndginding aformal proof of Conjecturel2.

5 Simulations

If we areto implementhe stability criteriagivenherein actualnetworks,thenanobviousquestion
is how well our modelof a network approximateghat of a real system. Our modelusesa fluid
flow approximationinsteadof discretedatapaclets. Also, queuesttheresourcesrenot modeled
atall. In this chapterwe will addresgheseconcernghroughsimulations,andcomparewith our
earliertheoreticakresults.

Our simulationsinvolve one resourcemodeledas a discrete-timequeue,with several users.
We will investigatestability of this stochasticsystemundervariousroundtrip delaysand gain
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parametersanddeterminewhatit meandor queueingdelaysto becomenggligible. We will then
look morecloselyatinstability in the systemyevealingthe phenomenownf phase-loking. Finally,
we will investigatestability whenuserswith differentroundtripdelaysinteractwith eachother

5.1 A discrete-time queue with threshold marking

We will considerastochastianodelanalogoudo (4)-(5), with oneresourceandseveralusers.We
wish to modelqueueingeffects, but on a discrete-timescale. The dynamicsof sucha queueing
resourcearemodeledas:

QA=(Q1+¥%-17, (33)

whereQ; is thequeudengthattimet, andy; is the numberof paclketswhich arrive atthe queueat
timet. Theinterpretatiorof themodelis asfollows. Packetsarrive atthequeueasa (discrete-time)
stochastiqrocessry, Y, . ... At timet, theresourcdirst addsY; paclets(if ary) to the queue.If
the queueis now nonemptyexactly onepacletis sened. Notice the similarity of theseequations
with the analysisof a (continuous-timeM/D/1 queue gxaminedat time pointswhereindividuals
leave the queuejn thatcasethe queudengthequationis Q; = (Q_1 — 1) +Y; [6].

We will supposehat, for eacht, Y; is a Poissonrandomvariableof parameterly < 1, inde-
pendentof the pasthistory of the process. This makes Q; a discretetime Markov chain. We
will try to computean invariant distribution m = (m,n > 0) for this Markov chain. Letting
pn=P(Y; = n) = e7Yy"/n!, we know thatw mustsatisfy:

o = (Po+ P1) ™+ Porm;
m = P2+ P17 + Po’®;

We may usetheseequationgo calculatethe generatindgunctionof m, H(s):

me Y(1—y9)

1= 3 = o s

Sincewe know thatlimgq H(s) = 1, we concludethat i = €/(1—y) > 0. This lastresultalso
implies that i, > O for all n > 0. Thus, Q possessean invariantdistribution r, given by the
coeficientsof the power seriesof H(s).

We mayinterpretthe parametely asthe meannumberof pacletsperunit time which arrive at
thequeue A simplechoicefor acongestionndicationmechanismis athresholdmarkingscheme:
we markall arriving pacletswheneer the queueis at or above athresholdB. The userinterprets
thenumberof marksrecevedasanindicationof thelevel of congestiorattheresourceandslows
thesendingateaccordingly

The correspondingcongestionindication function pg(y) in our fluid flow modelis just the
probability thatan arriving paclet recevesa mark. Supposehe queueis in equilibrium; thenwe
wishto calculatethe probabilitythe queues at or above B, giventhata paclet arrives:

B—1
pe(Y) =P(Q > B[\, >0)=P(Q >B)=1—- Zoﬂh,
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by independencef Q; andY;. For afixedvalueof B, we cancomputea closedform expression
for ps(y) by finding the first B termsof the power seriesfor H(s). Notethat,in the simulations
which follow, the queuewill not necessarilype at equilibrium;thus, pg(y) is anapproximatiorto
thetruemarkingprobability.

5.2 Thesmulation model

We arenow readyto describethe modelusedfor simulations.We will considera setof usersR
sharingoneresourcemodeledas a discrete-timequeuewith thresholdmarking; let m¢[t] be the
numberof marksrecevedby userr attimet. We will supposéhateachusermaintainsa sending
“rate” x[t], updatedasfollows:

Xr[t+1] =Xr[t]+Kr (Wr —mr[t])- (34)

At time t, userr generatepaclets accordingto a Poissondistribution with meanx;[t]. These
pacletssuffer a propagatiordelayof d; (r) beforearriving attheresource.

