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1. Introduction 

Graphite, graphene, and compounds based on them are of great interest both as objects of 
fundamental research and as some of the most promising materials for modern 
technologies. The two-dimensional form of graphite – graphene - was prepared only very 
recently, immediately attracting a great deal of attention. Graphene can be deposited on 
solid substrates and has been shown to exhibit remarkable properties including large 
thermal conductivity, mechanical robustness and two-dimensional electronic properties. 
Note that electrons in graphene obey linear dispersion relation resulting in the observation 
of a number of very peculiar electronic properties. These properties are essentially changed 
when different defects are introduced into material.  Special interest is devoted to graphite 
intercalated by metals, since in such graphitic systems the temperature of superconducting 
transition essentially depends on the type of intercalating metal. Besides, the discovery 
 of superconductors as MgB2 and iron pnictides intensified the search for high-temperature 
superconductivity in materials other than copper oxides. It is known that in the formation of 
the superconducting state the electron-phonon interaction plays a crucial role (according to 
the Bardeen-Cooper-Schrieffer theory). Therefore it is necessary to analyze in detail the 
phonon spectra of pure graphite and to find out how these spectra are influenced by 
different defects and by intercalation. 
This chapter consists of three sections.  The first section is devoted to the calculation of the 
local electronic density of graphene containing a substitutional impurity, vacancy defects 
due to the substrate surface roughness and adsorbed atoms. The local densities of states for 
atoms of the sublattice which not contains the vacancy show sharp peaks at energy Fε ε=  
( Fε  is the energy of the Dirac singularity for ideal graphene). Local spectral densities of 
atoms of the sublattice which contains the vacancy conserve the same Dirac singularity as is 
observed in an ideal graphene.  
The second section will present our model, which allows to quantitatively describe the 
phonon spectrum of graphite and to determine the relaxation of force constants for the 
formation of the surface of the sample and the formation of thin films (bigraphene, 
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trigraphene, etc.). Bending stiffness is calculated at the microscopic level for graphene 
monolayers, the characteristic features of the phonon density of states are identified and 
atomic displacements along the graphene monolayers and perpendicularly to them are 
determined. The mean square amplitude of atomic vibrations will be calculated, allowing us 
to make conclusions on the stability of the bigraphene lattice up to room temperatures. Note 
that the phonon spectra of graphene monolayers deposited on the substrate are determined 
by the substrate and they bear very little information on the vibrational characteristics of the 
carbon atoms.  
Finally, the third section will deal with the changes introduced into phonon spectrum of 
graphite intercalated by different metals. In graphite the spectral density of phonons 
polarized along the c-axes shows a V-type singularity analogous to the so-called Dirac 
singularity typical for the graphene electron density states. We study the appearance of the 
quasilocalized states which increase the number of phonons near this singularity. Our 
investigations make it possible to predict the general properties of phonon and electron 
spectra for graphite intercalated with different metals. In addition, analyzing the changes in 
phonon spectra of graphite intercalated with various metals, using the BCS theory, we have 
proposed, taking into account dynamic properties of these layered systems, a possible way 
leading to the increase of Tc. 

2. Electronic spectra of graphene with defects 

It is well known (Kossevich, 1999) that in flat monoatomic layers the mean-square 
amplitudes of the atoms in the normal direction to the layer plane diverge even at T=0. 
Therefore, graphene monolayers can not exist as a flat formation in the free state. From the 
substrate only small scales can break off, which immediately become crimped (Meyer et al., 
2007). So we can study and practically apply only such a graphene, which is deposited on a 
certain substrate, which provides for the stability of the plane graphene monolayers 
(Novoselov et al., 2005; Castro et al., 2009; Peres et al., 2007). In the study of the electronic 
properties of graphene a dielectric (often silicon) substrate is used, since it does not change 
its electronic spectrum, but greatly increases the possibility of introducing different kind of 
defects into it. For example, in graphene spray-deposited on silicon, the vacancies can   
appear (Shangduan et al., 2008), whereas in graphite (a set of weakly interacting graphene 
monolayers) and carbon nanotubes vacancies are “healed”, forming a stacking fault with 
local fivefold symmetry axis (Chen et al., 2007). 
This section presents the results of the calculations of local electron densities of atoms of 
graphene containing a substitutional impurity, vacancy defects due to the irregularities of 
the substrate and adsorbed atoms.  
According to its electronic properties graphene is a two-dimensional semiconductor with 
zero gap. The fact that the charge carriers in graphene are formally described by the Dirac 
equation rather than the Schrödinger equation is caused by the symmetry of the crystal 
lattice of graphene, which consists of two equivalent carbon sublattices A and B (left part of 
Fig. 1). Electronic subbands formed by the combination of symmetric and antisymmetric 
wave functions for the two sublattices intersect at the edge of the Brillouin zone, which leads 
to a cone-shaped energy spectrum near the Dirac points K and K’ (right part of Fig. 1), so 
that the dynamics of electrons is described by the linear dependence of energy on the quasi-
momentum (in ordinary metals and semiconductors the dispersion dependence is 
parabolic). 
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Fig. 1. Structure of the crystal lattice of graphene (left) and its first Brillouin zone (right) 

