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Abstract

Undertheassumptionthatqueueingdelayswill eventuallybecomesmallrelative to prop-
agationdelays,wederivestability resultsfor afluid flow modelof end-to-endInternetconges-
tion control. The theoreticalresultsof thepaperareintendedto bedecentralizedandlocally
implemented:eachendsystemneedsknowledgeonly of its own roundtripdelay. Criteria for
localstabilityandrateof convergencearecompletelycharacterizedfor asingleresource,single
usersystem.Stability criteriaarealsodescribedfor networkswhereall userssharethesame
roundtripdelay. Numericalexperimentsinvestigateextensionsto moregeneralnetworks. Fi-
nally, throughsimulations,we areableto evaluatetherelative importanceof queueingdelays
andpropagationdelayson network stability.

Introduction

Changesin communicationnetworks over the last five yearshave forced researchersto closely
examinenetwork congestioncontrol, particularly for the Internet. However, the task hasbeen
significantlycomplicatedby the globalizationof networks: “trial-and-error” methodsemployed
on small testbedsdo not necessarilyyield resultsscalableto a network as large asthe Internet.
Instead,anincreasingemphasisis beingplacedontheoreticalpredictionsof robustbehavior, prior
to implementation.

At the level of theoreticalabstractionwe will consider, a network is comprisedof users and
resources. Eachuserwishesto employ oneor moreresourcesof thenetwork. Within this frame-
work, our goalwill beto formulatea congestioncontrolalgorithmwhich canremainstableunder
communicationdelays.

Any suggestionof new congestioncontrol algorithmsfor the Internetmustaddressthe fol-
lowing basicquestion:will thecontrolbe implementedby theresources,or by theusers?As an
exampleof thedifferencesbetweenthesechoices,we comparetheTCP/IPmodelof the Internet
with ATM networks. In TCP/IP, the“intelligence”of thecongestioncontrolis implementedby the
endusers:to signalcongestion,routerssimply droppackets. It is left to theendsystemsto detect
thesepacket drops,andactaccordingly. Conversely, in ATM networks,“quality-of-service”(QoS)
is a key concern,andensuringthatQoSrequirementsaremet is a taskhandledprimarily by the
links in thenetwork.
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Whichviewpointshouldweadopt?Argumentshavebeenmadeataneconomiclevel regarding
the fairnessbenefitsof endsystemcongestioncontrol [5]: it is suggestedthatendusersarebest
equippedto adjusttheir flows so asto maximizeutility, andhencecongestioncontrol shouldbe
implementedby askingresourcesto convey informationon incipientcongestionto intelligentend
systems.

However, it is not immediatelyclearthat this typeof congestioncontrol is robustundercom-
municationdelaysin the network. Communicationdelaycomprisestwo elements:propagation
delay, andqueueingdelay. The propagationdelay is the physicaldelay in transmissionof data
alonga lengthof fiber (or throughspace,for awirelessnetwork). Thequeueingdelayis thedelay
experiencedby datawaiting to beservedat resourceswithin thenetwork.

We will work from the assumptionthat, in the future, queueingdelayswill becomesmall
relative to propagationdelay, as Kelly arguesin [10]. Routerhardware and network capacity
continueto improve rapidly, reducingqueueingdelays;on the other hand,propagationdelays
arefixed by the distancesbetweennodeson the network, andthe speedof light. In [10], Kelly
usesseveralscalingregimesat queuesin a network to supporttheclaim thatqueueingdelayswill
eventuallybecomerelatively small.

Under this assumption,the choiceof congestioncontrol mechanismbecomesmuch easier.
If propagationdelaysare the primary sourceof communicationdelay in the network, then the
choiceof congestioncontrolmechanismmustbeableto estimatepropagationdelays,andadjust
the sendingratein responseto thesedelays. The endusersarenaturallyplacedto performthis
task;on the otherhand,resourceswould be requiredto estimatethe delaysexperiencedby each
flow passingthroughthem—averydifficult problemin anetwork on thescaleof theInternet.

Thework of Chonget al. in [2, 3] is relatedto this point. In [2, 3], Chonget al. analyzedthe
equilibrium andstability of their proposedfirst-orderrate-basedflow control (FRFC)algorithm
for a single bottleneckresourceof multiple userswith diverseroundtrip delays. In the FRFC
algorithm,therateallocatedto eachuseris thedifferencebetweentheobservedqueuelengthand
the queuethreshold,multiplied by a control gain. To maintainstability of suchan algorithm,
however, the resourceneedsknowledgeof the propagationdelaysexperiencedby all users.For
this reason,wewill insteadconsidera modelwhich implementsend-to-endcongestioncontrol,in
responseto simplecongestionindicationsignalsfrom resources.

In [11], Kelly et al. proposedtwo complementarycongestioncontrol algorithms.The FRFC
algorithm is similar to the “dual algorithm” of [11]: it relieson the resourceto implementthe
congestioncontrol. In thispaper, wewill studythe“primal algorithm” of [11], wheretheenduser
implementsa TCP-like rate control algorithm which respondsto congestionindication signals
from resources.The packet-level queueingbehavior at the resourcesis not modeled;instead,a
deterministicfluid flowapproximationis considered.

We will representa network by a setJ of resources. Let a router be a nonemptysubsetof
J, anddenotethesetof all routesby R. We will ignoreroutingchoices,andthusassumewe can
identify eachuserwith oneandonly oneroute.Considertheprimalalgorithmof [11], with strictly
positivegainparametersκr , r � R:

d
dt

xr
�
t ��� κr

�
wr � xr

�
t � ∑

j � r
µ j
�
t �	��
 r � R (1)
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where

µ j
�
t ��� p j

�
∑

s: j � s
xs
�
t � � 
 j � J � (2)

Thefirst equationdescribesthetimeevolutionof xr , thesendingrateof userr. Thesecondequation
describesthegenerationof congestionindicationsignalsat resourcej, by meansof a congestion
indication function p j

�
y� . We will assumep j

�� � is increasing,nonnegative, andnot identically
zero.

We maymotivatethealgorithm(1)-(2) asfollows. Supposethatuserr generatesxr
�
t � packets

at time t. If the total flow throughresourcej is y, we interpretp j
�
y� astheprobability a packet

at resourcej receivesa “mark”—a congestionindicationsignal. Thenµ j
�
t � is the probability a

packet at resourcej receivesa markat time t. We assumea packet mayonly bemarkedat most
once.In this case,∑ j � r µ j

�
t � is theprobabilitya packet from userr receivesa markat time t, and

xr
�
t � ∑ j � r µ j

�
t � is just theexpectednumberof marksuserr receivesat time t. Userr thenadjusts

xr
�
t � to reacha targetnumberof marksperunit time wr . (Althoughtheprecedingdiscussionis at

thepacket level, noticethat(1)-(2) is afluid flow approximation.)
In [11], thesystem(1)-(2) is shown to beasymptoticallystablein thelarge,andhenceconver-

gentto auniqueequilibriumpoint x givenby:

xr � wr

∑ j � r p j � ∑s: j � sxs� � (3)

The system(1)-(2) doesnot modelpropagationdelays. We will addpropagationdelaysas
follows. Givena router, for eachresourcej � r we definea forward delayd1

�
j 
 r � , anda return

delayd2
�
j 
 r � . The forward delay is the delay incurredin communicationfrom the userto the

resource;the returndelayis the delayincurredin communicationfrom the resourcebackto the
user. In the currentInternet,eachrouteis subjectto a roundtripdelay. We modelthis delayby
assumingeachroutehasanassociateddelayDr , suchthatd1

�
j 
 r ��� d2

�
j 
 r ��� Dr for each j � r.

Considernow thefollowing delayeddifferenceequationsanalogousto theprimalalgorithm,where
weassumethatd1

�
j 
 r � andd2

�
j 
 r � areintegervalued:

xr � t � 1��� xr � t ��� κr

�
wr � xr � t � Dr � ∑

j � r
µ j � t � d2

�
j 
 r �	����
 r � R
 (4)

where

µ j � t ��� p j

�
∑

s: j � s
xs � t � d1

�
j 
 s�	����
 j � J � (5)

Theseare just discrete-timeequationscorrespondingto the continuous-timeequations(1)-(2).
Supposeagainthatweconsiderxr � t � to modelthenumberof packetsgeneratedby userr at time t.
Thesepacketsexperienceadelayof d1

�
j 
 r � beforearriving atresourcej; therefore,asbefore,µ j � t �

givestheprobabilitya packet at resourcej receivesa markat time t. Packetsleaving resourcej
experienceadelayof d2

�
j 
 r � beforereturningto userr. Thus,thetotalexpectednumberof marks

receivedby userr at time t is now givenby xr � t � Dr � ∑ j � r µ j � t � d2
�
j 
 r ��� . Noticethatthenumber
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of marksreceivedby userr at time t is proportionalto therateDr unitsof timeago:this is adirect
resultof thefactthatd1

�
j 
 r ��� d2

�
j 
 r ��� Dr for all j � r. As before,userr adjustsxr � t � to reacha

targetnumberof marksperunit timewr .
Thedelaystructurewe have assumedhereis very similar to thecurrentoperationof TCP[9].

In TCP, thesendertransmitspacketsto a receiver; for every packet received,anacknowledgment
is transmittedbackto thesender. All packetsmake a roundtrip from senderto receiver, andback
to sender. As a result,thesumof forward andreturndelaysis fixed for all resourceson a given
route.Thissumis theroundtripdelayDr encounteredin our previousdevelopment.

