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ABSTRACT

We consider the situation where the parameters� of a lin-
ear regression model have to be estimated from observations
corrupted by an additive noise with unknown distributionf .
Since maximum likelihood estimation cannot be used, we
estimate� by minimizing the entropy of a kernel estimate
of f , constructed from the residuals. An example of param-
eter estimation in the presence of interference with random
binary signal is presented.

1. INTRODUCTION

Consider a linear regression model, with observations given
by

yi = r
>(�i)�� + �i ; i = 1; : : : ; n ; (1)

where�� 2 � � IRp is the unknown true value of the model
parameters, with� a compact set,r>(�i) is the regressor
for experimental conditions�, � 2 X � IRq , and(�i) is
a sequence of independently identically distributed (i.i.d.)
errors, with probability density function (p.d.f.)f(�). The
experimental conditions�i may correspond for instance to
passed values of an input sequence applied to a dynamical
system,�i = (ui; ui�1; : : : ; ui�q), see Section 4.

We assume thatf(�) is symmetric (f(x) = f(�x)),
two times continuously differentiable, with derivativesf 0(�)
and f 00(�), and that the Fisher informationI(f) =

R1
�1

[f 0(x)]2=f(x) dx exists. We define

ei(�) = yi � r>(�i)�

and denoteen1 (�) = [e1(�); : : : ; en(�)]. The variables�i
and�i are mutually independent, that is the design isnot se-
quential: �i does not depend on passed observationsy i�1,
yi�2 : : : (this also covers the case where(�i) is a determin-
istic sequence). Note, however, that the�i’s may be corre-
lated, as it is the case for the dynamical example mentioned
above. For the sake of simplicity, we assume that they can
only take a finite number of values, that is,X is a finite set

X = f�1; : : : ; �mg. We also assume that the sequence(�i)
is ergodic: whenn tends to infinity, each element� j of X
is used a fractionwj of times. We denote by� the discrete
measure that attaches weightswj to the support points�j ,
j = 1; : : : ;m. Since a random permutation of the observa-
tions does not modify the estimation of�, the� i’s can then
be considered as forming an i.i.d. sequence, independent of
(�i), with probability measure�. We denote byM(�) the
average Fisher information matrixpersample

M(�) = I(f)
�Z

X

r(�)r>(�)�(d�)

�
; (2)

and assume thatX and� are such thatM(�) is positive-
definite. When� corresponds to the input of a linear sta-
tionary model, the analytic expression of the matrixM(�)
can easily be derived, see [2, 3]. For instance, consider the
case where the model is a Finite Impulse Response (FIR) fil-
ter, that is,r(�i) = (ui; ui�1; : : : ; ui�q)

>, (ui) is stationary
with power spectral densitypu(!), and the sampling period
T is normalized to 1. The matrixM(�) can then be written
as

M(�) =M(pu) =
I(f)
2�

Z �

��

b(j!)bT (�j!)pu(!) d! ;

with b(j!) = [1 e�j! e�2j! : : : e�qj! ]> which gives, as-
suming that the signalui is real,

M(pu) =
I(f)
�

Z �

0

�M(!)pu(!) d! ; (3)

with

�M(!)=

0
BBB@

1 cos(!) � � � cos(q!)
cos(!) 1 � � � cos[(q � 1)!]

...
...

...
...

cos(q!) cos[(q � 1)!] � � � 1

1
CCCA :

The Maximum Likelihood (ML) estimator of� min-
imises� R log f�(y; �)dGn(y; �), with Gn the empirical



distribution of the observationsyi and experimental condi-
tions�i andf�(y; �) = f [y� r>(�)�]; that is,�̂ML simply
minimises the sample version of the (Shannon) entropy of
f(�), evaluated aten1 (�):

�̂ML = argmin
�2�

�
nX
i=1

log f [ei(�)] : (4)

Under standard assumptions, see,e.g., [1], �̂ML possesses
the asymptotic properties of consistency:�̂ML

a:s:�! ��; asymp-
totic normality:

p
n(�̂ML � ��)

d�! z � N (0;M�1(�)) ;

and asymptotic efficiency:M(�)�1 is the Cramer-Rao lower
bound.

Whenf(�) is unknown, using a wrong distribution in the
calculation of̂�ML makes the approach suboptimal. For in-
stance, the Least Squares (LS) estimator satisfies

p
n(�̂LS�

��)
d�! z � N (0; �2I(f)M�1(�)), with �2 the variance

of �i, and, for�2 fixed, the minimum value of�2I(f) is 1
and is obtained for the normal distribution: the LS estimator
is thus suboptimal, in terms of precision of the estimation,
for any distribution other than the normal. The approach we
suggest tries to estimatef(�) and� simultaneously by min-
imizing the entropy of an estimate off(�) based on the em-
pirical distribution of the errorsen1 (�), with the objective of
approaching the ML estimator even whenf(�) is unknown.
One can refer to [4, 5] for a more detailed exposition.