The electronic spectrum of graphene can be described in the strong coupling approximation, 
taking into account only the interaction of nearest neighbours (Castro et al., 2009; Peres et 
al., 2007; Skrypnyk & Loktev, 2006; Skrypnyk & Loktev, 2008; Bena & Kivelson, 2005). The 
corresponding Hamiltonian has the form 

                                                  
,

i ij
i i j

H i i J i jε= −∑ ∑ ,                                                           (1) 

where the indices i  and j  denote the sites of a two-dimensional lattice, iε  is the energy of a 

particle at  the i  site, and ijJ  is the so-called overlap integral. Fig. 2a presents the density of 

electronic states of graphene (curve 1, red line) and the real part of the Green's function 
(curve 2, blue line). These calculations were made using the method of Jacobi matrices 
(Peresada et al., 1975). Note that in a perfect graphene, due to the physical equivalence of 

the atoms of both sublattices, the local Green's function ( ) ( ) 1ˆ ˆ,G i i I H iε ε −= −  coincides 

with the full function ( ) ( ) 1

1

1 ˆ ˆlim
N

N i

G i I H i
N

ε ε −
→∞ =

= −∑ . 

A feature on the density of states for ( )Kε ε=  (namely, that the value ( )Kε  corresponds to 

Fε  which is the Fermi energy in graphene) determines the behavior of the real part of the 
Green's function in the vicinity of Fε . For a wide class of perturbations caused by defects we 

can find quasilocalized states, using the Lifshits equation in the interval ( ) ( ),M Mε ε⎡− ⎤⎣ ⎦  (in 

this model ( )M Jε = ) (Lifshits, 1945). This equation, which determines their energy, can be 

written as (Kossevich, 1999; Peresada et al., 1975)  

 ( ) ( )Re , ikG Sε ε= Λ , (2) 

where the ( ), ikS ε Λ  function is determined by the operator of the perturbation Λ̂  ( ikΛ  are 

matrix elements of this operator on defined basis).  
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Fig. 2. (a) Density of states (curve 1) and real part of the Green's function (curve 2) in ideal 
graphene, curves 3 and 4 represent functions ( )S ε  for substitutional impurities of nitrogen 

and boron; (b) and (c) are spectral densities of nitrogen and boron impurities, respectively 
(curves 1), curves 2 in these figures are the densities of states for  ideal graphene 

Fig. 2a illustrates the graphic solutions of the Lifshits equation for graphene containing 
isolated substitutional impurities, namely the atoms of nitrogen and boron. Local spectral 

densities ( ) ( )i
0

1
, lim Im ,i G iγρ ε ε γπ ↓≡ +  of impurity atoms are calculated in (Peres et al., 

2007). For an isolated substitutional impurity, different from the host lattice atom, the 
energy of the impurity site 0i =  ( 0ε ε= # ) and the overlap integral ( )0 1iJ Jη= + , the function 

( ), ,S ε ε η#  has the form  

 ( ) ( )( )
21

, ,
2

S
ηε ε η ε εη η

+= + +#
#

. (3) 

For nitrogen impurity (according to (Peres et al., 2007) in such a case ( ) 0.525K Jε ε− ≈ −# , and 
0.5η ≈ −  (the dependence ( )S ε  is shown in Fig. 2a, curve 3). For equation (2), as seen from 

the figure, the solution for interval ( ) ( ),M Kε ε⎡− ⎤⎣ ⎦  is point 1qε  and for interval 
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( ) ( ),K Mε ε⎡ ⎤⎣ ⎦  it is the point 2qε . Local densities of states ( ), iρ ε  of nitrogen impurities 
calculated in (Peres et al., 2007) have quasi-local maxima in both of these intervals (Fig. 2b). 
Although, because of differences in these intervals, the imaginary part of the Green's 
function is different from zero, the location of quasi-local maxima are different from 1qε  and 