Wewill focusin thispaperontheengineeringrequirementthatthenetwork remainstableunder
communicationdelays;in particular, sincequeueingdelaysareassumedto besmall,thekey source
of instability will be thepropagationdelay, ascapturedby the roundtripdelayDr . We primarily
seekdecentralizedconditionsfor stability. Givenany network with many users,theresultsof [11]
give a globalconditionfor stability of the laggedsystem.Here,we will pursueconditionswhich
eachindividualusermustsatisfyto ensurethatthesystemremainsstable.

We will considerstability conditionsof theform (approximately):

κrDr � route-dependentconstant
 r � R� (6)

Sucha condition saysthat if the product κrDr is less than someconstantdependenton route
topology and/orthe network operatingpoint, then the system(4)-(5) will be locally stable. In
a typical network wherethe roundtripdelaysmay not be known, this conditionmeansthat self-
clocking ratecontrol algorithmswill work well to maintainnetwork stability. In a self-clocking
algorithm,thesenderusesanacknowledgementfrom thereceiver to prompta stepforward. This
givesthe inversedependenceof the gain κ on the roundtripdelayD. (For moredetailson self-
clockingalgorithms,see[5] and[9].)

The typeof constraintdescribedby (6) is very desirablein a largenetwork suchasthe Inter-
net. Implementingend-to-endcongestioncontrolwould bevery difficult if the “route-dependent
constant”involved informationnot availableto the user. Instead,the condition(6) allows stable
behavior to result without any centralcontrol. We will study the form of the route-dependent
constant,andalsoconsiderwhatthis constantimpliesfor resourcedesign.

Thepaperis organizedasfollows. In Section1,westudyasimplifiedmodelwith oneresource,
andgiveaconditiononκ whichensuresthesystemis asymptoticallystable.Next, wediscussrate
of convergencefor theoneresourcemodelin Section2, completelycharacterizingconvergenceto
equilibriumfor theregionof stability.

We next turn our attentionto the network scenario.In Section3, we develop conditionsfor
stability of a network whereall routeshave the sameroundtripdelay(Dr � D for all r � R), by
linearizationof the equations(4)-(5). The condition that d1

�
j 
 r � � d2

�
j 
 r �!� Dr proves to be

essentialin developingthesestability criteria. We alsosuggesttwo extensionsto this model: one
whereweaddcompletelynonadaptiveusers,andanotherwhereweaddinstantlyadaptiveusers.In
Section4, wediscussaconjectureextendingour resultsto networkswith diverseroundtripdelays.
Thisconjectureis investigatedwith numericalexperiments.

In Section5, we give simulationresultswhich addqueueingandpacket-level behavior to the
theoreticalmodel.In particular, weareableto furtherinvestigatehow queueingdelaysandpropa-
gationdelaysaffectnetwork stability, andwhatit meansfor queueingdelaysto becomenegligible.
Finally, wecommenton theimplicationsof our resultsfor futurenetworksin Section6.
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1 Stability criterion: one route, one resource

Considerthenetworkdepictedin Figure1,consistingof oneresourceandoneroute.Thedifference
equationdescribingthis systemis:

x � t � 1��� x � t �"� κ
�
w � x � t � D � p � x � t � D �#�$�%
 (7)

whereD � d1 � d2. We begin by consideringthe linearizationof (7). Let the stablepoint be x,
wherew � xp

�
x� , andsupposep is differentiableat this point with derivative p& . Thenlinearizing

with x � t �'� x � y � t � , weobtain:

y � t � 1��� y � t � � κ
�
p � xp& � y � t � D �(
 (8)

neglectinghigherorderterms.Givenacomplex numberλ , we try asolutionof theform y � t ��� λ t .
If suchasolutionexists,it is calledanormalmode. Substitutingin (8), wefind thatλ mustsatisfy
thefollowing equation—thecharacteristicequationof (8):

λD ) 1 � λD � κ
�
p � xp& ��� 0 � (9)

Thus,a solutiony � t �*� λ t exists only for thoseλ which arerootsof the characteristicequation;
but sucha solution convergesto zero only if + λ + � 1. Becauseany solution of (8) is a linear
combinationof normalmodes,a sufficient conditionfor thesystem(7) to belocally stableis that
all rootsof (9) havemoduluslessthanunity. Conversely, if any onerootof (9) hasmodulusgreater
thanunity, thenthesystem(7) will beunstable.

Our first theoremwill stateconditionswhich areessentiallynecessaryandsufficient for the
fixedpointof thesystem(7) to belocally stable.Thestrategy of proof is asfollows. Wefirst show
that the maximummodulusof the rootsof equation(9) is continuousin κ. Thenwe show that
equation(9) hasall rootswith moduluslessthanunity for κ neartheorigin. Finally, we look for
thesmallestκ suchthatequation(9) hasa root of unit modulus.

Lemma 1 Let p
�
λ 
 κ � be a polynomialin λ , with coefficientswhich are continuousfunctionsof

κ (where κ maybe vectorvalued). Thenthe maximummodulusof the rootsλ of p
�
λ 
 κ �,� 0 is

continuousin κ.

Proof. The rootsof any polynomial arecontinuousfunctionsof the coefficients [8]. If the
coefficientsarecontinuousfunctionsof κ, this immediatelyimpliestheconclusionof thelemma.-
Lemma 2 For sufficientlysmallκ, equation(9) hasall rootswith moduluslessthanunity.

Proof. Wedefinethepolynomialp
�
λ 
 κ � by:

p
�
λ 
 κ ��� λD ) 1 � λD � κa 


wherea � p � xp&�. 0. Thenthecharacteristicequation(9) is p
�
λ 
 κ ��� 0. Whenκ � 0, theroots

areλ � 0 with multiplicity D andλ � 1 with multiplicity 1. By directcomputation,we find that
∂p/ ∂λ is nonzeroat λ � 1, κ � 0. Thus,we canapply theImplicit FunctionTheoremto find an
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openinterval
� � ε 
 ε � anda differentiablecomplex-valuedfunction g

�
κ � suchthat 1 � g

�
0� , and

λ � g
�
κ � satisfiesp

�
λ 
 κ �0� 0 for � ε � κ � ε. For suchκ, differentiatingp

�
λ 
 κ �0� 0 with respect

to κ yields: �
D � 1� g � κ � Dg& � κ � � Dg

�
κ � D 1 1g& � κ ��� a � 0 �

Evaluatingthis throughat κ � 0 yields g& � 0�,� � a. We take a Taylor seriesexpansionof g
�
κ �

aroundκ � 0:

g
�
κ ��� 1 � κa � o

�
κ �%�

Thus,asκ increasesaway from zero,theroot λ � 1 initially movesapproximatelyas1 � κa, and
hencefor sufficiently small κ this root will have moduluslessthanunity. For the root λ � 0 of
multiplicity D, we notethatby takingκ evensmallerif necessary, we canappealto Lemma1 to
ensurethattheseD rootsremainof moduluslessthanunity asκ increasesaway from zero.Thus,
for sufficiently smallκ, equation(9) hasall rootsof moduluslessthanunity.

-
Theorem 3 Thesystem(7) is locally stableif:

κ
�
p � xp& � � 2sin 2 π

2
�
2D � 1�43 


andunstableif:

κ
�
p � xp& �5. 2sin 2 π

2
�
2D � 1�43 �

Proof. Wecaneasilychecktheresultfor D � 0 sincethelinearizedsystembecomes:

y � t � 1�6� �
1 � κ

�
p � xp& �$� y � t � ;

so assumeD 7 1 for the restof the proof. By Lemma1, the maximummodulusof the rootsof
equation(9) variescontinuouslywith κ. Also weknow thatthesystemis locally stablefor smallκ
from Lemma2. Hence,for thefirst partof thetheorem,it sufficesto look for thesmallestκ such
thatequation(9) hasa root of unit modulus.Let the root be λ � e2iθ ; thenequation(9) maybe
rewrittenas:

2sinθei 8�8 2D ) 19 θ 1 π : 2 � a 

wherea � κ

�
p � xp& � . Henceweconcludethat:

2 + sinθ +;� a 
 θ � π
2
�
2D � 1� � 2πn

2D � 1

wheren is aninteger. Wechoosen � 0 sincewearelooking for thesmallestpositivea suchthatλ
is of unit modulus.Hence,substitutingfor θ in 2 + sinθ +%� a, we seethatthereareno solutionsfor
θ if a � 2sin

� π
2 8 2D ) 19 � . Thisgivesthefirst partof thetheorem.
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For the secondpart of the theorem,it suffices to prove that thereexists a root λ � reiθ of
modulusr . 1 to equation(9) whena . 2sin

�
θ <%/ 2� , whereθ <=� π / � 2D � 1� . From(9), notethat

λ � 1 � aλ 1 D, andthat asvectorsin the complex plane,the anglebetweenλ and1 is θ . Thus,
applyingthecosinerule,wehave:

cosθ � 1 � r2 � a2r 1 2D

2r
� (10)

Further, by equatingimaginarypartsin (9), wehave:

r � sin
�
Dθ �

sin
�$�

D � 1� θ � � (11)

We know that for a � 2sin
�
θ <>/ 2� , cosθ <?� 1 � a2

2 and r � 1. Supposea . 2sin
�
θ <>/ 2� . Then

theRHSof (10) is lessthancosθ < for r � 1. Notice that theLHS of (10) decreasesfrom cosθ <
to cos

�
π / � D � 1�$� for θ � � θ <"
 π

D ) 1 � . To prove thata root of modulusgreaterthanunity exists, it
sufficesto show thatr increasesfrom 1 to ∞ for θ � � θ <"
 π

D ) 1 � andthattheRHSof (10)is increasing
in r for r 7 1.