Let K(�) denote a kernel weighting function (a Borel
function) such thatsup�1<y<1 jK(y)j < 1, limy!1

jyK(y)j = 0,
R1
�1 jK(y)jdy < 1,

R1
�1K(y)dy = 1.

We assume thatK(�) is differentiable, withK 0(�) its deriva-
tive, symmetric (K(y) = K(�y)) and positive. For any
p.d.f. f(�), let f̂n;h(�) denote its kernel estimate based on
X1; : : : ; Xn, that is,

f̂n;h(x) = f̂n;h(xjX1; : : : ; Xn) =
1

nh

nX
i=1

K

�
x�Xi

h

�
:

The bandwidthh will be written hn when it is taken as a
function of the sample sizen. Much attention has been paid
to conditions under whicĥfn;hn(�) converges tof(�), in var-
ious senses, whenX1; : : : ; Xn is i.i.d. with the p.d.f.f(�).
Using the results in [6, 7, 8], one can show that the kernel
estimatef̂n;hn [xjen1 (�)] converges toG(x) given by

G(x) = G(x;�; ��; �) =

Z
X

f [x+ r
>(�)(� � ��)]�(d�)

(5)
under reasonable assumptions onf(�), �(�; �), K(�) and
hn. Now, since the entropy of a p.d.f.f(�), which is given
by

ent(f) = �
Z 1

�1

f(x) log f(x)dx ;

is invariant by translation, the minimization of the criterion
Je(�) = entff̂n;h[ � jen1 (�)]g not suitable for estimating�,
and we shall consider instead

Jse (�) = entff̂n;h[ � jen1 (�);�en1 (�)]g ; (6)

the minimisation of which forces the errors to be close to
zero. Again, under reasonable assumptions,f̂n;hn [xjen1 (�);
�en1 (�)] converges to

Gs(x) = Gs(x;�; ��; �) =
1

2

Z
X

ff [x+ r
>(�)(� � ��)]

+f [x� r>(�)(� � ��)]g�(d�) : (7)

We shall denote bŷ�e theminimum-entropy estimator

�̂e = argmin
�2�

Jse (�) : (8)

Section 2 gives some properties of ent(Gs) and its deriva-
tives w.r.t.�. The asymptotic behaviour of̂�

n

e , which differs
from �̂e by a truncation of the integral in the entropy crite-
rion (6), is considered in Section 3. An example of param-
eter estimation for a Finite Impulse Response (FIR) model
in presence of interference with an unknown binary signal
is presented in Section 4. Finally, Section 5 draws some
conclusions.

2. SOME PROPERTIES OF ent(GS)

Under suitable assumptions, see,e.g., [9, 10],J s
e (�) given

by (6) converges to ent(Gs), withGs(e) given by (7), hence
the interest of studying the properties of ent(Gs).

Easy calculation gives

@Gs(e)

@� j
�
�
= 0 ;

@2Gs(e)

@�@�> j
�
�
= f 00(e)

Z
X

r(�)r>(�)�(d�)

and

@ent(Gs)

@�
= �

Z 1

�1

[1 + logGs(e;�; ��; �)]

@Gs(e;�; ��; �)

@�
de ;

so that@ent(Gs)=@�
j
�
�
= 0, and

@2ent(Gs)

@�@�>
=

� R1
�1

1

Gs(e;�;
�
�;�)

@Gs(e;�;
�
�;�)

@�

@Gs(e;�;
�
�;�)

@�
> de

� R1�1[1 + logGs(e;�; ��; �)]@
2Gs(e;�;

�
�;�)

@�@�
> de :

Noticing that(f log f)00 = (1 + log f)f 00 + (f 0)2=f , one
gets@2ent(Gs)=@�@�>

j
�
�
=M(��; �), see (2). The criterion



ent(Gs) is thus locally convex at��, with a stationary solu-
tion (zero derivative) at� = ��, andGs(�; ��; ��; �) = f(�),
which is consistent with the property that convolution in-
creases entropy, see [11].

