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Abstract—Compress-and-Forward is a protocol for transmis-
sion over relay networks in which the relay forwards a com-
pressed version of the signal it observes. The compression method
used by the relay is source coding with side information, i.e.
Wyner-Ziv coding, since the destination can use the signal it
receives directly from the source as side information.

This paper addresses the case of a wireless relay network with
orthogonal transmissions from the source and the relay termi-
nals; we show that when the transmitters have no instantaneous
channel state information the optimal compression parameters
often make Wyner-Ziv coding reduce to conventional source
compression, i.e. compression that does not take into account
the side information available at the destination.

This result simplifies the implementation of the CF protocol in
the case we consider, since it shows that in several situations one
can use more convenient compression methods without significant
performance loss.

I. INTRODUCTION

Communication in a wireless network can be improved by

letting the terminals cooperate. Cooperation helps providing

diversity, can enable higher transmission rates and offer a

better coverage. These promises of cooperation have drawn

a lot of interest and research in recent years; contributions

most related to this paper are [1]–[3].

Three relaying techniques are at the core of cooperative

communication. The first typical approach is to make the relay

decode, re-encode and forward the signal; this is the so-called

Decode-and-Forward (DF) strategy. The second approach con-

sists in making the relay simply amplify the signal it receives

and forward it to the destination; this is the Amplify-and-

Forward (AF) technique. And finally, in the third approach

the relay compresses the signal it receives, then encodes

compressed version and sends it to the destination; this is

termed Compress-and-Forward (CF).

This paper considers a hybrid protocol using DF when the

relay can decode successfully, and CF otherwise. The focus is

on the CF part of the protocol.

In the CF technique, Wyner-Ziv coding is used by the relay

because the destination uses the signal received directly from

the source as side information [4], [5]. A practical CF strategy

with Wyner-Ziv coding is presented in [6], for fixed channels
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Fig. 1. Relay network and geometric configuration.

known to all terminals. However other contributions as [7]

have simplified the protocol by using, instead of Wyner-Ziv

coding, conventional source compression that does not take

into account the side information available at destination.

In this work we investigate Wyner-Ziv coding in the case

of fading channels unknown to the transmitters and observe

that, in certain conditions, the compression parameters mini-

mizing outage make Wyner-Ziv coding reduce to conventional

source compression. The importance of this observation is that

conventional source compression is simpler than Wyner-Ziv

coding, that many CF schemes developed in the literature have

adopted conventional source compression, and that the situa-

tions for which conventional source compression is optimal

can be rather frequent.

The paper is organized as follows. The system model, the

protocol used and the relevant information theoretic quantities

are presented in II. Section III seeks the optimal compres-

sion parameters and section IV presents an upper bound on

the probability that the optimal compression method would

effectively be Wyner-Ziv. Section V illustrates the results and

section VI concludes the paper.

II. SYSTEM MODEL

We consider a simple wireless relay network consisting

of a source terminal, a relay and a destination as in fig. 1.

Transmissions suffer from frequency-flat block-fading and

additive noise, which is deemed appropriate for a narrow-band

low-mobility scenario.

A. Medium Access

The relay operates in half-duplex mode, to get round the

technical difficulty of receiving and transmitting at the same

time in the same frequency band. Moreover, in order to keep



the receiver at the destination simple, we allocate orthogonal

channels to the source and the relay. Bandwidth and time are

equally shared out among these.

Instantaneous channel state information (CSI) is available

at the receivers, whereas the transmitters can obtain and use

average CSI only.

B. Transmission models

We model the transmissions by their discrete-time baseband

equivalent models. The sequence Xs transmitted by the source

is received by the relay and the destination as, respectively:

Ysr = hsrXs + Zsr (1)

Ysd = hsdXs + Zsd (2)

and is followed by the transmission of a sequence Xr from

the relay to the destination, which receives

Yrd = hrdXr + Zrd. (3)

The input sequences Xs and Xr are codewords of length

n/2. We choose to use a random code with complex Gaussian

symbols, thus all elements of these sequences are mutually

independent, identically distributed (i.i.d.) with zero mean and

variances Ps and Pr respectively. We write the code rates Rs

and Rr respectively. The factors hij are the channel fading

coefficients from terminal i to terminal j and the Zij are

sequences of additive noise, with i ∈ {s, r}, j ∈ {r, d}.