2qε , and the presence or absence of solutions of the Lifshits equation in the interval under 
the given parameters of the defect determines the presence or absence of quasilocalized 
states in this interval. 
So, as discussed in (Peres et al., 2007), for the impurity boron ( ( ) 0.525K Jε ε− ≈# ; 0.5η ≈ ) the 
quasilocalized states are absent in the interval ( ) ( ),M Mε ε⎡− ⎤⎣ ⎦ , as seen in Fig. 2c. In this case 
equation (2) also has no solutions in the interval ( ) ( ),M Mε ε⎡− ⎤⎣ ⎦  (corresponding 
dependence ( )S ε  is shown in Fig. 2a as curve 4). Local Green's function of the boron 
impurity has a peculiarity outside the band of quasi-continuous spectrum, corresponding to 
a so-called local level in the energy spectrum. Therefore, the area under the curve 2 is 
smaller than the area under the curve 1, the difference being the residue at local level, what 
is clearly seen in Fig. 2c. 
The function ( )ReG ε  allows us to conclude that the solution of equation (2) in the interval ( ) ( ),M Mε ε⎡− ⎤⎣ ⎦  exists for a wide class of perturbations. Fig. 3 shows the local density of 
states of an atom adsorbed on a graphene monolayer for different values ε#  and η , 
characterizing  the interaction of this atom with carbon atoms. It is clear that the weakening 
of the adsorbed atom interaction with its nearest neighbors causes that on  the local density 
of states sharp resonance peaks are formed near the Fε ε= . 
 

 
Fig. 3. Local density of states of atoms adsorbed on graphene film: (a) 0.5 ,Jε = −#  0.5;η = −  
(b) 0.5 , 0.9;Jε η= − = −# dashed lines represent the density of states of ideal graphene  

Thus, the behaviour of the real part of  the Green's function in graphene for ( ) ( )M Mε ε ε− ≤ ≤  shows  high sensitivity of the density of states at given energies to 
various perturbations caused by defects and other changes in the crystal structure, in 
particular, the possible formation of localized excitations with energies close to the Fermi 
energy. Generally speaking, it is not important whether this perturbation is degenerate  
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(function ( ), ikS ε Λ  can be written explicitly) or nondegenerate: then quasilocalized states 
will arise enriching the electronic spectrum near Fε ε= . As an example of the influence of 
such nondegenerate perturbation we consider the local spectral density of atoms of different 
coordination spheres at an isolated vacancy in the graphene monolayer. 
The calculation results are partially presented in Fig. 4, showing the local density ( ), iρ ε  of 

states for the nearest, second, seventh and tenth neighbours of vacancies (Feher et al., 2009). 
 

 
Fig. 4. Local density of electronic states of neighboring vacancies (curves 1); (a) the nearest, 
(b) the second, (c) the seventh, (d) the tenth; curve 2 (dashed lines) represent the density of 
electronic states of perfect graphene 

Odd neighbours of a vacancy belong to the sublattice which does not contain vacancies (let 
this be the sublattice B in Fig.1). In the local densities of atoms of this sublattice ( ),Bρ ε  a 
sharp peak occurs at ( ) FKε ε ε= = . Local density of states in the sublattice A retains, for ( ) FKε ε ε= = , the same Dirac singularity as in the perfect graphene. This was proved in 
(Feher et al., 2009) by using the formula obtained in (Kotlyar & Feodosyev, 2006), which 
relates an arbitrary matrix element of the Green's function ( ),G iε  in the formalism of the 
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method of Jacobi matrices to the first diagonal element of this function, i.e. to the local 
Green's function ( ), Aρ ε . Interaction with second neighbours would change the local 
density of states ( ), Aρ ε  near Fε ε= , but the magnitude of this change is in the order of the 
interaction, which is small. 
The surface roughness of the substrate may cause the anisotropy of the interatomic 
interaction, since the overlap integrals ikJ  will be different for the interaction of the same 
atom with its various neighbours. Note that in models of "anisotropic graphene" (when the 
anisotropy of overlap integrals is retained over long-range order) a gap between the bands 
of the electronic spectrum as well as the formation of additional logarithmic singularities 
due to the displacement of the intersection of electronic branches inside the first Brillouin 
zone may appear. Here we consider the case when the atom with the anisotropy of the 
overlap integrals is an isolated defect. 
 

 
Fig. 5. Local density of states of an isolated defect in lattice of carbon atoms with an 
anisotropic interaction between nearest neighbours: (a) 0.5;η =  (b) 0.5;η = − dashed lines 
are density of states of a perfect isotropic graphene 

Let the interaction of the atom with one of the nearest neighborus be described by the 
overlap integrals J   and ( )1J Jη= +# . Fig. 5 shows the corresponding local densities of states 
of the atom. Fig. 5a shows the density of states for 0.5η = , corresponding to the enhanced 
that is, the interaction increased. In this case the electronic spectrum contains, along with the 
quasi-continuous part, also two symmetric discrete levels ( ) 3.0698l Jε ± ≈ ±  (quasi-continuous 
band of spectrum in this case is 3 3J Jε− ≤ ≤ ). The values of ( )

lε ±  denote the local levels of 
spectra. Residues at these points (so-called intensities of discrete levels) are ( ) 0.139lμ ± ≈ . 
The area under the curve ( )ρ ε  is in this case less than unity, the rest being in the sum of the 
intensities of discrete levels. For 0.5η = −  the electronic states of an anisotropic defect lie in 
the band of a quasi-continuous spectrum and the interval ( ) ( )M Mε ε ε− ≤ ≤  contains 
essentially more electronic states as compared to the perfect isotropic graphene. Thus, 
controlling the roughness of the substrate could be a promising method for tuning the 
electronic spectrum of graphene. 
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3. Phonon spectra and vibrational characteristics of carbon nanolayers 

