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Abstract

The growing importance of VoIP telephony over untrusted networks raises the requirements
to encrypt VoIP calls. To achieve a good trade-off between audio quality and network traffic,
Variable Bit Rate (VBR) codecs are widely employed. VBR codecs encode speech data at
different bit rates depending on the complexity of the input signal. We implemented a practical
side channel attack on VoIP applications using VBR codecs associated with length preserving
encryption1.

1 Introduction

Voice over IP (VoIP) becomes more and more important as an alternative to traditional telephony.
As VoIP packets are transmitted over potentially insecure networks, it is well understood that VoIP
packets must be encrypted to ensure confidentiality [Pro04]. Yet, applying common encryption
techniques in a straightforward manner results in information leakage that can be exploited by side
channel attacks.

Based on the works of Wright et al. [WBMM] [WBC+08], we develop a practical side channel
attack against encrypted VoIP conversations, using common VoIP clients such as Skype or Twinkle.
Following their approach, we take advantage of the correlation between input speech and the result-
ing compressed data using Variable Bit Rate (VBR) encodings. If the VoIP application additionally
uses a length preserving cipher, we expose an information leakage of the input speech. In particular,
our attack allows us to detect given target phrases within an encrypted VoIP conversation. This is
performed in two steps. First, a profile Hidden Markov Model (HMM) is trained with several en-
crypted transmissions of a certain sentence. After the training is completed, the attack can identify
this sentence in an encrypted VoIP packet sequence.

1The ideas are based on the work Spot me if you can : Uncovering spoken phrases in encrypted VoIP conversations
by Wright et al. [WBC+08].
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1.1 Related Work

In this section, we provide an overview on related research ideas, i.e. inference of sensitive infor-
mation from encrypted and/or anonymized network connections.

The theoretical basis of the in hand work is described in the article by Wright et al. [WBC+08].
We will immerse ourselves in their fundamental concept of profile Hidden Markov Models, an ex-
tension of Hidden Markov Models, in the following sections. Hidden Markov Models are widely
used and well studied. For instance, the application of Hidden Markov Models is a standard tech-
nique used by the speech recognition community (cf. [WRLG90] [RRRG89]). Moreover, Hidden
Markov Models have been successfully used to carry out side channel attacks. In [KW03], Karlof
and Wagner introduced Input Driven Hidden Markov Models (IDHMM). IDHMMs are a modifi-
cation of HMMs which are able to handle input. They developed an efficient algorithm to solve
the input inference problem of IDHMMs. Karlof and Wagner used IDHMMs to model randomized
countermeasures used in cryptographic devices that depend on an internally stored secret key.

In [WCJ05], Wang et al. present an attack on VoIP users’ privacy. The attack uses a watermark
technique which allows to identify and correlate encrypted VoIP calls in low latency anonymizing
networks. A time adjustment of a few milliseconds can transform secure VoIP traffic to highly
identifiable network traffic, i.e. the watermark is preserved in low latency anonymizing networks.

Verscheure et al. [VVA+06] studied the feasibility of revealing pairs of anonymous conversing
parties by exploiting the vulnerabilities inherent in VoIP systems. They validated their method on a
very large standard corpus of conversational speech, and obtain pairing accuracy that reaches 95%
after 5 minutes of voice conversation.

Wright et al. [WBMM] presented in an attack on encrypted VoIP calls which enabled them to
infer the spoken language. They achieved an accuracy of more than 90% for 14 out of 21 languages
and an overall binary classification of 86,6%. Their work exploits, just like their later work, the
coding of speech at variable bitrates.

More general attacks on sensitive information have been proposed by Sun et al. [SSW+02],
where they present an attack on the non-identifiability of encrypted World Wide Web traffic based
on HTTP object count and sizes. They investigated the occurring traffic requesting about 100.000
web pages. The count and size of objects contained in the webpages revealed all information needed
to successfully exploit the encrypted web traffic in a straightforward manner. They stated that even
with standard padding techniques encrypted web traffic remains still vulnerable.

In [FS00], the authors describe a class of cache-based timing attacks that can compromise the
privacy of the users’ web-browsing history. Depending on the cache state, the time it takes to
perform different operations can vary. Malicious web servers can exploit this timing information
of users’ web browsers to reveal their past activities. The presented attacks are especially harmful
since they are not based on implementation details but on basic properties of web browsers. This
attack can be carried out unnoticed by the user.

Similar to the approach of Wright et al., we will exploit the speech coding of encrypted VoIP
calls at variable bit rates. We borrow the idea of using profile Hidden Markov Models to recognize
spoken phrases out of a set of training data.

2



1.2 Overview 2 VOIP PROTOCOLS AND CODECS

1.2 Overview

Section 2 presents different VoIP protocols and codecs. Section 3 comprises the applications that
are used to collect the VoIP packets and a visualization of the transmitted VoIP packets. Section
4 presents the concrete scenario of the attack. Section 5 shows the concept of the actual attack,
an introduction to profile HMMs and the concrete implementation. Section 6 concludes this paper,
interpreting the results of the attack and future research ideas are presented in section 7.

2 VoIP Protocols and Codecs

In this section we provide a short introduction to VoIP protocols and VoIP codecs. Voice over IP is
a technique used to transmit speech data over IP networks. Apart from the most popular VoIP client
Skype, which is proprietary, there exists a large number of VoIP open source implementations using
open source protocols and codecs. These implementations differ in general in the protocols used to
establish connections (Signaling Protocols), and in the codecs that are used to encode speech data
in a bandwidth efficient manner (e.g. Linear Predictive Coding).

2.1 Signaling Protocols

Initiation and termination of VoIP connections need to be handled by protocols that are independent
of speech streams. Apart from that fact, the availability and the IP address of the called user needs
to be known within the network in order to start a VoIP call. Among the most popular signaling
protocols are SIP and IAX.

SIP The Session Initiation Protocol (SIP) is an application layer protocol, which works indepen-
dently of the underlying transport layer protocols, such as TCP or UDP. After the initial connection
to a server over SIP2, the protocol relies on the Real-time Transport Protocol (RTP) over UDP to
transmit multimedia data like speech and video. The port to be used for the RTP protocol is deter-
mined in the SIP call signaling message. SIP has been standardized and governed primarily by the
Internet Engineering Task Force (IETF).

IAX Another widely used signaling protocol is the Inter-Asterisk eXchange (IAX) protocol. In
contrast to SIP, the IAX protocol carries signaling and speech data on the same port. IAX uses a
single UDP data stream (usually on port 4569) to communicate between endpoints, multiplexing
signaling and media flow. IAX easily traverses firewalls and network address translators. IAX
supports trunking, multiplexing channels over a single link. When trunking, data from multiple
calls are merged into a single stream of packets between two endpoints, thereby reducing the IP
overhead without creating additional latency. This is advantageous in VoIP transmissions, in which
IP headers use a large percentage of bandwidth.

2The initial connection to SIP servers is typically carried out over port 5060 or 5061.
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2.2 Linear Predictive Coding

One of the central points of VoIP implementations is the quality of transmitted speech data under
restricted bandwidth availability. There exists a wide range of audio codecs. Popular general pur-
pose compression codecs are the MPEG-1 Layer III (MP3) codec and the RealAudio codec. Apart
from these standard codecs, there exist audio codecs optimized for music coding or speech coding.
In this section we will restrict our attention to speech coding algorithms as they form the basis of
VoIP communication.

A widely used speech analysis technique is the Linear Predictive Coding (LPC). The history of
LPC reaches back to 1966, when S. Saito and F. Itakura of NTT described an approach to automatic
phoneme discrimination that involved the first maximum likelihood approach to speech coding. The
LPC technique is based on the Linear Predicition (LP) method.

