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Abstract—There have been significant studies on virtual ma-
chines (VMs), including their power consumption in performing
different types of tasks. The VM’s power consumption with
network transactions, however, has seldom been examined. This
paper presents an empirical study on the power consumption of
typical virtualization packages while performing network tasks.
We find that both Hardware Virtualization and Paravirtualization
add considerable energy overhead, affecting both sending and
receiving, and a busy virtualized web-server may consume 40%
more energy than its non-virtualized counterparts. Our detailed
profiling on packet path reveals that a VM can take 5 times
more cycles to deliver a packet than a bare-metal machine, and is
also much less efficient on caching. Without fundamental changes
to the hypervisor-based VM architecture, we show that the use
of adaptive packet buffering potentially reduces the overhead.
Its practicality and effectiveness in power saving are validated
through driver-level implementation and experiments.

I. INTRODUCTION

Fueled by promises of enhanced utilization, improved
efficiency, and increased flexibility, system administrators have
expanded their IT architectures to include a large number
of virtualized systems [1]. Further, virtulization is one of
the cornerstone technologies that makes utility computing
platforms such as cloud computing a reality. For example
the industry leader Amazon provides computing as a service
through it’s Xen virtualization based EC2 platform. There have
been significant studies on the performance and optimization of
virtual machines (VMs), including their power consumption in
performing different types of tasks. Research has been done
on reducing power consumption of data-centers through the
placing of energy consuming jobs/VMs in strategic cooling
locations, energy reduction through job and VM consolidation,
and energy aware scheduling [2] [3] [4] [5] [6] [7] [8]. Other
pioneering works have explored solutions to meter or cap the
energy consumption of virtual machines running in a cloud
environment [9] [10]. Work has also been done on power
consumed during a VM migration [11]. Further, the energy
consumption implications of VMs used in server consolidation
has been discussed in [12].

The precise power consumption of these virtualized sys-
tems while processing typical network transactions however
has seldom been examined. Physical network interface cards
are not known as power hungry, except for wireless commu-
nications. Yet the virtualization of the network module can be
considerably more complex than others in a machine, given
that it is largely a standalone unit with its own control and
storage units, and with both sending and receiving functions

across multiple layers. It is known that the network module can
be a severe performance bottleneck in VMs [13]. It remains
unclear what the precise implications of virtualized networking
overhead will be on total system power consumption.

In this paper, we present an empirical study on the power
consumption of typical computer virtualization packages, in-
cluding KVM, Xen and OpenVZ, while the systems are per-
forming network tasks. We find that both Hardware Virtualiza-
tion and Paravirtualization systems add a considerable amount
of energy overhead to networking tasks. Both TCP sending
and receiving can be noticeably affected, and a busy virtualized
web-server may consume up to 40% more energy than its non-
virtualized counterparts. We have conducted detailed profiling
to analyze the workflow for packet delivery in virtualized
machines, which reveals that a VM can take nearly 5 times
more cycles to deliver a packet than a bare-metal machine,
and is also much less efficient on the systems hardware
caches. The existence of hypervisors in VMs can dramatically
increase interrupts and memory accesses, which in turn lead to
significantly more power consumption for network transactions
than a bare-metal machine does.

Our analysis further suggests that, without fundamental
changes to the hypervisor-based VM architecture, the use of
adaptive packet buffering potentially reduces the extra inter-
rupts and memory copies. The practicality of our modifications
has been validated through driver-level implementation as well
as experiments in realworld systems. The results demonstrated
that, with the adaptive buffering, we are able to improve the
energy consumption of a busy web server by 16% without
noticeable loss of its network performance.

The rest of this paper is organized as follows. In Section
II, we offer an overview of typical virtualization techniques.
The measurement configurations are introduced in Section III,
followed by the results in Section IV, which also identifies
where the power consumption comes from. Section V then
presents effective batching solutions to mitigate power con-
sumption, which is validated through experiments in Section
VI. We then investigate more complex networked transactions
in Section VII, and conclude the paper in Section VIII.