The phonon spectra of graphene monolayers deposited on the substrate are determined by 
the substrate and have very little value for the determination of the vibrational 
characteristics of carbon atoms. At the same time, carbon nanofilms, consisting of several 
graphene monolayers (starting with two, i.e. bigraphene) are stable up to room temperature. 
This section describes the phonon spectra and vibrational characteristics of bulk samples of 
graphite and their transformation for decreasing number of layers, down to carbon 
nanofilms. It outlines our model which allows to quantitatively describe the phonon 
spectrum of graphite and to determine the relaxation of the force constants in the formation 
of the sample surface and the formation of ultrathin films (bigraphene, trigraphene, etc.). 
Flexural stiffness was calculated at the microscopic level for graphene monolayers, as well 
as the characteristic features of the phonon density of states and the contributions to the 
atomic displacements along the graphene monolayers and in the perpendicular direction to 
them were identified. We also calculated the mean square amplitudes of atomic vibrations, 
explaining the reason of the stability of the lattice bigraphene up to the room temperature. 
It is known that the crystal of graphite is a strongly anisotropic layered crystal. Strong 
anisotropy is, on the one hand, due to a significant difference in the interatomic distances 
between nearest neighbours in the layer plane and in adjacent layers, and, on the other 
hand, due to different types of force bonds (covalent, metallic and van der Waals bonds).  
Graphite consists of graphene monolayers, the atoms of which form a regular hexagon. The 
atoms of one of the sublattices are located in the centers of the triangles of the other 
sublattice. Bravais vectors, lying in the basal plane, can be selected as follows: 

1 0
3 1

; ;0
2 2

R a
⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠  and 2 0

3 1
; ;0

2 2
R a

⎛ ⎞= −⎜ ⎟⎜ ⎟⎝ ⎠ , where 0 2.45a ≈ Å. The period of the graphite 

lattice along the axis c, in the direction perpendicular to the graphene layers, is equal to 
twice the interlayer distance, i.e. 3 0(0;0;1)R c= , the parameter 0 6.7c ≈ Å (Fig. 6). The atoms 
of different sublattices of the graphite basal plane are differently situated with respect to the 
atoms of neighboring planes, leading to the differences in the interaction between atoms 
belonging to different sublattices and to their physical inequivalence. Thus, there will be 
different local Green’s functions corresponding to these atoms and determining their 
vibrational characteristics, such as the mean-square displacements of atoms along different 
crystallographic directions. 
Strong anisotropy of interatomic interaction causes a number of typical distinguishing features 
in the behaviour of the phonon spectra and vibrational characteristics (Kosevich et al., 1994). 
For example, the elastic moduli C33 and C44 associated with displacements along the c axis and 
determining the speed of sound propagating or polarized along this direction, are from about 
30 for about 300 times smaller than the elastic moduli C11 and C66, determining the speed of 
sound propagating and polarized in the basal planes (Nicklow et al., 1972; Belen’kii, et al., 
1988). Therefore, if the propagation of the vibrations polarized along c in the basal ab plane 
would have the nature of a sound wave and not a quasi-flexural wave, the mean-square 
displacements of atoms in a given direction would attain, even at low temperatures, the values 
corresponding to the melting of the crystal. That is, the mere existence of solid graphite at 
room temperature indicates that the fluctuations are essentially determined by the restoring 
forces acting on the atom from other atoms, lying in the same layer. These restoring forces are 
due to the noncentral interatomic interaction and indicate the presence of elastic stresses in the 
graphene layers that form the crystal lattice of graphite.  
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Fig. 6. The structure of the crystal lattice of graphite 

In the long-wave region the dispersion law of the transverse phonon mode (TA) of a 
strongly anisotropic layered crystal, whose frequency vanishes at 0k =  and which 
corresponds to the waves propagating in the ab plane and polarized along c (i.e. quasi- 
flexural mode) has the form  

 
3

2 2 444( )T
C

k k k
m
κω ρ= +f

. (4) 

Here ρ  is the density of graphite, m  is the mass of the carbon atom and the coefficient κ  
characterizes the bending stiffness of layers. The deviation described by the second term of 
(4), characterising quasi-flexural  wavelength of the (TA) dispersion curve is clearly seen on 
dispersion curves obtained from inelastic neutron scattering  data (Kosevich et al., 1994).  
The fact that we can examine each layer of graphite as plane means that in the crystal the 
condition 

