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Abstract

Applications that use collections of very large, dis-
tributed datasets have become an increasingly important
part of science and engineering. With high performance
wide-area networks becoming more pervasive, there is in-
terest in making collective use of distributed computational
and data resources. Recent work has converged to the
notion of the Grid, which attempts to uniformly present a
heterogeneous collection of distributed resources. Current
Grid research covers many areas from low level infrastruc-
ture issues to high level application concerns. However,
providing support for efficient exploration and processing of
very large scientific datasets stored in distributed archival
storage systems remains a challenging research issue.

We have initiated an effort that focuses on developing ef-
ficient data-intensive applications in a Grid environment. In
this paper, we present a framework, called filter-stream pro-
gramming, that represents the processing units of a data-
intensive applicationas a set of filters, which are designed to
be efficient in their use of memory and scratch space. We de-
scribe a prototype infrastructure that supports execution of
applications using the proposed framework. We present the
implementation of two applications using the filter-stream
programming framework, and discuss experimental results
demonstrating the effects of heterogeneous resources on ap-
plication performance.

1. Introduction

Increasingly powerful computers have made it possible
for computational scientists and engineers to model physi-
cal phenomena in greater detail. As a result, overwhelming
amounts of experimental data are being generated by scien-
tific and engineering simulations. In addition, large amounts�This research was supported by the National Science Foundation under
Grants #ASC-9619020 (UC Subcontract #10152408), and by the Office of
Naval Research under Grant #N66001-97-C-8534.

of data are being gathered by sensors of various sorts, at-
tached to devices such as satellites and microscopes. There
are many examples of large useful datasets from simula-
tions [26, 29, 33], sensor data [25, 28], and medical imag-
ing [2] (pathology, MRI, CT scan, etc.). The primary goal of
generating data through large scale simulations or sensors is
to better understand the causes and effects of physical phe-
nomena. Understanding is achieved through running analy-
sis codes on the stored data, or by a more interactive visu-
alization that relies on the ability to gain insight from look-
ing at a complex system. Thus, both data analysis and visual
exploration of large datasets plays an increasingly important
role in many domains of scientific research. Decision sup-
port database applications are similar to scientific applica-
tions because they deal with large quantities of data (rela-
tional data), and need to perform significant computation in
processing the data. The value provided by decision support
systems and data-mining algorithms depend greatly on the
amount of data, and hence businesses are inclined to retain
as much data as possible.

Disks continue to become larger and cheaper making
them commodity items. This helps to make it relatively easy
to setup a large set of archival storage disks at a relatively
low cost. For example, to build a large disk farm out of com-
modity PC components for the lowest current price: $400
for a motherboard with a Celeron or AMD K6-2 400MHz
cpu and 64MB memory [9], four 40GB EIDE disks at $254
each [10] and a fast ethernet interconnect (100 Mbps), a
farm of 8 PCs can present 1.25TB of disk space for less than
$15K. The price point is sufficiently low to enable many
such disk collections to be setup independently at multiple
disparate locations, where local storage needs dictate. We
anticipate that this trend will result in the emergence of is-
lands of data, where cheap archival storage systems will
be used to hold large locally generated datasets. Use of
computation farms also is important for handling very large
datasets in a reasonable amount of time. Oftentimes, high
performance computation farms are where the data is gen-
erated (as in large scientific simulations), and the data may
reside locally on the computation farm in an archival storage



system such as HPSS [22]. Thanks to high-performance net-
works, increasing numbers of computation farms have be-
come accessible across a wide-area network. These com-
putation farms span a spectrum of widely varying config-
urations and computation power, from relatively inexpen-
sive network of workstations and PC clusters to very expen-
sive high-performance machines, providing computing per-
formance in the order of Teraflops.

These trends combine to present a new opportunity: very
large distributed datasets that can be used by applications
for computationallyand data intensive analysis, exploration
and visualization.

Consider the following scenario: A scientist wants to
compare properties of a 3D reconstructed view of a raw
dataset recently generated at a collaborating institution,with
the properties of a large collection of reference datasets. The
3D reconstruction operation involves retrieving portions of
2D slices from the regions in question, and then perform-
ing feature recognition and interpolating between the slices
to extract the important 3D features. A description of these
features and the associated properties are then compared
against a database of known features, and some appropriate
similarity measure is computed. The final result is the set of
reference features found that are close in some way to those
found in the new raw dataset, along with the corresponding
view renderings to visualize.
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Figure 1. 3D reconstruction/visualization sce-
nario on distributed collection of resources.

Consider the problems that can occur when the applica-
tion is executed in a Grid [16] environment. That is, the re-
quired resources (new raw dataset, reference database, and
the scientist) are all at distributed locations in a wide-area
network as seen in Figure 1. The reference database is likely
to be stored in an image library, since the dataset is large and
useful to many users. The new raw dataset is stored at the

site where the sensor readings were taken. If the hosts con-
taining the data are low-power archival systems that make
the execution of the 3D reconstruction code prohibitively
expensive, it becomes unclear how to structure the applica-
tion for efficient execution. Ideally we would like to execute
portions of the application at strategic points in the collec-
tion of machines. A set of possible locations for perform-
ing computation is indicated in the figure by question marks.
For example, if the portion of code that performs the range
select on the new raw dataset could be run on the host where
the data lives, the amount of data to be transmitted over the
wide-area network (WAN) would be reduced. The compu-
tation farm is an ideal location for the feature recognition
and 3D reconstruction due to the parallelism inherent in the
codes. Given the set of features that were identified, it would
be efficient to perform the selection of similar features from
the reference database on the data server where the database
is located. The low end PC where the scientist is located can
be used to collect the 3D rendering and the similar feature
information for interactive presentation to the scientist.

The success of this scenario depends on the application
allowing portions of its computation to be executed in a dis-
tributed fashion. Beyond the mere possibility of execution
in a distributed environment is the question of how efficient
the application is. One interpretation of efficiency in this
context is the ratio of useful data transmitted to the total
amount of data transmitted between any two pieces of the
application. For example, if an application transmitted a full
dataset from a remote host, and discarded a large portion not
required by subsequent processing, then this would not be
considered efficient operation.