II. OVERVIEW OF VIRTUALIZATION

To thoroughly analyze and compare the power consumption
of virtualization techniques, we need to select representative
samples of virtualization packages, so as to cover the typical
and state-of-the-art solutions. Broadly speaking, all current
virtualization solutions can be classified into three main cate-
gories, which we discuss as follows.978-1-4799-3360-0/14/$31.00 c© 2014 IEEE



Paravirtualization(PVM) Paravirtualization was one of the
first adopted versions of virtualization and is still widely
deployed today. PVM requires no special hardware to realize
virtualization, instead relying on special kernels and drivers.
The kernel sends privileged system calls and hardware access
directly to a hypervisor, which in turn decides what to do
with the request. The use of special kernels and drivers means
a loss of flexibility in terms of choosing the operating systems.
In particular, PVM must use an OS that can be modified to
work with the hypervisor. Typical PVM solutions include Xen
and User Mode Linux.

Hardware Virtual Machine (HVM) HVM is the lowest level
of virtualization, requiring special hardware capabilities to trap
privileged calls from guest domains. It allows a machine to be
fully virtualized without the need for any special operating
systems or drivers on the guest system. Most modern CPUs
are built with HVM capabilities, often called virtualization
extensions. They detect if a guest VM tries to make a privileged
call to a system resource. The hardware intercepts this call
and sends it to a hypervisor which decides how to handle
the call. It has been noticed however that HVMs can also
have the highest virtualization overhead and as such may not
always be the best choice for a particular situation [13][14].
Yet paravirtualization I/O drivers can alleviate such overhead;
one example of a paravirtualization driver package is the open
source VirtIO [15]. Representative Virtualization solutions that
are HVM include VMware Server, KVM, and Virtual-Box.

Container Virtualization Container Virtualization, also
known as OS-level virtualization, creates multiple secure
containers to run different applications in. It is based on
the intuition that a server administrator may wish to isolate
different applications for security or performance reasons while
maintaining the same OS across each container. Container
virtualization allows a user to share a single kernel between
multiple containers and have them securely use computer
resources with minimal interference from others containers.
It has been shown to have the lowest overhead among all the
existing virtualization techniques [13]. However, this superior-
ity comes at the price of much less flexibility as compared
to other solutions. In short, the user cannot mix different
OSes. Typical container virtualization implementations include
OpenVZ, Linux-VServer and Solaris Zones.

It is important to note that Hardware Virtualization and
Paravirtualization both use a hypervisor to interact with the
underlying hardware, whereas Container Virtualization does
not. This distinction is crucial because the hypervisor, acting
as a gatekeeper, generally improves performance isolation
between guests on a host. However, it has been noted that the
hypervisor can introduce measurable overhead [16], which, as
we will show in our experiments, can also negatively affect
the power consumption.

In our experiments, we chose to evaluate the power con-
sumption of Xen, KVM and OpenVZ. We believe this choice
is representative for the following two reasons. First, they are
all open-source with publicly available documents and with
cross-platform implementations. We can run their packages on
the same platform without changing OS or computer hard-
ware. This makes a fair comparison possible and the results
reproducible; Second, all of them have been widely used in
real-world production environments for server consolidation

and Cloud Computing. As mentioned previously, Amazon EC2
is largely based on Xen; KVM has been used by Ubuntu
Enterprise Cloud and Eucalyptus Cloud Service [17]; OpenVZ
is a popular choice in offering Virtual Private Server(VPS)
containers to the public.

III. POWER CONSUMPTION MEASUREMENT:
PLATFORM AND VIRTUALIZATION SETUP

In this section, we present the measurement configuration
for the power consumption of virtual machines, including the
hardware setup, the virtualization setup, and the measurement
devices used.

A. Measurement Platform

For our test system, we use a modern midrange server with
a Intel core i5 2400 3.1 GHz quad core CPU, 8 GB 1333
MHz DDR3 ram, a 500 GB 7200 RPM hard drive and a 1000
Mb/s Broadcom Network Interface Card (NIC) attached to the
PCI-E bus. The choice of the Intel i5 server is motivated by
the factor that the Intel’s x86 architecture has long become
dominating in the CPU market, which is also the basis for
virtual machine implementation in such major cloud service
providers as Amazon. The core i5 CPU is known to have low
power consumption with well-designed state-of-the-art power
management. In particular, when Intel introduced the Sandy
Bridge line of processors, they also introduced the Running
Average Power Limit hardware counters (RAPL) [18]. These
highly accurate and versatile counters allow a user to configure
the system to record its CPU power consumption. In all
our experiments, we measure the internal power consumption
using the RAPL counters while the CPU is running our
network-based tasks.

