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Abstract

Applications that use collections of very large, dis
tributed datasets have become an increasingly important
part of science and engineering. With high performance
wide-area networks becoming more pervasive, thereisin-
terest in making collective use of distributed computational
and data resources. Recent work has converged to the
notion of the Grid, which attempts to uniformly present a
heterogeneous collection of distributed resources. Current
Grid research covers many areas fromlow level infrastruc-
ture issues to high level application concerns. However,
providing support for efficient expl oration and processing of
very large scientific datasets stored in distributed archival
storage systems remains a challenging research issue.

We have initiated an effort that focuses on devel oping ef-
ficient data-intensiveapplicationsina Grid environment. In
thispaper, we present a framework, called filter-stream pro-
gramming, that represents the processing units of a data-
intensiveapplicationasa set of filters, which aredesigned to
beefficient intheir use of memory and scratch space. Wede-
scribe a prototype infrastructure that supports execution of
applicationsusing the proposed framework. e present the
implementation of two applications using the filter-stream
programming framework, and discuss experimental results
demonstrating the effects of heterogeneous resources on ap-
plication performance.

1. Introduction

Increasingly powerful computers have made it possible
for computational scientists and engineers to model physi-
ca phenomenain greater detail. Asaresult, overwhelming
amounts of experimental data are being generated by scien-
tificand engineering simulations. In addition, largeamounts
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of data are being gathered by sensors of various sorts, at-
tached to devices such as satellites and microscopes. There
are many examples of large useful datasets from simula
tions [26, 29, 33], sensor data [25, 28], and medical imag-
ing[2] (pathology, MRI, CT scan, etc.). Theprimary goal of
generating datathrough large scale simulationsor sensors is
to better understand the causes and effects of physical phe-
nomena. Understanding is achieved through running anay-
sis codes on the stored data, or by a more interactive visu-
alization that relies on the ability to gain insight from look-
ing at acomplex system. Thus, bothdataanalysisand visua
exploration of large datasets playsan increasingly important
role in many domains of scientific research. Decision sup-
port database applications are similar to scientific applica
tions because they deal with large quantities of data (rela
tional data), and need to perform significant computationin
processing thedata. Thevalue provided by decision support
systems and data-mining al gorithms depend greatly on the
amount of data, and hence businesses are inclined to retain
as much data as possible.

Disks continue to become larger and cheaper making
them commodity items. Thishelpsto makeit relatively easy
to setup a large set of archival storage disks at a relatively
low cost. For example, to buildalarge disk farm out of com-
modity PC components for the lowest current price: $400
for a motherboard with a Celeron or AMD K6-2 400MHz
cpu and 64MB memory [9], four 40GB EIDE disks at $254
each [10] and a fast ethernet interconnect (100 Mbps), a
farm of 8 PCs can present 1.25TB of disk space for lessthan
$15K. The price point is sufficiently low to enable many
such disk collections to be setup independently at multiple
disparate locations, where loca storage needs dictate. We
anticipate that thistrend will result in the emergence of is-
lands of data, where cheap archiva storage systems will
be used to hold large locally generated datasets. Use of
computation farms a so isimportant for handling very large
datasets in a reasonable amount of time. Oftentimes, high
performance computation farms are where the datais gen-
erated (as in large scientific simulations), and the data may
residelocally on thecomputationfarmin an archival storage



system such asHPSS[22]. Thanksto high-performancenet-
works, increasing numbers of computation farms have be-
come accessible across a wide-area network. These com-
putation farms span a spectrum of widely varying config-
urations and computation power, from relatively inexpen-
sive network of workstationsand PC clustersto very expen-
sive high-performance machines, providing computing per-
formance in the order of Teraflops.

These trends combine to present anew opportunity: very
large distributed datasets that can be used by applications
for computationallyand dataintensiveanalysis, exploration
and visualization.

Consider the following scenario: A scientist wants to
compare properties of a 3D reconstructed view of a raw
dataset recently generated at acollaboratinginstitution, with
the propertiesof alarge collection of reference datasets. The
3D reconstruction operation involves retrieving portions of
2D dlices from the regions in question, and then perform-
ing feature recognition and interpol ating between the dlices
to extract the important 3D features. A description of these
features and the associated properties are then compared
against a database of known features, and some appropriate
similarity measureis computed. Thefina result isthe set of
reference features found that are closein some way to those
found in the new raw dataset, along with the corresponding

view renderingsto visuaize.
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Figure 1. 3D reconstruction/visualization sce-
nario on distributed collection of resources.

Consider the problems that can occur when the applica
tionisexecuted ina Grid [16] environment. That is, there-
quired resources (new raw dataset, reference database, and
the scientist) are all at distributed locations in a wide-area
network asseen inFigure 1. Thereference databaseislikely
tobe storedin animagelibrary, sincethedataset islargeand
useful to many users. The new raw dataset is stored at the

site where the sensor readings were taken. If the hosts con-
taining the data are low-power archival systems that make
the execution of the 3D reconstruction code prohibitively
expensive, it becomes unclear how to structurethe applica
tionfor efficient execution. Ideally wewouldliketo execute
portions of the application at strategic pointsin the collec-
tion of machines. A set of possible locations for perform-
ing computationisindicated in thefigure by question marks.
For example, if the portion of code that performs the range
select on the new raw dataset could be run on the host where
the data lives, the amount of datato be transmitted over the
wide-area network (WAN) would be reduced. The compu-
tation farm is an ideal location for the feature recognition
and 3D reconstruction due to the parallelism inherent in the
codes. Giventheset of featuresthat wereidentified, it would
be efficient to perform the selection of similar features from
thereference database on the data server where the database
islocated. Thelow end PC wherethe scientist islocated can
be used to collect the 3D rendering and the similar feature
information for interactive presentation to the scientist.

The success of this scenario depends on the application
allowing portionsof itscomputation to be executed in adis-
tributed fashion. Beyond the mere possibility of execution
in adistributed environment is the question of how efficient
the application is. One interpretation of efficiency in this
context is the ratio of useful data transmitted to the total
amount of data transmitted between any two pieces of the
application. For example, if an application transmitted afull
dataset from aremote host, and discarded alarge portion not
required by subsequent processing, then this would not be
considered efficient operation.