The linear correlation of the input signal’s sampling values is used to predict probable upcoming
input signals. Thereafter, the difference between the estimated signal and the real signal is calculated
and transmitted. Apart from the described method, there exists an adaptive variant of LPC. Within
the adaptive variant, prediction filters are chosen according to the input signal, which leads to more
exact prediction. Apart from signal differences, details about the used prediction filter have to be
transmitted. LPC is a low bit rate coding technique.

Many coding techniques are based on the idea of LPC. We will present two of them in more
detail in the following.

Code Excited Linear Predicition One of the oldest speech codecs is the Code Excited Linear
Predicition (CELP) codec. It has been introduced in 1985 by Schroeder and Atal [SA85]. They
propose a way to code the residue signal of the linear prediction in an resource efficient way in
order to keep the bit rates as low as possible. The central points of the CELP technique can be
summarized in four steps.

• Apply the linear prediction filter to the input signal.

• Use an adaptive and a fixed codebook as the input (excitation) of the LP model.

• Perform a search in closed-loop in a perceptually weighted domain.

• Apply vector quantization.

Due to the very limited bandwidth of mobile telephony, CELP and its variants have become the
main speech codec for mobile phones.

Speex Based on the larger bandwidth of internet connections, VoIP requires more adequate speech
codecs than the low bit rate CELP codecs. The defined goals of the Speex codec are to guarantee
high quality speech at bandwidth efficient resource usage.

Speex supports three different sampling rates in order to provide the most adequate speech trans-
mission depending on the available bandwidth: 32kHz, 16kHz or 8kHz. Apart from the adaptive
sampling rate provided by the codec, it supports VBR encoding. VBR allows the codec to adapt its
bit rate depending on the complexity of the audio stream. For all available bit rates the encoding of
audio stream is carried out with an adapted linear prediction filter as the CELP filters. For example,
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vowels and high-energy transients need to be encoded at higher bit rates while fricatives can be
encoded at lower bit rates to obtain the same quality. In practice, VBR coding provides high quality
speech with efficient bandwidth usage.

In addition to the above mentioned adaptive sampling and bit rate, Speex provides Average Bit
Rate coding, Voice Activity Detection, Discontinuous Transmission, and many more. We refer the
interested reader to the Speex project webpage [spe05].

3 Applications

In this section, the tools and scripts that have been used to carry out the implemented attack are
presented.

3.1 Network Monitoring

In order to carry out the VoIP packet size analysis, VoIP packets need to be filtered out of the network
traffic. We created a command line script that relies on the well known Linux packet sniffer tcpdump
[tcp]. During a VoIP conversation, we use tcpdump to monitor the network traffic and filter out the
packets of interest. Finally, important information on these packets, i.e. time and packet size, is
written to an output file and is used as input of the splitter script as described below.

3.2 Splitter

The training of profile HMMs and the preparation of phrase pools require large sequences of packet
sizes from spoken phrases. In our setup, we transmitted different phrases several hundred times.
We had to split the resulting packet size sequence in sequences corresponding to one transmission
of the phrase. We created a script which supports us to generate such sequences and eliminates the
pauses between two subsequent phrases.

3.3 Visualization

Since we started our work by considering several VoIP programs possibly using encryption and
variable bitrate audio coding, we first had to assure that the selected tools had these features indeed.
Concerning information about software, especially about programs of a lower level of awareness,
the internet often offers no more than incomplete and sometimes even incorrect statements. To solve
these problems, we implemented a tool that visualizes the packet sizes that are transmitted during a
VoIP call.

Our visualization tool simply fulfils the most needed requirements to roughly analyze and com-
pare network traffic. After a network protocol file has been selected, it retrieves size and time from
each packet displays them as graph scaled by packet number or by time. Apart from easily being
able to recognize a variable bitrate, one can also compare different network traffic sequences, as our
visualization tool can administrate an arbitrary number of them and display several at a time. As
one would assume, we were able to confirm that the same sentence, even if it was spoken from a
different person, results in a graph containing many similarities (see Figure 1).
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Figure 1: Visualization of Three Utterances of the Same Sentence.

Figure 2: Setup of the Experiment.

The visualization was certainly a helpful tool for validating the correctness of our approach by
providing visual feedback.

4 Experimental Setup

In order to find a reasonable VoIP application that could be used to realize and validate our attack,
we had to take into account several facts. As the basic idea is to exploit the encoding of speech
at variable bit rates, an adequate codec had to be chosen. As mentioned above, the Speex codec
is a widely used VBR encoding algorithm. Moreover, the VoIP application of investigation has to
support length preserving encryption such as AES.

Twinke Twinkle [twi] is an open source VoIP application which uses the SIP signaling protocol.
Apart from the Speex codec it supports many other audio codecs, e.g. GSM, iLBC and G.726.
Encryption of speech data is carried out over an extended version of the RTP protocol, namely
the ZRTP protocol. ZRTP extends the original protocol in a way, that at the beginning of a call a
symmetric key is exchanged with help of the Diffie-Hellman key exchange protocol. Afterwards,
the RTP packets are encrypted with AES-128, or AES-256.

Hardware Setup The goal of this work is to construct an attack that works under real world
circumstances. In order to carry out our attack, we used two computers at different locations. We
started an encrypted Twinkle conversation between those two endpoints over the Internet (cf. Figure
2).

After the conversation has been setup, we transmitted four spoken phrases out of the audiobook
“Alice in Wonderland” from Project Gutenberg [gut], a collection of books under the public domain,
each of them 40 times. The four phrases are:

1. Flamingoes and mustard both bite. And the moral of that is: Birds of a feather flock together.
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2. Have you seen the Mock Turtle yet? No, said Alice. I don’t even know what a Mock Turtle is.
It’s the thing Mock Turtle Soup is made from, said the Queen.

3. Once, said the Mock Turtle at last, with a deep sigh, I was a real Turtle.

4. Why did you call him Tortoise, if he wasn’t one? Alice asked. We called him Tortoise because
he taught us.

After the transmission of the four phrases, phrase 1 was spoken 40 times by two of our members.
In addition to the phrase 1 to 4 spoken by a female voice with British accent, this time phrase 1 was
spoken by a male German native speaker and a male Bulgarian native speaker in order to extend the
results to be more realistic.

The outgoing traffic of the call initiating system was captured with the help of our network
monitoring script. The resulting output files of each phrase were splitted with the above mentioned
splitter script. Finally, this yields to five files, each of them containing the packet sizes and times-
tamps of 40 transmissions of one phrase. The first 30 transmissions were used to train the profile
HMMs, while the last ten transmissions were used in order to carry out the attack. The model was
trained with 100 iterations of the Baum-Welch training algorithm, while the intermediate results af-
ter each iteration were serialized in order to analyze the correlation between the number of iterations
and the accuracy of the attack. The attack was executed using each of the 100 trained models.

5 The Attack

Neither the theory of (Profile) Hidden Markov Models nor the application to speech recognition is
new [Rab90]. Baum and his collegues published the basic theory in a series of classic papers [BP66]
[BJ67] [BR68] [BPSW70] [Bau72]. In this section, we will first give some basic information about
the complex task of speech processing and speech coding followed by a short introduction to Profile
Hidden Markov Models and their application in our attack.