Unfortunately, the RAPL counters do not measure the
overall system power consumption. For example, in order to
measure the power consumption of the modules other than the
CPU, for example, cooling fans, hard drives, NICs, we have
to use other tools. To determine the overall system’s power
consumption, referred to as wall power, we have wired a digital
multi-meter (Mastech MAS-345) into the AC input power line
of our system. We read the data from our meter over a PC-
Link installed in the meter and collect samples every second
throughout our experiments.

Finally, since our focus is on network transactions, we also
configure a second system to work as a client emulator, which
is a 2.8 GHz Intel Core2 Quad system, with 4 GB DDR3 ram,
and a 1000 Mb/s network connection. We connect our test
system and client emulator to each other through a 1000 Mb/s
Linksys SD2005 SOHO switch.

B. Virtualization Setup

As explained earlier, we have chosen Xen, OpenVZ, and
KVM in our experiments for their open-source nature and
their extensive deployment in the real-world. We now briefly
describe the system setup of these virtualization solutions.

1) Xen System Setup: We installed the Xen 4.1 Paravirtual-
ization Hypervisor on our test system. To configure network-
ing, we created a bridged adapter and attached our primary
interface and Xen’s virtual interfaces to it. The Xen virtual
machine received an IP address from the DHCP server running



on our gateway. Similar network configuration has also been
used for the OpenVZ and KVM systems. For disk interface,
we used the Xen’s flat file feature. We set the number of virtual
CPUs (VCPU) to 4 and the amount of RAM to 6144 MB. The
virtual machine and physical host ran the 3.2.41-2-Xen kernel.

2) OpenVZ System Setup: We installed the OpenVZ
container-based virtualization package from the official
OpenVZ repository, following the latest guidelines. We con-
figured our container using the Debian Squeeze template. The
container was given access to 6144 MB of main memory and
full access to the 4 CPU processing cores. The virtual machine
host ran the ovzkernel-2.6.18 kernel, which is the latest patched
kernel supported by Debian.

3) KVM System Setup: We compiled KVM version 1.2.0
from the official source repository. Once again the virtual
machine was given full access to all the 4 processor cores
as well as the 6144 MB of memory. The disk interface was
configured as a flat file on the physical host’s file system.
The virtual machine and physical host ran the 3.2.41-2-amd64
kernel. To enable the best network performance, we configured
KVM to use the VirtIO network drivers [15].

4) Non-Virtualized Bare-metal System Setup: Finally, as
the baseline for comparison, we also had a bare-metal setup
with no virtualization, i.e., the system has direct access to the
hardware. The same drivers, packages and kernel were used as
in the previous setup. This configuration enabled us to calculate
the minimal amount of energy required to run our benchmarks.
Debian kernel 3.2.41-2-amd64 was used in this test.

IV. MEASUREMENT RESULTS AND ANALYSIS

To determine the power consumption profiles of the virtu-
alized systems, we have performed a number of simple and
complex benchmarks, and measured the corresponding CPU
power consumption using the internal RAPL counter and the
wall power of the systems using the AC power meter. We
start from the following two benchmarks for network-oriented
transactions:

Iperf Sending and Receiving: Before moving on to more
complex experiments, we first used Iperf [19] to determine
the energy consumption of our systems while sending and
receiving high bandwidth TCP streams. To this end, we
configured our test system to communicate with our client
emulator, sending and receiving at their maximum rates for
a duration of 60 seconds.

Apache2 Many Client HTTP Download: In this experiment,
we emulated the workload experienced by a busy web server
that serves a number of clients. We configured our client
emulator to open 100 HTTP connections, each downloading
a 20 MB file, and then recorded the energy consumption
experienced by each system.

To obtain the base-line power consumption of our systems,
we also measured the power consumption when the system
is in an ’idle’ state. To this end, we killed all non-essential
processes on the system. We measured each system for 60
seconds, taking samples of the power consumption (in number
of Watts consumed) every second.

To mitigate randomness, we run each experiment three time
and calculate the average and standard deviation. We graph the
results and display the standard deviation as the error bars on
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the graph. For experiments that have a deterministic running
time we give the results in Watts (joules per second); for those
with a non-deterministic running time, we give the results in
total joules required to complete the benchmark. In each of our
following experiments a single VM is running on the physical
machine. Although the use of a single Virtual Machine is
uncommon in practice, this configuration allows us to precisely
measure the energy consumption of the virtualization system
while running our test application. If multiple VMs were
running on our host at the same time the energy consumption
would increase as the VMs contended for the hosts resources.