At the resourcepacletsarriving at time t are addedto the queuein randomorder ensuring
that no userreceves priority at the queue. The resourcethen senes exactly one paclet, if the
gueueis nonempty Eachpaclet returnsto its original sendera paclet returningto userr suffers
a propagationdelay of dy(r) in transmissiorfrom the resourceto the user Thus, the marked
pacletsreceved by userr attime t, m[t], left the resourced,(r) units of time earlier We still
defineD; = di(r) + do(r); however, noticethatnow the obsered roundtripdelay consistsof the
propagatiordelayD, plusarandomqueueingdelay

The lastparagrapmakesclearthe analogybetweenour simulationandequationg4)-(5): in
thefluid flow approximationmy[t] is givenby x, [t — Dy |u[t — d2(r)], whichwe haddescribedisthe
numberof marksrecevedby userr attimet. We arenow explicitly modeling,atthe pacletlevel,
the congestionindication behaior describedby (4)-(5)—hut we are also addingto this model
gueueingattheresource.

In Theorems3 and9, the stability criteriaare expressedn termsof the stablepoint (x, p, p').
For our simulationswe canfix the stablepointin advance.We begin by choosingx, for eachuser
r € R; then, given the thresholdB, we canexplicitly calculatep = pg(3 %) from the theoryin
the last section. Similarly, we cancalculatep’ = ps(¥ X). (Notethisis only sensibleaslong as
Y X < 1, sothearrival ratedoesnot exceedservicecapacity) We thenexpecttheratesto corverge
to X, atequilibrium,aslong asw; = x; p for eachuser Further we canusethetriple (x, p, p’) to
determinghecritical gaink; for eachuser from (32).

5.3 Simulation 1: Variance of rates

Recall that Theorems3 and 9 presentsufficient conditionsfor local stability by meansof the
linearizedsystem(19). In our simulations however, we have implementech stochastianodelof
the nonlinearsystem(4)-(5). Whenthe gainbecomedarge, we know the linearizedsystemmay
not be stable—andencethe nonlinearsystemis not guaranteedo belocally stable.

However, the behaior of the stochastianodelusedfor the simulationsis significantlymore
comple. First, becausep(y) — 1 asy — 1, we do not expectthe ratesto becomearbitrarily
largewhenthe systemis locally unstable Instead]ocal instability of the nonlinearsystem(4)-(5)
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is typically visible aslarge oscillationsin the rates. Theseoscillationsare dueto the instability
causedy thepropagatiordelayD;.

Because¢hesimulationsarestochasticanothersignificanttype of “instability” maybepresent:
a high varianceof the ratesat equilibrium. It haspreviously beenshown that, for small k, the
varianceof theratesscalesapproximatelyinearly with « ([11], Equation19). For alargergaink,
therefore we expectstochastidluctuationsto increasehe spreadof the ratesat equilibrium. The
stochastieffectsof modelingqueueingat theresourcecontributeto randomvariationin therates.

Notice that both unstablebehaiors will leadto a high samplevarianceof the ratesx[t]. In
the first case,large oscillationsin the rateswill leadto a large variance. In the secondcase,
stochasticfluctuationsin the rateswill leadto a large variance. Our goal is to investigatethe
relatve importanceof thesetwo typesof effectsfor differentroundtrip delaysD, andtherefore
betterunderstandherelationshipbetweermpropagatiordelayandqueueingdelay

We simulate10 userswith the sameroundtripdelay We let R= {1,...,10}, andfix Dy =D
for all users.We setx, = 0.075,andthethresholdB = 1. For thisthreshold,p(y) = 1—-€&/(1-Yy),
andp/(y) = y&'. We calculatep andp’ asdescribedn thelastsubsectionandlet w; = x; p for all
users.Definek*(D) to bethecritical gainasgivenby (32):

K*(D) = 25 )
B p+ p’(ZreRXr).

We will investigatestability at six differentroundtripdelays: D = 100,500, 1000,5000, 10000,
50000,with d1(r) =d2(r) = D/2for all r € R. For eachroundtripdelay we ransimulationsvhere,
forallr € R, kr = 0.005*(D), kr = 0.05¢*(D), kr = 0.1k*(D), ..., kr = 1.25«*(D). Thus,there
wereatotal of 26 simulationsfor eachroundtripdelayD.

For eachr € R, we initialized the rateto zero: x,[0] = 0. Eachsimulationwasrun for 100D
iterations.Over thelast 10D iterations we calculatedhe samplevarianceof eachratex;[t], 6. In
Figure4, we have plottedthe averagevariancefor eachsimulationagainsthe gain parametek;,
wherek; is expressedisa multiple of k*(D).