We have initiated an effort to investigate and develop
methodologies and a framework for efficient execution of
applications that make use of distributed collections of
datasets in a Grid environment. There are two main chal-
lengesin devel oping efficient applicationsin aGrid environ-
ment:

e The Grid is composed of collections of heterogeneous
resources. The characteristics, capacity and power
of resources, including storage, computation, and net-
work, vary widely. This requires that applications
should be structured to accommodate the heteroge-
neous nature of the Grid.

o These distributed resources can be shared by many ap-
plications. Thisrequiresthat applicationsshould bede-
signed to be optimized in their use of shared resources.

In order to address these challenges, we are investigating:

o Methodologies and a framework for structuring appli-
cations. In particular, we address decomposition of ap-
plication processing into componentsand placement of
these components onto a collection of heterogeneous
resources that will aid efficient execution.



o Feasibility and effects of exposing application structure
and characterigtics. In particular, we address exposing
resource requirements and the communication pattern
between application components, and how this extra
application structure information can be used.

¢ An infrastructure for providing execution of applica
tionsthat conform to the devel oped framework.

In this paper, we present a framework, caled filter-
stream programming, that represents the processing in a
data-intensive application as a set of processing units, re-
ferred to here as filters, which are designed to be efficient
in their use of memory and scratch space. In this frame-
work, data exchange between any two filters is described
viastreams, which are uni-directional pipesthat deliver data
in fixed size buffers. We describe a prototypeinfrastructure
that providessupport for execution of applicationsusing the
proposed framework. We present theimplementation of two
applications in filter-stream programming framework, and
experimenta results to demonstrate the effects of heteroge-
neous resources on the performance of the applications.

2. TheProposed Approach

In this section, we present a framework, called the filter-
stream programming model. The basic ideas are to (1) con-
strain application componentsto allow for location indepen-
dence, whichisnecessary for executioninadistributed envi-
ronment, and (2) expose the application communication pat-
tern and resource requirements, alowing a runtime system
to aid in efficient execution. We should note that any pro-
gramming modd (e.g., message passing) modified to expose
similar constraints could be employed in place of the filter-
stream programming model we describe.

The programming model used in this work is derived
from the stream-based programming model, originaly de-
veloped for Active Disks [1, 35]. Many stream-based d-
gorithms were developed and analyzed for Active Disks.
These agorithms carry out a variety of data transforma
tionsthat arisein earth science applicationsand applications
of standard relational database sort, select and join opera-
tions. In thiswork we extend these a gorithms and investi-
gatethe application of filters and the stream-based program-
ming model in a Grid environment.

In the filter-stream programming model, an application
is represented by a collection of filters. A filter is a por-
tion of the full application that performs some amount of
work. Filters are required to pre-disclose dynamic memory
and scratch space needs. Communication with other filters
is solely through the use of streams. A stream is a com-
munication abstraction that alowsfixed sized untyped data
buffers to be transported from one filter to another. An ex-
ample set of filters for the motivating example is shown in

Figure 2. A simple example of this model is Unix system
pipes, wherethe standard output of aprocessisused as stan-
dard input for another process. Unix pipesrepresent alinear
chain of filters, each of which have asingleinput stream and
asingle output stream. The filter-stream model allows for
arbitrary graphs of filterswith any number of input and out-
put streams.
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Figure 2. 3D reconstruction application de-
composed into filters.

The process of manually restructuring an application us-
ing thismodel isreferred to as decomposing the application.
In choosing the appropriate decomposition, we need to con-
sider the complete data flow path from data generation to
ultimate consumption and the target machine configuration,
which can be a distributed collection of heterogeneous ma-
chines. The main goad isto achieve efficient use of limited
resources in a distributed and heterogeneous environment.
The choice of decomposition can have a significant impact
on efficiency and performance. Too many filterscould mean
there is not much work for individua filters, which would
cause the system to spend much of its time moving data
around and little time performing useful work on the data.
Too few filters could limit the ability of the overall system
to execute filters concurrently. Similarly, sending data over
streams in very small pieces can make the overhead of the
runtime system too large. If possible, an ideal granularity
size should balance the amount of computation and commu-
nication such that the overall processing time across all fil -
tersdoes not exhibit a penalty merely because the computa-
tion isdistributed.

Given a set of filters, the runtime mapping of filters onto
various hostsin awide-area grid environment isreferred to
as placement. Figure 3 shows a possible placement of the
filters described for the motivating scenario. The choice of
placement represents the main degree of freedom in affect-
ing application performance by:

o placing filters with affinity to data sources near the
SOurces,

e Minimizing communication volume on slow links,

co-locating filters with large communi cation volume,

o placing computationally intensivefilterson less|oaded

hosts,
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Figure 3. Possible placement of 3D recon-
struction application filters.

o pipelining application filters by concurrent execution.

Notethat aplacement decisionisnot assumed to bestatic,
and the programming model explicitly supports the notion
of stopping a set of filters and replacing them with possibly
anew set of filterswith a different placement.

A runtimesystem infrastructureisused to support the ex-
ecution of applicationsthat are structuredin thefilter-stream
programming model. I1n the following sectionswe present a
prototypeinfrastructurefor executing applicationfilters, and
present implementations of an image processing application
and a database application using the filter-stream program-
ming model.

3. Related Work

Thereisalarge body of hardware and software research
on archival storage systems, including distributed parallel
storage systems [24], file systems [34], image servers [32],
and data warehouses [23]. Severa research projects have
focused on digital librariesand geographic information sys-
tems [4, 20] that access collections of archival storage sys-
tems, high-performance I/O systems [8], tertiary storage
systems [22] and remote 1/0O [19, 31]. Distributed storage
systems attempt to provide large amounts of data to dis-
tributed clients. They present a uniform view of distributed
data to applications, and transparently handle replicas and
caching. This does not push the computation to the data
as in our work, rather the datais migrated to the computa-
tion, but can achieve a similar result with an effective re-
placement policy and awarm cache. Anotherissueisfinding
therequired data. The Storage Resource Broker (SRB) [31]
provides uniform UNIX-like I/O interfaces and meta-data
management servicestolocate and access collectionsof dis-
tributed data resources.