Statistically, we model the hij and Zij as zero-mean, mu-

tually independent, circularly symmetric complex Gaussian

random variables. The noise samples in Zij have a variance

normalized to Nij = 1. Finally, we also define the shorthand

notations γsj = |hsj |
2 Ps and γrd = |hrd|

2 Pr. Given the

modelization above, these are exponential random variables

with mean σ2
ij , E[|hij |

2]Pi.

C. Cooperation protocol

Our cooperation protocol extends over two slots; the source

transmits in the first slot and the relay forwards in the second

one. The processing at the relay depends on the quality of the

signal received from the source. If the relay is able to decode

the signal, it forwards it using DF, otherwise it uses CF. The

reason for using this hybrid strategy is to focus our analysis of

the CF protocol only on situations in which DF is not possible.

Achievable rates with these protocols were derived in [4];

in the following we present them for the particular case of

Gaussian orthogonal relay channel.

1) DF protocol: If the relay is able to decode Xs from

Ysr, that is when

Rs ≤ log2(1 + γsr), (4)

then the DF protocol is used and the sequence Xr is taken

from a code with rate Rr = Rs and length n/2. The

destination jointly decodes the signals from the source and

the relay. Achievable spectral efficiencies R for the whole

cooperative transmission are those satisfying the constraint

R ≤ log2 ((1 + γsd)(1 + γrd)) . (5)

Note that we obviously have Rs = Rr = 2R.

2) CF protocol: When the relay cannot decode the signal

from the source it uses the CF protocol. In this protocol

the relay performs Wyner-Ziv coding, i.e. it compresses the

sequence Ysr and sends a corresponding codeword Xr; then

the destination calculates the estimates Ŷsr using Xr as well

as the sequence Ysd from the source as side information.

The level of compression of Ŷsr is controlled by two

parameters, namely the code rate Rr chosen for the forwarding

on the relay-to-destination channel and the quantization noise

variance Nq. With our Gaussian assumptions on the channels

and their inputs, and with compression of Ysr so as to

minimize the mean square error on the estimates Ŷsr, these

can be modeled as

Ŷsr = Ysr + Zq, (6)

where Zq is a sequence of i.i.d. circularly symmetric complex

Gaussian quantization noise samples of variance Nq.

At the destination, the receiver first considers Yrd and tries

to decode Xr. The event C of correct decoding is given by

C : Rr ≤ log2(1 + γrd). (7)

Then, from Xr and Ysd the receivers tries to obtain Ŷsr; the

event D of correct decompression is written

D : Rr ≥ log2

(

1 +
1 + γsr

1+γsd

Nq

)

. (8)

If both C and D occur, the achievable spectral efficiencies for

the cooperative transmission are those satisfying

R ≤
1

2
log2

(

1 + γsd +
γsr

1 + Nq

)

, ICF . (9)

Otherwise the signal from the relay is unusable and the

destination uses the signal from the source only; the achievable

rates are then limited to

R ≤
1

2
log2 (1 + γsd) , Isd. (10)

D. Comments on the compression

We give here some comments on the constraint (8) that links

the compression parameters Nq and Rr.

First, the range of appropriate Rr for a given Nq extends

as follows:

log2

(

1 +
1

Nq

)

≤ Rr ≤ log2

(

1 +
1 + γsr

Nq

)

, (11)

where the limits correspond to the cases where γsd would

be, respectively, very large or equal to 0. The relay can thus

choose any Rr in this range, depending on the assumption it

makes on the (unknown) γsd.

Second, the most conservative choice of Rr, i.e. the upper

limit in (11), reduces to using conventional source compression

at the relay instead of Wyner-Ziv coding: decompression is

possible (i.e. (8) is satisfied) whatever the value of γsd. In the

sequel we show that this most conservative choice of Rr is

often optimal in usual configurations.



III. OPTIMAL PARAMETERS FOR CF

A relay using CF has to choose the values of the parameters

Rr and Nq. This can be done on a frame-by-frame basis after

reception of Ysr, to take advantage of the knowledge of γsr.