                                                   0iz iznσ =  (5) 

is fulfilled, where  the coordinate z is chosen along the c axis and the coordinates x and y in 
the basal plane. 
Bending stiffness of flat graphene monolayers, which provides a characteristic distortion of 
the dispersion curve (Kosevich et al., 1994), does not depend on the interlayer interaction 
and can be determined from the consideration of only one isolated graphene monolayer. 
When the condition of equilibrium of a flat layer, which has for an isolated graphene 
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monolayer the form 1 2 36 4 0zβ β β+ + = , is fulfilled, the bending stiffness κ  can be written 
as (Syrkin et al., 2009)  

                                                   
2

0 3 1 3

1 3

6 6
8

z

z

a
m
β β βκ β β

+⎛ ⎞= ⎜ ⎟ +⎝ ⎠ . (6)                          

In (Syrkin et al., 2009) the expressions for the flexural rigidity in some other layered 
structures are also given.  For the layered hexagonal close-packed crystal  

                                                     ( )2
1 2

3
2

2 z zaκ β β= + .                                                               (7) 

In the layered tetragonal lattice the flexural rigidity is anisotropic (depending on the 
direction of propagation of flexural waves in the layer plane)  

                  
2

2
1 2 1 2( 2 ) 2( 4 )sin 2

2 z z z z
aκ β β β β φ⎛ ⎞= − + − +⎜ ⎟⎝ ⎠ , (8) 

where φ is the polar angle in the basal plane, measured from the x-axis in the 
counterclockwise direction. 
Therefore, when describing the intralayer interaction in the graphite, the central and 
noncentral interactions between atom and its first, second and third neighbours must be 
considered. Accounting for more distant neighbours in the basal plane has no meaning as to 
the accuracy of the adiabatic approximation. In describing the weak interlayer interaction it 
is natural to limit of only to the interaction between atoms from neighbouring layers, being 
at distances 4r  or 5r , where the value 5r  is only slightly larger than 4r  (see Fig. 6). For the 
nearest neighbours in the basal plane ( 1rΔ = ), whose interaction is determined by the 
superposition of covalent and metallic bonds, the force matrix is characterized by all three 
parameters of interaction. The bond between more distant neighbours ( 2 3 4 5, , ,r r r rΔ = ) can 
be regarded as a van der Waals one and described by an isotropic pair potential. 
The proposed model involves eleven force constants. These constants can be found using 
follows data: four moduli of elasticity, the condition of symmetry of these moduli under the 
permutation of pairs of indices, the neutron diffraction data (Kosevich et al., 1994), the 
inelastic X-ray scattering data (Maultzsch et al., 2004) and the Raman scattering data 
(Dresselhaus et al., 2002). The values of force constants (see Table 1) that characterize the 
interaction between the atoms of graphite can be thus unambiguously obtained and 
checked. 
 

Δ  
 

1r  2r  3r  4r  5r  

.103 N/m 337.882 50.476 19.647 2,581 0.371 

βx = 170.864 
β.103 N/m βy = 96.375 

10.149 8.661 0.0654 0.0353 

Table 1. The force constants of graphite 
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Interlayer van der Waals interaction can be described by the Lennard-Jones potential, which 
allows, together with the help of expressions for C33 and C44, to find constants responsible 
for the interaction between the nearest atoms of neighbouring layers. Moreover, from the 
values of force constants the parameters of this potential can be determined, which is 
important for the calculations of the surface relaxation in graphite ( 3.092σ ≈ Å, 152.3ε ≈ K).  
It is obvious that the flat form of a free graphene monolayer is not stable. Therefore, we 
analysed the phonon spectrum and the rms (root mean squares) amplitudes of 
displacements in the films consisting of two and three graphene monolayers. Results of the 
experimental studies of graphene bilayer films are given in (Morozov & Firsov, 2009). 
It was shown that in the graphite the interlayer interaction contains both central and 
noncentral forces, therefore the formation of the surface can not be described by the Lifshitz-
Rosenzweig model (as a solution of the stochastic boundary problem) and will be 
characterized by the reconstruction and relaxation processes. At the same time, it is natural 
to assume that the breakage of weak interlayer van der Waals bonds will change neither the 
distance between atoms in graphene layers nor the force constants that characterize the 
intralayer interaction.  
In fact, the surface reconstruction and relaxation will lead to changes in the interlayer 
distances and force constants 4α , 4β ,  5α  and 5β characterizing the interlayer interaction.  
Condition (5) leads to the same ratio between the force constants and lattice parameters as 
the condition C13 = C31. For thin films with N monolayers this condition takes the form 
(Gospodarev et al., 2010)  

                       ( )2 2 2
1 2 3 4 4 1 4 52

2
6 4 9 2

1 3
N

r r r
N a

β β β β β⎡ ⎤+ + = − −⎣ ⎦− . (9) 