We have initiated an effort to investigate and develop
methodologies and a framework for efficient execution of
applications that make use of distributed collections of
datasets in a Grid environment. There are two main chal-
lenges in developing efficient applications in a Grid environ-
ment:� The Grid is composed of collections of heterogeneous

resources. The characteristics, capacity and power
of resources, including storage, computation, and net-
work, vary widely. This requires that applications
should be structured to accommodate the heteroge-
neous nature of the Grid.� These distributed resources can be shared by many ap-
plications. This requires that applications should be de-
signed to be optimized in their use of shared resources.

In order to address these challenges, we are investigating:� Methodologies and a framework for structuring appli-
cations. In particular, we address decomposition of ap-
plication processing into components and placement of
these components onto a collection of heterogeneous
resources that will aid efficient execution.
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� Feasibilityand effects of exposingapplication structure
and characteristics. In particular, we address exposing
resource requirements and the communication pattern
between application components, and how this extra
application structure information can be used.� An infrastructure for providing execution of applica-
tions that conform to the developed framework.

In this paper, we present a framework, called filter-
stream programming, that represents the processing in a
data-intensive application as a set of processing units, re-
ferred to here as filters, which are designed to be efficient
in their use of memory and scratch space. In this frame-
work, data exchange between any two filters is described
via streams, which are uni-directional pipes that deliver data
in fixed size buffers. We describe a prototype infrastructure
that provides support for execution of applications using the
proposed framework. We present the implementation of two
applications in filter-stream programming framework, and
experimental results to demonstrate the effects of heteroge-
neous resources on the performance of the applications.

2. The Proposed Approach

In this section, we present a framework, called the filter-
stream programming model. The basic ideas are to (1) con-
strain application components to allow for location indepen-
dence, which is necessary for execution in a distributedenvi-
ronment, and (2) expose the application communication pat-
tern and resource requirements, allowing a runtime system
to aid in efficient execution. We should note that any pro-
gramming model (e.g., message passing) modified to expose
similar constraints could be employed in place of the filter-
stream programming model we describe.

The programming model used in this work is derived
from the stream-based programming model, originally de-
veloped for Active Disks [1, 35]. Many stream-based al-
gorithms were developed and analyzed for Active Disks.
These algorithms carry out a variety of data transforma-
tions that arise in earth science applications and applications
of standard relational database sort, select and join opera-
tions. In this work we extend these algorithms and investi-
gate the application of filters and the stream-based program-
ming model in a Grid environment.

In the filter-stream programming model, an application
is represented by a collection of filters. A filter is a por-
tion of the full application that performs some amount of
work. Filters are required to pre-disclose dynamic memory
and scratch space needs. Communication with other filters
is solely through the use of streams. A stream is a com-
munication abstraction that allows fixed sized untyped data
buffers to be transported from one filter to another. An ex-
ample set of filters for the motivating example is shown in

Figure 2. A simple example of this model is Unix system
pipes, where the standard output of a process is used as stan-
dard input for another process. Unix pipes represent a linear
chain of filters, each of which have a single input stream and
a single output stream. The filter-stream model allows for
arbitrary graphs of filters with any number of input and out-
put streams.
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Figure 2. 3D reconstruction application de-
composed into filters.

The process of manually restructuring an application us-
ing this model is referred to as decomposing the application.
In choosing the appropriate decomposition, we need to con-
sider the complete data flow path from data generation to
ultimate consumption and the target machine configuration,
which can be a distributed collection of heterogeneous ma-
chines. The main goal is to achieve efficient use of limited
resources in a distributed and heterogeneous environment.
The choice of decomposition can have a significant impact
on efficiency and performance. Too many filters could mean
there is not much work for individual filters, which would
cause the system to spend much of its time moving data
around and little time performing useful work on the data.
Too few filters could limit the ability of the overall system
to execute filters concurrently. Similarly, sending data over
streams in very small pieces can make the overhead of the
runtime system too large. If possible, an ideal granularity
size should balance the amount of computation and commu-
nication such that the overall processing time across all fil-
ters does not exhibit a penalty merely because the computa-
tion is distributed.

Given a set of filters, the runtime mapping of filters onto
various hosts in a wide-area grid environment is referred to
as placement. Figure 3 shows a possible placement of the
filters described for the motivating scenario. The choice of
placement represents the main degree of freedom in affect-
ing application performance by:� placing filters with affinity to data sources near the

sources,� minimizing communication volume on slow links,� co-locating filters with large communication volume,� placing computationally intensive filters on less loaded
hosts,
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Figure 3. Possible placement of 3D recon-
struction application filters.� pipelining application filters by concurrent execution.

Note that a placement decision is not assumed to be static,
and the programming model explicitly supports the notion
of stopping a set of filters and replacing them with possibly
a new set of filters with a different placement.

A runtime system infrastructure is used to support the ex-
ecution of applications that are structured in the filter-stream
programming model. In the following sections we present a
prototypeinfrastructurefor executing application filters, and
present implementations of an image processing application
and a database application using the filter-stream program-
ming model.

3. Related Work

There is a large body of hardware and software research
on archival storage systems, including distributed parallel
storage systems [24], file systems [34], image servers [32],
and data warehouses [23]. Several research projects have
focused on digital libraries and geographic information sys-
tems [4, 20] that access collections of archival storage sys-
tems, high-performance I/O systems [8], tertiary storage
systems [22] and remote I/O [19, 31]. Distributed storage
systems attempt to provide large amounts of data to dis-
tributed clients. They present a uniform view of distributed
data to applications, and transparently handle replicas and
caching. This does not push the computation to the data
as in our work, rather the data is migrated to the computa-
tion, but can achieve a similar result with an effective re-
placement policy and a warm cache. Another issue is finding
the required data. The Storage Resource Broker (SRB) [31]
provides uniform UNIX-like I/O interfaces and meta-data
management services to locate and access collections of dis-
tributed data resources.