Distributed computing covers research that addresses
ways to deal with distributed execution of application code
in many different ways. Current work related to Grid com-
puting [7, 14, 16] attempts to provide a uniform view into
acollection of distributed computational, network and stor-
ageresources, and to provideservices for unified, secure, ef-
ficient and reliable access. However, providing support for
efficient exploration and processing of very large scientific
datasets stored in archival storage systems at distributed lo-
cations remains a challenging research issue, and the neces-
sity of infrastructureto provide such support was recognized
in recent Grid forums [21]. This support of processing and
retrieval for efficient operation is exactly what our work is
attempting to provide.

There is a large body of classic work on dataflow sys-
tems. The macro dataflow model [30, 36] describes an ap-
plication asasets of tasks, communication edges, edge com-
muni cation costs and task computation costs. PY RROS[37]
uses thismodel of application behavior and manual annota-
tionsto cluster, map, and schedule computation to nodes of
a homogeneous parallel machine. As we target a heteroge-
neous grid environment, we expand on assumptionssuch as
constant computation regardless of placement, which makes
sense in a tightly coupled environment. There is also task
parallel work in systems such as STRAND [12], PCN, For-
tran M [13], and HPF [18], which are related due to the
dataflow model and/or task parallelism used. Our work is
different in that we are consi dering remote datasource affin-
ity as a primary reason for decomposition, rather than an at-
tempt to extract paralellism.

4. A Prototype Infrastructure

In thissection, we describe aprototypeinfrastructureim-
plementation that provides support for execution of appli-
cations developed using the filter-stream framework. This
work is part of the DataCutter project [6], that provides
services for subsetting and processing multi-dimensional
datasets stored on archiva storage systems.

41. Filters

A filter is specified by the code to execute, and adescrip-
tion of the input and output streams it will use. Currently,
filter code is expressed using a C++ language binding by
sub-classing aprovided filter base class. Thisbase classpro-
vides a well-defined interface between the filter code and
the system filter service. The description of input and out-
put streams is specified in aseparate configuration file (Fig-
ure4).

Filters are constrained in several respects. First, undis-
closed dynamic allocation of memory and local disk space
is not allowed. Instead, the filter must pre-disclose and be



granted scratch memory and disk space by the runtime sys-
tem. The granted scratch space is alocated on behalf of the
filter by the runtime system when the filter is instantiated.
Later, thefilter may make use of thegranted scratch space as
needed. One of the potentia benefits of exposing resource
requirementsin thisway isthat runtime system can achieve
abetter placement of filters. For example, afilter can berun
on amachinewith enough memory to avoid paging, and two
filters requesting large scratch space can be placed on two
different machines. 1n addition, the runtime system can po-
tentially perform better scheduling of co-located filterson a
machine. One of our goals in this project is to investigate
and assess the potential benefits of pre-allocating memory,
when it will realy be important, and implicationsfor struc-
turing applications. In order to accomplish this, we plan to
compare standard versions of target applicationswith filter-
stream based implementationsin subsequent work.

The interface for filters consists of an initializationfunc-
tion, a processing function, and afinalization function:

class MyFilter : public AS_Filter_Base {
public:
int init (int argc, char *argv[]) { ... };
int process (stream_tst) { ... };
int finalize (void) { ... };

}

The init function is called when the filter is instantiated,
and is passed parameters with the command line arguments
used when the application was started. This is where afil-
ter would request scratch memory space for use during later
processing, for example. The process function is called to
handle data arriving on theinput streamsin buffersfromthe
sending filter. The parameter passed to the process function
contains arrays of descriptors for the sets of input streams
and output streamsthisfilter can use. Thefilter can only read
and writefrom/tothe provided streams. No new streams can
be created by thefilter a runtime. The finalize functionis
called after al processing isfinished and thefilter isready to
terminate. Thisiswhere afilter would rel ease any resources
inuse.

Another restriction is that a filter cannot change the
source of itsinput streams nor thesinks of itsoutput streams.
This has two advantages. First, a filter does not need to
handl e buffering and scheduling for itsown communication,
thereby reducing the complexity of filters. Second, theloca-
tion of filtersis transparent, allowing filters to be placed at
different locationsinitially and rel ocated as system resource
congtraints change.

Filters are the unit of placement. Each filter can poten-
tially be executed on a different host. In addition, afilter’'s
location may change at discrete application-defined inter-
valsduringthe course of execution. Notethisdoesnotimply
true migration of code and state, but rather placement can

be recomputed and thefilter can be stopped on the origina
host and a new copy re-instantiated on the new host. There
is a limited mechanism for a final state transfer by a sin-
glebuffer transfer from the old instance to the new instance.
Thisapproach avoids many of thedetailsinvolvedin check-
pointing and process migration [11], whil e retaining most of
the benefits. Filters need to be structured appropriately to
handle such events. For cases when thisis not desirable, a
filter can be pinned to a particular host, which means thefil -
ter will always be placed on that host. This host affinity is
useful for some situations, such as when runtimelibrariesor
auxiliary data files only exist on a particular host, but does
limit placement flexibility.

4.2. Streams

A stream is an abstraction used for filter communica
tion. Since the placement of filtersis largely unknown un-
til runtime, this mechanism is used to achieve location-
independent filter code because stream names are used
rather than endpoint location on a specific host. A stream
is used to specify how filters are logically connected, and
to provide the glue at runtime to attach an input stream for
one filter to an output stream of another. All transfers to
and from streams are through a provided buffer abstraction.
A buffer represents a contiguous memory region containing
useful data. The buffer contains a pointer to the start, the
length of the portion containing useful data, and the maxi-
mum size of the buffer. In the current prototypeimplemen-
tation we are using TCP for stream communication, but any
point-to-point communication library could be added, such
as Nexus[17].