Fromequation(11),

dr
dθ

� Dsin
�$�

D � 1� θ � cos
�
Dθ � � �

D � 1� cos
�$�

D � 1� θ � sin
�
Dθ �

sin2 �$� D � 1� θ �. 0 

sincesin

�
Dθ � . sin

�@�
D � 1� θ � and � cos

�$�
D � 1� θ �A� cos

�
Dθ � . 0 for θ � � θ <"
 π

D ) 1 � . Sor increases
from 1 to ∞ for θ � � θ < 
 π

D ) 1 � .
Dif ferentiatingtheRHSof (10)with respectto r gives:

d
dr

(10) � 2
�
r2 � 1��� �

4D � 2� a2r 1 2D

4r2 

whichshowsthattheRHSof (10) is increasingin r for r 7 1, tendingto r / 2 whenr is large.Thus
a root of modulusgreaterthanunity exists for which θ � � θ <"
 π

D ) 1 � whena . 2sin
�
θ <>/ 2� . This

provesthesecondpartof thetheorem.
-

2 Rate of convergence: one route, one resource

For thesimplifiedcasewherewehaveonly oneresource,wemayalsostudyrateof convergenceto
thestablepoint. In this section,we considerthis problem,via thetheoryof differential-difference
equations.For convenience,we restateherea resultdue to Hayes[7] taken from Bellmanand
Cooke ([1], Theorem13.8).

Lemma 4 (Hayes) All therootsof beλ � c � λeλ � 0, where b andc are real, havenegativereal

partsif andonly if: (1) b � 1; and(2) b �B� c �DC a2
1 � b2, wherea1 is therootof a � btana such

that0 � a � π. If b � 0, wetakea1 � π / 2.
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Wewill studytherateof convergenceof thesystemin Figure1, throughthefollowingdifferential-
differenceequation:

d
dt

x
�
t � � κ �w � x

�
t � D � p � x � t � D �$�	�(
 (12)

whereD � d1 � d2. This is just thecontinuous-timeanalogof thediscrete-timeequation(7). We
studythestabilityof thissimplesystemvia its linearizedversion([1], Theorem11.2).Let thefixed
point be

�
x 
 p� wherep � p

�
x� andw � xp. Thenlinearizingwith x � t �'� x � y � t � , weobtain:

d
dt

y
�
t � � � κ

�
p � xp& � y � t � D �%


neglectinghigherorderterms.Thecorrespondingcharacteristicequation,obtainedby substituting
y � est , is thus:

s � � κ
�
p � xp& � e1 sD 


whichaftersubstitutingλ � sD, reducesto:� κ
�
p � xp& � D � λeλ � 0 � (13)

The fixed point is locally stableif all rootsof the above equationhave negative real part ([12],
Section9.4). For eachD, we are interestedin the maximumvalueof κ suchthat the systemis
locally stable.

Theorem 5 Thesystem(12) is locally stableif:

κ
�
p � xp& � � π

2D



andunstableif:

κ
�
p � xp& �,. π

2D
�

Proof. A directapplicationof Lemma4 to equation(13)with b � 0 andc � � κD
�
p � xp&E� . -

Noticethattheresultfrom thedifferential-differenceequationapproachis just thecorrespond-
ing discrete-timeTheorem3 with 2sin

�
π / � 4D � 2�$� replacedby π / 2D. This is not surprising

sincethediscrete-timesystem(7) is anapproximationto thedifferential-differenceequation(12).
Supposewerewrite equation(7) in thefollowing form:

x � t � 1/ 2��� x � t � 1/ 2�"� κ
�
w � x � � t � 1/ 2� � �

D � 1/ 2��� µ � � t � 1/ 2� � �
d2 � 1/ 2���#��


andlet t andD takevaluesin F n/ 2 : n oddG . Then,settingt &A� t � 1/ 2 andreplacingD by D � 1/ 2,
theboundfor Theorem3 becomes2sin

�
π / 4D � , which tendsto π / 2D asD H ∞.

Definea � κ
�
p � xp&E� ; then,from above,thelinearizationof (12) is:

d
dt

y
�
t �0� ay

�
t � D �%� (14)

Supposethesystem(14)is stable.Let λ < betherootof equation(13)with thesmallest(in modulus)
negativerealpart.Thentherateof convergenceto thestablepoint is equalto + Reλ < +D 1 1. Wewill
investigatehow therateof convergencedependsona in theregionof stability

�
0 
 π � 2D � 1 1 � .
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Lemma 6 Therateof convergenceof thesystem(14) is monotonicdecreasingfromD 1 1 to 0 for
a � � � eD� 1 1 
 π � 2D � 1 1 � .

Proof. Let theroot beλ � � γ � δ i whereγ . 0. Thenfrom equation(13):

γe1 γ cosδ � δe1 γ sinδ � aD; (15)

γe1 γ sinδ � δe1 γ cosδ � 0 � (16)

Notice that if
�
γ 
 δ � satisfiesthe above equations,thenso does

�
γ 
 � δ � . Hence,without lossof

generality, wemayassumethatδ 7 0. Equation(15)gives:

γ � δ
tanδ


 (17)

whichon substitutioninto (16) yields:

δ
sinδ

e1 δ : tanδ � aD � (18)

Observethatδ � � 2nπ 
 � 2n � 1
2 � π � wheren �JI ) sincetanδ 7 0 andsinδ 7 0 from equations(17)-

(18). Also, from (17) γ is monotonicdecreasingin δ from 1 to 0 for δ � � 0 
 π / 2� . ThentheLHS
of (18) is monotonicincreasingin δ from e1 1 to π / 2 for δ � � 0 
 π / 2� . Hence,a root of equations
(17)-(18)exists for δ � � 0 
 π / 2� which is decreasingin γ asa increasesfrom

�
eD� 1 1 to π

�
2D � 1 1.

It remainsto show that this is theroot with thesmallestγ. Notice that if δ / sinδ is larger, thenγ
hasto belarger for equation(18) to besatisfied.But δ / sinδ K π / 2 for n � 0 andδ / sinδ . π / 2
for n . 0, sotakingn � 0 yieldstheroot with thesmallestγ. Then,sincetherateof convergence
is γD 1 1, wehave therequiredresult.

-
Lemma 7 Therateof convergenceof thesystem(14) is monotonicincreasingandconvex from0
to D 1 1, andtheconvergenceis nonoscillatory, for a � �

0 
 � eD� 1 1� .
Proof. Considerthe function � λeλ whenλ is real andnegative. Supposewe maximizethe

functionwith respectto λ . Wehave:

d
dλ

� � λeλ �0� � eλ � λeλ 

which equalszerowhenλ � � 1, giving a maximumof e1 1. Moreover, � λeλ is increasingin λ
for the interval

� � ∞ 
 � 1� andconcave decreasingfor �L� 1 
 0� . The function is shown in Figure2,
from which it is clearthatequation(13)has2 negativerootswhena � �

eD� 1 1 and1 negativeroot
whena � �

eD� 1 1. Moreover, themodulusof thesmallerroot (in modulus)increasesfrom 0 to 1
asa increasesfrom 0 to

�
eD� 1 1, andis clearlyaconvex functionof a.

It remainsto show thattakingλ to berealyieldstheroot with thesmallest(in modulus)nega-
tiverealpart;thiswill alsoshow thattheconvergenceis nonoscillatory. Firstnotethatthemodulus
of the smallerreal root is not greaterthan1. Supposetherearecomplex roots for a K �

eD� 1 1.
Thenusingthesameargumentasin theproofof Lemma6, weseethattherearenorootsfor n � 0,
δ M� 0, sincetheLHS of equation(18) is greaterthane1 1. Also, for n . 0, δ / sinδ . π / 2, sothe
complex root, if any, will have γ . 1. Thiscompletestheproof.

-
We combinetheabove lemmasinto thefollowing theorem.

9



Theorem 8 Themaximumrateof convergencefor thesystem(14) is D 1 1 whena � �
eD� 1 1. The

rate of convergenceis monotonicincreasingand convex from 0 to D 1 1, and the convergenceis
nonoscillatory, for a � �

0 
 � eD� 1 1 � . Therateof convergenceis monotonicdecreasingfromD 1 1 to
0 for a � � � eD� 1 1 
 π � 2D � 1 1 � .

In particular, themaximumrateof convergenceto theequilibriumpoint x of (12) is achieved
if andonly if:

κ
�
p � xp& ��� 1

eD



andin this case, theequilibriumis nonoscillatory.

Figure3 illustratestheresultof Theorem8,showing how therateof convergencefor thesystem
(14) varieswith a � �

0 
 π � 2D � 1 1 � , theregion of stability. Usingtheanalogyfrom ordinarydiffer-
entialequations,weseethatthesystemis over-dampedfor 0 � a � �

eD� 1 1 andunder-dampedfor�
eD� 1 1 � a � π

�
2D � 1 1. Thesystemis critically dampedwhena � �

eD� 1 1, andthisalsogivesthe
optimalrateof convergenceof D 1 1 or “time constant”of D. Intuitively, this makessensesinceD
is theroundtripdelay.