Distributed computing covers research that addresses
ways to deal with distributed execution of application code
in many different ways. Current work related to Grid com-
puting [7, 14, 16] attempts to provide a uniform view into
a collection of distributed computational, network and stor-
age resources, and to provide services for unified, secure, ef-
ficient and reliable access. However, providing support for
efficient exploration and processing of very large scientific
datasets stored in archival storage systems at distributed lo-
cations remains a challenging research issue, and the neces-
sity of infrastructure to provide such support was recognized
in recent Grid forums [21]. This support of processing and
retrieval for efficient operation is exactly what our work is
attempting to provide.

There is a large body of classic work on dataflow sys-
tems. The macro dataflow model [30, 36] describes an ap-
plication as a sets of tasks, communication edges, edge com-
munication costs and task computation costs. PYRROS [37]
uses this model of application behavior and manual annota-
tions to cluster, map, and schedule computation to nodes of
a homogeneous parallel machine. As we target a heteroge-
neous grid environment, we expand on assumptions such as
constant computation regardless of placement, which makes
sense in a tightly coupled environment. There is also task
parallel work in systems such as STRAND [12], PCN, For-
tran M [13], and HPF [18], which are related due to the
dataflow model and/or task parallelism used. Our work is
different in that we are considering remote datasource affin-
ity as a primary reason for decomposition, rather than an at-
tempt to extract paralellism.

4. A Prototype Infrastructure

In this section, we describe a prototype infrastructure im-
plementation that provides support for execution of appli-
cations developed using the filter-stream framework. This
work is part of the DataCutter project [6], that provides
services for subsetting and processing multi-dimensional
datasets stored on archival storage systems.

4.1. Filters

A filter is specified by the code to execute, and a descrip-
tion of the input and output streams it will use. Currently,
filter code is expressed using a C++ language binding by
sub-classing a provided filter base class. This base class pro-
vides a well-defined interface between the filter code and
the system filter service. The description of input and out-
put streams is specified in a separate configuration file (Fig-
ure 4).

Filters are constrained in several respects. First, undis-
closed dynamic allocation of memory and local disk space
is not allowed. Instead, the filter must pre-disclose and be
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granted scratch memory and disk space by the runtime sys-
tem. The granted scratch space is allocated on behalf of the
filter by the runtime system when the filter is instantiated.
Later, the filter may make use of the granted scratch space as
needed. One of the potential benefits of exposing resource
requirements in this way is that runtime system can achieve
a better placement of filters. For example, a filter can be run
on a machine with enough memory to avoid paging, and two
filters requesting large scratch space can be placed on two
different machines. In addition, the runtime system can po-
tentially perform better scheduling of co-located filters on a
machine. One of our goals in this project is to investigate
and assess the potential benefits of pre-allocating memory,
when it will really be important, and implications for struc-
turing applications. In order to accomplish this, we plan to
compare standard versions of target applications with filter-
stream based implementations in subsequent work.

The interface for filters consists of an initialization func-
tion, a processing function, and a finalization function:

class MyFilter : public AS Filter Base f
public:

int init (int argc, char *argv[]) f : : : g;
int process (stream t st) f : : : g;
int finalize (void) f : : : g;g

The init function is called when the filter is instantiated,
and is passed parameters with the command line arguments
used when the application was started. This is where a fil-
ter would request scratch memory space for use during later
processing, for example. The process function is called to
handle data arriving on the input streams in buffers from the
sending filter. The parameter passed to the process function
contains arrays of descriptors for the sets of input streams
and output streams this filter can use. The filter can only read
and write from/to the provided streams. No new streams can
be created by the filter at runtime. The finalize function is
called after all processing is finished and the filter is ready to
terminate. This is where a filter would release any resources
in use.

Another restriction is that a filter cannot change the
source of its input streams nor the sinks of its output streams.
This has two advantages. First, a filter does not need to
handle buffering and scheduling for its own communication,
thereby reducing the complexity of filters. Second, the loca-
tion of filters is transparent, allowing filters to be placed at
different locations initially and relocated as system resource
constraints change.

Filters are the unit of placement. Each filter can poten-
tially be executed on a different host. In addition, a filter’s
location may change at discrete application-defined inter-
vals during the course of execution. Note this does not imply
true migration of code and state, but rather placement can

be recomputed and the filter can be stopped on the original
host and a new copy re-instantiated on the new host. There
is a limited mechanism for a final state transfer by a sin-
gle buffer transfer from the old instance to the new instance.
This approach avoids many of the details involved in check-
pointing and process migration [11], while retaining most of
the benefits. Filters need to be structured appropriately to
handle such events. For cases when this is not desirable, a
filter can be pinned to a particular host, which means the fil-
ter will always be placed on that host. This host affinity is
useful for some situations, such as when runtime libraries or
auxiliary data files only exist on a particular host, but does
limit placement flexibility.

4.2. Streams

A stream is an abstraction used for filter communica-
tion. Since the placement of filters is largely unknown un-
til runtime, this mechanism is used to achieve location-
independent filter code because stream names are used
rather than endpoint location on a specific host. A stream
is used to specify how filters are logically connected, and
to provide the glue at runtime to attach an input stream for
one filter to an output stream of another. All transfers to
and from streams are through a provided buffer abstraction.
A buffer represents a contiguous memory region containing
useful data. The buffer contains a pointer to the start, the
length of the portion containing useful data, and the maxi-
mum size of the buffer. In the current prototype implemen-
tation we are using TCP for stream communication, but any
point-to-point communication library could be added, such
as Nexus [17].