This section addresses the calculation of these optimal

parameters so as to minimize the outage probability for known

γsr. This outage probability is developed in subsection III-A;

then the optimal value of Rr for fixed Nq is derived in

subsection III-B. Finding the optimal Nq however, has to be

done numerically.

A. Outage probability

In the CF case, an outage event occurs when either (9)

or (10) are not satisfied, depending on whether the events

C and D occur. More precisely, if the decoding fails (C̄),

or if it succeeds but the decompression fails (C, D̄), the

appropriate constraint on the spectral efficiency is (10); if both

decoding and decompression succeed (C,D) then (9) is the

right constraint. This yields the following decomposition of

the outage probability for a spectral efficiency R and given

γsr:

Pout(R|γsr) (12)

= P (R > ICF |C,D, γsr) · P (D|C, γsr)P (C|γsr)

+ P (R > Isd) ·
(

P (C̄|γsr) + P (D̄|C, γsr)P (C|γsr)
)

The probabilities appearing in (12) are:

• The probability of not satisfying the rate constraint (9),

given that the destination has been able to decode and

decompress the signal from the relay:

P (R > ICF |C,D, γsr)

= 1 − exp

(

−1

σ2
sd

(

22R − 1 −
γsr

1 + Nq

))

. (13)

This is valid only if Nq > γsr

22R
−1

− 1; this inequality

always holds since we use CF only when the relay is not

able to decode, thus when the right-hand member of the

inequality is negative.

• The probability of not satisfying the rate constraint (10):

P (R > Isd) = 1 − exp

(

−
22R − 1

σ2
sd

)

. (14)

• The probability of successfully decoding the signal from

the relay:

P (C|γsr) = exp

(

−
2Rr − 1

σ2
rd

)

. (15)

• And finally the probability of successfully decompressing

the signal from the relay:

P (D|C, γsr) = exp

(

−1

σ2
sd

(

γsr

(2Rr − 1)Nq − 1
− 1

))

(16)

which is valid for pairs (Rr, Nq) satisfying (11).

B. Code rate Rr minimizing outage

This section addresses the optimal choice of the relay code

rate Rr. For fixed Nq, an analytical expression of the optimal

Rr is obtained by simply finding the zero of the partial

derivative of (12) with respect to Rr.

The partial derivative ∂Pout

∂Rr
, not explicitely written here due

to lack of space, can be transformed into a polynomial function

of the variable 2Rr after several simplifications that conserve

its zeros and its sign. This polynomial is

22RrN2
q − 2Rr2Nq(Nq + 1) + (Nq + 1)2 −Nq

γsrσ
2
rd

σ2
sd

. (17)

For Nq <
γsrσ2

sd

σ2

rd

the polynomial (17) has one root in the

range (11), equal to

R⋆
r(Nq) = log2

(

1 +
1

Nq

(

1 +

√

Nqσ2
rdγ

2
sr

σ2
sd

))

. (18)

This root corresponds to a minimum of the probability of

outage, as can be seen from (17).

On the contrary if Nq ≥
γsrσ2

sd

σ2

rd

, the polynomial (17)

is negative for all Rr in (11), thus the outage probability

decreases for increasing Rr. The optimal Rr is then the largest

Rr allowed by (11), i.e.

R⋆
r(Nq) = log2

(

1 +
1 + γsr

Nq

)

. (19)

Among these two solutions, (18) corresponds to Wyner-Ziv

coding, whereas (19) uses conventional source compression.

C. Quantization noise variance Nq minimizing outage

The optimal solution for Rr can be substituted in the

outage probability (12), which can then be minimized over Nq.

There is however no explicit expression for the optimal value

of Nq, so that one has to resort to numerical optimization.

Furthermore, the outage probability is not convex in Nq, even

if we have never observed any case in which there are multiple

local minima. After a thorough examination of the function,

we conjecture the following:

Conjecture 1: The outage probability (12) has only one

minimum, that we write (R⋆
r(N

⋆
q ), N⋆

q ).

IV. BOUND ON THE USAGE OF WYNER-ZIV CODING

The aim of this section is to assess how often the optimal

compression parameters (R⋆
r(N

⋆
q ), N⋆

q ) correspond to Wyner-

Ziv coding, and to conventional source compression.