5.1 Correlation Between Speech and Packets

One of the main tasks of every VoIP program is to transmit audio signals over the network to
another client. Therefore analogue audio data is recorded by microphone and converted into a digital
representation which allows both parties to recover the original data. Furthermore, the network
traffic should be minimized since network resources are typically limited and preferred to be held
as low as possible. Yet one wishes simultaneously to ensure a certain quality of the audio data. On
that account VoIP clients come with a built in source coding technique.

The broad range of audio coding techniques can be divided into those which use a fixed bitrate
and the ones which use a variable one. A variable bitrate has the advantage that one can usually
achieve a way better audio quality while producing digital data of the same size as with a fixed
bitrate. And vice versa one can ensure the same audio quality as with a fixed bitrate while keeping
the quantity of data lower.

To obtain these benefits one leverages that audio signals have a large variation in terms of com-
plexity. In particular silence, which accounts for about 63% of a usual conversation for each of
the parties [WBC+08], can be coded with fewer bits than fricatives without human beings possi-
bly noticing any difference. Fricatives on the other hand can be coded with fewer bits than vowels
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without any noticeable quality loss. In our work we only focus on coding methods using variable
bitrate, since we want to exploit the fact that one can draw conclusions from the resulting bitrate
about what was coded in the first place.

It is indeed crucial to get familiar with the process of digitalisation and coding of audio data for
understanding why this side channel attack can be successfully carried out, and therefore a short
introduction follows.

Transforming a continuous amplitude signal into a digital representation with the minimal dis-
tortion is called quantization. Single and multiple signal values are converted into respective scalar
and vector quantizations using classical pattern recognition techniques [Rub94] [RJ93]. Each of
the resulting vector quantizers is assigned a code word in a codebook where each code word is
representative for an index in the codebook.

A variable bitrate coding usually allows a modulation of several discrete bitrates. For each of
them an appropriate codebook is used which generally has 2bitrate entries to maximize the number
of possible distinct audio signal representations and hence minimize the distortion. Consequently,
each audio sample is coded with a number of bits equal to the current bitrate. Increasing the bitrate
obviously increases the size of the codebook and thus offers a far better approximation for each
audio signal.

Concerning speech coding some phonemes require a higher bitrate than others in order to have
users not notice any difference in quality during the conversation. Seeing this from a different
perspective, just by observing the bitrates used to code the conversation one may extract some
information about what was actually said (see Figure 3).

Figure 3: Encoding of three Phonemes, each of them encoded into three consecutive Packets.

In common VoIP tools the resulting code words are not sent immediately over the network, but
instead buffered first and eventually encrypted and sent in intervals of about 20ms. Note that we
perform a side channel attack on VoIP software meaning that the actual encryption algorithm used
does not matter to us, since we only consider packet sizes which are unaffected by the encryption.
The only thing we need to ensure is that the encryption used is length preserving so packet sizes
really do not change due to encryption. However this is usually the case and thus no restriction to
the software we analyse.

So, instead of seeing the individual bitrates, all we can observe are the packet sizes. Even though
the entropy of each packet size is lower than the entropy of the bitrates contained in each packet it
still reveals a lot of information about the initial speech.

Additionally, we do not observe the packets separate but rather as part of a sequence of packets
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that belong to a word, a phrase or even a whole sentence. These longer sequences offer a lot of dis-
tinguishing marks meaning that observing a packet sequence that fulfils these distinguishing marks
for the most part gives certainty that with a high probability it really was the expected sentence.

Recording and coding a given sentence several times will undeniably lead to different packet
sequences, especially if the sentence is spoken by different people. Yet a great number of the main
characteristics of the packet sequences will be present in most of the observations: In particular,
pauses between words resulting in one or several small packets and the alternation of smaller and
larger packets depending on the occurring phoneme in the respective words. One can see the corre-
lation between speech and the resulting sequence of packet sizes in Figure 4 and Figure 5.

Figure 4: Speech Recording of sentence one.

Figure 5: Three resulting packet sequences of sentence one.

To evaluate collected data, i.e. comparing packet sequences to decide if one recognizes a known
sentence or phrase, a commonly used technique to solve problems in this vein is modelling them as
profile Hidden Markov Models. Some basic knowledge about this method is to be conveyed in the
next section.

5.2 Introduction to (Profile) HMMs

Hidden Markov Models (HMMs) are especially known for their application in temporal pattern
recognition such as speech [BCG+90], face [ZCPR03], handwriting [SB04], gesture [Ges00], music
[SPMB02], part-of-speech tagging [TIM02] and bioinformatics. The beauty of a HMM is that it is
able to reveal the underlying process of signal generation even though the properties of the signal
source remain greatly unknown [DFL05].

Hidden Markov Model

A HMM is composed of a number of interconnected states, each of which emits an observable
output symbol (packet size). Each state has two kinds of parameters. Symbol emission probabilities
are the probabilities of emitting each possible symbol from a state. State transition probabilities
are the probabilities of moving from the current state to a new state. A sequence is generated by
starting at an initial state and moving from state to state until a termination state is reached, emitting
symbols from each state that is passed through [Edd95].

Formally, a Hidden Markov Model is defined as a quintuple λ = (S,A,B, π, V ) with
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• S := {s1, . . . , sn} – the set of all states.

• A := {aij} – the matrix of state transition probabilities.

• B := {b1, . . . , bn} – the set of output (observable) symbols.

• π – the initial probability distribution.

• V – the matrix of emission probabilities.

There are three basic problems of interest for the model to be useful in real-world applications.
These problems are the following:

Problem 1 is the evaluating problem. Given a model and a sequence of observations, how do we
compute the probability that the observed sequence was produced by the model. This problem can
also be viewed as how well a given model matches a given observation. In our context, solving this
problem tells us whether a given sequence of observations (sequence of packets) corresponds to a
given sentence or not.

Given the observation sequence O := O1O2 . . . Oτ and the model λ = (S,A,B, π, V ). How
do we efficiently compute P (O | λ), the probability of the observation sequence, given the model
λ?

Problem 2 tries to uncover the sequence of hidden states of the model, i.e. to find the correct state
sequence. There is no correct state sequence, in general, thus an optimality criterion is used to solve
this problem as best possible, in most practical solutions.

Given the observation sequence O := O1O2 . . . Oτ and the model λ = (S,A,B, π, V ). How
do we choose a corresponding state sequence Q = q1q2 . . . qτ which is optimal in some meaningful
sense?

Problem 3 is the one which attempts to optimize the model parameters. The observation sequence
used to adjust the model is called a training sequence since it is used to train the HMM. The train-
ing problem is crucial for most applications of HMMs, since it allows to optimally adapt model
parameters to observed training data. Baum and Welch proposed one solution to this problem in
[BPSW70]. In our context, we use the training algorithm from Baum and Welch to train our model
of the search sentence based on a set of training sequences.

Given the observation sequence O := O1O2 . . . Oτ and the model λ = (S,A,B, π, V ). How
do we adjust the model parameters λ to maximize P (O | λ)?

Example 1: Hidden Markov Model and Speech Recognition

Let λ := (S,A,B, π, V ), with S := {a, b, c} be the set of spoken phonemes and

B := {ob := big, om := medium, os := small}

be the set of observable outputs (packets). Initially, the state transition probability distribution, the
emission probability distribution and the initial distribution are set to be uniform.
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A =
1
3
·

1 1 1
1 1 1
1 1 1

 and V =
1
3
·

1 1 1
1 1 1
1 1 1


First we train our model with a set of training sequences TS ⊆ S × S × S. In this case we

require the training sequences to be of length 3 and to be only composed of symbols from S. As
result, we get the state altered transition matrix A and the output transition matrix V .

A =

0.4 0.3 0.3
0.2 0.6 0.2
0.1 0.1 0.8

 and V =

0 1 0
0 0 1
1 0 0

 .