If the systembehaedexactly accordingto the predictionsmadein Theoren9, thenwe would
expectvarianceto be nearzeroaslong ask; < k*(D). However, for D = 100, this is obviously
not the case. As D increasesywe move closerto the theoreticalprediction,until at D = 50000
the theoreticalpredictionis fairly accurate.Recall, however, that our fluid flow approximation
presumegjueueingdelaysare nggligible. In Figure4 we are observingthe effects of modeling
bothqueueinglelaysandpropagatiordelays.

At a shortpropagatiordelayD, i.e., D = 100, the critical gain k*(D) is relatiely large. As
discusse@bove, thisleadsto a high stochastispreadat equilibrium—therandomqueueinglelay
is not ngyligible. As k; increasesway from zero, the variancerapidly increases.At first, this
increasds primarily dueto stochastidluctuationsin the rates.For larger , instability dueto the
propagatiordelayaddsto the varianceaswell.

For larger delaysD, however, the critical gain k*(D) is relatively small. The smallergain
parametenow averageshe queueingoehaior overa muchlongertime interval, andthis reduces
stochastidluctuationsin therates.For k; < k*(D), therefore neitherthe queueingdelaynor the
propagatiordelayarecausingalargevariancen therates.As thegaink; increasegastthecritical
gaink*(D), large oscillationsin the ratesresult. Local instability dueto the propagatiordelayis
obsened.
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Basedon the precedingdiscussionnoticethat Figure4 givesa qualitatve explanationof what
it meandor queueingdelaysto becomenggligible. Both propagatiordelaysandqueueingdelays
contribute to a large variancein the rates,but in differentways; queueingdelaysare negligible
whenstability of the stochasticsimulationis predictedaccuratelyby stability of the deterministic
system(4)-(5). In Figure4, this occurswhen(approximately)D > 10000.

We concludewith a simple example. The United Kingdom academimetwork, JANET, cur
rently employs two 155 Mbps OC-3 links to the United States. Assumingthat pacletsare 512
bytes,andthatthetransatlanticoundtripdelayis approximately200ms, we find thatD = 15000.
In the context of our simulations,for D = 15000,queueingdelaysare alreadynearly negligible
relative to propagatiordelay Thistypeof calculationsupportgheclaim madein the Introduction:
in thefuture,we expectqueueinglelaysto becomesmallrelative to propagatiordelays.

54 Simulation 2: Instability and phase-locking

As discussedn thelastsubsectionywhenlocal instability resultsdueto the propagatiordelay we
expectlarge oscillations;however, aswe will discover, theseoscillationsare not independenof
oneanother Instead,whenall userssharethe sameroundtripdelay their ratestendto become
“phase-loclked” [4]: all ratesoscillateexactly in phasewith eachother

Onesuchexampleis presentedn Figure5. The parametersor the simulationareD = 5000,
andk, = k*(D) for all r € R. All otherparametersresetexactly asin thelastsubsectionwith the
exceptionof theinitial rates:we setx;[t] = 0.01r for eachr € R. Notice that, althoughthe users
startat differentinitial rates,they quickly synchronizewith eachother Theratesbecomephase-
locked, andlarge oscillationsresult. This is exactly like resonanceén physicalsystemswhenall
roundtripdelaysareequal,instability takesa very structuredorm.

It is interestingto note that phase-lockings a phenomenorthat is only obsered for longer
roundtripdelays. At D = 100 andD = 500, for example,no discerniblephase-lockingvas ob-
sened;atD = 1000,theeffectbeginsto beobsened, but only whenD = 5000doesphasdocking
becomdlistinctly visible. For smallerD, queueinglelaysarenot negligible relative to propagation
delays. The significantstochasticeffects causedby queueingat the resourceperturbthe system
away from a phase-lockdequilibrium.

5.5 Simulation 3: Diverseroundtrip delays

Recallthatin Section4, numericalexperimentssuggestedave might be ableto extendour results
to networkswith diverseroundtripdelays(asexpressedn Conjecturel?). In our third simulation,
we wishedto testtheimpactof sharinga resourceoetweeruserswith differentroundtripdelays.

We againshareda resourcebetweenten users,asin Simulation1. All parametergor the
resourceareexactly asin Simulationl. Eachuseragainhasx, = 0.075,andw; = X p. For each
roundtripdelayD = 100,500,1000,5000,10000,we createdwo users.For eachuser we chosex,
asthelargestgainparametepossiblesuchthatthe standardleviation of theratesfrom Simulation
1 remainedelow 0.05% (seeFigure4). Thismeanthat,for example k; = 0.05«*(D) for D = 100,
but thatk, = 0.9x*(D) for D = 10000.We thenranthe simulationfor 100000iterations.