Theresultof Theorem8 hasalsobeenshown by Chonget al. [2] usingessentiallyLemma4.
However, their claim that therateof convergenceis a concave functionof gaindiffersfrom what
is depictedin Figure3; in fact,by Lemma7, therateof convergenceis convex for a � �

0 
 � eD� 1 1� .
3 Stability criteria: networks with constant roundtrip delay

Wewishnow to formulateresultsanalagousto thoseof Section1 for generalnetworks,i.e.,systems
describedby theequations(4)-(5). Thetheoryfor multidimensionaldelayeddifferenceequations
is significantlymorecomplex thanin theone-dimensionalcase,asweshalldiscover;nonetheless,
it is possibleto prove a resultanalogousto Theorem3 for networks, in the specialcasewhere
Dr � D for all r � R.

We begin, asbefore,by linearizingthesystemaboutthestablepoint x � �
xr 
 r � R� , givenby

(3). For all j � J, definep j � p j
�
∑ j � sxs � ; assumethat at this point p j is differentiable,andlet

p& j � p& j � ∑ j � sxs � . Defineyr � t � by xr � t �*� xr � κ1: 2
r x1: 2

r yr � t � ; thensince∑ j � J A j r p j � wrx1 1
r , the

linearizationof (4)-(5)yields:

yr � t � 1�N� yr � t � � κrwrx
1 1
r yr � t � Dr � (19)� ∑

j � J
∑
s� R

A j rκ1: 2
r x1: 2

r A jsκ
1: 2
s x1: 2

s p& jys � t � d1
�
j 
 s� � d2

�
j 
 r �	�O
 r � R


neglectinghigherorderterms.Fix λ �QP . We now askthequestion:doesthereexist a (possibly
complex) vectorα � �

αr 
 r � R� , suchthat y � t �*� αλ t is a solution to this systemof equations?
If suchan α exists, thesolutionis a normalmode. As before,local stability resultsif all normal
modessatisfy + λ + � 1.

Our approachwill be to find the conditionsunderwhich α exists, suchthat αλ t is a normal
mode.Supposesuchanα exists;then,substitutinginto (19):

αrλ t ) 1 � αrλ t � κrwrx
1 1
r αrλ t 1 Dr� ∑

j � J
∑
s� R

A j rκ1: 2
r x1: 2

r A jsκ
1: 2
s x1: 2

s p& j αsλ t 1 d1 8 j R s9#1 d2 8 j R r 9 
 r � R�
10



After cancellingλ t throughout,multiplying by λDr , andapplyingthedefinitionof Dr , wehave:�
λDr ) 1 � λDr � αr � κrwrx

1 1
r αr �

∑
j � J

∑
s� R

A j rκ1: 2
r x1: 2

r λd1 8 j R r 9 A jsκ
1: 2
s x1: 2

s λ 1 d1 8 j R s9 p& jαs � 0 
 r � R� (20)

Define the following matrices: κ � diag
�
κr 
 r � R� ; W � diag

�
wr 
 r � R� ; X � diag

�
xr 
 r � R� ;

P&*� diag
�
p& j 
 j � J � ; andA

�
λ �S� �

A j rλ 1 d1 8 j R r 9 
 j � J 
 r � R� . Then we can express(20) as the
following matrixequation:T

diag
�
λDr ) 1 � λDr 
 r � R��� κWX 1 1 � κ1: 2X1: 2A

�
λ 1 1 � TP& A � λ � X1: 2κ1: 2 U α � 0 �

But this is possibleif andonly if thedeterminantof thematrixpremultiplyingα is zero,i.e., if and
only if thefollowing equationholds:

det
T
diag

�
λDr ) 1 � λDr 
 r � R��� κWX 1 1 � κ1: 2X1: 2A

�
λ 1 1 � TP& A � λ � X1: 2κ1: 2 U � 0 � (21)

Theequation(21) is thecharacteristicequationfor thesystem(19). A normalmodeexistsonly
for thoseλ which arerootsof the characteristicequation.If all rootsof (21) have modulusless
thanunity, thenthesystem(19) will beasymptoticallystable,andhencethestablepoint x will be
locally stablefor thesystem(4)-(5).

We now investigateconditionsto control themaximummodulusof therootsof thecharacter-
istic equation.Wewill write p

�
λ 
 κ � for theleft handsideof (21), to emphasizethechangesin the

characteristicequationasκ varies.Wealsomake thefollowing definition:

C
�
λ 
 κ ��� κWX 1 1 � κ1: 2X1: 2A

�
λ 1 1 � TP& A � λ � X1: 2κ1: 2 �

Wehavethefollowing theorem,whichgivesstabilitycriteriain thesituationwhereDr � D for
all r � R.

Theorem 9 SupposeDr � D for all r � R. Thesystem(4)-(5) is locally stableif the following
conditionis satisfiedfor all r � R:

κr

�
∑
j � r

p j � ∑
j � r

p& j ∑
s: j � s

xs� � 2sin 2 π
2
�
2D � 1�43 � (22)

Proof. Wewill divide theproof into fivesteps.

Step1. If 0 � a � 2sin π
2 8 2D ) 19 , thenno rootsof λD ) 1 � λD � a � 0 havemodulusequalto

unity. Thisdeductionfollows from theproof of Theorem3.

Step2. Themaximummodulusof the rootsλ of p
�
λ 
 κ �5� 0 is continuousin κ. This follows

from Lemma1. In fact,a smallpoint of subtletyarises:p
�
λ 
 κ �V� 0 is not immediatelya polyno-

mial equation,asit involvestermswhich arepowersof λ 1 1. However, this is easilyrectifiedby
multiplying throughwith asuitablylargepowerof λ .

11



Step3. Showthat for anyκ satisfyingthehypothesesof thetheorem,p
�
λ 
 κ �=� 0 hasno roots

of modulusequalto unity. Let κ satisfythehypothesesof the theorem,andsupposethereexists
λ � eiθ , 0 K θ K 2π, suchthat p

�
λ 
 κ ��� 0. Sincewrx1 1

r � ∑ j � r A j r p j , + λ +%� 1, andall κr , wr , xr ,
andp j arenonnegative,thehypothesesof thetheoremyield:WWWWW κrwrx

1 1
r � ∑

j � J
A j rκrxr p& j WWWWW � ∑

s XY r

WWWWW κr ∑
j � J

A j rλd1 8 j R r 9 A jsλ 1 d1 8 j R s9 xsp& j WWWWWK κr

�
∑
j � R

A j r p j � ∑
s� R

∑
j � J

+A j rA jsλd1 8 j R r 9Z1 d1 8 j R s9 xsp& j + �� κr

�
∑
j � r

p j � ∑
j � r

∑
s: j � s

xsp& j �� 2sin 2 π
2
�
2D � 1� 3 
 r � R�

Althoughthefirst line of this computationseemsawkward,it is in factthe“absoluterow sum” of
row r of thematrixκ

�
WX 1 1 � A

�
λ 1 1 � TP& A � λ � X � . Sincethespectralradiusof any squarematrix is

boundedby its maximumabsoluterow sum([8], Chapter8), wehave thefollowing bound(where[0\[
denotesspectralradius):[

C
�
λ 
 κ � [ � ]]] κWX 1 1 � κ1: 2X1: 2A

�
λ 1 1 � TP& A � λ � X1: 2κ1: 2 ]]]� ]] κWX 1 1 � κA

�
λ 1 1 � TP& A � λ � X ]]� 2sin 2 π

2
�
2D � 1�\3 �

Thus,we canboundthespectralradiusof C
�
λ 
 κ � in (21). We now make thefollowing obser-

vation: if Dr � D, thenthecharacteristicequationcanbewritten moresimplyas:

det � � λD ) 1 � λD � I � C
�
λ 
 κ � � � 0 � (23)

Further, asλ � eiθ , the matrix C
�
λ 
 κ � is Hermitian. It is alsopositive definite,so we canwrite

ΓΦΓT � C
�
λ 
 κ � , whereΓ is unitary and Φ � diag

�
φr 
 r � R� is the diagonalmatrix of strictly

positiveeigenvaluesof C
�
λ 
 κ � . (NotethatbothΓ andΦ aredependentonλ andκ, thoughthishas

beensuppressedin thenotation.)By theboundcomputedabove,we know thatφr � 2sin π
2 8 2D ) 19

for all r � R. SinceΓ is unitary, wecanfactorit outof thecharacteristicequation:

det � diag
�
λD ) 1 � λD � φr 
 r � R� � � 0 �

But wearenow takingthedeterminantof a diagonalmatrix; andso,if λ is a root of unit modulus
suchthat p

�
λ 
 κ ��� 0, wemusthave:

λD ) 1 � λD � φr � 0

for φr satisfying0 � φr � 2sin π
2 8 2D ) 19 . ThiscontradictsStep1, andsoStep3 is proven.

12



Step4. Showthere existsa κ satisfyingthe hypothesesof the theorem,such that all rootsλ
of p

�
λ 
 κ �=� 0 havemoduluslessthanunity. For convenience,we assumethatR �^F 1 
 2 
$�@�$�_
 N G .

DefineRn �`F 1 
 2 
@�$�$�_
 n G . We denoteby pn
�
λ 
 κ �,� 0 the characteristicequationdefinedby the

subnetwork of routesin Rn; mathematically, thiscorrespondsto replacingC
�
λ 
 κ � with thesubma-

trix C
�
λ 
 κ �a� � �C � λ 
 κ ��� rs 
 r 
 s � Rn � in (23). (Althoughthenumberof componentsin κ maychange

dependingon n, we will suppressthis dependenceandwrite κ for thevectorof gainparameters,
with thenumberof componentsunderstoodfrom context.) Theresultis proveninductively onn.