Figure 6 depicts the resulting HMM.

a

bc

ob

om

os

0.30.3

0.4

1

0.6
0.2

0.2

1
0.8

0.1

0.11

Figure 6: A Hidden Markov Model for the Example.

Given a sequence of observed outputs (packet sizes), we want to know the most probable state
path producing this sequence. As one can see, in this simple example, there is a one-to-one corre-
spondence between spoken phonemes and emitted packets.

This model is sufficient if we require the training sequences to be of the same length and to
be only composed of symbols from S. But human speech is known to exhibit a high degree of
variability, and the adaptive compression performed by the VoIP client may contribute additional
variance to the resulting packet sizes [WBC+08].

We need a model that can handle sequences that differ in their length, caused by insertions or
deletions of several packets, due to the VoIP client or network transmission. To solve this, we can
adapt profile Hidden Markov Model techniques [Edd95] to the task of finding words and phrases.

Profile Hidden Markov Model (Profile HMM)

A profile HMM consists of three interconnected chains of states (see Figure 7) describing the the
expected packet lengths at each position in the sequence.
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Begin M M M End

I I I I

D D D

Figure 7: Profile HMM systematically depicted.

In our case, the Match states, depicted as squares, represent the expected distribution of packet
sizes at each position in the sequence. Insert states and Delete states, shown as diamonds and circles,
allow for variations from the typical sequence. For example, if a sequence contains additional
packets or less packets than expected, the insert states insert additional packets in the expected
sequence and the delete states omit packets from the expected sequence.

Using this approach, we set the match states probability to be uniform, initially. Given a set of
example sequences, which in fact can now vary in their length, the profile HMM is trained using
the Baum and Welch [BPSW70] training algorithm to iteratively improve the model’s parameters to
better represent the given training sequences.

5.3 Implementation of the Attack

In this section, we will focus on the implementation of our attack. First, an overview on existing
HMM algorithms is provided followed by a description of the attack.

For our implementation we used the libraries provided by BioJava [bio]. BioJava is a mature
open-source project that provides a framework for processing biological data. BioJava contains
powerful analysis and statistical routines, tools for parsing common file formats and packages for
manipulating sequences and 3D structures. It enables rapid bioinformatic application development
in the Java programming language [bio]. It contains classes that model profile HMMs, the Baum-
Welch algorithm and the Viterby Search algorithm among others. We chose BioJava for our imple-
mentation, since it is an well-documented open-source project, and offers the features we needed.

Alternatively, the algorithms could be implemented from scratch, which would give a greater
degree of control in the used methods. Other available (profile) HMM algorithm collections are the
library GHMM [ghm], the bioinformatics oriented software packages HMMER [hmm] and SAM
[sam] and the speech recognition oriented software package HTK [htk].

The Implementation

The implementation consists of two phases. The first phase comprises the creation and the training
of the model, and the second phase consists of the actual attack on several sentences.
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The Training Phase addresses the creation and training of a profile HMM. In order to create the
profile HMM, the set of observable symbols has to be defined (see Listing 1 line 1). The set of
observable symbols consists of the packet sizes that have been transmitted, thus, for every packet
size an observable symbol is created, if it was not created yet.

One further important issue is the number of match states (and the resulting number of insert and
delete states) of the profile HMM. In our approach, the number of match states is computed as the
average number of packets in the training sequences, since the average corresponds to the expected
number of packets in the attack sentences. Our PacketAlphabet class computes that number while
creating the set of observable symbols.

The profile HMM is represented by the BioJava ProfileHMM class. It is initialized with the set of
observable symbols, the number of match states and two instances of DistributionFactory.DEFAULT
(see Listing 1 line 2). The distribution factory is used to create the insert and the match states, and
in our approach we use an uniform distribution for the transitions.

Finally, we create a dynamic programming matrix (DP) , an object that can perform dynamic
programming operations upon sequences with HMMs. The DP is used to train our profile HMM.

Listing 1: Creation of the Profile HMM
1 _alphabet = new PacketAlphabet(_trainingsData);
2 _profileHMM = new ProfileHMM(_alphabet.getAlphabet(),_alphabet.getAveragePacketNumbers(),

DistributionFactory.DEFAULT,DistributionFactory.DEFAULT,pHmmName);
3 _dynamicProgrammingMatrix = DPFactory.DEFAULT.createDP(_profileHMM);

Having created and initialized the profile HMM and the dynamic programming matrix, we first
train the profile HMM with an SimpleModelTrainer, to cause the models’ probabilities to be uniform
(see Listing 2 line 1–6).

The Baum-Welch training algorithm is contained in the BaumWelchTrainer class. We train the
model (see Listing 2 line 12) using a self made StoppingCriteria, that stops the algorithm after a
certain amount of rounds have passed.

Listing 2: Training the Profile HMM
1 ModelTrainer mt = new SimpleModelTrainer();
2 //register the model to train
3 mt.registerModel(_profileHMM);
4 //as no other counts are being used the null weight will cause everything to be uniform
5 mt.setNullModelWeight(1.0);
6 mt.train();
7

8 //create a BW trainer for the dp matrix generated from the HMM
9 BaumWelchTrainer bwt = new BaumWelchTrainer(_dynamicProgrammingMatrix);

10

11 CylcleStoppingCriteria stopper = new CylcleStoppingCriteria(_prefix, _trainSaveModulus,
numIter,this);

12 bwt.train(_alphabet.getTrainingSet(),1.0,stopper);

It is important to notice, that one can serialize3 the profile HMM after each training round, and
can run the attack based on each of these intermediate profile HMMs. This is especially useful when
many training runs are needed or one wants to evaluate the necessary number of training runs.

3Serialization is the process of converting an object into a sequence of bits in order to be stored on a storage medium
or to be transferred over the network.
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The Attack Phase takes a sequence of packets, and computes the probability of the most likely
path producing that specific sequence of packets as output in two ways. First, the probability under
the Null Model is computed (see Listing 3 line 1), and then the probability under the Learned
Model is computed (see Listing 3 line 2). The first probability states whether a randomly chosen
profile could have produced the output, and the second probability states whether the learned model
could have produced the output. Finally, the ratio of these two probabilities is returned yielding the
matching probability of the model.

Listing 3: The Attack.
1 StatePath p1 = _dynamicProgrammingMatrix.viterbi(sequence,ScoreType.NULL_MODEL);
2 StatePath p2 = _dynamicProgrammingMatrix.viterbi(sequence,ScoreType.ODDS);
3

4 return p2.getScore() / p1.getScore();

6 Results and Interpretation

In our expirement, we trained a profile HMM for each of the five phrases mentioned in Section 4. To
attack a particular phrase, ten obtained packet sequences of that phrase were matched with each of
the five profile HMMs yielding ten matching probabilities for each of the five models. We calculated
the mean value of the ten matching probabilities and used this value to decide which profile HMM
matches the phrase.

The obtained results show that our attack can identify the spoken sentences in all cases by
comparing the matching probability of the trained profile HMMs.

Figure 8 shows the result of the attack, which tests ten different packet sequences of the spoken
sentence (sentence one) with the five trained HMMs. Figure 9 depicts the result of the attack, where
ten different transmissions of sentence two were tested with the five trained HMMs.

The number of training iterations are displayed on the x-axis of the graph, and the mean of the
matching probabilities are displayed on the y-axis. The red dots correspond to the HMM trained
with transmissions of sentence one; green dots corresponds to sentence two; blue to sentence three,
and yellow to sentence four. The black dots corresponds to the HMM trained with the spoken
transmissions of sentence one.