From the parameters of the Lennard-Jones potential for the considered graphite thin films 
the interlayer distance and the force constants describing the interlayer interaction can be 
easily found:  
for two-layer film (bigraphene):  

4 3.636r ≈ Å; ┙4 ≈ 0.373 N/m; ┚4 ≈ 0.0035 N/m; 

5 3.902r ≈ Å; ┙4 ≈ - 0.009 N/m; β4 ≈ 0.004 N/m; 
for three-layer film (trigraphene):  

4 3.453r ≈ Å; ┙4 ≈ 1.585 N/m; ┚4 ≈ - 0.0015 N/m; 

5 3.713r ≈ Å; ┙4 ≈ 0.016 N/m; ┚4 ≈ 0.004 N/m. 
Fig. 7 presents the phonon densities of states of bigraphene (Fig. 7a) as well as the 
contributions to them from the atomic displacements along the layers (Fig. 7b) and 
perpendicular to them (Fig. 7c). 
In each figure the dashed line shows the corresponding characteristics of an infinite graphite 
sample (Gospodarev et al., 2009). Densities of states of the film and bulk samples are 
practically the same, significant differences were observed only in the frequency range in 
which the phonon spectrum of graphite resembles that of a three-dimensional system and 
the interaction between the vibrational modes polarized in the plane of the layers and 
perpendicularly to the layers is sufficiently large. 
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Fig. 7. The phonon density of states of a thin film of graphite, consisting of two graphene 
monolayers (a) ; the partial contributions to it from the atomic displacement along the basal 
plane and perpendicular to its direction (b,  c, respectively); (d) is low frequency part of (b). 

In bigraphene, the transverse phonon modes TA and TO, typical for graphite, degenerate 
into two discrete levels corresponding to the symmetrical and antisymmetrical 
displacements of layers. The frequencies of these levels are marked in Fig. 7d as ( )ω −  and 

( )ω + . The frequency ( )ω +  in bigraphene corresponds to the same atomic displacements as 
the frequency ( )TOω Γ  on bulk sample, a lower value of ( )ω + as compared with ( )TOω Γ  is 
caused by the surface relaxation. The bigraphene spectral density ( )abρ ω  (Fig. 7d) shows 
kinks at ( )ω ω −=  and ( )ω ω += . For ( )ω ω +>  the spectral density acquires the characteristic 
two-dimensional appearance ( ) ~abρ ω ω .  
Starting from very low frequencies, the spectral density ( )cρ ω  acquires the form 
characteristic of a two-dimensional scalar model, leading to very high values of the mean-
square displacements of atoms in the direction perpendicular to layers.  
Fig. 8 shows the temperature dependence of the rms amplitudes of atomic displacements of 
bigraphene (2c), trigraphene (3c for surface layers, 3c' for central layer) and bulk sample (∞ c) 
in the perpendicular direction to the layers, and it also shows that the amplitude of atomic 
displacements along the graphene layers is almost independent of sample thickness (ab). 
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The rms amplitude of atomic displacements along the c axis strongly increases with the 
decreasing film thickness. At room temperature the amplitude of transverse vibrations of an 
atom of the trigraphene central layer (curve 3c') is about twice the value for the bulk sample 
(curve ∞ c).  
 

 
Fig. 8. Temperature dependence of the mean amplitudes of atoms along different 
crystallographic directions in the films of graphite, consisting of two and three graphene 
monolayers 

The horizontal dashed line in Fig. 8 indicates the mean value of the amplitude of atomic 
vibrations along the c axis for bulk graphite at T ≈ 3000 K. This temperature is about 1000 K 
below the melting temperature of graphite ( 3800 50T ≈ ± K), therefore at T ≈ 3000 K the 
crystal lattice of graphite still has sufficient margin of stability. Bigraphene and trigraphene 
also have a sufficient margin of stability at room temperature, since the mean square 
amplitudes of their atomic vibrations are markedly below the dashed line.  

4. Phonon and electron spectra of metal intercalated graphite 

Special interest has been devoted to graphite intercalated by metals, since in such graphitic 
systems the superconducting transition temperature  cT  essentially depends on the type of 
intercalated metal. For example cT  for C6Yb is 6.5 K, while for C6Ca it is 11.5 K (Weller et al., 
2005; Emery et al., 2005). It is known that for the formation of the superconducting state the 
electron-phonon interaction plays crucial role. Since the electronic spectra of these 
compounds probably do not depend on the type of intercalated metal, cT  variations in such 
compounds are dominantly determined by the peculiarities of their phonon spectra. 
Therefore it is necessary to analyse in detail the phonon spectra of pure graphite (see section 
2) and to find out how these spectra vary due to the intercalation with various metals and to 
determine how these variations depend on the dynamic parameters of both carbon and 
intercalating metal. 
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Both structures mentioned above consist of graphite monolayers between which two 
dimensional triangle lattices of metals with period a 3  are placed. The lattice constant in 
the direction perpendicular to layers is, in both compounds, c4.5 = ׳ Å (Weller et al., 2005; 
Emery et al., 2005). The absence of data about acoustical, optical and other properties, which 
would enable to determine the parameters of interatomic interactions, prompted us to make 
some assumptions about the values of these interactions. We neglect the carbon-carbon and 
metal-metal interactions across layers. The interaction of metal atoms within one layer will 
be considered as a central force, i.e. matrices of force constants have form given in (Feher et 
al., 2009).  
The distance between nearest atoms of metal and carbon is equal to   