3. STRONG CONSISTENCY OF A TRUNCATED
ESTIMATOR

We use an approach similar to [12], and consider the crite-
rion

Jse (�; An; hn) = entAn
(f̂n;hn) ; (9)

where

entA(f) = �
Z A

�A

f(x) log f(x)dx :

We denote the associated estimator by�̂
n

e ,

�̂
n

e = argmin
�2�

Jse (�; An; hn) :

Besides the assumptions made in the introduction, we as-
sume that the first three derivatives off(�) are bounded, thatR1
�1 jyjK(y)dy < 1 and that thes-th derivativeK (s)(�)

of K(�) is a continuous function of bounded variation for
s = 1; 2. Let H(�) denote a monotonic strictly increasing
function such that8U , supjzj<U 1=Gs(z) � H(U), see
[12], andH�1(�) be the inverse function ofH(�). We can
prove the following result on the almost sure behaviour of
the first two derivatives ofJ se (�; An; hn), see [5].

Lemma 1 For any� 2 �,

@Jse (�; An; hn)=@�
a:s:�! @ent(Gs)=@� and

@2Jse (�; An; hn)=@�@�
> a:s:�! @2ent(Gs)=@�@�>

asn!1 whenhn = n�1=7, An = H�1(n1=48).

One can then show that Lemma 1 implies strong consis-
tency of�̂

n

e for a suitable choice ofhn andAn, see [5].

Theorem 1 Whenhn = n�1=7, An = H�1(n1=48), there
exists a sequence(�̂

n

e ) satisfying@Jse (�; An; hn)=@�
j
^
�
n

e

=

0, such that�̂
n

e
a:s:�! �� as n ! 1. Moreover,�̂

n

e corre-
sponds to a (local) minimum ofJ s

e (�; An; hn) for n larger
than somen0.

4. EXAMPLE

Consider a parameter estimation problem for a FIR model
in presence of interferences. We observeyt = A(q)ut +
B(q)vt+�t, whereA(q) =

Pq
i=0 aiq

�i, with q�1 the delay
operator, corresponds to a FIR filter with unknown parame-
ters� = (a0; : : : ; aq), B(q) is also an unknown FIR filter,
�t corresponds to an i.i.d. sequence of errors,u t is a known

input signal,vt is an unknown interfering signal. With the
same notation as in (1), we thus have�t = B(q)vt + �t the
output noise. Note that the sequence(�t) is correlated even
if the vt’s are i.i.d., due to the action of the filterB. How-
ever, the results in [13] show that̂fn;hn [xjen1 (��);�en1 (��)]
still converges toGs(x) given by (7) for a suitably decreas-
ing sequence(hn) and the results below show that the esti-
mator�̂e given by (8) still possesses attractive properties in
presence of correlated errors.

In the simulations below,(vt) is an independent binary
sequence,vt = �1, B(q) = 1 � 0:5q�1 + 0:2q�2, q =
4, �� = (1;�0:5; 0:2;�0:3; 0:1) and�t � N (0; �2) with
� = 0:1. We takeut =

P3
i=0 cos[(2i + 1)�t=8], which

corresponds to aD-optimal input signal with unit average
power for estimating�, see [3]: it maximizesdetM(pu)
under the constraint(1=�)

R �
0
pu(!)d! = 1. We seth to

0:1 in the computation of̂�e and the minimization ofJ se (�),
see (6), is initialized at̂�LS .

Figure 1 gives an histogram of the errors�(t) and Fig-
ure 2 gives a typical realization of the density reconstructed
from the residualsei(�̂e) (full line) and ei(�̂LS) (dashed
line) with the bandwidthh = 0:1. The location of the resid-
uals on the horizontal axis is indicated by stars (�̂e) and
crosses (̂�LS). It is clear from these figures that a better
reconstruction of the density of the errors is obtained when
using�̂e, so that̂�e maximizes a rather good approximation
of the likelihood function. Repeated simulations indicate
that the mean-squared errors for the components of�̂LS are
more that two times larger than those of�̂e.
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Fig. 1. Histogram of the errors�(t)

5. CONCLUSIONS

We suggest to minimise the entropy of a (symmetrized) ker-
nel estimate of the distribution of output errors, constructed
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Fig. 2. Typical reconstruction of the density of the errors
from the residuals:̂�e (full line and stars),̂�LS (dashed line
and crosses)

from the residuals, as an alternative to LS estimation for the
case where the distribution of these errors is unknown and
maximum likelihood cannot be used. An example of esti-
mation in presence of interferences with an unknown signal
illustrates the attractive properties of the approach.

A far reaching target would be to obtain an estimator
with asymptotic properties similar to those of the maximum-
likelihood estimator, even though the distribution of errors
is unknown (this concerns in particular asymptotic efficiency,
which could be called“blind asymptotic efficiency”in this
case). Such developments are currently under study.
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