First supposethat n � 1. We have shown in Theorem3 that thereexists a κ1 satisfyingthe
hypothesesof thetheoremfor which all rootsof p1

�
λ 
 κ ��� 0 havemoduluslessthanunity.

Now, inductively, assumethereexistparametersκ1 
$�$�$�4
 κn 1 1 suchthatall rootsλ of pn 1 1
�
λ 
 κ �a�

0havemoduluslessthanunity. Weconsiderrootsof theequationpn
�
λ 
 κ �a� 0. Letk � �

κ1 
@�$�$�_
 κn 1 1 
 0� .
Thennotethefollowing relation:

pn
�
λ 
 k �0� �

λD ) 1 � λD � pn 1 1
�
λ 
 κ �%�

This follows by decomposingthe determinantwhich definespn. Thus, thereare a total of nD
roots: nD � 1 of theserootshave moduluslessthanunity (including λ � 0 of multiplicity D),
andλ � 1 hasmultiplicity 1. If we canensurethata small increasein κn from zeroreducesthe
magnitudeof therootλ � 1, thenanargumentexactlyanalogousto thecasen � 1 wouldshow that
κn canbechosensuchthatpn

�
λ 
 κ �b� 0 hasall rootsof moduluslessthanunity for gainparameters

κ1 
$�$�$�4
 κn.
Weproceedby usingtheImplicit FunctionTheorem,asbefore.By expandingthedeterminant

whichdefinespn, wecanwrite:

pn
�
λ 
 κ ��� �

λD ) 1 � λD � pn 1 1
�
λ 
 κ ��� κnqn 1 1

�
λ 
 κ �;


whereqn 1 1 is definedby:

qn 1 1
�
λ 
 κ ��� det cddde � λD ) 1 � λD �fcddde 1

$$
0 0

...
...

...
...

0
$$

1 0
0

$$
0 0

gihhhj � Cn
�
λ 
 κ1 
$�$�@�_
 κn 1 1 
 1� gihhhj �

First wedifferentiatepn with respectto λ , evaluatingat
�
1 
 k � :

∂
∂λ

pn
�
λ 
 κ � WWWW 8 1 R k 9 � pn 1 1

�
1 
 κ �%�

Now, sincewe know that pn 1 1 hasall rootsof moduluslessthanunity at
�
κ1 
$�$�@�k
 κn 1 1 � , we can

concludethat pn 1 1
�
1 
 κ �lM� 0. So, applying the Implicit FunctionTheorem,thereexists a dif-

ferentiablecomplex-valuedfunction h
�
κn � andεn . 0 suchthat h

�
0�5� 1, and pn

�
h
�
κn �%
 κn �,� 0

if � εn � κn � εn. As before,we proceedto computethe derivative of h
�
κn � using the implicit

definitionin pn. Sinceh
�
0�0� 1, and:�

h
�
κn � D ) 1 � h

�
κn � D � pn 1 1

�
h
�
κn �;
 κ ��� κnqn 1 1

�
h
�
κn �%
 κ �0� 0 


weconclude:

h& � 0� pn 1 1
�
1 
 κ ��� qn 1 1

�
1 
 κ ��� 0 �

13



But pn 1 1
�
1 
 κ � andqn 1 1

�
1 
 κ � arethefollowing determinants:

pn 1 1
�
1 
 κ �m� det

�
Cn 1 1

�
1 
 κ �$�;
 and

qn 1 1
�
1 
 κ �m� det

�
Cn
�
1 
 κ1 
$�$�$�k
 κn 1 1 
 1�$�%�

In both cases,thesedeterminantsare strictly positive, as they are the determinantsof positive
definitematrices.Thus,wehaveh& � 0� � � qn 1 1

�
1 
 κ �$/ pn 1 1

�
1 
 κ ��� � an, wherean . 0. This leads

to thefollowing Taylorexpansion:

h& � κn ��� 1 � κnan � o
�
κn �%�

Soasκn increasesaway from zero,theroot λ � 1 decreasesin magnitude.By thesameargument
as in the proof of Theorem3, this is sufficient to completethe inductive step: namely, we can
chooseaκn satisfyingthehypothesesof thetheorem,andsuchthatall rootsλ of pn

�
λ 
 κ ��� 0 have

moduluslessthanunity. Q.E.D.
Now, if wetaken � N, thenpn � p, andsowecanfind avectorκ � �

κ1 
$�@�$�k
 κN � satisfyingthe
hypothesesof the theoremsuchthatall rootsλ of p

�
λ 
 κ �,� 0 have moduluslessthanunity; we

will denotethis κ by κ < . ThiscompletesStep4.

Step5. Completionof proof. Now supposethat,for someκ satisfyingthehypothesesof thethe-
orem,p

�
λ 
 κ � � 0 hasarootof modulusgreaterthanunity. Considerthepathκ

�
t �a� tκ <6� �

1 � t � κ,
for 0 K t K 1. All rootsof p

�
λ 
 κ � 1�$�V� 0 have moduluslessthanunity by Step4; so,by Step2

(continuityof maximummodulusof roots),thereexists t suchthat p
�
λ 
 κ � t �@��� 0 hasa root λ of

modulusunity, i.e., + λ +"� 1. But, sinceκ
�
t � satisfiesthehypothesesof the theorem(both κ < and

κ satisfythehypothesesof the theorem,asdoesany convex combination),this is a contradiction
to Step3. So we concludethat no suchκ exists; i.e., for all κ satisfyingthe hypothesesof the
theorem,p

�
λ 
 κ �V� 0 hasall rootsof moduluslessthanunity.

-
The proof of Theorem9 fails at Step3 if all Dr arenot equal;at this point, the determinant

defining(21)maynotdecomposeinto aproductform. Thegeneralityin theresultgivenhereis that
thedelaysd1

�
j 
 r � andd2

�
j 
 r � maybechosenarbitrarily, subjectto theconstraintthatd1

�
j 
 r �n�

d2
�
j 
 r �a� D for all j � J, r � R. Noticethatthedecompositionof Step3 worksbecauseC

�
λ 
 κ � is a

Hermitianmatrixwhen + λ +	� 1; thispropertyis adirectresultof thefactthatd1
�
j 
 r �_� d2

�
j 
 r �n� Dr

for all j � J, r � R, emphasizingtheimportanceof theroundtripdelayin this analysis.

3.1 Nonadaptive users

The simplestextensionto the model (4)-(5) is to adduserswho act at intervals of time signifi-
cantlylongerthantheroundtripdelaysDr ; in fact,soslowly thattheir ratesappearconstanton the
timescaleof theDr . Intuitively, this is thedescriptionof a userwith an“infinite roundtripdelay”:
they settheir rate,thenupdateit on a time horizonfar longerthantheupdatetimesof mostusers
in thesystem.

Wemayformalizethismodelasfollows. SupposethatR � R1 o R2, andconsiderthefollowing
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model:

xr � t � 1��� xr � t �"� κr

�
wr � xr � t � Dr � ∑

j � r
µ j � t � d2

�
j 
 r �	����
 r � R1; (24)

xu � t �6� xu 
 u � R2; (25)

wherexu . 0 for all u � R2, and:

µ j � t �6� p j

�
∑

s� R1: j � s
xs � t � d1

�
j 
 s�	�"� ∑

v � R2: j � v
xv �p
 j � J � (26)

The routesin R2 arenonadaptive: they do not respondto congestionindicationsignalsfrom
theresource.We will show that if Dr � D for all r � R1, Theorem9 providesa sufficient stability
conditionfor thesystem(24)-(26).

Asbefore,letx � �
xr 
 r � R� bethefixedpoint,with p j � p j

�
∑s� R: j � sxs � andp& j � �

∑s� R: j � sxs� .
Notethatthesedefinitionsincludetheroutesin bothR1 andR2. Wehave thefollowing theorem.

Theorem 10 SupposeDr � D for all r � R1. Thesystem(24)-(26) is locally stableif thefollowing
conditionis satisfiedfor all r � R1:

κr

�
∑
j � r

p j � ∑
j � r

p& j ∑
s� R: j � s

xs� � 2sin 2 π
2
�
2D � 1� 3 � (27)

Proof. The linearizationof the system(24)-(26) is given by (19) for all r � R2, with p j and
p& j definedasabove. Thus,theexactsameproof asusedfor Theorem9 goesthroughto give the
result.

-
3.2 Instantly adaptive users

We now considerthe situationoppositeto Section3.1: usersupdatingat time intervals signifi-
cantly shorterthanthe roundtripdelaysDr . We may modelsuchusersby assumingthey reach
equilibrium quickly—indeed,instantaneously. Intuitively, this is the descriptionof a userwith
“zero roundtripdelay”: equilibrium may be reachedinstantaneouslybecausethereis negligible
lag in communicationbetweenthenetwork andtheuser.

We formalizethemodelasfollows. Again, let R � R1 o R2, andmodelthesetof usersin R2

by:

xu � t ��� wu

∑ j � uµ j � t � 
 u � R2 � (28)

Thesetof usersin R1 is modeledasbefore:

xr � t � 1��� xr � t ��� κr

�
wr � xr � t � Dr � ∑

j � r
µ j � t � d2

�
j 
 r �	� � 
 r � R1 � (29)
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Finally, µ j � t � is definedasbefore,but with themodificationthatroutesin xu � t � suffer no delay:

µ j � t �6� p j

�
∑

v � R2: j � v
xv � t ��� ∑

s� R1: j � s
xs � t � d1

�
j 
 s�	� � 
 j � J � (30)

Theexistenceanduniquenessof theequilibrium(3), demonstratedin [11], showsthesystem(28)-
(30) is well defined.The routesin R2 are instantlyadaptive: they instantaneouslyachieve equi-
librium giventhecurrentstateof thenetwork. Thus,they areuserswho updateratesmuchmore
quickly thantheusersin R1.

