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ABSTRACT X = {¢',...,&m}. We also assume that the seque(e

is ergodic: whem tends to infinity, each elemegt of X

‘i’s used a fractiom; of times. We denote by the discrete
measure that attaches weighis to the support pointg’,

j =1,...,m. Since a random permutation of the observa-
tions does not modify the estimation &f the¢;’s can then

be considered as forming an i.i.d. sequence, independent of
(i), with probability measurg. We denote byM(u) the
average Fisher information matgder sample

We consider the situation where the parameteds a lin-

ear regression model have to be estimated from observation
corrupted by an additive noise with unknown distributjon
Since maximum likelihood estimation cannot be used, we
estimatef by minimizing the entropy of a kernel estimate
of f, constructed from the residuals. An example of param-
eter estimation in the presence of interference with random
binary signal is presented.
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1. INTRODUCTION () =Z(f) | [ ¥&)r (&) uldE)
Consider a linear regression model, with observations givenand assume that’ and . are such thaM(u) is positive-
by definite. Wher¢ corresponds to the input of a linear sta-
yi=1 (&)0+e€,i=1,...,n, (1) tionary model, the analytic expression of the maivii( 1)

_ _ can easily be derived, see [2, 3]. For instance, consider the
wheref € © C IR” is the unknown true value of the model  case where the model is a Finite Impulse Response (FIR) fil-
parameters, witl® a compact sets ' (;) is the regressor ey, thatisg(¢;) = (i, u;_1,. .., ui_q) ', (u;) is Stationary
for experimental conditions, { € & C IR? and(e;) IS wjth power spectral density, (w), and the sampling period

a sequence of independently identically distributed (i.i.d.) 7 is normalized to 1. The matri¥I (i) can then be written
errors, with probability density function (p.d.f}j(-). The as

experimental condition§; may correspond for instance to . -
passed values of an input sequence app!|ed toa dynamlcaIM(u) = M(p,) = (f) / b(jw)bT(—jw)pu(w) duw,
systemg; = (ui, ui1,...,u;i_,), See Section 4. 2T )

We assume thaf(-) is symmetric {(z) = f(—z)), ) ) P T )
two times continuously differentiable, with derivativeg-) ~ With b(jw) = [Le7e™=¥ ... e7%¥] " which gives, as-
and f"(-), and that the Fisher informatich(f) = [ suming that the signal; is real,

—00

"(2)]?/ f(z) dz exists. We define T
Tl M) = 2L [ Mo, @
ei(6) =yi —r' ()0 no
with
and denote?(0) = [e1(0),...,e,(0)]. The variableg;
ande; are mutually independent, that is the designdsse- 1 cos(w) o cos(qw)
guential &; does not depend on passed observatigns, SN cos(w) 1 - cos[(q — 1)w]
yi—2 - - - (this also covers the case whetg) is a determin- (w)= : : : :
istic sequence). Note, however, that th&s may be corre- cos(qw) cos[(q — 1)w] - 1

lated, as it is the case for the dynamical example mentioned
above. For the sake of simplicity, we assume that they can ~ The Maximum Likelihood (ML) estimator o0& min-
only take a finite number of values, that ik,is a finite set imises — [ log fo(y,§)dG.(y,€), with G, the empirical



distribution of the observations; and experimental condi-
tions&; andfg(y, &) = fly —r ' (£)0]; thatis,8 1 simply

is invariant by translation, the minimization of the criterion
J.(0) = ent{ f, 1] |eT(8)]} not suitable for estimating,

minimises the sample version of the (Shannon) entropy of and we shall consider instead

f(), evaluated a¢?(0):

Or1, = argmin - Z log f[ei(6)]. @)
Oc

i=1

Under standard assumptions, se@, [1], 0ML _possesses
the asymptotic properties of conS|sten0\ML 2% 9; asymp-
totic normality:

Vi@ —8) -5 2 ~ N(O,M ™ () ;

and asymptotic efficiencyI (1) ~* is the Cramer-Rao lower
bound.