C Me

2 2

2.66
2 3
c a

r A−
′⎛ ⎞≡ + ≈⎜ ⎟⎝ ⎠

c
  

i.e. it is larger than the distance between second nearest carbon neighbours in graphene 

monolayer (a ≈  2.45 Å), but shorter than between third neighbours ( 2 2.83
3

a A≈ c
 ). It can 

be therefore assumed that the potential describing this interaction may be considered as pair 
and isotropic, i.e. the force constants of interatomic interaction fulfill condition β z(r C-Me) = 
β x(r C-Me) = β (r C-Me). Since interatomic distances in graphene monolayer do not change 
due to intercalation, force constants also do not change. Therefore the value of β (rC-Me) may 
be found from the condition of the symmetry of the elastic modulus tensor with respect to a 
transposition of index pair. This condition has form 

 ( ) 2

C-Me
2 1

6 4 2  (r )
2 33 3

a a c
a

a
β β β β⎡ ⎤′⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + = −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎣ ⎦

 .                                          

From this condition we get β (r C-Me) ≈   0.31 N/m, both for carbon-ytterbium and carbon-
calcium interactions. Unfortunately, we do not have any data from which force constant α  
(r C-Me), characterizing central interaction between metal and carbon atoms, may be directly 
determined. However, on the basis of the values of distances between carbon and metal 
atoms we estimated that the force constant value lies somewhere in the range from α  (r C-

Me) ≈  20 N/m   to α (r C-Me)  ≈  50 N/m  (Syrkin et al., 2009). We picked up four α (r C-Me) 
values: 20, 30, 40, and  50 N/m . 
Fig. 9 shows the frequency dependences of partial contributions to the density of phonon 
states from displacements of metal and carbon atoms in the direction perpendicular to 
layers. The areas below dependences corresponding to intercalating metal are hatched. In 
Fig. 9, the left set show dependences for C6Ca, the right one for C6Yb, the force constant α (r 
C-Me) increases from top to bottom. We see that for C6Ca sharp resonance peaks appear on 
partial contributions from both intercalating metal and carbon. These peaks are shifted, with 
the increase of α (r C-Me), towards the centre of the frequency range, leading to the increase 
of density of phonon states near the Brillouin zone’s K-point, through which the Fermi level 
of electrons in graphene passes. For the C6Yb compound (Yb has more than four times larger 
atomic mass than Ca) the resonance peaks appear at lower frequencies and an apparent 
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Fig. 9. The partial contributions to the phonon density of states of intercalated graphite (blue 
lines) from the displacements along the c axis of the carbon atoms and the metal (red lines 
with hatched area under the curves). Top to bottom ( )C-Merα =  20, 30, 40, 50 N/m. Green 
lines in all the fragments correspond to pure graphite. 
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increase of the phonon states density at frequencies near the Brillouin zone’s K-point is 
observed only for anomalously large values of α (r C-Me )≈ 40 ÷ 50 N/m (note that Tc for C6Ca 
is almost 1.8 times higher than that for C6Yb). Note that the sharp resonance peaks in the 
density of states, which are characteristic for states localized near the isolated impurity 
atom, appear for metal atoms which form periodic structure. Such a behavior of the spectral 
densities is due to the weakness of the interaction between remotely spaced atoms. The 
interatomic distances within the metal layers differ slightly from distances between the 
atoms of neighbouring layers. 
Fig. 10 presents the total phonon density of states for both C6Ca (left) and C6Yb (right) and 
partial contributions from intercalating metal (hatched area). 
 

 
Fig. 10. The phonon density of states of intercalated graphite (blue lines) and the contribution 
to them of metal atoms (red lines with hatched area under the curves) for α = 50 N/m. Green 
lines are the phonon density of states of pure graphite. 