As before,the systemhasa uniqueequilibrium point x � �
xr 
 r � R� . Then,definingyr � t �*�

κ 1 1: 2
r x 1 1: 2

r
�
xr � t � � xr � for r � R1, andyu � t ��� xu � t � � xu for u � R2, wecanlinearizeto obtain:

yr � t � 1�N� yr � t � � κrwrx
1 1
r yr � t � Dr �� ∑

v � R2

∑
j � J

A j rκ1: 2
r x1: 2

r A jvp& jzv � t � d2
�
j 
 r �	�� ∑

s� R1

∑
j � J

A j rκ1: 2
r x1: 2

r A jsκ
1: 2
s x1: 2

s p& jys � t � d1
�
j 
 s� � d2

�
j 
 r �	�O
 r � R1;

yu � t �q� � x2
uw1 1

u

�
∑

v � R2

∑
j � J

A jvA jup& jyv � t �� ∑
s� R1

∑
j � J

A juA jsκ
1: 2
s x1: 2

s p& jys � t � d1
�
j 
 s�	����
 u � R2 �

LetAR1

�
λ �n� �

A j rλ 1 d1 8 j R r 9 
 j � J 
 r � R1 � , andletAR2 � �
A ju 
 j � J 
 u � R2 � . LetXR1 � diag

�
xr 
 r �

R1 � ; similarly, defineWR1, κR1, XR2, andWR2 . We try a solutionof the form αλ t . Letting αR1 ��
αr 
 r � R1 � , αR2 � �

αu 
 u � R2 � , wehave:�
AT

R2
P& AR2 � X 1 2

R2
WR2 � αR2 � � AT

R2
P& AR1

�
λ � X1: 2

R1
κ1: 2

R1
αR1 


andT
diag

�
λDr ) 1 � λDr 
 r � R2 ��� κR1WR1X

1 1
R1� κ1: 2

R1
X1: 2

R1
AR1

�
λ 1 1 � TP& AR1

�
λ � X1: 2

R1
κ1: 2

R1

U αR1 � κ1: 2
R1

X1: 2
R1

AR1

�
λ 1 1 � TP& AR2αR2 � 0 �

After substitutingthefirst equationinto thesecond,we obtainthecharacteristicequationfor (28)-
(30):

det
�
diag

�
λDr ) 1 � λDr 
 r � R1 ��� κR1WR1X

1 1
R1

� κ1: 2
R1

X1: 2
R1

AR1

�
λ 1 1 � TP& AR1

�
λ � X1: 2

R1
κ1: 2

R1� κ1: 2
R1

X1: 2
R1

AR1

�
λ 1 1 � TP& AR2

�
AT

R2
P& AR2 � X 1 2

R2
WR2 � 1 1AT

R2
P& AR1

�
λ � X1: 2

R1
κ1: 2

R1
��� 0 � (31)

Wemake thefollowing definitions:

M � �
P& � 1: 2AR2XR2W

1 1: 2
R2


 and

D
�
λ 
 κR1 �m� κR1WR1X

1 1
R1

�
κ1: 2

R1
X1: 2

R1
AR1

�
λ 1 1 � T � P& � 1: 2 � I � M

�
I � MTM � 1 1MT � � P& � 1: 2AR1

�
λ � X1: 2

R1
κ1: 2

R1
�
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Thenthecharacteristicequationreducesto:

det
�
diag

�
λDr ) 1 � λDr 
 r � R1 ��� D

�
λ 
 κR1 �@�0� 0 �

Noticethesimilarstructureof D
�
λ 
 κR1 � andC

�
λ 
 κ � ; thisallowsusto provethefollowing theorem.

Theorem 11 SupposeDr � D for all r � R1. Thesystem(28)-(30) is locally stableif thecondition
(22) is satisfiedfor all r � R1.

Proof. D
�
λ 
 κR1 � is identicalin structureto C

�
λ 
 κ � , but with P& replacedby

�
P&r� 1: 2 � I � M

�
I �

MTM � 1 1MT � � P&s� 1: 2 (notethe lattermatrix is independentof λ ). Hence,we mayuseexactly the
sameproof asusedfor Theorem9; theonly difficulty arisesin Step3, wherewe showedthat for
κ satisfyingthehypothesesof thetheoremandλ � eiθ ,

[
C
�
λ 
 κ � [ � 2sin

� π
2 8 2D ) 19 � . We therefore

proceedto show that for κR1 satisfyingthe hypothesesof the theorem,andλ suchthat + λ +A� 1,[
D
�
λ 
 κR1 � [ � 2sin

� π
2 8 2D ) 19 � .

We first show
[
I � M

�
I � MTM � MT [ K 1. NoteM is + J +itu+R + ; sowrite M � UΣVT , whereU

is the + J +�tv+ J + orthogonalmatrix of eigenvectorsof MMT , V is the +R +�tv+R + orthogonalmatrix of
eigenvectorsof MTM, andΣ is the + J +�tv+R + matrix of singularvaluesof M: Σi j � 0 for i M� j, and
Σ11 7 $$ 7 Σqq, whereq � min

� + J +w
i+R +x� . This is thesingularvaluedecomposition(SVD) of M [8].
Substituting,andusingVTV � UTU � VVT � UUT � I , wehave:[

I � M
�
I � MTM � 1 1MT [ � [

I � �
UΣVT � � I � VΣTΣVT � 1 1VΣTUT [� [

U
�
I � ΣVTV

�
I � ΣTΣ � 1 1VTVΣ � UT [� [

I � Σ
�
I � ΣTΣ � 1 1ΣT [ �

The last expressionis the spectralradiusof a diagonalmatrix, whereeachentry is of the form
1 � Σ2

ii / � 1 � Σ2
ii �=K 1; hence

[
I � M

�
I � MTM � MT [ K 1.

Theargumentabovealsoshows that I � M
�
I � MTM � MT is positivesemidefinite;further, it is

symmetric.If + λ +y� 1, thenfrom thedefinitionof D
�
λ 
 κR1 � , wemaywrite D

�
λ 
 κR1 � � F � G< HG,

whereF is diagonalandpositive definite,H is realdiagonalandpositive definitewith
[
H
[ K 1,

andC
�
λ 
 κR1 ��� F � G< G. Usingtheboundfor

[
C
�
λ 
 κR1

[
from our proof of Theorem9:[

D
�
λ 
 κR1 � [ � [

F � G< HG
[� max

v: z v z Y 1 { � F � G< HG� v
 v|� max
v: z v z Y 1 { Fv
 v|�� { HGv
 Gv|K max
v: z v z Y 1 { Fv
 v|�� { Gv
 Gv|� max
v: z v z Y 1 { Fv
 v|�� { G< Gv
 v|� [
C
�
λ 
 κR1 � [� 2sin 2 π

2
�
2D � 1�A3 �

Thiscompletestheproof.
-
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The resultsof this subsectionand the previous subsectionadd two extremesof usersto the
basicresultof Theorem9: thosewho actmuchmoreslowly, andmuchmorequickly, thanusers
with roundtripdelaysDr . The resultof Theorem11 is particularly revealing. By showing that[
D
�
λ 
 κR1 � [ K [

C
�
λ 
 κR1

[
, noticethat thesystemwith instantlyadaptive usersis, loosely, “more

stable” than the basicsystem(4)-(5). This is to be expected,as instantlyadaptive usersdamp
oscillationsin thesystem;in otherwords,thenetwork is morestableif thereareuserswho back
off quickly whencongestionincreases.

4 Stability criteria: networks with diverse roundtrip delays

As wasnotedabove,theconditionthatDr � D for all r � R wasessentialto theproofof Theorem
9. We now wish to investigateextensionsto Theorem9, which remove theconditionof constant
roundtripdelay. Giventheform of theboundsin Theorems3 and9, we maymake thefollowing
conjecture:

Conjecture 12 Thesystem(4)-(5) is locally stableif the following condition is satisfiedfor all
r � R:

κr

�
∑
j � r

p j � ∑
j � r

p& j ∑
s: j � s

xs� � 2sin 2 π
2
�
2Dr � 1�_3 � (32)

This is just Theorem9, without thestipulationthatDr � D for all r � R.
An immediatequestionarises:doesthereexist acounterexampleto Conjecture12?To attempt

to answerthis question,we generated10,000“random” networks,asfollows. A randomnumber
of routes,from 1 to 5, anda randomnumberof resources,from 1 to 5, werechosen.A random
A matrix wasthengenerated.For each j and r, Dr andd1

�
j 
 r � wererandomlygenerated,with

Dr between1 and15; we thensetd2
�
j 
 r �V� d1

�
j 
 r � � Dr . Finally, we chosevectorsx, p, andp&

randomly, andfixedw accordingto equation(3). This allowedusto computethecritical valueof
κr for eachr � R aspredictedby equation(32). We randomlychoseκr to lie in theopeninterval
between0 andthis critical value.