The streams are specified in aglobal sense, separate from
theapplicationcode. For eachfilter, alist of input and output
streams is required. This discloses all potential filter com-
munication pairs for the entire execution of the application.
Given a set of filters with stream connectivity information,
we can build atask graph where the nodes represent the fil -
ters, and the edges represent stream connections. For exam-
ple, giventhreefiltersA, B and C, with databeing sent from
A toboth B and C, and from B to C, the specification and re-
sultingtask graph are seenin Figure4. Each filterinthe spec
appears in a section labeled [filter.<name>]. For each sec-
tion, two optional entriesins and outs can appear containing
thelist of input and output stream names respectively.

In addition to the above inter-filter streams, we alow
for two other types of streams:! File Streams and External
Communication Streams. Files Streams are used to read and
writeto files stored in local scratch disk space or local per-
manent disk storage. The file stream abstraction further in-
sulates the filter code from specifics about the host system.
Thisprovidesameasure of safety between co-located filters,

1These are not yet implemented in the prototype.
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Figure 4. Sample filter/stream specification.

since one filter cannot access another filter’'s scratch disk
space. The permanent disk storage presents a uniform file
systemto al filters, similar to atraditional file system. Thus
afilter with sufficient authorization can read files in perma-
nent disk storagewritten by another filter. External Commu-
ni cation Streams are used to connect to, and receive connec-
tionsfrom legacy or other non-filter application code.

4.3. Execution Environment

The execution service performs all the steps necessary to
instanti atefilters on parti cular machines, connect all thelog-
ical stream endpoints, and call the interface functionsto al-
low filtersto run.

The description of where to instantiatefiltersis provided
by a placement specification. Currently, this is statically
generated before the application is started. An example
placement specification for the samplefiltersis:

[placement]

A = hostl.cs.umd.edu
B = host2.cs.umd.edu
C = host3.cs.umd.edu

The [placement] section is expected to contain one en-
try for each filter. The value is smply the host to execute
the filter on. In general, this host can be a parale ma
chine, which implies multipleinstances of thefilter are cre-
ated, but the prototypeimplementation does not yet support
paralle filters. Security concerns have made it difficult to
start processes on remote machines in a uniform manner.
To solve this problem in the current prototype, an Applica
tion Execution Daemons (appd) must be run on every host
used to execute filters. In the future, we plan to use exist-
ing Globus [15] services for process creation and authenti-
cation, in which case the Application Execution Daemons
would not be needed. In addition, a single provided Direc-
tory Daemon (dird), which issimilar to an LDAP server, is
used to record the contact information (host, port, pid) for
each appd. The dird isthe only process that runs on awell-
defined host and port. All other ports are ephemeral, and

registered withthedird tolater be queried. Based onagiven
placement specification, the execution of a filter-based ap-
plication requires contacting the appd process on each host.
A lookup is performed to find contact information for each
required appd. Currently, we require an application binary
to exist on every host, which must contain at least the code
for the filters that will execute on that host. The binary can
contain code for all thefilters, and thosefilters not intended
to run on a given host will not be instantiated at runtime.
Currently we manual ly compile/copy the binariesas needed,
but convenience procedures to do this will be added in the
future.

The application is started by running the application bi-
nary on some host. This will become the console process,
which performs no application processing such as running
filters. The console process queries the dird process to get
therelevant appd contact information, and then sends an ex-
ecute command to each appd. The appd executes the appli-
cation binary on that host, whichin turn contactsthe console
process and performs some initial handshaking to setup the
stream abstractions. In the current prototype, one POSIX
thread is created for each filter that runs on the host, and
a new instance of the application filter object is created.
Thethread callstheinit interface function passing the com-
mand line arguments that were used when the console pro-
cesswas started. Next, thethread call sthe process function.
When thisreturns, all open streams are closed and the final -
izefunctioniscalled. Any remaining filter resources are re-
leased before the thread stops.

The multiplethreads allow for fairness across filterson a
singlehogt, since al threads are executed with the same pri-
ority by the underlying operating system. No onefilter can
starve another due to the time sharing semantics of POSIX
threads. Of course thefilters do need to be thread-safe with
respect to each other. Based on the filter-stream program-
ming model, this should be natural for most applications.
Filtersin this model are inherently isolated and communi-
cate via system provided buffers, thus should be fairly easy
to make thread-safe dueto thelack of shared resources. One
problem could be common library routines. For the cases
where no thread-safe implementations exist, we providefil -
ter level locks that can be used to wrap the offending calls.
Thisisonly an issue when thread safety problems exist be-
tween filtersthat run on the same host, thusin the same pro-
cess. For the sample placement, filters A, B and C can all
have thread safety violations, since they are al actualy run
in separate processes on three different hosts.

For cases when thread safety isa problem and lock wrap-
pingwill not work, theinfrastructure could be augmented to
optionaly use a single thread for all filters on a given host.
Control could use adataflow model where scheduling isper-
formed by the infrastructure for filters based on the arrival
of input. Another aternativere-design isto make each filter



execute as aseparate process, thusavoiding al threadingis-
sues at the expense of increased filter communication costs
on the same host. The use of athread-per-filter-instanceisa
property of the current prototypeimplementation, and isnot
mandated by the overal modd.

4.4. Applicability

Our approach is intended to be applicable to many com-
mon types of data-intensive applications that are emerging
for usein agrid environment. The benefits of thisapproach
result directly from two observations. The first is that the
filter-stream framework exposes useful information, parti c-
ularly application communication pattern and communica-
tion volume information. The second isthat expressing the
application processing as filters enabl es data volume reduc-
tion from remote data sources. These factors can be lever-
aged to improve application efficiency at runtime.

We recoghi ze that the approach may not be effective for
all application types, and are identifying characteristics that
make applications ill-suited for this approach. Ill-suited in
this case means performance will be no better than that of
a generic message passing implementation, for example us-
ing MPI [27]. The first problem occurs when applications
have high selectivity. This means nearly all the remote data
is needed by the application, and no significant data reduc-
tion is achieved, which will nullify the benefits of applica-
tion decomposition.