The streams are specified in a global sense, separate from
the applicationcode. For each filter, a list of input and output
streams is required. This discloses all potential filter com-
munication pairs for the entire execution of the application.
Given a set of filters with stream connectivity information,
we can build a task graph where the nodes represent the fil-
ters, and the edges represent stream connections. For exam-
ple, given three filters A, B and C, with data being sent from
A to both B and C, and from B to C, the specification and re-
sulting task graph are seen in Figure 4. Each filter in the spec
appears in a section labeled [filter.<name>]. For each sec-
tion, two optional entries ins and outs can appear containing
the list of input and output stream names respectively.

In addition to the above inter-filter streams, we allow
for two other types of streams:1 File Streams and External
Communication Streams. Files Streams are used to read and
write to files stored in local scratch disk space or local per-
manent disk storage. The file stream abstraction further in-
sulates the filter code from specifics about the host system.
This provides a measure of safety between co-located filters,

1These are not yet implemented in the prototype.
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Figure 4. Sample filter/stream specification.

since one filter cannot access another filter’s scratch disk
space. The permanent disk storage presents a uniform file
system to all filters, similar to a traditional file system. Thus
a filter with sufficient authorization can read files in perma-
nent disk storage written by another filter. External Commu-
nication Streams are used to connect to, and receive connec-
tions from legacy or other non-filter application code.

4.3. Execution Environment

The execution service performs all the steps necessary to
instantiate filters on particular machines, connect all the log-
ical stream endpoints, and call the interface functions to al-
low filters to run.

The description of where to instantiate filters is provided
by a placement specification. Currently, this is statically
generated before the application is started. An example
placement specification for the sample filters is:

[placement]
A = host1.cs.umd.edu
B = host2.cs.umd.edu
C = host3.cs.umd.edu

The [placement] section is expected to contain one en-
try for each filter. The value is simply the host to execute
the filter on. In general, this host can be a parallel ma-
chine, which implies multiple instances of the filter are cre-
ated, but the prototype implementation does not yet support
parallel filters. Security concerns have made it difficult to
start processes on remote machines in a uniform manner.
To solve this problem in the current prototype, an Applica-
tion Execution Daemons (appd) must be run on every host
used to execute filters. In the future, we plan to use exist-
ing Globus [15] services for process creation and authenti-
cation, in which case the Application Execution Daemons
would not be needed. In addition, a single provided Direc-
tory Daemon (dird), which is similar to an LDAP server, is
used to record the contact information (host, port, pid) for
each appd. The dird is the only process that runs on a well-
defined host and port. All other ports are ephemeral, and

registered with the dird to later be queried. Based on a given
placement specification, the execution of a filter-based ap-
plication requires contacting the appd process on each host.
A lookup is performed to find contact information for each
required appd. Currently, we require an application binary
to exist on every host, which must contain at least the code
for the filters that will execute on that host. The binary can
contain code for all the filters, and those filters not intended
to run on a given host will not be instantiated at runtime.
Currentlywe manually compile/copy the binaries as needed,
but convenience procedures to do this will be added in the
future.

The application is started by running the application bi-
nary on some host. This will become the console process,
which performs no application processing such as running
filters. The console process queries the dird process to get
the relevant appd contact information, and then sends an ex-
ecute command to each appd. The appd executes the appli-
cation binary on that host, which in turn contacts the console
process and performs some initial handshaking to setup the
stream abstractions. In the current prototype, one POSIX
thread is created for each filter that runs on the host, and
a new instance of the application filter object is created.
The thread calls the init interface function passing the com-
mand line arguments that were used when the console pro-
cess was started. Next, the thread calls the process function.
When this returns, all open streams are closed and the final-
ize function is called. Any remaining filter resources are re-
leased before the thread stops.

The multiple threads allow for fairness across filters on a
single host, since all threads are executed with the same pri-
ority by the underlying operating system. No one filter can
starve another due to the time sharing semantics of POSIX
threads. Of course the filters do need to be thread-safe with
respect to each other. Based on the filter-stream program-
ming model, this should be natural for most applications.
Filters in this model are inherently isolated and communi-
cate via system provided buffers, thus should be fairly easy
to make thread-safe due to the lack of shared resources. One
problem could be common library routines. For the cases
where no thread-safe implementations exist, we provide fil-
ter level locks that can be used to wrap the offending calls.
This is only an issue when thread safety problems exist be-
tween filters that run on the same host, thus in the same pro-
cess. For the sample placement, filters A, B and C can all
have thread safety violations, since they are all actually run
in separate processes on three different hosts.

For cases when thread safety is a problem and lock wrap-
ping will not work, the infrastructure could be augmented to
optionally use a single thread for all filters on a given host.
Control could use a dataflow model where scheduling is per-
formed by the infrastructure for filters based on the arrival
of input. Another alternative re-design is to make each filter
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execute as a separate process, thus avoiding all threading is-
sues at the expense of increased filter communication costs
on the same host. The use of a thread-per-filter-instance is a
property of the current prototype implementation, and is not
mandated by the overall model.

4.4. Applicability

Our approach is intended to be applicable to many com-
mon types of data-intensive applications that are emerging
for use in a grid environment. The benefits of this approach
result directly from two observations. The first is that the
filter-stream framework exposes useful information, partic-
ularly application communication pattern and communica-
tion volume information. The second is that expressing the
application processing as filters enables data volume reduc-
tion from remote data sources. These factors can be lever-
aged to improve application efficiency at runtime.

We recognize that the approach may not be effective for
all application types, and are identifying characteristics that
make applications ill-suited for this approach. Ill-suited in
this case means performance will be no better than that of
a generic message passing implementation, for example us-
ing MPI [27]. The first problem occurs when applications
have high selectivity. This means nearly all the remote data
is needed by the application, and no significant data reduc-
tion is achieved, which will nullify the benefits of applica-
tion decomposition.

Applications that lack a clear task structure are also prob-
lematic. If the application cannot be divided cleanly into a
set of filters, then placement choices are more limited for
such a monolithic application. For example, if an applica-
tion uses two remote data sources and cannot be divided into
filters, we can execute the application at either data source
(inputs), the client (output), or at an intermediate location.
This will most likely be efficient only for data located at the
execution site chosen, and inefficient for other input/output
data sources/sinks.