To do so, we first observe the derivative dPout

dNq
at the border

between the regions of Wyner-Ziv coding and conventional

source compression, i.e. for Nq =
γsrσ2

sd

σ2

rd

. The sign of this

derivative tells on which side the Nq minimizing outage is,

and thus which compression method is optimal. From this

observation, we identify a range of values of γsr in which the

optimal solution N⋆
q never corresponds to Wyner-Ziv coding.

Finally this yields an upper bound on the usage of Wyner-Ziv

coding.



We start with the outage probability for values of Nq <
γsrσ2

sd

σ2

rd

, and substitute the corresponding optimal Rr given

by (18). The derivative dPout

dNq
can be transformed into the

following function, after several simplifications not detailed

here that conserve its zeros and its sign:

[

exp

(

−γsr

σ2
sd(1 + Nq)

)

− 1

]









1 +

√

σ2

rd
γsr

σ2

sd

Nq

σ2
rdN

2
q









+
γsr

σ2
sd(1 + Nq)2

(20)

Assuming that conjecture 1 holds, the value of (20) when

Nq gets close to the border of the Wyner-Ziv region, i.e. for

Nq →
γsrσ2

sd

σ2

rd

, tells in which region the optimal Nq lies:

• If (20) is positive, then dPout

dNq
> 0 and the minimum N⋆

q

is such that N⋆
q <

γsrσ2

sd

σ2

rd

. In that case the relay uses

Wyner-Ziv coding.

• If (20) is negative or zero, then N⋆
q >

γsrσ2

sd

σ2

rd

and the

relay uses conventional source compression.

We now find a value γ̂sr such that for every γsr ∈ [0, γ̂sr]
the outage probability is minimized with conventional source

compression. An upper-bound of (20) is obtained by using

e−x ≤ 1−x+ x2

2
. After substituting Nq =

γsrσ2

sd

σ2

rd

, the function

can be transformed into the following second-order polynomial

in γsr:

γ2
sr

(

1 +
σrd2

2σ6
sd

−
1

σ2
sd

)

+γsr

(

−
σ2

rd

σ4
sd

+
σ2

rd

2σ6
sd

−
1

σ2
sd

)

−
σ2

rd

σ4
sd

.

(21)

Conventional source compression is always used when this

polynomial is negative, this happens:

• If the coefficient of the first term is negative, since in

that case one can check that the polynomial is negative

for every γsr.

• If the coefficient of the first term is positive, the poly-

nomial is convex and has one positive root written γ̂sr.

The polynomial is negative for γsr ∈ [0, γ̂sr] thus

conventional source compression is always used in that

range of γsr.

Now we can calculate an upper-bound on the usage of

Wyner-Ziv coding. As discussed above, Wyner-Ziv is never

used if γsr < γ̂sr, and CF in general is never used if

γsr ≥ 22R − 1. Thus, at most, CF with Wyner-Ziv coding can

be used for γsr ∈ [γ̂sr, 2
2R − 1[. The statistics of the source-

to-relay channel then determine how often this happens. This

yields the following upper bound on the probability of using

Wyner-Ziv compress-and-forward:

P (γ̂sr < γsr < 22R−1) = exp

(

−
γ̂sr

σ2
sr

)

−exp

(

−
22R − 1

σ2
sr

)

.

(22)

Note that increasing the rate R does not change the lower limit

of the Wyner-Ziv region γ̂sr but increases the upper limit; thus

Wyner-Ziv coding is more often used for higher rates R.

V. SIMULATIONS AND DISCUSSION

This section illustrates the results developed above with an

investigation of the usage of Wyner-Ziv coding for several

choices of the transmission powers and spectral efficiency. We

show that for low or moderate spectral efficiencies R, being

limited to conventional source compression does not have a

significant impact on the outage probability.

The relay network is depicted in fig. 1: all three terminals

are lined up, the relay is at a distance d from the source and the

distance between the source and the destination is normalized

to 1. Path loss between the terminals determines the power

levels at the receivers. With a path loss exponent chosen equal

to α = 3.5 we have σ2
sd = Ps, σ2

sr = Ps/dα and σ2
rd =

Pr/(1 − d)α.