Applicationsthat lack aclear task structure are al so prob-
lematic. If the application cannot be divided cleanly into a
set of filters, then placement choices are more limited for
such a monolithic application. For example, if an applica-
tion uses two remote data sources and cannot be divided into
filters, we can execute the application at either data source
(inputs), the client (output), or a an intermediate location.
Thiswill most likely be efficient only for datalocated at the
execution site chosen, and inefficient for other input/output
data sources/sinks.

The communication pattern and volume are significant
characterigtics that enable intelligent placement to overlap
communication with computation and reduce high volume
on dow network links. If the pattern or volume of com-
munication is unknown, chaotic, very fine grained, or time
varying, then it is difficult to perform an intelligent place-
ment. For example, a communication pattern that involves
all possiblefiltersand is data dependent, where the destina-
tion for a piece of dataisknown only after its examination,
will result in a conservative approximation of an all-to-al
pattern with equal volume between al pairs of filters. There
is no clear choice for placement in this case, because any
possible good placement may only be known after execu-
tion has finished and the communication activity has been
observed. Even worse, the observed communication pattern

and volume may not be helpful for future runs, due to non-
determinism in such applications. Our approach assumes a
single significant communication pattern and deterministic
volume, which can be used for choosing placement for the
entire execution. For the applicationswe are targeting, such
as volume visualization, database decision support, and im-
age processing, these assumptions appear to hold.

5. Application: Image Processing

The Virtual Microscope [2] is a query-response appli-
cation that processes multi-dimensiona image data to sat-
isfy client queries. The dataset contains high power digi-
tized images of microscope dides, which effectively forms
a 3D dataset because each dide can contain multiple 2D fo-
ca planesat different depths. Images are stored at the high-
est magnification level, and the size of a single dide typi-
caly varies from 100 B to 5G B, compressed. The sys-
tem is required to provide interactive response times simi-
lar to a physical microscope, including continuously mov-
ing the stage and changing magnification. A typical query
allowsaclient to request a2D rectangular region at a partic-
ular magnification from within the bounds of a single focal
plane. The processing for the query requires projectinghigh
resolution data onto a grid of suitable resolution (governed
by the desired magnification) and appropriately composit-
ing pixelsthat map to asingle grid point to avoid introduc-
ing spurious artifacts into the displayed image. The Virtual
Microscopeisuseful for performing operationsthat are diffi-
cult with aphysical microscope, such as simultaneousview-
ing and manipulation of a single slide by multiple users, or
remote tel epathol ogy [2] where diagnosing pathologistsare
not required to be physically located near the dlide.

5.1. Original Implementation

The origind Virtua Microscope system is composed of
two components; aclient to generate queriesand display the
results(i.e. images), and aserver to processthequeries. The
server is composed of a frontend and a backend. The fron-
tend interacts with clients; it receives queries from clients
and forwards them to the backend. The backend consists of
one or more processes, typically one per node of a parallel
machine. The processing of aquery iscarried out entirely in
the backend.

In order to achieve high 1/0 bandwidth, each focal plane
in adideisregularly partitioned into data chunks, each of
which is a rectangular subregion of the 2D image. Data
chunks are declustered across all backend local disks to
achieve 1/O paralelism. Each pixel inachunk is associated
with a coordinate (in x- and y-dimensions) in the entire im-
age. Each chunk has an associated minimum bounding rect-
angle (MBR) based on dl the pixelsin the chunk. Anindex



iscreated using the MBR of each chunk. Sincetheimageis
regularly partitionedinto rectangular regions, asimplecom-
putation can be used instead of a complex index search.

During query processing, the backend process finds the
chunksthat intersect the query region, and reads them from
the local disks. Each data chunk is stored in compressed
form (JPEG format), and must be first decompressed. Then,
it is clipped to the query region. Afterwards, each clipped
chunk is subsampled to achieve the zoom level (magnifica
tion) specified in the query. The resulting image blocks are
directly sent to the client. The client viewer assembles and
displays the image blocks from each of the backend pro-
cesses to form the query output.

5.2. Filter Implementation

Thefilter decomposition used for the Virtual Microscope
system [6] is shown in Figure 5. This filter pipeline struc-
ture is natural for query-response applications. The figure
only depicts the main dataflow path of image data through
the system; other low-volume streams related to the client-
server protocol are not shown for clarity. The thickness of
the stream arrows indicate the relative volume of data that
flows on the different streams.

)<

Figure 5. Virtual Microscope decomposition

In thisimplementation each of the main processing steps
inthe server isafilter:

o read_data: Full-resolution data chunks that intersect
the query region are read from disk, and written to the

output stream.
o decompress: Image blocks are read individualy from

the input stream. The block is decompressed using
JPEG decompression and converted into a 3 byte RGB
format. The image block is then written to the output

stream.
o clip: Uncompressed image blocksareread fromthein-

put stream. Portions of the block that lie outside the
guery region are removed, and the clipped image block

iswritten to the output stream.
e zoom: Image blocks are read from the input stream,

subsampled to achieve the magnification requested in

the query, and then written to the output stream.
o view: Image blocksarereceived for agiven query, col-

lected intoasinglereply, and sent to theclient usingthe
standard Virtua Microscope client/server protocol.

Figure 6 illustrates the high-level code for the zoom fil-
ter, which has two input streams and one output stream. It

VM zoom :init() {
/1 Alocate output buffer frompre-allocated scratch space
buf Qut = All ocFronScrat ci get Qut put St reanBuf f er Si ze());
}
VM zoom : process(streamt &st) {
DC. St reanBuf fer *buf;
VMuery *query,
VMChunk *chunk;

/'l recv the query

buf = st.ins[0].read); query = VMUnpackQuery(buf);

/'l while there is data retrieved frominput stream

while ((buf = st.ins[1].read)) != NULL) {
chunk = VMunpackChunk(buf); // extract chunk information
zoom chunk(chunk, query); // perform zoom operation
buf Qut = VMPackChunk(chunk); // pack chunk into buffer
st.outs[O0] .witd&bufCQut); // wite data to output stream
FreeToScr at ch chunk- >Dat a) ;