Whenf(-) is unknown, using a wrong distribution in the
calculation of@ ;. makes the approach suboptimal. For in-
stance, the Least Squares (LS) estimator satigffe(sé Ls—

0) BN N(0,02Z(f)M (i), with o2 the variance

of ;, and, foro? fixed, the minimum value of 2Z(f) is 1
and is obtained for the normal distribution: the LS estimator
is thus suboptimal, in terms of precision of the estimation,
for any distribution other than the normal. The approach we
suggest tries to estimafé-) and@ simultaneously by min-
imizing the entropy of an estimate ¢f-) based on the em-
pirical distribution of the errore(8), with the objective of
approaching the ML estimator even whgg) is unknown.
One can refer to [4, 5] for a more detailed exposition.

Let K (-) denote a kernel weighting function (a Borel
function) such thaEup so<y<oo K (Y)] < o0, limy o
WKW = 0, [, [K(y)ldy < oo, [* K(y)dy =
We assume thrK( ) is dlﬁerentlable withic! (+) its deriva-
tive, symmetric K(y) = K(—y)) and positive. For any
p.d.f. f(-), let f, »(-) denote its kernel estimate based on
Xq,...,X,, thatis,

Xi>

Fun(a) = Foalalr,. o X0) = 2SR
i=1

The bandwidthh will be written h,, when it is taken as a
function of the sample size. Much attention has been paid
to conditions under whiclf,, , () convergestg(-), in var-
ious senses, whel, ..., X,, is i.i.d. with the p.d.f.f(-).
Using the results in [6, 7, 8], one can show that the kernel
estimatef, 5, [z|e}(0)] converges ta&7(x) given by

G(2) = G(2,0,8,1) = /X fl + 7 ()6 - 8)] u(de)
(5)

under reasonable assumptions ), n(0,¢), K(-) and
h,. Now, since the entropy of a p.df{(-), which is given

by
entf) = / f(z) log f (x)de

J2(8) = ent{ fuu[-e}(8), —e (B)]}, (6)

the minimisation of which forces the errors to be close to
zero. Again, under reasonable assumptigis,, [z|e] (0),
el’(0)] converges to

G¥(x) = G*(x,0,0,u) =

/{fx+r £)(0 - 0)]
+flz =1 (£)(0 — )]} p(d) . )

We shall denote b@e the minimum-entropy estimator

6. = argmin J*(0) .
Oco

(8)

Section 2 gives some properties of(@t) and its deriva-
tives w.r.t.6. The asymptotic behaviour ﬂﬂ which differs
from 6., by a truncation of the integral in the entropy crite-
rion (6), is considered in Section 3. An example of param-
eter estimation for a Finite Impulse Response (FIR) model
in presence of interference with an unknown binary signal
is presented in Section 4. Finally, Section 5 draws some
conclusions.

2. SOME PROPERTIES OF en(G”)

Under suitable assumptions, segy, [9, 10], J$(8) given
by (6) converges to e ®), with G*(e) given by (7), hence
the interest of studying the properties of @rnt).

Easy calculation gives

0G*(e) . 82Gs(e) _ (6T
000 S o= 1) [ KT (@) utde)
and
aeg#fs) = —/_Oo[l-i—logGs(e,H,g,u)]
6Gs(e,0,é,,u)

70 de;

SO thatBem(Gs)/aﬂlé =0, and

o’en(G*)
00007

1 0G(e,0 .0.1) 9G°(,0,0 1) de
,0.0,1) 00 20"

B f—oo G*(e
1+ log G*(e, 0,8, )] 26 0.8.) 4

- fjooo[ :u)] 2090

Noticing that(f log f)” = (L +log f)f" +
getsa2em(GS)/8080‘9 =

€.

(f')?/f, one
M(@, ), see (2). The criterion



ent(G?) is thus locally convex afl, with a stationary solu-
tion (zero derivative) a@ = 6, andG*(-,0,0,u) = f(-),
which is consistent with the property that convolution in-
creases entropy, see [11].