The relay uses DF if it is able to decode, otherwise it uses

CF. The parameters of CF are optimized, and correspond either

to Wyner-Ziv coding or to conventional source compression.

Based on the results of section IV, we evaluate for each

position d of the relay the percentage of situations in which

DF and CF are used; then among situations requiring CF,

we evaluate the upper bound (22) on the proportion of them

requiring Wyner-Ziv coding.

Figure 2 presents three situations with different spectral

efficiencies R = 0.5, 1 and 2 b/s/Hz respectively, with a

choice of transmission powers Ps and Pr such that the overall

outage probability is below or around 10−2 in each case. The

upper sub-graphs show the usage of each CF method as a

function of the position of the relay d, both theoretically (filled

areas) or as observed in Monte-Carlo simulations (crosses +

and ×). Lower sub-graphs show the corresponding outage

probability as obtained by simulation. The dashed curves are

obtained when limiting the optimization of relay parameters

to conventional source compression.

In figure 2(a), for R = 0.5 b/s/Hz and Ps = Ps = 10
J/symbol, the optimal compression method is almost never

Wyner-Ziv coding (usage in less than 0.02 % of the frames

at its maximum). Note that this case corresponds to Rs = 1
b/s/Hz. Figure 2(b) shows that for R = 1 b/s/Hz and Ps =
Ps = 25 J/symbol, Wyner-Ziv is used in up to 1 % of the

cases, for some positions of the relay. However, the outage

curves show that forcing the use of conventional compression

instead of Wyner-Ziv coding does barely have any impact on

the outage. Finally, figure 2(c) shows that for R = 2 b/s/Hz

and Ps = Ps = 100 J/symbol, Wyner-Ziv coding is more often

used and brings a performance gain.

These results highlight first that Wyner-Ziv is beneficial

only if the source-to-relay and source-to-destination signals

are received with a good signal-to-noise ratio, so that their

correlation can be exploited. For the same reason, we have

seen in section IV that Wyner-Ziv coding is used only if γsr

is larger than a threshold γ̂sr , whereas conventional source

compression is used for smaller values of γsr.

Second, these results show that the use of Wyner-Ziv coding

decreases when the relay gets close to the destination; this is

because the rate Rr can be chosen large since the relay-to-

destination channel is expected to be strong. The availability
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Fig. 2. Usage of the CF protocols for three different sets of parameters. In (a),
optimal compression does almost never require Wyner-Ziv (usage lower than
0.02%). In (b), Wyner-Ziv coding is optimal for up to 1% of the frames, but
using conventional source compression instead does barely have any impact
on the outage (dotted curve in lower graph). In (c), Wyner-Ziv coding is more
often used and not using it has an impact on the outage.

of a high transmission rate Rr makes Wyner-Ziv coding less

appealing.

Our final comments concern the fundamental reasons in the

CF coding scheme for the behavior observed above. First, as

opposed to AF and DF, CF does not use a joint decoding

of the signals from the source and the relay. The destination

has instead to decode successively the signal from the relay,

then the signal from the source. The performance gain is

thus limited by the success of the transmission on the point-

to-point relay-to-destination channel. Second, for obtaining a

significant gain when using Wyner-Ziv coding the relay must

be confident that the side information, i.e. the direct source-

to-destination signal, has a good signal-to-noise ratio. This

causes the success of the decompression at the reception to be

dependent on the point-to-point source-to-destination signal.

And finally, since in our case the signal to compress at the

relay is Gaussian, the AF protocol yields the same distortion

at the destination as the CF protocol with conventional source

compression would do if it knew the fading coefficient of the

relay-to-destination link. When the relay transmitter has no

CSI, the AF protocol is thus expected to perform better. This

latest conclusion is however particular to the choices made in

this paper and does not extend to, for instance, situation where

the time/bandwith are not equally shared between the source

and the relay, or in practical (not Gaussian) transmission

schemes.

VI. CONCLUSION

This paper addresses the optimization of the Wyner-Ziv

coding parameters of the CF protocol, and shows that for

a range of transmission rates and powers the compression

method minimizing outage is simply conventional source

compression. Being able to resort to this simpler compression

method without significant performance gain is particularly

interesting for the design and implementation of practical

transmission systems with CF relays.
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