For eachof these10,000networks, we computedthe maximummodulusof the rootsof the
characteristicequation(21). In every instance, themaximummoduluswasstrictly lessthan1, so
the networkwaslocally stable. This experimentcertainlysuggeststhat Conjecture12 might be
true,andaninterestingfutureresearchproblemconcernsfinding a formalproof of Conjecture12.

5 Simulations

If weareto implementthestabilitycriteriagivenherein actualnetworks,thenanobviousquestion
is how well our modelof a network approximatesthat of a real system.Our modelusesa fluid
flowapproximationinsteadof discretedatapackets.Also, queuesat theresourcesarenotmodeled
at all. In this chapter, we will addresstheseconcernsthroughsimulations,andcomparewith our
earliertheoreticalresults.

Our simulationsinvolve oneresource,modeledasa discrete-timequeue,with several users.
We will investigatestability of this stochasticsystemundervariousroundtrip delaysand gain

18



parameters,anddeterminewhat it meansfor queueingdelaysto becomenegligible. We will then
look morecloselyat instability in thesystem,revealingthephenomenonof phase-locking. Finally,
wewill investigatestabilitywhenuserswith differentroundtripdelaysinteractwith eachother.

5.1 A discrete-time queue with threshold marking

Wewill considerastochasticmodelanalogousto (4)-(5), with oneresourceandseveralusers.We
wish to modelqueueingeffects,but on a discrete-timescale. The dynamicsof sucha queueing
resourcearemodeledas:

Qt � �
Qt 1 1 � Yt � 1� ) 
 (33)

whereQt is thequeuelengthat time t, andYt is thenumberof packetswhicharriveat thequeueat
timet. Theinterpretationof themodelis asfollows.Packetsarriveatthequeueasa(discrete-time)
stochasticprocessY1 
 Y2 
$�$�$� . At time t, the resourcefirst addsYt packets(if any) to thequeue.If
thequeueis now nonempty, exactly onepacket is served. Noticethesimilarity of theseequations
with theanalysisof a (continuous-time)M/D/1 queue,examinedat time pointswhereindividuals
leave thequeue;in thatcase,thequeuelengthequationis Qt � �

Qt 1 1 � 1� ) � Yt [6].
We will supposethat, for eacht, Yt is a Poissonrandomvariableof parametery � 1, inde-

pendentof the pasthistory of the process. This makes Qt a discretetime Markov chain. We
will try to computean invariant distribution π � �

πn 
 n 7 0� for this Markov chain. Letting
pn �~} � Yt � n��� e1 yyn / n!, weknow thatπ mustsatisfy:

π0 � �
p0 � p1 � π0 � p0π1;

π1 � p2π0 � p1π1 � p0π2;
...

Wemayusetheseequationsto calculatethegeneratingfunctionof π, H
�
s� :

H
�
s�0� ∑

n � 0
πnsn � π0e1 y � 1 � s�

e1 y 8 1 1 s9 � s
�

Sincewe know that lims� 1H
�
s�5� 1, we concludethat π0 � ey � 1 � y�!. 0. This last resultalso

implies that πn . 0 for all n 7 0. Thus, Q possessesan invariant distribution π, given by the
coefficientsof thepowerseriesof H

�
s� .

We mayinterprettheparametery asthemeannumberof packetsperunit time which arriveat
thequeue.A simplechoicefor acongestionindicationmechanismis a thresholdmarkingscheme:
we markall arriving packetswhenever thequeueis at or above a thresholdB. Theuserinterprets
thenumberof marksreceivedasanindicationof thelevel of congestionat theresource,andslows
thesendingrateaccordingly.

The correspondingcongestionindication function pB
�
y� in our fluid flow model is just the

probability thatanarriving packet receivesa mark. Supposethequeueis in equilibrium; thenwe
wish to calculatetheprobabilitythequeueis at or aboveB, giventhatapacket arrives:

pB
�
y����} � Qt 7 B +Yt . 0�0��} � Qt 7 B��� 1 � B 1 1

∑
nY 0

πn 
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by independenceof Qt andYt . For a fixedvalueof B, we cancomputea closedform expression
for pB

�
y� by finding thefirst B termsof thepower seriesfor H

�
s� . Note that, in the simulations

which follow, thequeuewill not necessarilybeat equilibrium;thus,pB
�
y� is anapproximationto

thetruemarkingprobability.

5.2 The simulation model

We arenow readyto describethe modelusedfor simulations.We will considera setof usersR
sharingoneresource,modeledasa discrete-timequeuewith thresholdmarking; let mr � t � be the
numberof marksreceivedby userr at time t. We will supposethateachusermaintainsa sending
“rate” xr � t � , updatedasfollows:

xr � t � 1�'� xr � t �"� κr
�
wr � mr � t �#��� (34)

At time t, userr generatespackets accordingto a Poissondistribution with meanxr � t � . These
packetssuffer a propagationdelayof d1

�
r � beforearriving at theresource.

At the resource,packetsarriving at time t areaddedto the queuein randomorder, ensuring
that no userreceivespriority at the queue. The resourcethenservesexactly onepacket, if the
queueis nonempty. Eachpacket returnsto its original sender;a packet returningto userr suffers
a propagationdelay of d2

�
r � in transmissionfrom the resourceto the user. Thus, the marked

packetsreceived by userr at time t, mr � t � , left the resourced2
�
r � units of time earlier. We still

defineDr � d1
�
r �n� d2

�
r � ; however, noticethatnow theobservedroundtripdelayconsistsof the

propagationdelayDr plusa randomqueueingdelay.
The lastparagraphmakescleartheanalogybetweenour simulationandequations(4)-(5): in

thefluid flow approximation,mr � t � is givenby xr � t � Dr � µ � t � d2
�
r �	� , whichwehaddescribedasthe

numberof marksreceivedby userr at time t. We arenow explicitly modeling,at thepacket level,
the congestionindication behavior describedby (4)-(5)—but we are also addingto this model
queueingat theresource.

In Theorems3 and9, thestability criteriaareexpressedin termsof thestablepoint
�
x 
 p 
 p&L� .

For our simulations,wecanfix thestablepoint in advance.Webegin by choosingxr for eachuser
r � R; then,given the thresholdB, we canexplicitly calculatep � pB

�
∑xr � from the theory in

the lastsection.Similarly, we cancalculatep&�� p&B � ∑xr � . (Note this is only sensibleaslong as
∑xr � 1, sothearrival ratedoesnotexceedservicecapacity.) Wethenexpecttheratesto converge
to xr at equilibrium,aslong aswr � xr p for eachuser. Further, we canusethe triple

�
x 
 p 
 p&r� to

determinethecritical gainκr for eachuser, from (32).

5.3 Simulation 1: Variance of rates

Recall that Theorems3 and 9 presentsufficient conditionsfor local stability by meansof the
linearizedsystem(19). In our simulations,however, we have implementeda stochasticmodelof
thenonlinearsystem(4)-(5). Whenthegainbecomeslarge,we know the linearizedsystemmay
notbestable—andhencethenonlinearsystemis notguaranteedto belocally stable.

However, the behavior of the stochasticmodelusedfor the simulationsis significantlymore
complex. First, becausep

�
y��H 1 as y H 1, we do not expect the ratesto becomearbitrarily

largewhenthesystemis locally unstable.Instead,local instability of thenonlinearsystem(4)-(5)
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is typically visible aslarge oscillationsin the rates. Theseoscillationsaredueto the instability
causedby thepropagationdelayDr .

Becausethesimulationsarestochastic,anothersignificanttypeof “instability” maybepresent:
a high varianceof the ratesat equilibrium. It haspreviously beenshown that, for small κ, the
varianceof theratesscalesapproximatelylinearlywith κ ([11], Equation19). For a largergainκr ,
therefore,we expectstochasticfluctuationsto increasethespreadof theratesat equilibrium. The
stochasticeffectsof modelingqueueingat theresourcecontributeto randomvariationin therates.

Notice that both unstablebehaviors will leadto a high samplevarianceof the ratesxr � t � . In
the first case,large oscillationsin the rateswill lead to a large variance. In the secondcase,
stochasticfluctuationsin the rateswill lead to a large variance. Our goal is to investigatethe
relative importanceof thesetwo typesof effects for different roundtripdelaysD, andtherefore
betterunderstandtherelationshipbetweenpropagationdelayandqueueingdelay.

We simulate10 userswith thesameroundtripdelay. We let R ��F 1 
$�@�$�_
 10G , andfix Dr � D
for all users.We setxr � 0 � 075,andthethresholdB � 1. For this threshold,p

�
y��� 1 � ey � 1 � y� ,

andp& � y��� yey. We calculatep andp& asdescribedin thelastsubsection,andlet wr � xr p for all
users.Defineκ < � D � to bethecritical gainasgivenby (32):

κ < � D �0� 2sin
T

π
2 8 2D ) 19 U

p � p& � ∑r � Rxr � �
We will investigatestability at six differentroundtripdelays:D � 100,500,1000,5000,10000,
50000,with d1

�
r �b� d2

�
r �a� D / 2 for all r � R. For eachroundtripdelay, weransimulationswhere,

for all r � R, κr � 0 � 005κ < � D � , κr � 0 � 05κ < � D � , κr � 0 � 1κ < � D � , �@�$� , κr � 1 � 25κ < � D � . Thus,there
werea total of 26simulationsfor eachroundtripdelayD.

For eachr � R, we initialized the rateto zero: xr � 0�n� 0. Eachsimulationwasrun for 100D
iterations.Over thelast10D iterations,wecalculatedthesamplevarianceof eachratexr � t � , σ2

r . In
Figure4, we have plottedtheaveragevariancefor eachsimulationagainstthegainparameterκr ,
whereκr is expressedasamultipleof κ < � D � .