The communication pattern and volume are significant
characteristics that enable intelligent placement to overlap
communication with computation and reduce high volume
on slow network links. If the pattern or volume of com-
munication is unknown, chaotic, very fine grained, or time
varying, then it is difficult to perform an intelligent place-
ment. For example, a communication pattern that involves
all possible filters and is data dependent, where the destina-
tion for a piece of data is known only after its examination,
will result in a conservative approximation of an all-to-all
pattern with equal volume between all pairs of filters. There
is no clear choice for placement in this case, because any
possible good placement may only be known after execu-
tion has finished and the communication activity has been
observed. Even worse, the observed communication pattern

and volume may not be helpful for future runs, due to non-
determinism in such applications. Our approach assumes a
single significant communication pattern and deterministic
volume, which can be used for choosing placement for the
entire execution. For the applications we are targeting, such
as volume visualization, database decision support, and im-
age processing, these assumptions appear to hold.

5. Application: Image Processing

The Virtual Microscope [2] is a query-response appli-
cation that processes multi-dimensional image data to sat-
isfy client queries. The dataset contains high power digi-
tized images of microscope slides, which effectively forms
a 3D dataset because each slide can contain multiple 2D fo-
cal planes at different depths. Images are stored at the high-
est magnification level, and the size of a single slide typi-
cally varies from 100MB to 5GB, compressed. The sys-
tem is required to provide interactive response times simi-
lar to a physical microscope, including continuously mov-
ing the stage and changing magnification. A typical query
allows a client to request a 2D rectangular region at a partic-
ular magnification from within the bounds of a single focal
plane. The processing for the query requires projecting high
resolution data onto a grid of suitable resolution (governed
by the desired magnification) and appropriately composit-
ing pixels that map to a single grid point to avoid introduc-
ing spurious artifacts into the displayed image. The Virtual
Microscope is useful for performing operations that are diffi-
cult with a physical microscope, such as simultaneous view-
ing and manipulation of a single slide by multiple users, or
remote telepathology [2] where diagnosing pathologists are
not required to be physically located near the slide.

5.1. Original Implementation

The original Virtual Microscope system is composed of
two components; a client to generate queries and display the
results (i.e. images), and a server to process the queries. The
server is composed of a frontend and a backend. The fron-
tend interacts with clients; it receives queries from clients
and forwards them to the backend. The backend consists of
one or more processes, typically one per node of a parallel
machine. The processing of a query is carried out entirely in
the backend.

In order to achieve high I/O bandwidth, each focal plane
in a slide is regularly partitioned into data chunks, each of
which is a rectangular subregion of the 2D image. Data
chunks are declustered across all backend local disks to
achieve I/O parallelism. Each pixel in a chunk is associated
with a coordinate (in x- and y-dimensions) in the entire im-
age. Each chunk has an associated minimum bounding rect-
angle (MBR) based on all the pixels in the chunk. An index
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is created using the MBR of each chunk. Since the image is
regularly partitioned into rectangular regions, a simple com-
putation can be used instead of a complex index search.

During query processing, the backend process finds the
chunks that intersect the query region, and reads them from
the local disks. Each data chunk is stored in compressed
form (JPEG format), and must be first decompressed. Then,
it is clipped to the query region. Afterwards, each clipped
chunk is subsampled to achieve the zoom level (magnifica-
tion) specified in the query. The resulting image blocks are
directly sent to the client. The client viewer assembles and
displays the image blocks from each of the backend pro-
cesses to form the query output.

5.2. Filter Implementation

The filter decomposition used for the Virtual Microscope
system [6] is shown in Figure 5. This filter pipeline struc-
ture is natural for query-response applications. The figure
only depicts the main dataflow path of image data through
the system; other low-volume streams related to the client-
server protocol are not shown for clarity. The thickness of
the stream arrows indicate the relative volume of data that
flows on the different streams.

zoom viewread_data decompress clip

Figure 5. Virtual Microscope decomposition

In this implementation each of the main processing steps
in the server is a filter:� read data: Full-resolution data chunks that intersect

the query region are read from disk, and written to the
output stream.� decompress: Image blocks are read individually from
the input stream. The block is decompressed using
JPEG decompression and converted into a 3 byte RGB
format. The image block is then written to the output
stream.� clip: Uncompressed image blocks are read from the in-
put stream. Portions of the block that lie outside the
query region are removed, and the clipped image block
is written to the output stream.� zoom: Image blocks are read from the input stream,
subsampled to achieve the magnification requested in
the query, and then written to the output stream.� view: Image blocks are received for a given query, col-
lected into a single reply, and sent to the client using the
standard Virtual Microscope client/server protocol.

Figure 6 illustrates the high-level code for the zoom fil-
ter, which has two input streams and one output stream. It

VM_zoom::init() f
// Allocate output buffer from pre-allocated scratch space
bufOut = AllocFromScratch(getOutputStreamBufferSize());g

VM_zoom::process(stream_t &st) f
DC StreamBuffer *buf;
VMQuery *query;
VMChunk *chunk;

// recv the query
buf = st.ins[0].read(); query = VMUnpackQuery(buf);
// while there is data retrieved from input stream
while ((buf = st.ins[1].read()) != NULL) f

chunk = VMUnpackChunk(buf); // extract chunk information
zoom_chunk(chunk, query); // perform zoom operation
bufOut = VMPackChunk(chunk); // pack chunk into buffer
st.outs[0].write(&bufOut); // write data to output stream
FreeToScratch(chunk->Data);gg

VM_zoom::finalize() f
FreeToScratch(bufOut);g

void VM_zoom::zoom chunk(VMChunk *chunk, VMQuery *query) f
int rel_zoom = query->Zoom/chunk->Zoom;
int width = chunk->Width/rel_zoom;
int height = chunk->Height/rel_zoom;
int size = width*height*PIXELSIZE;

char *pSrc = chunk->Data;
char *pDst = chunk->Data = AllocFromScratch(size);
// subsample the image block
for (j = height; j>0; --j) f

for (i = width; i>0; --i) f
memcpy(pDst, pSrc, PIXELSIZE);
pSrc += rel_zoom*PIXELSIZE;
pDst += PIXELSIZE;g

pSrc += rel_zoom*chunk.Width*PIXELSIZE;g
// update chunk metadata
chunk->Zoom = query->Zoom;g

Figure 6. The high-level code for zoom filter.

reads the query from stream 0 (st.ins[0]) and data chunks
from stream 1 (st.ins[1]), and subsamples the received data
chunks using the zoom chunk function. The zoom filter
uses scratch space to store results during subsampling and
to pack the subsampled chunk into the output buffer. The
result is written to the output stream (st.outs[0]), which con-
nects the filters zoom and view.