3. STRONG CONSISTENCY OF A TRUNCATED
ESTIMATOR

We use an approach similar to [12], and consider the crite-
rion .
Js(oaAnahn) = entAn (fn,hn) ) (9)

where

A
enty(f) == [ F(e)log f(a)da
We denote the associated estimatoﬂgy

= al’gmln J3(0, Ap,hy) .
Oco

input signal,u; is an unknown interfering signal. With the
same notation as in (1), we thus haye= B(q)v; + (; the
output noise. Note that the sequetrieg is correlated even

if the v;’s are i.i.d., due to the action of the filté?. How-
ever, the results in [13] show thgfgh [z|e? (), —el(0)]
still converges t@7°(z) given by (7) for a suitably decreas-
ing sequencéh,,) and the results below show that the esti-
matoré, given by (8) still possesses attractive properties in
presence of correlated errors.

In the simulations below(y;) is an independent binary
sequencey; = +1, B(q) = 1 —0.5¢~' +0.2¢72, ¢ =
4,0 = (1,-0.5,0.2,-0.3,0.1) and; ~ N(0,0?) with
o = 0.1. We takeu; = 37, cos[(2i + 1)xt/8], which
corresponds to &-optimal input signal with unit average
power for estimating, see [3]: it maximizeslet M(p,)
under the constralr(ﬂ/vr Jy pu(w)dw = 1. We seth to
0.1in the computation o8, and the minimization of (6),
see (6), is initialized aff; .

Figure 1 gives an histogram of the erre($) and Fig-

Besides the assumptions made in the introduction, we as-ure 2 gives a typical realization of the density reconstructed

sume that the first three derivativesfdf) are bounded, that
[2 lylK (y)dy < oo and that thes-th derivativeK (*)(-)

of K(-) is a continuous function of bounded variation for
s = 1,2. Let H(-) denote a monotonic strictly increasing
function such thavU, sup .|y 1/G°(z) < H(U), see
[12], andH ~!(-) be the inverse function aff(-). We can
prove the following result on the almost sure behaviour of
the first two derivatives of (0, A,, hy,), see [5].

Lemmal Forany@ € O,

0J5(0,An, hy) /00 X5 den(G*)/06 and

82J5(0, Ap, hy)/0000T 5 9%en(G*)/0000"

asn — oo whenh,, = n~ Y7, A, = H ' (n'/*%).

One can then show that Lemma 1 implies strong consis- 1

tency of@? for a suitable choice aoi,, andA,, see [5].

Theorem 1 Whenh,, = n~='/7, A,, = H~'(n'/*8), there
exists a sequeno{ég) satisfyingd J? (6, A,, hn)/ae‘gn =

0, such thatd. 2% 6 asn — co. Moreover,d. corre-
sponds to a (local) minimum off (6, A,,, h,,) for n larger
than some.

4. EXAMPLE

Consider a parameter estimation problem for a FIR model
in presence of interferences. We obseyye= A(q)u; +
B(q)vi+ (i, whereA(q) = Y1 aig™, with ¢~* the delay
operator, corresponds to a FIR filter with unknown parame-
ters@ = (ao,...,aq), B(q) is also an unknown FIR filter,

(; corresponds to an i.i.d. sequence of erragsis a known

from the residuals;(6.) (full line) and e;(ALs) (dashed
line) with the bandwidtth = 0.1. The location of the resid-
uals on the horizontal axis is indicated by sta%)(and
crosses QLS). It is clear from these figures that a better
reconstruction of the density of the errors is obtained when
using#., so thai), maximizes a rather good approximation
of the likelihood function. Repeated simulations indicate
that the mean-squared errors for the componen&L@fare
more that two times larger than thoseﬁQ,f
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Fig. 1. Histogram of the errors(t)

5. CONCLUSIONS

We suggest to minimise the entropy of a (symmetrized) ker-
nel estimate of the distribution of output errors, constructed
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