Unconventional behavior of phonon subsystem in graphite containing metal intercalated 
layers may substantially influence its electronic properties and the electron-phonon 
interaction (EPI), including the superconducting transition temperature. At present time 
there is much convincing evidence that EPI is principal mechanism of the transition into the 
superconducting state and this interaction should be taken into account for developing a 
consistent theory for the description of superconductivity in different types of compounds, 
including high-Tc superconductors (Maksimov, 2008). It follows from the BCS theory 
(Bardeen et al., 1957) (see also (Maksimov & Dolgov, 2007)) that the value of Tc depends on 
the basic characteristics of electron and phonon spectra in the following way  

   
1

expc phT ω λ
⎛ ⎞∝ −⎜ ⎟⎝ ⎠ , (10) 

where phω  is the mean phonon frequency and λ  is the EPI constant, which is 
proportional to the density of electron states on the Fermi surface. 
Microscopic analysis of EPI was not performed within this work, but we note that a 
consistent many-particle theory of EPI already exists, describing both normal and 
superconducting states of metals (Rainer, 1986; Allen & Mitrovic, 1982; Maksimov & 
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Dolgov, 2007). However, we can state that to increase Tc high phonon frequencies phω , 
large values of the constant of the interaction of electrons with these phonons λ and high 
density of electron states on the Fermi surface are needed. Such properties are manifested 
by, for example, compounds of metals with light elements, such as hydrides (Ashcroft, 2004; 
Tse et al., 2007), borides (Nagamutsi et al., 2001) carbides and nitrides (Maksimov et al., 
2007), since their phonon spectra show high-frequency modes corresponding to the 
vibrations of light atoms (H, B, C, N). For graphene doped by hydrogen Tc above the boiling 
point of liquid nitrogen was recently predicted using the BCS theory (Savini et al., 2010).  
Moreover, a detailed analysis has been carried out (see review Maksimov, 2008), showing 
that electrons in MgB2 exhibit very strong interaction with quasi-flexural modes. This is very 
interesting for describing the evolution of temperature of superconducting transition in the 
intercalating graphite.  
Indeed, the frequency phω  decreases at intercalating the graphite by metals which have 
atomic masses essentially larger than carbon. So, the temperature of superconducting 
transition for graphite intercalated by Li is 1.9 K, which is lower than for graphite 
intercalated by Ca or Yb. At the same time the intercalation by Yb and Ca increases the mean 
vibration frequency of quasi-flexural branch.  Besides, it is especially interesting that the 
intercalation by Ca and Yb leads to an essential increase of the quasi-flexural phonons 
number. The quasi-momentum of these phonons corresponds to the K point of the first 
Brillouin zone, in the vicinity of which the Fermi level is lying in the electron spectra.  
The role of defects is very important for the electron-phonon interaction formation, and 
consequently, for superconducting properties in three dimensional layered crystals. So, in a 
new type of high temperature layered superconductors ROFeAs (where R is rare-earth 
element) both the superconductive state and Tc are determined by defects (Hosono, 2008). 
These materials are characterized by layered structure consisting of alternating molecular 
layers R-O and Fe-As. The superconductivity in such compounds originates from electron 
doping by F or hole doping by introducing oxygen vacancies (Sadovskii, 2008; Izyumov 
&Kurmaev, 2008; Ivanovskii, 2008). 

5. Conclusion 

The results of this chapter allow us to draw following conclusions concerning the electronic 
spectrum of graphene with defects, the phonon quasi-particle spectra of graphene, 
bigraphene and metal-intercalated graphite: 
i.  It was shown that a vacancy in graphene conserves the Dirac singularity of the local 

density of electronic states in one of the sublattices. Moreover, a quasi-Dirac singularity 
was also observed in phonon spectra of graphene for atom displacements in the 
direction perpendicular to layers. 

ii.  Calculations and description of the phonon spectrum and vibrational characteristics of 
the bulk graphite and carbon nanofilms (bigraphene and trigraphene) lead to the 
explanation of the plane shape stability of bigraphene and trigraphene nanofilms at 
room temperatures. 

iii.  Analyzing the changes in phonon spectra of graphite intercalated with various metals, 
using the BCS theory, we have proposed, taking into account dynamic properties of 
these layered systems, a possible way leading to the increase of Tc. 
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Graphite and metallic compounds on its basis seem to be very attractive for complex 
investigations of electron and phonon spectra, the electron-phonon interaction, and for the 
study of superconductive transition conditions. The reasons for this attractiveness are, 
among other:  
i. well pronounced flexural  modes of graphite, practically coincident (in the same value 

of quasi-momentum)  with the Dirac peculiarities in phonon and electron spectra;  
ii. an  increased quantity of phonon and electron states near the Fermi level caused by 

intercalating metals, and 
iii. the existence of highly frequency phonon modes, pointing out to their attractiveness.  
It should be noted, that in the review (Maksimov, 2008) author argues that in the MgB2 

compound electrons most strongly interact with flexural modes. This seems to be very 
interesting for the description of the evolution of the superconducting transition 
temperature in intercalated graphite, since flexural modes play an essential role in graphite 
phonon spectra. 
Finally, for further analysis of the mechanism of superconducting transition in graphite 
intercalated with metals more complex investigations of the phonon and electron spectra 
and of the dependence of the electron-phonon interaction on intercalating metal are needed. 
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