5.3. Experimental Results

Using the filters described in Section 5.2, we have im-
plemented a simple data server for digitized microscopy im-
ages [6], stored in the IBM HPSS archival storage system at
the University of Maryland. An existing Virtual Microscope
client trace driver was used to drive the experiments. This
driver was always executed on the same host as the view fil-
ter, which is referred to as the client host. The server host is
where the read data filter is run, which is the machine con-
taining the disks with the dataset.

The HPSS setup has 10TB of tape storage space, 500GB
of disk cache, and is accessed through a 10-node IBM SP. In
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Filter Total Volume Volume Per Chunk
read data 3.60 MB 102.52 KB
decompress 83.42 MB 2373.04 KB
clip 57.83 MB 1645.02 KB
zoom (no) 57.83 MB 1645.02 KB
zoom (8) .90 MB 25.70 KB

Figure 7. 2D dataset and query regions. The
table lists transmitted data sizes for q5. zoom
(no) is for no subsampling and zoom (8) is for
a subsampling factor of 8 (in each of the two
spatial dimensions).

all experiments we use a 4GB 2D compressed JPEG image
dataset (90GB uncompressed), created by stitching together
smaller digitized microscopy images. This dataset is equiv-
alent to a digitized slide with a single focal plane that has180K � 180K RGB pixels. The 2D image is regularly par-
titioned into 200�200 data chunks and stored in HPSS in a
set of files. We defined five possible queries, each of which
covers 5 � 5 chunks of the image (see Figure 7). The ex-
ecution times we will show are response times seen by the
visualization client averaged over 5 repeated runs. For the
presented experiments, we eliminated the effects of retriev-
ing data stored on tape by insuring the data was staged to the
HPSS disk cache before each run. We are using machines
on our local area network for experimental repeatability, and
will switch to hosts in a wide-area Grid environment once
application behavior is sufficiently well-understood.

Overhead of Using Filters. The query execution times for
the original optimized Virtual Microscope server versus the
prototype filter implementation are shown in Figure 8. In
this experiment the entire dataset is loaded from HPSS and
stored on a single local disk attached to a SUN Ultra 1 work-
station, because the original server can only access datasets
stored on disks. The loading of the dataset took 4750 sec-
onds (1 hour 19 minutes). The original server is run as a
single process, and all filters in the filter-stream implemen-

Query

q1 q2 q3 q4 q5

R
es

po
ns

e 
T

im
e 

(s
ec

)

0

10

20

30

40

50

Original Server

Filter Server

Figure 8. Query execution times for the origi-
nal server and the filter implementation. (sub-
sampling factor is 8)

tation are executed on the same uniprocessor SUN worksta-
tion where the dataset has been pre-loaded. In both cases
the client is run on another SUN Ultra 1 workstation con-
nected to the local Ethernet segment. As is seen from the fig-
ure, the filter implementation does not introduce much over-
head compared to the optimized original server. The percent
increase in query execution time ranges from 6% to 30%
across all queries. The filter version contains extra work not
present in the original server, such as flattening of the chunk
and metadata into a linear buffer on the sending filter, and
expanding the chunk and metadata into the same structure in
the receiving filter. This overhead is necessary when filters
are located on distributed machines, but could be eliminated
for the co-located case by instead sending a pointer to an in-
memory structure, which would eliminate much of the over-
head. This experiment is designed to be biased against the
filter implementation to see what the overhead is in the de-
composed version. We should also note that the timings do
not include the time for loading the dataset from tape, which
can substantially increase for larger datasets and datasets
stored in archival storage systems across a wide-area net-
work.

Varying the Processing. One node of the IBM SP is used
to access the stored dataset, and the client was run on a SUN
workstation connected to the SP node through the depart-
ment Ethernet. We experimented with different placements
of the filters by running some of the filters on the same SP
node where the data is accessed, as well as on the SUN work-
station where the client is run.

In Figure 9 we consider varying the placement of
the filters under different processing requirements. Fig-
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Figure 9. Execution time of queries under varying processin g (subsampling). R,D,C,Z,V denote the
filters read data, decompress, clip, zoom, and view, respectively. <server>–<client> denotes the placement
of the filters in each set.

ures 9(a) and (b) show the query execution times when the
image is viewed at the highest magnification (no subsam-
pling) and when the subsampling factor is 8 (i.e. every 8th
pixel in each dimension is output), respectively. There are
three predominant factors in these experiments. The first
is the placement of the most computationally intensive fil-
ter (decompress). The second is the volume of data trans-
mitted between the two machines. The final factor is the
amount of data sent by the view filter to the client driver.
Consider the first two groups of bars in the figures. The dif-
ference between the groups within each figure is the place-
ment of the zoom filter on the server (RDCZ-V) or client host
(RDC-ZV). When there is no subsampling, query execution
times remain almost the same for both placements, because
the volume of data transfer between the server and client
is the same in both cases. In the case of subsampling, the
placement of the zoom filter makes a difference, because the
volume of data sent from the server to the client decreases
if the zoom filter is executed at the server. Now consider
the last two groups of bars in the figures. The difference
between the groups within each figure is the placement of
the decompress filter (RD-CZV or R-DCZV). For no sub-
sampling case, the time increases substantiallywhen decom-
press is placed on the client, because of the combined ef-
fects of the most computationally intensive filter (decom-
press) and the high amount of data being processed by view
and sent to the client driver. When there is subsampling, the
query execution time is not as high, because the amount of
data processed by view and sent to the client driver is much
lower. These experiments demonstrate the complex inter-
actions between placement of computation and communica-

tion volume.