}

}
VM zoom : finalize() {
FreeToScrat cH buf Qut) ;
}
voi d VM zoom : zoomchunk( VMChunk *chunk, VMQuery *query) {
int rel_zoom = query->Zoon chunk->Zoom
int width = chunk->Wdth/rel _zoom
int height = chunk->Hei ght/rel _zoom
int size = w dth*hei ght *PlI XELSI ZE;

char *pSrc = chunk->Dat a;
char *pDst = chunk->Data = Al | ocFronfcrat cl{size);
/'l subsanpl e the inage block
for (j = height; j>0; --j) {
for (i = wdth; i>0; --i) {

nencpy(pDst, pSrc, PlIXELSI ZE);

pSrc += rel _zoon¥ Pl XELSI ZE;

pDst += Pl XELSI ZE;

}
pSrc += rel _zoon¥chunk. W dt h* Pl XELSI ZE;

/1 update chunk netadata
chunk->Zoom = query->Zoom

Figure 6. The high-level code for zoomfilter.

reads the query from stream 0 (st.ing[0]) and data chunks
from stream 1 (st.ing[1]), and subsamples the received data
chunks using the zoomchunk function. The zoom filter
uses scratch space to store results during subsampling and
to pack the subsampled chunk into the output buffer. The
result iswrittento the output stream (st.outs 0]), which con-
nects the filters zoom and view.

5.3. Experimental Results

Using the filters described in Section 5.2, we have im-
plemented a simple data server for digitized microscopy im-
ages[6], storedinthe IBM HPSS archival storage system at
theUniversity of Maryland. Anexisting Virtual Microscope
client trace driver was used to drive the experiments. This
driver was always executed on the same host as the view fil -
ter, whichisreferred to asthe client host. The server hostis
where the read_data filter is run, which is the machine con-
taining the diskswith the dataset.

The HPSS setup has 10TB of tape storage space, 500GB
of disk cache, and isaccessed through a10-nodelBM SP. In
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Filter Total Volume  \olume Per Chunk
read data 3.60 MB 102.52 KB
decompress 83.42MB 2373.04KB
clip 57.83MB 1645.02KB
zoom (no) 57.83MB 1645.02KB
zoom (8) .90 MB 25.70KB

Figure 7. 2D dataset and query regions. The
table lists transmitted data sizes for  ¢5. zoom
(no) is for no subsampling and zoom (8) is for

a subsampling factor of 8 (in each of the two
spatial dimensions).

all experiments we use a4GB 2D compressed JPEG image
dataset (90GB uncompressed), created by stitching together
smaller digitized microscopy images. This dataset isequiv-
alent to a digitized dide with a single focal plane that has
180K x 180/ RGB pixels. The 2D imageisregularly par-
titioned into 200 x 200 datachunksand stored in HPSSin a
set of files. We defined five possible queries, each of which
covers 5 x 5 chunks of the image (see Figure 7). The ex-
ecution times we will show are response times seen by the
visualization client averaged over 5 repested runs. For the
presented experiments, we eliminated the effects of retriev-
ing datastored on tape by insuring the data was staged tothe
HPSS disk cache before each run. We are using machines
onour local areanetwork for experimental repeatability, and
will switch to hosts in a wide-area Grid environment once
application behavior is sufficiently well-understood.

Overhead of Using Filters. The query execution times for
the original optimized Virtual Microscope server versusthe
prototype filter implementation are shown in Figure 8. In
this experiment the entire dataset is loaded from HPSS and
stored on asinglelocal disk attached toa SUN Ultral work-
station, because the original server can only access datasets
stored on disks. The loading of the dataset took 4750 sec-
onds (1 hour 19 minutes). The origina server isrun as a
single process, and al filters in the filter-stream implemen-

B Original Server
’g 40 Filter Server
K
)
£ 30 -
E
?
c 20
1)
o
)
)
x 10
O -
ql g2 a3 a4 a5
Query

Figure 8. Query execution times for the origi-
nal server and the filter implementation. (sub-
sampling factor is 8)

tation are executed on the same uniprocessor SUN worksta-
tion where the dataset has been pre-loaded. In both cases
the client is run on another SUN Ultra 1 workstation con-
nected tothelocal Ethernet segment. Asisseen fromthefig-
ure, thefilter implementation does not introduce much over-
head compared to the optimized origina server. The percent
increase in query execution time ranges from 6% to 30%
across al queries. Thefilter version containsextrawork not
present intheoriginal server, such asflattening of the chunk
and metadata into a linear buffer on the sending filter, and
expanding the chunk and metadatainto the same structurein
the receiving filter. Thisoverhead is necessary when filters
arelocated on distributed machines, but could be eliminated
for the co-located case by instead sending apointer to an in-
memory structure, which would eliminate much of the over-
head. This experiment is designed to be biased against the
filter implementation to see what the overhead isin the de-
composed version. We should a so note that the timings do
not includethetimefor loading the dataset from tape, which
can substantially increase for larger datasets and datasets
stored in archival storage systems across a wide-area net-
work.

Varying the Processing. One node of the IBM SPis used
to access the stored dataset, and the client was run on aSUN
workstation connected to the SP node through the depart-
ment Ethernet. We experimented with different placements
of the filters by running some of thefilters on the same SP
nodewherethedataisaccessed, aswell asonthe SUN work-
station where the client isrun.

In Figure 9 we consider varying the placement of
the filters under different processing requirements. Fig-
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ures 9(a) and (b) show the query execution times when the
image is viewed at the highest magnification (no subsam-
pling) and when the subsampling factor is 8 (i.e. every 8th
pixel in each dimension is output), respectively. There are
three predominant factors in these experiments. The first
is the placement of the most computationally intensive fil-
ter (decompress). The second is the volume of data trans-
mitted between the two machines. The final factor is the
amount of data sent by the view filter to the client driver.
Consider thefirst two groupsof barsin thefigures. The dif-
ference between the groups within each figure is the place-
ment of thezoomfilter onthe server (RDCZ-V) or client host
(RDC-2V). When thereis no subsampling, query execution
times remain amost the same for both placements, because
the volume of data transfer between the server and client
is the same in both cases. In the case of subsampling, the
placement of the zoom filter makes adifference, because the
volume of data sent from the server to the client decreases
if the zoom filter is executed at the server. Now consider
the last two groups of bars in the figures. The difference
between the groups within each figure is the placement of
the decompress filter (RD-CZV or R-DCZV). For no sub-
sampling case, thetimeincreases substantially when decom-
press is placed on the client, because of the combined ef-
fects of the most computationaly intensive filter (decom-
press) and the high amount of data being processed by view
and sent to theclient driver. When thereis subsampling, the
guery execution time is not as high, because the amount of
data processed by view and sent to the client driver is much
lower. These experiments demonstrate the complex inter-
actionsbetween placement of computation and communi ca-

10

tion volume.