If thesystembehavedexactlyaccordingto thepredictionsmadein Theorem9, thenwewould
expectvarianceto be nearzeroaslong asκr � κ < � D � . However, for D � 100, this is obviously
not the case. As D increases,we move closerto the theoreticalprediction,until at D � 50000
the theoreticalpredictionis fairly accurate.Recall, however, that our fluid flow approximation
presumesqueueingdelaysarenegligible. In Figure4 we areobservingthe effectsof modeling
bothqueueingdelaysandpropagationdelays.

At a shortpropagationdelayD, i.e., D � 100, the critical gain κ < � D � is relatively large. As
discussedabove,this leadsto ahighstochasticspreadatequilibrium—therandomqueueingdelay
is not negligible. As κr increasesaway from zero, the variancerapidly increases.At first, this
increaseis primarily dueto stochasticfluctuationsin therates.For largerκ, instability dueto the
propagationdelayaddsto thevarianceaswell.

For larger delaysD, however, the critical gain κ < � D � is relatively small. The smallergain
parameternow averagesthequeueingbehavior overa muchlongertime interval, andthis reduces
stochasticfluctuationsin therates.For κr � κ < � D � , therefore,neitherthequeueingdelaynor the
propagationdelayarecausinga largevariancein therates.As thegainκr increasespastthecritical
gainκ < � D � , largeoscillationsin theratesresult. Local instability dueto thepropagationdelayis
observed.
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Basedon theprecedingdiscussion,noticethatFigure4 givesaqualitativeexplanationof what
it meansfor queueingdelaysto becomenegligible. Both propagationdelaysandqueueingdelays
contribute to a large variancein the rates,but in differentways; queueingdelaysarenegligible
whenstability of thestochasticsimulationis predictedaccuratelyby stability of thedeterministic
system(4)-(5). In Figure4, thisoccurswhen(approximately)D 7 10000.

We concludewith a simpleexample. The United Kingdom academicnetwork, JANET, cur-
rently employs two 155 Mbps OC-3 links to the United States.Assumingthat packetsare512
bytes,andthatthetransatlanticroundtripdelayis approximately200ms,we find thatD � 15000.
In the context of our simulations,for D � 15000,queueingdelaysarealreadynearlynegligible
relativeto propagationdelay. This typeof calculationsupportstheclaimmadein theIntroduction:
in thefuture,weexpectqueueingdelaysto becomesmallrelative to propagationdelays.

5.4 Simulation 2: Instability and phase-locking

As discussedin thelastsubsection,whenlocal instability resultsdueto thepropagationdelay, we
expectlarge oscillations;however, aswe will discover, theseoscillationsarenot independentof
oneanother. Instead,whenall userssharethe sameroundtripdelay, their ratestendto become
“phase-locked” [4]: all ratesoscillateexactly in phasewith eachother.

Onesuchexampleis presentedin Figure5. Theparametersfor thesimulationareD � 5000,
andκr � κ < � D � for all r � R. All otherparametersaresetexactlyasin thelastsubsection,with the
exceptionof the initial rates:we setxr � t ��� 0 � 01r for eachr � R. Notice that,althoughtheusers
startat differentinitial rates,they quickly synchronizewith eachother. Theratesbecomephase-
locked,andlargeoscillationsresult. This is exactly like resonancein physicalsystems:whenall
roundtripdelaysareequal,instability takesa verystructuredform.

It is interestingto notethat phase-lockingis a phenomenonthat is only observed for longer
roundtripdelays. At D � 100 andD � 500, for example,no discerniblephase-lockingwasob-
served;atD � 1000,theeffectbeginsto beobserved,but only whenD � 5000doesphaselocking
becomedistinctlyvisible. For smallerD, queueingdelaysarenotnegligible relativeto propagation
delays. The significantstochasticeffectscausedby queueingat the resourceperturbthe system
away from aphase-lockedequilibrium.

5.5 Simulation 3: Diverse roundtrip delays

Recallthat in Section4, numericalexperimentssuggestedwe might beableto extendour results
to networkswith diverseroundtripdelays(asexpressedin Conjecture12). In our third simulation,
wewishedto testtheimpactof sharinga resourcebetweenuserswith differentroundtripdelays.

We againshareda resourcebetweenten users,as in Simulation1. All parametersfor the
resourceareexactly asin Simulation1. Eachuseragainhasxr � 0 � 075,andwr � xr p. For each
roundtripdelayD � 100,500,1000,5000,10000,wecreatedtwo users.For eachuser, wechoseκr

asthelargestgainparameterpossiblesuchthatthestandarddeviationof theratesfrom Simulation
1 remainedbelow 0 � 05xr (seeFigure4). Thismeantthat,for example,κr � 0 � 05κ < � D � for D � 100,
but thatκr � 0 � 9κ < � D � for D � 10000.We thenranthesimulationfor 100000iterations.

Thepresenceof multiple roundtripdelaysdid not significantlyaffect thebehavior of thesys-
tem. In all cases,theusersconverged(approximately)to theequilibriumvalueof xr � 0 � 075.The

22



standarddeviation of theratesdid not exceed5.8%of xr for any of theusers,suggestingthat the
predictionsof Simulation1 remainrobustevenin thepresenceof diversedelays.

Theresultsof this simulationareimportantwhenwe considerthe implementationof our the-
oreticalresultsin futurenetworks. Thesimulationsin this sectionandnumericalexperimentsin
Section4 supporttheclaim that,ultimately, stability canbegovernedby local controlof gainpa-
rameters.As long asstability conditionsareknown for a given roundtripdelay, this simulation
suggeststhoseconditionsmaybeappliedto ensurestabilitywith diverseroundtripdelays.

6 Conclusion

This paperhasconsideredstability of network ratecontrol in thepresenceof communicationde-
lays. Stability conditionsaregiven for both a singleresourceanda large network with constant
roundtripdelay, andunderthe additionof instantlyadaptive andcompletelynonadaptive users.
Rateof convergenceis completelycharacterizedfor thesingleresourcecase.Finally, simulation
resultscontrastthe effectsof queueingdelaysandpropagationdelays,andalsoreveal the phe-
nomenonof phase-locking.

Notice that Theorems9-11 allow for a decentralizedimplementationby route. If we define
y j � ∑s: j � sxs, andassumethat ∑ j � r p j K α for all r � R andy j p& j / p j K β for all j � J, thenthe
LHS of (22) is K κrα

�
1 � β � nomatterhow many resourceslie oneachrouter. In otherwords,the

resultswehavefoundareindependentof routingandscalewell asthenumberof resourcesgrows—
especiallyimportantfor aconstantlyevolving network ona globalscale,suchastheInternet.

With theimplementationdescribedin thelastparagraph,thecondition(6) becomesevensim-
pler: the“route-dependentconstant”on theright-handsidebecomesroute-independent.Thus,to
remainstable,eachuserwill only beaskedto keeptheirgaininverselyproportionalto theroundtrip
delayof their route,with theconstantof proportionalityspecifiedin advance.

If we interpret∑ j � r p j to be the equilibrium probability a packet on route r is marked, then
∑ j � r p j K 1, sowe maysetα � 1. However, we mustconsidermorecloselytheuniform bound
y j p& j / p j K β for everyresourcein thenetwork. Althoughwecanhaveadecentralizedimplementa-
tion, thereis adesignrequirementfor thefeedbackfunctionateveryresource.As anexample,con-
sidera resourcej which behavesasanM/M/1 queue,with servicetimesexponentiallydistributed
with meanCj (soCj is the “capacity” of the resource).Supposethe resourceis in equilibrium,
andtheworkloadarriving at theresourceis Poissonof ratey j . Further, supposethat theresource
usesa thresholdmarkingscheme:a packet is markedif it arrivesto find morethanB j packetsin
thequeue.The function p j is givenby theprobability thatan arriving packet is marked. By the
PASTA property(PoissonArrivalsSeeTime Averages),we caneasilycalculatep j

�
y j � from the

stationarydistributionof anM/M/1 queue:

p j
�
y j ��� ∑

i � B j

2 y j

Cj 3 i 2 1 � y j

Cj 3 � 2 y j

Cj 3 B j �
Thus,we have the result that y j p& j / p j � B j , andthe conditiony j p& j / p j K β becomessimply

B j K β . Implementationof this constrainton thethresholdlevel B j requiresno knowledgeof user
flows,assummarizedby y j . Theprecedingdiscussionhighlightstheimportanceof thekey results
Theorems9-11: designof a network canbe simplified by removing centralcontrol. Instead,all
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usersaregivena constraint(κrDr � constant); andeachresourceis givena constraint(y j p& j / p j �
constant). Whenboththesedesignconditionsaremet,local stabilityof thesystemsstudiedcanbe
guaranteed.

Undertheassumptionthatpropagationdelayswill becomemoresignificantthanqueueingde-
lays, the resultsof this papersuggestthat network stability canbe guaranteedby consideration
of a delayedfluid flow model. Theevolution of telecommunicationsnetworks in thenext decade
remainsa contestedandunresolvedissue.However, asnetworksexpandto thesizeandcomplex-
ity of the Internet,we may safelyconcludetheoreticalpredictionssuchasthosegiven herewill
becomeincreasinglyimportantto guaranteerobustbehavior.
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Figure4: Varianceof ratesversusgain,for differentroundtripdelays.
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Figure5: Phase-lockingof rates.
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