Varying the Server Load. In the next set of experiments
(Figure 10), we consider varying the server load. We use
the same experimental setup as for the previous experiment.
In all experiments, we use a subsampling factor of 8. Fig-
ures 10(a), (b), and (c) show query execution times when the
server load is doubled, tripled, and quintupled, respectively.
The different loads were emulated by artificially slowing
down the set of filters runningon the server host such that the
total running time was delayed. For example, the zoom filter
runs twice as long in the 2� case because the time is delayed.
As server load increases (or the client host becomes rela-
tively faster), running the filters on the client host achieves
better performance. This result is not unexpected, but the
experiment quantifies the effect for this particular configura-
tion. The use of a different client to server network, or hosts
with different relative speeds would significantly change the
observed trends and trade-off points.

6. Application: External Sort

External sort has a long history of research in the database
community and has resulted in many fast algorithms [3, 5].
The application starts with a large unsorted data file that is
partitioned across multiple nodes, and the output is a new
partitioned data file that contains the same data sorted on a
key field. The sample data file is based on a standard sort-
ing benchmark that specifies 100 byte tuples, with the first
10 bytes being the sort key. The distribution of the key val-
ues is assumed to be uniform, both in terms of the unsorted
file as a whole and for each partition. A recent record holder
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Figure 10. Execution time of queries under varying server lo ad. 2� means the server computation is
delayed to double the execution time of a filter on the server, etc. (subsampling factor is 8)

for the fastest external sort is NowSort [5], and we use the
pipelined version of their two-pass parallel sort for our basic
algorithm.

The algorithm proceeds in two phases. The first phase
generates temporary sorted runs on each node, and the sec-
ond phase produces the output sorted partition on each node.
During the first phase, a reader reads chunks of tuples from
the unsorted input file on disk, and partitions the records ac-
cording to which node it will reside on when sorted, puts
them into in-memory buffers, and when a buffer is full,
sends it to the correct node. A writer collects tuples from
all nodes, and when the in-memory buffer is full, sorts it us-
ing partial-radix sort2, and writes the sorted run to disk. This
first phase is over when all the unsorted input files have been
processed, and written to disk as temporary sorted runs. For
the second phase a merge-reader reads tuples from each lo-
cal sorted run into merge input buffers. A merger selects the
lowest-value key among all merge input buffers and copies
it to an output buffer, from which the merge-writer appends
buffers to the sorted output file on disk. This phase com-
pletes when tuples from all local runs have been merged.

6.1. Filter Implementation

The implementation of external sort using filters follows
the above description. The location of the unsorted dataset
dictates the number of nodes to be used for execution. There
are two filters on each node, Partitioner and Sorter. The
Partitioner filter reads buffers from the unsorted input file,
and distributes the tuples into buckets based on the key
value. When a bucket is full, it is sent over the stream that
connects to the Sorter filter on the corresponding node. The

2Making two passes over the keys with a radix size of 11-bits [3] plus a
cleanup.

Sorter continually reads buffers from the input streams, and
extracts a portion of the key and appends it to a sort buffer.
When the sort buffer becomes full, it is sorted and written
to scratch space as a single temporary run. When all buffers
have been read from the input streams, the merge phase be-
gins with only the Sorter filters still executing. The Sorter
filter then reads sorted tuples from each of the temporary run
files and merges them into a single output buffer, and writes
this buffer to the sorted output file on disk.

This application is essentially a parallel SPMD program,
with an all-to-all communication pattern. This organization
is in contrast to the Virtual Microscope application that was
structured as a processing chain pipeline.

6.2. Experimental Results

The experimental setup is a 16 node cluster of dual
400MHz Pentium IIs with 256MB memory per node, run-
ning Linux kernel 2.2.12. There are two interconnects, a
shared Ethernet segment, and a switched gigabit Ethernet
channel. We use the faster switched interconnect for all ex-
periments, and because of a problem with the network inter-
face cards on some of the nodes, only use a maximum of 8
nodes in all experiments. The nodes are isolated from the
rest of the network, and the cluster was not running other
jobs during the experiments. Each node has a single Ultra2
SCSI disk. All data for a particular node, including tempo-
rary data, is stored on the single local disk. The dataset con-
sists of a single 128MB unsorted file per node. The unsorted
dataset was generated randomly with a uniformkey distribu-
tion. The execution time for an experiment is the maximum
time across all nodes used for the experiment. Each exper-
iment is repeated for 5 trials, and the execution time shown
represents the average of the trials. Both a Partitioner and
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Figure 11. Sort execution time as number of
nodes is increased. The dataset size is scaled
with the number of nodes (128MB/node).

a Sorter filter are executed on each node used in the exper-
iments for Figures 11 and Figures 13(a)–(d), and two Parti-
tioner and Sorter filters are executed on some of the nodes
in the experiments for Figures 13(e) and (f). The disk cache
was cleared between executions to insure a cold disk cache
for each run. Note that we are using a tightlycoupled cluster
for experimental repeatability, and will be switching to hosts
on a wide-area Grid environment when application behavior
is better understood.

Scaling. The first experiment examines the scalability of
the sort application as we increase the number of nodes and
total dataset size. As seen in Figure 11, the application is
well-behaved. There is good scaling due to the fast inter-
connect not becoming saturated by the traffic generated by
sort. This experiment demonstrates there is nothing inherent
in the filter-stream based implementation that would other-
wise limit its scalability.