Varying the Server Load. In the next set of experiments
(Figure 10), we consider varying the server load. We use
the same experimental setup as for the previous experiment.
In all experiments, we use a subsampling factor of 8. Fig-
ures10(a), (b), and (c) show query execution timeswhen the
server load isdoubled, tripled, and quintupled, respectively.
The different loads were emulated by artificialy slowing
downtheset of filtersrunning onthe server host such that the
total runningtimewas delayed. For example, the zoomfilter
runstwiceaslonginthe2 x casebecausethetimeisdelayed.
As server load increases (or the client host becomes rela-
tively faster), running the filters on the client host achieves
better performance. This result is not unexpected, but the
experiment quantifiesthe effect for thisparticular configura-
tion. The use of adifferent client to server network, or hosts
with different rel ative speeds would significantly changethe
observed trends and trade-off points.

6. Application: External Sort

External sort hasalong history of research in thedatabase
community and has resulted in many fast dgorithms|[3, 5].
The application starts with a large unsorted data file that is
partitioned across multiple nodes, and the output is a new
partitioned data file that contains the same data sorted on a
key field. The sample datafile is based on a standard sort-
ing benchmark that specifies 100 byte tuples, with the first
10 bytes being the sort key. The distribution of the key val-
ues isassumed to be uniform, both in terms of the unsorted
fileasawholeand for each partition. A recent record holder
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Figure 10. Execution time of queries under varying server lo
delayed to double the execution time of a filter on the server,

for the fastest external sort is NowSort [5], and we use the
pipelined version of their two-pass parallel sort for our basic
algorithm.

The algorithm proceeds in two phases. The first phase
generates temporary sorted runs on each node, and the sec-
ond phase produces the output sorted partition on each node.
During thefirst phase, a reader reads chunks of tuplesfrom
the unsorted input file on disk, and partitionsthe records ac-
cording to which node it will reside on when sorted, puts
them into in-memory buffers, and when a buffer is full,
sends it to the correct node. A writer collects tuples from
all nodes, and when thein-memory buffer isfull, sortsit us-
ing partial-radix sort?, and writesthe sorted runto disk. This
first phaseisover when al the unsorted input files have been
processed, and written to disk astemporary sorted runs. For
the second phase amerge-reader reads tuplesfrom each lo-
cal sorted runinto merge input buffers. A merger selectsthe
lowest-value key among al merge input buffers and copies
it to an output buffer, from which the merge-writer appends
buffers to the sorted output file on disk. This phase com-
pletes when tuples from all local runs have been merged.

6.1. Filter Implementation

The implementation of external sort using filters follows
the above description. The location of the unsorted dataset
dictatesthenumber of nodesto be used for execution. There
are two filters on each node, Partitioner and Sorter. The
Partitioner filter reads buffers from the unsorted input file,
and distributes the tuples into buckets based on the key
value. When a bucket isfull, it is sent over the stream that
connectsto the Sorter filter on the corresponding node. The

2Makingtwo passesover the keyswith aradix size of 11-bits[3] plusa
cleanup.

1

ad. 2x means the server computation is
etc. (subsampling factor is 8)

Sorter continually reads buffers from the input streams, and
extracts a portion of the key and appendsiit to a sort buffer.
When the sort buffer becomes full, it is sorted and written
to scratch space asa singletemporary run. When all buffers
have been read from the input streams, the merge phase be-
ginswith only the Sorter filters still executing. The Sorter
filter then reads sorted tuplesfrom each of thetemporary run
files and merges them into a single output buffer, and writes
this buffer to the sorted output file on disk.

Thisapplicationisessentialy aparallel SPMD program,
with an al-to-all communication pattern. This organization
isin contrast to the Virtual Microscope application that was
structured as a processing chain pipeline.

6.2. Experimental Results

The experimenta setup is a 16 node cluster of dual
400MHz Pentium 11s with 256MB memory per node, run-
ning Linux kernel 2.2.12. There are two interconnects, a
shared Ethernet segment, and a switched gigabit Ethernet
channel. We use the faster switched interconnect for &l ex-
periments, and because of a problem with the network inter-
face cards on some of the nodes, only use a maximum of 8
nodes in al experiments. The nodes are isolated from the
rest of the network, and the cluster was not running other
jobs during the experiments. Each node has a single Ultra2
SCSl disk. All datafor a particular node, including tempo-
rary data, isstored onthe singlelocal disk. The dataset con-
sistsof asingle 128MB unsorted file per node. Theunsorted
dataset was generated randomly withauniformkey distribu-
tion. The execution timefor an experiment isthe maximum
time across al nodes used for the experiment. Each exper-
iment is repeated for 5 trials, and the execution time shown
represents the average of the trials. Both a Partitioner and
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Figure 11. Sort execution time as number of
nodes isincreased. The dataset size is scaled
with the number of nodes (128MB/node).

a Sorter filter are executed on each node used in the exper-
iments for Figures 11 and Figures 13(a)—(d), and two Parti-
tioner and Sorter filters are executed on some of the nodes
inthe experimentsfor Figures 13(e) and (f). The disk cache
was cleared between executions to insure a cold disk cache
for each run. Notethat weare using atightly coupled cluster
for experimental repeatability, and will be switchingto hosts
on awide-area Grid environment when application behavior
is better understood.

Scaling. The first experiment examines the scalability of
the sort application as we increase the number of nodes and
total dataset size. As seen in Figure 11, the application is
well-behaved. There is good scaling due to the fast inter-
connect not becoming saturated by the traffic generated by
sort. Thisexperiment demonstratesthereisnothinginherent
in the filter-stream based implementation that would other-
wiselimit its scalability.