One can observe in Figure 8 and Figure 9 that the matching probability of the correct HMM
is in all cases greater than the matching probability of the other HMMs. Even after a few training
iterations, the correct sentence can be discovered by comparing the matching probabilities of all
HMMs. This means that our attack can identify sentences out of a given set during an encrypted
VoIP conversation.

Interestingly, in Figure 8 the matching probabilities of all HMMs grow with the number of
iterations, and the difference between the matching probabilities of the correct HMM and the others
remains nearly constant. In contrast, in Figure 9 the matching probabilities form a cyclic structure,
while the difference between the matching probabilities of the correct model and the others grow.

Furthermore, it is important to notice, that the HMM trained with transmissions of the spoken
sentence does not identify the recorded version of that sentence. But there is a fundamental differ-
ence between the recorded sentence and the spoken one: The spoken sentence was uttered by male
German and Bulgarian native speakers respectively, while the recorded sentence was spoken by a
female British English speaker. This could be extended to a further topic of investigation.
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7 FUTURE WORK

Figure 8: Attack on the Uttered Sentence.

We did not find an optimal number of iterations of the Baum-Welch training algorithm. Never-
theless, the attack performs well. It is able to identify the correct phrase in all cases.

7 Future Work

The obtained results are promising and show that it is possible in general to recover words or phrases
in encrypted VoIP calls. Nevertheless, our work still forms a skeletal structure for more sophisticated
attacks against encrypted VoIP calls. This section is dedicated to possible future extension of our
work.

As already proposed in [WBC+08], it is possible to synthesize phrases out of given phonemes
in order create a larger set of training data. Hence, a further work could exploit a set of spoken
phrases S in order to generate a much larger set, namely a reasonable subset of the powerset of all
phonemes appearing in S. The attack would no more be depending on pre determined languages
and could theoretically recover all words of an encrypted call 4.

Apart from the leakage of complete words or phrases of encrypted VoIP calls, an eavesdropper
can already do harm by knowing other facts than the spoken words. Therefore, future works could
investigate if it is possible to obtain information about the age, the gender, or the language of the
speaker (cf. [WBMM]). In addition, the speech pattern of individuals could possibly leak enough
information to identify the speakers within an encrypted VoIP call.

Moreover, the robustness of our implementation needs to be investigated further. We propose
the comparison of disturbed phrases, i.e. additional noise, distorted voices, etc. By now, we are not
aware of their influence on the results.

4We emphasize that this is hardly possible in practice as the probability between matching and nonmatching words
would get very close.
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Figure 9: Attack on Sentence Two.
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A Sources

Listing 4: Main.java
1

2 package de.voipattack;
3

4 import java.io.BufferedReader;
5 import java.io.File;
6 import java.io.FileReader;
7 import java.io.IOException;
8

9 import org.biojava.bio.BioException;
10 import org.biojava.bio.dp.StatePath;
11 import org.biojava.utils.ChangeVetoException;
12

13 import de.voipattack.attack.Attack;
14 import de.voipattack.util.Logger;
15

16 public class Main {
17

18 private static Attack _attack;
19

20 public static void main(String[] args) {
21 Logger.Log("Usage voipattack -t <traindatafile" +
22 "> -s <serializationfile> -d <deserializationfile> -r <#training runs> -i

<save Interval>" +
23 " -interactive -a <attackfile1,...,attackfileX>");
24

25 String serializationFile = "";
26 String deserializationFile = "";
27 String traindataFile = "";
28 int trainingRuns = 2;
29 int saveInterval = 0;
30 boolean interactive=true;
31 String attackFiles[] = null;
32

33 if(args.length > 0){
34 interactive = false;
35 }
36 // First parse the arguments and decide whether the training data has to be read

from
37 // a textfile or a deserialization file...
38 for (int i = 0; i < args.length; i++) {
39 if (args[i].equals("-t")) {
40 if (args.length > i+1)
41 traindataFile = args[i+1];
42 } else if (args[i].equals("-s")) {
43 if (args.length > i+1)
44 serializationFile = args[i+1];
45 } else if (args[i].equals("-d")) {
46 if (args.length > i+1)
47 deserializationFile = args[i+1];
48 }else if(args[i].equals("-r")) {
49 try{
50 if (args.length > i+1)
51 trainingRuns = Integer.parseInt(args[i+1]);
52 }catch(Exception e){
53 Logger.Log("Parameter -r " + args[i+1] + " ist kein Integer");
54 }
55 }else if(args[i].equals("-i")) {
56 try{
57 if (args.length > i+1)
58 saveInterval = Integer.parseInt(args[i+1]);
59 }catch(Exception e){
60 Logger.Log("Parameter -r " + args[i+1] + " ist kein Integer");
61 }
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62 }else if (args[i].equals("-interactive")){
63 interactive = true;
64 }else if (args[i].equals("-a")){
65 try{
66 if(args.length > i+1){
67 attackFiles = args[i+1].split(",");
68 }
69 }catch(Exception e){
70 Logger.Log("attackFiles Parameter");
71 }
72 }
73 }
74

75 _attack = new Attack(serializationFile,saveInterval);
76

77 if (deserializationFile.equals("") && interactive)
78 deserializationFile = getLineFromIn("Read the model from file? Enter filename:

");
79

80 if (!deserializationFile.equals("")) {
81 File dFile = new File(deserializationFile);
82 if (!dFile.exists()) {
83 Logger.Log("<deserializationFile> : " + deserializationFile + " does not

exist!");
84 System.exit(1);
85 }
86 _attack.deSerialize(new File(deserializationFile));
87 }
88

89 if (traindataFile.equals("") && interactive)
90 traindataFile = getLineFromIn("Improve the model? Enter filename:");
91

92 if (!traindataFile.equals("")) {
93 File trainData = new File(traindataFile);
94

95 if (!trainData.exists()) {
96 Logger.Log("<traindatafile> : " + traindataFile + " does not exist!");
97 System.exit(1);
98 }
99 readTrainingDataFromFile(trainData);

100 _attack.train(trainingRuns);
101

102 if (serializationFile.equals("") && interactive)
103 serializationFile = getLineFromIn("Save the intermediate result? Enter

filename:");
104

105 if (!serializationFile.equals("")) {
106 File sf = new File(serializationFile);
107 try {
108 if (sf.exists())
109 sf.delete();
110 sf.createNewFile();
111 _attack.serialize(sf);
112 } catch (IOException e) {
113 Logger.Debug("Cannot create File", e);
114 }
115 }
116 }
117

118 Logger.Log("");
119 int i = 0;
120 while (true) {
121 File attackData = null;
122 String filename = "";
123 if (attackFiles != null && attackFiles.length > i){
124 filename = attackFiles[i];
125 i++;
126 } else if (attackFiles != null) {
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127 System.exit(0);
128 } else {
129 filename= getLineFromIn("Enter attack file or exit:");
130 }
131

132 if (filename.compareToIgnoreCase("exit") == 0)
133 System.exit(0);
134

135 if(filename != ""){
136 attackData = new File(filename);
137 attackFromFile(attackData);
138 }
139 }
140 }
141

142 private static void readTrainingDataFromFile(File theFile) {
143 BufferedReader reader;
144 try{
145 int lineCounter = 1;
146 reader = new BufferedReader(new FileReader(theFile));
147 String data = reader.readLine();
148 while (data != null){
149 _attack.addTrainingData(data);
150 data = reader.readLine();
151 lineCounter++;
152 }
153 reader.close();
154 }catch(IOException e){
155 Logger.Debug("readTrainingDataFromFile has thrown a IOException", e);
156 }
157 }
158