The presenceof multiple roundtripdelaysdid not significantlyaffect the behaior of the sys-
tem. In all casestheuserscornverged(approximately}to theequilibriumvalueof x, = 0.075.The
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standardleviation of theratesdid not exceed5.8%of x; for ary of the users suggestinghatthe
predictionsof Simulation1 remainrobustevenin the presencef diversedelays.

Theresultsof this simulationareimportantwhenwe considertheimplementatiorof our the-
oreticalresultsin future networks. The simulationsin this sectionand numericalexperimentsn
Sectiond supportthe claim that, ultimately, stability canbe governedby local control of gain pa-
rameters.As long as stability conditionsare known for a given roundtripdelay this simulation
suggestshoseconditionsmaybe appliedto ensurestability with diverseroundtripdelays.

6 Conclusion

This paperhasconsideredstability of network rate controlin the presencef communicatiorde-
lays. Stability conditionsare givenfor both a singleresourceanda large network with constant
roundtripdelay andunderthe addition of instantly adaptve and completelynonadaptie users.
Rateof convergenceis completelycharacterizedior the singleresourcecase.Finally, simulation
resultscontrastthe effects of queueingdelaysand propagationdelays,and alsoreveal the phe-
nomenorof phase-locking.

Notice that Theorems9-11 allow for a decentralizedmplementatiorby route. If we define
Yj = YsjesXs andassumehaty o, pj < a for all r € Randy; p’j/pj < B for all j € J, thenthe
LHS of (22)is < kra(1+ B) nomatterhow mary resource$ie oneachrouter. In otherwords,the
resultswe havefoundareindependendf routingandscalewell asthenumberof resourcegrows—
especiallyimportantfor a constantlyevolving network on a globalscale suchastheInternet.

With theimplementatiordescribedn the lastparagraphthe condition(6) becomesvensim-
pler: the“route-dependentonstant’on the right-handside becomesoute-independentlThus,to
remainstable eachuserwill only beasledto keeptheirgaininverselyproportionako theroundtrip
delayof theirroute,with the constanf proportionalityspecifiedn advance

If we interprety ;. p; to be the equilibrium probability a paclet on router is marked, then
> jer Pj < 1, sowe mayseta = 1. However, we mustconsidemore closely the uniform bound
Yi p’j/pj < B for everyresourcen thenetwork. Althoughwe canhave adecentralizedmplementa-
tion, thereis adesignrequirementor thefeedbacKunctionateveryresource As anexample,con-
sideraresourcej which beharesasanM/M/1 queuewith servicetimesexponentiallydistributed
with meanC; (soC; is the “capacity” of the resource).Supposehe resourceis in equilibrium,
andtheworkloadarriving atthe resources Poissorof ratey;j. Further supposehattheresource
usesa thresholdmarkingscheme:a pacletis markedif it arrivesto find morethanB; pacletsin
the queue. The function p; is givenby the probability thatan arriving pacletis marked. By the
PASTA property(PoissonArrivals SeeTime Averages)we caneasily calculatepj(y;j) from the
stationarydistribution of anM/M/1 queue:

pj(yj) = i;j (2,:_11). (1— é—’) = (é—‘l> Bj.

Thus,we have the resultthaty; p’j/pj = Bj, andthe conditionyj; p’j/pj < B becomessimply
Bj < B. Implementatiorof this constrainton thethresholdevel B requiresno knowledgeof user
flows,assummarizedy y;. Theprecedingliscussiorhighlightstheimportanceof thekey results
Theorems9-11: designof a network canbe simplified by remaving centralcontrol. Instead all
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usersaregivenaconstraint(k;D; < constan), andeachresources givena constraint(y; p’j /pj <
constant Whenboththesedesignconditionsaremet,local stability of the systemsstudiedcanbe
guaranteed.

Undertheassumptiorthatpropagatiordelayswill becomemoresignificantthanqueueingde-
lays, the resultsof this papersuggesthat network stability canbe guaranteedy consideration
of adelayedfluid flow model. The evolution of telecommunicationeetworksin the next decade
remainsa contestecaindunresoledissue.However, asnetworks expandto the sizeandcomplex-
ity of the Internet,we may safely concludetheoreticalpredictionssuchasthosegiven herewill
becomencreasinglyimportantto guarantee@obustbehaior.
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