Varying Memory Size. In this set of experiments we vary
the amount of memory available for filters on some of the
nodes while keeping it constant for filters on the remaining
nodes. Our goal isto create a heterogeneous configuration
in acontrolled way, and observe the effects of heterogeneity
on the application performance.

Figure 13 showsthe execution times under varying mem-
ory congtraints. The solid linein all of the graphs denotes
the base case, in which the size of the memory is reduced
equally across al nodes, and shows the change in the ex-
ecution time. The amount of the Full memory case is de-
termined empirically to minimize execution timewhilecon-
suming the least memory (see Figure 12). Memory param-
eters are varied by having the full memory amount for the
1/2 case, and halving again for the 1 /4 case, etc. Constrain-
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Filter Parameter Full Memory
Partitioner read_size 256 KB
single disk buffer for reading tuplesfrom the unsorted input file

Partitioner bucket_size 1MB
shared space for al outgoing tuple buckets, before sending to Sorter filters
Sorter (phase 1)  keybuf_size 1MB
single buffer for storing extracted key and tuple pointer, before sorting and writ-
ing the temporary run

Sorter (phase2)  sharedbuf 768 KB
shared disk buffer for reading from al temporary runsduring merge

Sorter (phase 2)  outputbuf 512 KB

single disk buffer for writing sorted tuplesto output file

Figure 12. Memory parameters used by the
sort filters. The Full Memory column contains
the initial value for each parameter.

ing memory causes the filters to read/process/write data in
smaller pieces, thus performance should suffer. Asisshown
by the solidlineinthefigure, the execution timeincreases as
thesize of thememory isdecreased. Intheexperimentswith
heterogeneous memory configuration, we divide the eight
nodes into two sets of four nodes. The first set of nodesre-
tains the initial amount of memory (i.e., Full memory) for
all runs, while the second set has their memory reduced for
each case. The left bars for each case in each graph shows
the maximum of the execution times on the nodes with full
memory. Similarly, theright bar for each case in each graph
shows the maximum of the execution times on the nodes
with reduced memory. Asisshown in Figure 13(a), we ob-
serve performance degradation similar to the base case. The
nodes that use a constant amount of memory finish sooner,
but the entirejob runs no faster. In thisexperiment, both the
input datato the Partitioner filter and the output of the Par-
titioner (i.e. theinput datato the Sorter filter) on each node
are regularly partitioned across al the nodes.

Notice that the total amount of memory across all nodes
for this experiment is larger than that for the base case be-
cause half the nodeskeep full memory. For example, for the
1/8 memory case, 350% more memory was being used in
aggregate than for the 1/8 base case. Instead of areduction
in sort time, the extra memory results in a load imbalance
between the two sets of four nodes. Hence, in the next ex-
periment we partitioned the amount of input data for each
nodeirregularly, to attempt toreduce overall executiontime.
Figure 13(b) shows that the execution time increases when
we partition the input data based on available node mem-
ory, i.e., full nodes have more input datathan nodeswith re-
duced memory. Thisresultsfrom anincrease inthetimefor
the partitioning phase, because the Partitioner filters on the
set of nodes with full memory have more input records to
process. The execution time for the merge phase is effec-



tively unchanged, because the amount of data sent to each
node is unchanged. Figure 13(c) shows the result of parti-
tioningthe output of the Partitioner filter (and thusthe merge
phase work) according to the memory usage of the receiv-
ing node. Thisexperiment, however, moves too much work
to the nodes with full memory, so that those nodes become
the longest running node set. To improve performance fur-
ther, wefollowed two different approaches. InFigure 13(d),
the Partitioner filter output i s adjusted to bal ance the perfor-
mance of both sets of nodes (approximately a 10% reduc-
tionin the number of tuples assigned to anodefor each 1/2
reduction in memory usage). In this case, we observe bet-
ter performance than the previous cases. In the second ap-
proach, we partitioned both the input data and the output of
the Partitioner filter as was done in the experiment for Fig-
ure 13(c), but executed two Sorter and two Partitioner fil-
ters on the nodes with Full memory to take advantage of the
dual processors available in each node. Asis seenin Fig-
ure 13(e), the performance is better than for the previous
cases. Finaly, Figure 13(f) shows the combined effect of
running two sets of filters on the nodes with full memory,
and adjusting the Partitioner output to balance the workl oad
across both set of nodes. As expected, this configuration
performs better than all other cases. These experimental re-
sults clearly show that application-level workload handling
and careful placement of filters can deal with heterogeneity,
which can have a significant impact on performance. Ques-
tions that require further investigation include (1) “can we
develop cost models for filters and for the application per-
formance so that the placement of filters and workl oad han-
dling can bedoneby theruntimesystem, withlittleinterven-
tion from the user?’ and (2) “can we make use of expos-
ing resource requirements and communication characteris-
ticsto devel op accurate and efficient cost models?’. We plan
to work on more applicationsand different configurationsto
seek answers to these questionsin future work.

7. Conclusion and Future Work

We have presented aframework, called filter-stream pro-
gramming, for developing data-intensive applicationsin a
Grid environment. This framework represents the process-
ing in an application as a set of processing components,
caled filters. The godl is to constraint application com-
ponents to alow for location independence, and to expose
communication characteristics and resource requirements,
thus enabling a runtime system to support efficient execu-
tion of the application. We have described a prototype run-
time infrastructure to execute applications using the filter-
stream programming framework. We have discussed imple-
mentations of two data-intensive applicationsthat make use
of our filter-stream framework, and presented experimental
results.
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Our experimental results show that there existsadelicate
balance, and sometimes subtle interactions with heteroge-
neous resources, that can have alargeimpact on application
performance. We plan to further investigate such interac-
tionsto develop cost models that can aid in decomposition
of applicationsinto filters and placement of thefilters. We
also arein the process of implementing other applicationsto
use thefilter-stream programming framework from applica-
tion areas such as volume visualization, database decision
support, and image processing.
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