159

160 private static void attackFromFile(File theFile) {
161 BufferedReader reader;
162 try{
163 reader = new BufferedReader(new FileReader(theFile));
164 String data;
165 Double oddsSum = new Double(0);
166 Double probSum = new Double(0);
167 Double nullSum = new Double(0);
168 int num = 0;
169 while ((data = reader.readLine()) != null) {
170 if (!data.equals("")) {
171 try {
172 StatePath oddsPath = _attack.viterbiOdds(data);
173 StatePath probabilityPath = _attack.viterbiProbability(data);
174 StatePath nullPath = _attack.viterbyNull(data);
175 oddsSum += oddsPath.getScore();
176 probSum += probabilityPath.getScore();
177 nullSum += nullPath.getScore();
178 Logger.Log("Attack ("+ ++num + "):");
179 Logger.Log("Odds: "+ oddsPath.getScore());
180 Logger.Log("Probability: "+ probabilityPath.getScore());
181 Logger.Log("Null: "+ nullPath.getScore());
182 Logger.Log("");
183 } catch (ChangeVetoException e) {
184 Logger.Debug("readTrainingDataFromFile has thrown a

ChangeVetoException: " + data, e);
185 } catch (BioException e) {
186 Logger.Debug("readTrainingDataFromFile has thrown a BioException:

line " + data, e);
187 }
188 }
189 }
190 oddsSum /= num;
191 probSum /= num;
192 nullSum /= num;
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193 Logger.Log("-----------------------");
194 Logger.Log("Mean Odds = " + oddsSum.toString());
195 Logger.Log("Mean Prob = " + probSum.toString());
196 Logger.Log("Mean Null = " + nullSum.toString());
197 Double d = new Double(oddsSum / nullSum);
198 Logger.Log("Mean Odds/Null = " + d.toString());
199 Logger.Log("-----------------------");
200

201 reader.close();
202 } catch(IOException e){
203 Logger.Debug("readTrainingDataFromFile has thrown a IOException", e);
204 }
205 }
206

207 private static String getLineFromIn(String message) {
208 String line = "";
209 Logger.Log(message);
210 int i = 0;
211 try {
212 while ((i = System.in.read()) > 0) {
213 Character c = (char) i;
214 if (c.equals(’\n’) || c.equals(’\r’)){
215 break;
216 } else {
217 line += c;
218 }
219 }
220 } catch (IOException e) {
221 Logger.Debug("Main.getLineFromIn(" + message + ")", e);
222 }
223 return line;
224 }
225

226 }

Listing 5: Attack.java
1

2 package de.voipattack.attack;
3

4 import java.io.File;
5

6 import java.util.ArrayList;
7

8 import org.biojava.bio.BioException;
9 import org.biojava.bio.dist.DistributionFactory;

10 import org.biojava.bio.dp.BaumWelchTrainer;
11 import org.biojava.bio.dp.DP;
12 import org.biojava.bio.dp.DPFactory;
13 import org.biojava.bio.dp.IllegalTransitionException;
14 import org.biojava.bio.dp.ModelTrainer;
15 import org.biojava.bio.dp.ProfileHMM;
16 import org.biojava.bio.dp.ScoreType;
17 import org.biojava.bio.dp.SimpleModelTrainer;
18 import org.biojava.bio.dp.StatePath;
19 import org.biojava.bio.symbol.IllegalAlphabetException;
20 import org.biojava.bio.symbol.IllegalSymbolException;
21 import org.biojava.bio.symbol.SymbolList;
22

23 import de.voipattack.biojava.AttackSerializer;
24 import de.voipattack.biojava.CylcleStoppingCriteria;
25 import de.voipattack.biojava.PacketAlphabet;
26 import de.voipattack.util.Logger;
27

28 public class Attack {
29 ProfileHMM _profileHMM = null;
30 ProfileHMM _randomHMM = null;
31 DP _dynamicProgrammingMatrix = null;
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32 PacketAlphabet _alphabet = null;
33 String _prefix;
34 int _trainSaveModulus;
35

36 ArrayList<String> _trainingsData = null;
37

38 public Attack(String prefix, int trainSaveModulus) {
39 Logger.Log("Attack (" + prefix + ", " + trainSaveModulus + ")");
40 _trainingsData = new ArrayList<String>();
41 _prefix = prefix;
42 _trainSaveModulus = trainSaveModulus;
43 }
44

45 private ProfileHMM getRandomHMM() {
46 if (_randomHMM == null) {
47 try {
48 _randomHMM = new ProfileHMM( _alphabet.getAlphabet(), _alphabet.

getAveragePacketNumbers(), DistributionFactory.DEFAULT, DistributionFactory.
DEFAULT, "Random");

49 ModelTrainer mt = new SimpleModelTrainer();
50 //register the model to train
51 mt.registerModel(_profileHMM);
52 //as no other counts are being used the null weight will cause everything to be

uniform
53 mt.setNullModelWeight(1.0);
54 mt.train();
55 } catch (IllegalSymbolException e) {
56 e.printStackTrace();
57 } catch (IllegalTransitionException e) {
58 e.printStackTrace();
59 } catch (IllegalAlphabetException e) {
60 e.printStackTrace();
61 }
62 }
63 return _randomHMM;
64 }
65

66 public void addTrainingData(String data) {
67 if (_alphabet == null) {
68 _trainingsData.add(data);
69 } else {
70 _alphabet.addTainingsData(data);
71 }
72 Logger.Log("Attack.addTrainingData(" + data + ").");
73 }
74

75 public void train(int numIter) {
76 if (_profileHMM == null) {
77 _alphabet = new PacketAlphabet(_trainingsData);
78 _trainingsData.clear();
79 // compute number of match-states as average of all trainingdata..
80 Logger.Log("Attack.train() : numStates = " + _alphabet.getAveragePacketNumbers() + "

.");
81

82 String pHmmName = "profileHmm";
83 try {
84 _profileHMM = new ProfileHMM( _alphabet.getAlphabet(), _alphabet.

getAveragePacketNumbers(), DistributionFactory.DEFAULT, DistributionFactory.
DEFAULT, pHmmName);

85 _dynamicProgrammingMatrix = DPFactory.DEFAULT.createDP(_profileHMM);
86 } catch (IllegalArgumentException e) {
87 Logger.Debug("Attack.train() : creating profileHMM and dynamic programming matrix"

, e);
88 } catch (BioException e) {
89 Logger.Debug("Attack.train() : creating profileHMM and dynamic programming matrix"

, e);
90 }
91
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92 ModelTrainer mt = new SimpleModelTrainer();
93 //register the model to train
94 mt.registerModel(_profileHMM);
95 //as no other counts are being used the null weight will cause everything to be

uniform
96 mt.setNullModelWeight(1.0);
97 mt.train();
98 Logger.Log("Attack.train() : First training complete");
99 }

100

101 //create a BW trainer for the dp matrix generated from the HMM
102 BaumWelchTrainer bwt = new BaumWelchTrainer(_dynamicProgrammingMatrix);
103

104 //anonymous implementation of the stopping criteria interface to stop after 20
iterations

105 CylcleStoppingCriteria stopper = new CylcleStoppingCriteria(_prefix,
_trainSaveModulus, numIter,this);

106 try {
107 Logger.Log("Started Baum Welch Training (" + numIter + " rounds).");
108 bwt.train(_alphabet.getTrainingSet(),1.0,stopper);
109 Logger.Log("Finished Baum Welch Training (" + numIter + " rounds).");
110 } catch (IllegalSymbolException e) {
111 Logger.Debug("Debug.train(): training ", e);
112 } catch (BioException e) {
113 Logger.Debug("Debug.train(): training ", e);
114 }
115 }
116