Varying Memory Size. In this set of experiments we vary
the amount of memory available for filters on some of the
nodes while keeping it constant for filters on the remaining
nodes. Our goal is to create a heterogeneous configuration
in a controlled way, and observe the effects of heterogeneity
on the application performance.

Figure 13 shows the execution times under varying mem-
ory constraints. The solid line in all of the graphs denotes
the base case, in which the size of the memory is reduced
equally across all nodes, and shows the change in the ex-
ecution time. The amount of the Full memory case is de-
termined empirically to minimize execution time while con-
suming the least memory (see Figure 12). Memory param-
eters are varied by halving the full memory amount for the1=2 case, and halving again for the 1=4 case, etc. Constrain-

Filter Parameter Full Memory
Partitioner read size 256 KB
single disk buffer for reading tuples from the unsorted input file

Partitioner bucket size 1 MB
shared space for all outgoing tuple buckets, before sending to Sorter filters

Sorter (phase 1) keybuf size 1 MB
single buffer for storing extracted key and tuple pointer, before sorting and writ-
ing the temporary run

Sorter (phase 2) sharedbuf 768 KB
shared disk buffer for reading from all temporary runs during merge

Sorter (phase 2) outputbuf 512 KB
single disk buffer for writing sorted tuples to output file

Figure 12. Memory parameters used by the
sort filters. The Full Memory column contains
the initial value for each parameter.

ing memory causes the filters to read/process/write data in
smaller pieces, thus performance should suffer. As is shown
by the solid line in the figure, the execution time increases as
the size of the memory is decreased. In the experiments with
heterogeneous memory configuration, we divide the eight
nodes into two sets of four nodes. The first set of nodes re-
tains the initial amount of memory (i.e., Full memory) for
all runs, while the second set has their memory reduced for
each case. The left bars for each case in each graph shows
the maximum of the execution times on the nodes with full
memory. Similarly, the right bar for each case in each graph
shows the maximum of the execution times on the nodes
with reduced memory. As is shown in Figure 13(a), we ob-
serve performance degradation similar to the base case. The
nodes that use a constant amount of memory finish sooner,
but the entire job runs no faster. In this experiment, both the
input data to the Partitioner filter and the output of the Par-
titioner (i.e. the input data to the Sorter filter) on each node
are regularly partitioned across all the nodes.

Notice that the total amount of memory across all nodes
for this experiment is larger than that for the base case be-
cause half the nodes keep full memory. For example, for the1=8 memory case, 350% more memory was being used in
aggregate than for the 1=8 base case. Instead of a reduction
in sort time, the extra memory results in a load imbalance
between the two sets of four nodes. Hence, in the next ex-
periment we partitioned the amount of input data for each
node irregularly, to attempt to reduce overall execution time.
Figure 13(b) shows that the execution time increases when
we partition the input data based on available node mem-
ory, i.e., full nodes have more input data than nodes with re-
duced memory. This results from an increase in the time for
the partitioning phase, because the Partitioner filters on the
set of nodes with full memory have more input records to
process. The execution time for the merge phase is effec-
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tively unchanged, because the amount of data sent to each
node is unchanged. Figure 13(c) shows the result of parti-
tioning the output of the Partitionerfilter (and thus the merge
phase work) according to the memory usage of the receiv-
ing node. This experiment, however, moves too much work
to the nodes with full memory, so that those nodes become
the longest running node set. To improve performance fur-
ther, we followed two different approaches. In Figure 13(d),
the Partitioner filter output is adjusted to balance the perfor-
mance of both sets of nodes (approximately a 10% reduc-
tion in the number of tuples assigned to a node for each 1=2
reduction in memory usage). In this case, we observe bet-
ter performance than the previous cases. In the second ap-
proach, we partitioned both the input data and the output of
the Partitioner filter as was done in the experiment for Fig-
ure 13(c), but executed two Sorter and two Partitioner fil-
ters on the nodes with Full memory to take advantage of the
dual processors available in each node. As is seen in Fig-
ure 13(e), the performance is better than for the previous
cases. Finally, Figure 13(f) shows the combined effect of
running two sets of filters on the nodes with full memory,
and adjusting the Partitioner output to balance the workload
across both set of nodes. As expected, this configuration
performs better than all other cases. These experimental re-
sults clearly show that application-level workload handling
and careful placement of filters can deal with heterogeneity,
which can have a significant impact on performance. Ques-
tions that require further investigation include (1) “can we
develop cost models for filters and for the application per-
formance so that the placement of filters and workload han-
dling can be done by the runtime system, with little interven-
tion from the user?” and (2) “can we make use of expos-
ing resource requirements and communication characteris-
tics to develop accurate and efficient cost models?”. We plan
to work on more applications and different configurations to
seek answers to these questions in future work.

7. Conclusion and Future Work

We have presented a framework, called filter-stream pro-
gramming, for developing data-intensive applications in a
Grid environment. This framework represents the process-
ing in an application as a set of processing components,
called filters. The goal is to constraint application com-
ponents to allow for location independence, and to expose
communication characteristics and resource requirements,
thus enabling a runtime system to support efficient execu-
tion of the application. We have described a prototype run-
time infrastructure to execute applications using the filter-
stream programming framework. We have discussed imple-
mentations of two data-intensive applications that make use
of our filter-stream framework, and presented experimental
results.

Our experimental results show that there exists a delicate
balance, and sometimes subtle interactions with heteroge-
neous resources, that can have a large impact on application
performance. We plan to further investigate such interac-
tions to develop cost models that can aid in decomposition
of applications into filters and placement of the filters. We
also are in the process of implementing other applications to
use the filter-stream programming framework from applica-
tion areas such as volume visualization, database decision
support, and image processing.
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(b) Irregular partitioning of input data
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(c) Irregular partitioning of input data
and Partitioner filter output
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(d) Irregular partitioning of input data
and Partitioner filter output (tuned)
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and Partitioner output, 2 pair of filters per
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(f) Irregular partitioning of input data
and Partitioner filter output (tuned), 2
pair of filters per Full node
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