117 public void serialize(File file) {
118 AttackSerializer.serialize(this, file);
119 }
120

121 public StatePath viterbiRandomOdds(String data) throws IllegalSymbolException,
IllegalArgumentException, IllegalAlphabetException, IllegalTransitionException {

122

123 DP dp = null;
124 StatePath mostLikelyPath = null;
125 try {
126 dp = DPFactory.DEFAULT.createDP(this.getRandomHMM());
127 SymbolList[] test = {_alphabet.createSymbolList(data)};
128 mostLikelyPath = dp.viterbi(test, ScoreType.ODDS);
129 } catch (BioException e) {
130 e.printStackTrace();
131 }
132 return mostLikelyPath;
133 }
134

135 public StatePath viterbiOdds(String data) throws IllegalSymbolException,
IllegalArgumentException, IllegalAlphabetException, IllegalTransitionException {

136 SymbolList[] test = {_alphabet.createSymbolList(data)};
137

138 StatePath mostLikelyPath = _dynamicProgrammingMatrix.viterbi(test, ScoreType.ODDS);
139

140 return mostLikelyPath;
141 }
142

143 public StatePath viterbiProbability(String data) throws IllegalSymbolException,
IllegalArgumentException, IllegalAlphabetException, IllegalTransitionException {

144 SymbolList[] test = {_alphabet.createSymbolList(data)};
145

146 StatePath mostLikelyPath = _dynamicProgrammingMatrix.viterbi(test, ScoreType.
PROBABILITY);

147 return mostLikelyPath;
148 }
149

150 public StatePath viterbyNull(String data) throws IllegalSymbolException,
IllegalArgumentException, IllegalAlphabetException, IllegalTransitionException {

151 SymbolList[] test = {_alphabet.createSymbolList(data)};
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152

153 StatePath mostLikelyPath = _dynamicProgrammingMatrix.viterbi(test, ScoreType.
NULL_MODEL);

154 return mostLikelyPath;
155 }
156

157 public void deSerialize(File file) {
158 AttackSerializer.deserialize(this, file);
159 }
160

161 public PacketAlphabet getPacketAlphabet() {
162 return _alphabet;
163 }
164

165 public ProfileHMM getProfileHMM() {
166 return _profileHMM;
167 }
168

169 public void setProfileHMM(ProfileHMM profileHMM) {
170 _profileHMM = profileHMM;
171 }
172

173 public void setDP(DP dynamicProgrammingMatrix) {
174 _dynamicProgrammingMatrix = dynamicProgrammingMatrix;
175 }
176

177 public void setAlphabet(PacketAlphabet alphabet) {
178 _alphabet = alphabet;
179 }
180 }

Listing 6: AttackSerializer.java
1

2 package de.voipattack.biojava;
3

4 import java.io.File;
5 import java.io.FileInputStream;
6 import java.io.FileOutputStream;
7 import java.io.IOException;
8 import java.io.ObjectInputStream;
9 import java.io.ObjectOutputStream;

10

11 import org.biojava.bio.BioException;
12 import org.biojava.bio.dp.DP;
13 import org.biojava.bio.dp.DPFactory;
14 import org.biojava.bio.dp.ProfileHMM;
15

16 import de.voipattack.attack.Attack;
17 import de.voipattack.util.Logger;
18

19 public class AttackSerializer {
20 public static void serialize(Attack attack, File file) {
21 try {
22 Logger.Log("Attack.serialize(): started");
23 FileOutputStream fos = new FileOutputStream(file);
24 ObjectOutputStream out = new ObjectOutputStream(fos);
25 out.writeObject(attack.getProfileHMM());
26 out.writeObject(attack.getPacketAlphabet());
27 out.close();
28 Logger.Log("Attack.serialize(): Successful!");
29 } catch (IOException e) {
30 Logger.Debug("Attack.serialize(): Serialize the dp", e);
31 }
32 }
33

34 public static void deserialize(Attack attack, File file) {
35 try {
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36 Logger.Log("Attack.deSerialize(): started");
37 FileInputStream fos = new FileInputStream(file);
38 ObjectInputStream in = new ObjectInputStream(fos);
39 ProfileHMM profileHMM = (ProfileHMM) in.readObject();
40 DP dynamicProgrammingMatrix = DPFactory.DEFAULT.createDP(profileHMM);
41 PacketAlphabet alphabet = (PacketAlphabet) in.readObject();
42 in.close();
43 Logger.Log("Attack.deSerialize(): Successful!");
44

45 attack.setProfileHMM(profileHMM);
46 attack.setDP(dynamicProgrammingMatrix);
47 attack.setAlphabet(alphabet);
48 } catch (IOException e) {
49 Logger.Debug("Attack.deSerialize(): deSerialize the dp", e);
50 } catch (ClassNotFoundException e) {
51 Logger.Debug("Attack.deSerialize(): deSerialize the dp", e);
52 } catch (IllegalArgumentException e) {
53 Logger.Debug("Attack.deSerialize(): deSerialize the dp", e);
54 } catch (BioException e) {
55 Logger.Debug("Attack.deSerialize(): deSerialize the dp", e);
56 }
57

58 }
59 }

Listing 7: CylcleStoppingCriteria.java
1

2 package de.voipattack.biojava;
3

4 import java.io.File;
5

6 import org.biojava.bio.dp.BaumWelchTrainer;
7 import org.biojava.bio.dp.StoppingCriteria;
8 import org.biojava.bio.dp.TrainingAlgorithm;
9

10 import de.voipattack.attack.Attack;
11 import de.voipattack.util.Logger;
12

13 public class CylcleStoppingCriteria implements StoppingCriteria{
14 private int _numCycle;
15 private int _saveModCount;
16 private String _prefix;
17 private Attack _attack;
18

19 public CylcleStoppingCriteria(String prefix, int saveModCount, int numCycle, Attack
attack) {

20 _numCycle = numCycle;
21 _prefix = prefix;
22 _saveModCount = saveModCount;
23 _attack = attack;
24 }
25

26 public boolean isTrainingComplete(TrainingAlgorithm ta) {
27 if ((_saveModCount > 0) && (!_prefix.equals("")) && (ta.getCycle() % _saveModCount ==

0)) {
28 AttackSerializer.serialize(_attack, new File( _prefix + ta.getCycle() + ".model"));
29 }
30 Logger.Log("CycleStoppingCriteria : (" + ta.getCycle() + "/" + _numCycle + ")");
31 return (ta.getCycle() >= _numCycle);
32 }
33

34 }

Listing 8: PacketAlphabet.java
1
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2 package de.voipattack.biojava;
3

4 import java.io.Serializable;
5 import java.util.ArrayList;
6 import java.util.HashMap;
7 import java.util.HashSet;
8 import java.util.Iterator;
9 import java.util.Set;

10

11 import org.biojava.bio.Annotation;
12 import org.biojava.bio.BioException;
13 import org.biojava.bio.SimpleAnnotation;
14 import org.biojava.bio.seq.Sequence;
15 import org.biojava.bio.seq.db.HashSequenceDB;
16 import org.biojava.bio.seq.db.IllegalIDException;
17 import org.biojava.bio.seq.db.SequenceDB;
18 import org.biojava.bio.seq.impl.SimpleSequenceFactory;
19 import org.biojava.bio.symbol.AlphabetManager;
20 import org.biojava.bio.symbol.FiniteAlphabet;
21 import org.biojava.bio.symbol.IllegalSymbolException;
22 import org.biojava.bio.symbol.SimpleAlphabet;
23 import org.biojava.bio.symbol.SimpleSymbolList;
24 import org.biojava.bio.symbol.Symbol;
25 import org.biojava.bio.symbol.SymbolList;
26 import org.biojava.utils.ChangeVetoException;
27

28 import de.voipattack.util.Logger;
29

30 public class PacketAlphabet implements Serializable{
31 private static final long serialVersionUID = 8804321526083471878L;
32

33 private FiniteAlphabet _alpha = null;
34 SequenceDB _trainingSet = null;
35 private int _averagePacketNumber = 0;
36 HashMap<String, Symbol> _symbols = new HashMap<String, Symbol>();
37

38 @SuppressWarnings("unchecked")
39 public PacketAlphabet(ArrayList<String>traindata) {
40 ArrayList<ArrayList<Symbol> > symbollist = new ArrayList<ArrayList<Symbol>>();
41 int sum = 0;
42

43 for (String data : traindata) {
44 String packets[] = data.split(" ");
45

46 sum += packets.length;
47 ArrayList<Symbol> sList = new ArrayList<Symbol>();
48 for (String packet : packets) {
49 String size = "";
50 if (packet.contains(",")) {
51 size = packet.split(",")[1];
52 } else {
53 size = packet;
54 }
55 if (!size.equals("")) {
56 Integer sizei = Integer.parseInt(size);
57 Symbol s = new PacketSymbol(sizei, Annotation.EMPTY_ANNOTATION);
58 if (_symbols.containsKey(sizei.toString())) {
59 s = _symbols.get(sizei.toString());
60 } else {
61 _symbols.put(sizei.toString(), s);
62 }
63 // assuming hash set does not have any double entries.
64 sList.add(s);
65 }
66 }
67 symbollist.add(sList);
68 }
69
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70 _averagePacketNumber = sum / traindata.size();
71 Set symbolSet = new HashSet<Symbol>();
72 for (Symbol s : _symbols.values()) {
73 symbolSet.add(s);
74 }
75 _alpha = new SimpleAlphabet(symbolSet, "PacketAlphabet");
76

77 //iterate through the symbols to show everything works
78 String log = "Alphabet created : ( ";
79 for (Iterator i = _alpha.iterator(); i.hasNext(); ) {
80 Symbol sym = (Symbol)i.next();
81 if (i.hasNext())
82 log += sym.getName() + ", ";
83 else
84 log += sym.getName();
85 }
86 Logger.Log(log + ").");
87

88 AlphabetManager.registerAlphabet("PacketAlphabet", _alpha);
89 _trainingSet = new HashSequenceDB();
90 SimpleSequenceFactory factory = new SimpleSequenceFactory();
91

92 for (ArrayList<Symbol> sList : symbollist) {
93 try {
94 SimpleSymbolList ssl = new SimpleSymbolList(_alpha, sList);
95 Sequence s = factory.createSequence( ssl, "", ssl.seqString(), new

SimpleAnnotation());
96 _trainingSet.addSequence(s);
97 } catch (IllegalSymbolException e) {
98 Logger.Debug("PacketAlphabet", e);
99 } catch (IllegalIDException e) {

100 Logger.Debug("PacketAlphabet", e);
101 } catch (ChangeVetoException e) {
102 Logger.Debug("PacketAlphabet", e);
103 } catch (BioException e) {
104 Logger.Debug("PacketAlphabet", e);
105 }
106 }
107 }
108

109 public SequenceDB getTrainingSet() {
110 return _trainingSet;
111 }
112

113 public FiniteAlphabet getAlphabet() {
114 return _alpha;
115 }
116

117 public int getAveragePacketNumbers() {
118 return _averagePacketNumber;
119 }
120

121 public SymbolList createSymbolList(String data) throws IllegalSymbolException {
122 String packets[] = data.split(" ");
123

124 ArrayList<Symbol> sList = new ArrayList<Symbol>();
125 for (String packet : packets) {
126 String size = "";
127 if (packet.contains(",")) {
128 size = packet.split(",")[1];
129 } else {
130 size = packet;
131 }
132 Integer sizei = Integer.parseInt(size);
133 if (_symbols.containsKey(sizei.toString()))
134 sList.add( _symbols.get(sizei.toString()));
135 else
136 throw new IllegalSymbolException("The symbol ’" + size + "’ was not in the
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Alphabet!");
137 }
138 return new SimpleSymbolList(_alpha, sList);
139 }
140

141 public void addTainingsData(String data) {
142 try {
143 SymbolList l = createSymbolList(data);
144 Sequence s = new SimpleSequenceFactory().createSequence( l, "", data, new

SimpleAnnotation());
145 _trainingSet.addSequence(s);
146 } catch (IllegalSymbolException e) {
147 Logger.Debug("PacketAlphabet.addTrainingsdata(" + data + ").", e);
148 } catch (IllegalIDException e) {
149 Logger.Debug("PacketAlphabet.addTrainingsdata(" + data + ").", e);
150 } catch (ChangeVetoException e) {
151 Logger.Debug("PacketAlphabet.addTrainingsdata(" + data + ").", e);
152 } catch (BioException e) {
153 Logger.Debug("PacketAlphabet.addTrainingsdata(" + data + ").", e);
154 }
155 }
156 }

Listing 9: PacketSymbol.java
1

2 package de.voipattack.biojava;
3

4 import org.biojava.bio.Annotation;
5 import org.biojava.bio.symbol.FundamentalAtomicSymbol;
6

7

8 public class PacketSymbol extends FundamentalAtomicSymbol {
9 private static final long serialVersionUID = -42925484312330097L;

10

11 public PacketSymbol(Integer num, Annotation annotation) {
12 super(num.toString(), annotation);
13 }
14 @Override
15 public boolean equals(Object obj) {
16 return (obj instanceof PacketSymbol) ? this.getName().equals(((PacketSymbol) obj).

getName()) : false;
17 }
18

19 @Override
20 public int hashCode() {
21 return getName().hashCode();
22 }
23 }

Listing 10: Logger.java
1

2 package de.voipattack.util;
3

4 import java.io.PrintStream;
5 import java.text.SimpleDateFormat;
6 import java.util.Date;
7

8 public class Logger {
9 public enum LogLevel {LOW, MIDDLE, HIGH};

10

11 private static PrintStream _errStream;
12 private static PrintStream _outStream;
13 private static SimpleDateFormat _format;
14

15 static {
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16 _errStream = System.err;
17 _outStream = System.out;
18 _format = new SimpleDateFormat("hh:mm:ss");
19 }
20

21 public static void Debug(Exception e) {
22 Logger.Debug("", e);
23 }
24

25 public static void Debug(String message, Exception e) {
26 Logger.Debug(message, LogLevel.HIGH, e);
27 }
28

29 public static void Debug(String message, LogLevel dl, Exception e) {
30 if (_errStream != null) {
31 _errStream.println("Debug (" + _format.format(new Date()) + "): " + message);
32 _errStream.println(e.getMessage());
33 _errStream.println();
34 }
35 }
36

37 public static void Log(String message) {
38 Logger.Log(message, LogLevel.LOW);
39 }
40

41 public static void Log(String message, LogLevel dl) {
42 if (_outStream != null)
43 _outStream.println("Log (" + _format.format(new Date()) + "): " + message);
44 }
45

46 public static void setOutStrem(PrintStream stream) {
47 _outStream = stream;
48 }
49

50 public static void setErrStream(PrintStream stream) {
51 _errStream = stream;
52 }
53 }
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