A. System Idle Power Consumption

Figure 1 shows the baseline power consumption of our
systems when idle. The Bare Metal, OpenVZ, and KVM
systems all show similar results to one another for both the
wall power (the external or whole system power consumption),
and RAPL (the internal or CPU power consumption). These
three systems all have an average power consumption of about
30 watts at the wall, and about 6.5 watts at the CPU. The Xen
system has a greater external and internal power consumption,
with an average of 42.3 watts for the whole system and
14.8 for the CPU. For all of these systems, the error bars,
which represent the standard deviation between tests, are very
small. It is not surprising that KVM, OpenVZ, and the bare
metal system have similar power consumption while idle, since
they all take advantage of the standard Linux power saving
system. However, in Xen, even the driver domain Domain-0
is in fact a virtual machine, which does not allow the Linux
kernel to properly manage the power of the system. Our initial
investigation leads us to conjecture that the Xen 4.1 hypervisor
does not properly utilize the Core i5 processor’s advanced
c-states (sleep states). In the standard Linux kernel, when a
processing core is idle, the system puts the core to sleep. We
have forced Xen to use the c-states, yet it does not seem to
enter the deep sleep states such as the c7 state, which leads to
a much higher idle energy consumption. Using the Xen power
management command “xenpm”, we have determined our idle
Xen system never enters a sleep state deeper than c1. This
was observed despite the fact that we had passed the required
boot time parameters to the Xen kernel and enabled the deeper
sleep states in Xen power management module.

B. Power Consumption with Virtualization

Figure 2 and Figure 3 show the power consumption of our
systems while running the Iperf TCP sending and receiving
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tests. In this experiment, all systems maintained an average
TCP transfer rate of approximately 940 Mb/s while both
sending and receiving. For the Iperf sending test, the Bare
metal system has the lowest power consumption with an
average of 36.3 watts consumed for the total system and an
average of 10.6 watts for the CPU. OpenVZ has a similar
power consumption as the Bare metal system for the total
consumption, but a slightly higher internal power consumption
of 11.8 watts. KVM has a significantly higher consumption
with an average of 44.3 watts external and 17.4 watts inter-
nal. Xen has the worst performance with the highest power
consumption: 57.7 watts for the whole system and 29.1 watts
for the CPU. For the Iperf receiving test, with both Bare metal
and OpenVZ, the results are similar but slightly better than for
sending. Bare metal has slightly less power consumption with
35.6 watts external and 10.0 watts for internal consumption, as
does OpenVZ with 35.5 watts external and 11.2 watts internal.
KVM and Xen virtualization each performed slightly worse
than on the sending test, with KVM consuming 46.7 watts
external and 19.2 watts internal, and Xen consuming 58.1 watts
external and 28.1 watts internal. Again, the standard deviations
between the tests on the same system are very low. It is not
surprising that both KVM and Xen consume considerably more
power in these tests since network interface virtualization is a
computationally expensive operation [20].

The results of Apache2 Many Client HTTP Download are
shown in Figure 4 for each system. Our Bare metal control
consumed an average of 37.9 watts for the whole system on
this test, and an average of 12.1 watts for the CPU. Of the
virtualized systems, OpenVZ again performed the best, with
an average of 39.1 watts total consumption and 14.3 watts CPU
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consumption. In this test, KVM and Xen performed similarly,
with KVM consuming an average of 52.4 watts external and
24.2 watts internal, and Xen consuming an average of 54.2
watts external and 26.6 watts internal. The reason Xen and
KVM have much closer energy consumption in this test is
because both Xen and KVM appear to be load-balancing the
apache HTTP threads over all available CPUs. Since all 4 cores
now contain active threads the benefits of KVM’s ability to
reach deeper sleep states is much less pronounced. The stan-
dard deviations in this test are slightly higher, though remain
small. These results are not unexpected, since transmitting
data over a TCP based HTTP connection contains many small
control messages and packets. Processing this large number
of packets causes higher overhead in virtual machines since
virtual packet processing is a much more expensive operation.

C. Where Is Power Consumed ?

To understand why there is increased energy consumption
and overhead in virtual machines while processing the network
tasks described above, we now take a close look at a state
of the art virtualized network interface architecture. We use
KVM as a representative because of its wide deployment, and
because the VirtIO driver it employs is designed to work with
a variety of virtualization systems, making the observations
widely applicable.

We start our discussion with an overview of KVM’s virtual
packet processing. Figure 5, gives the typical path of a packet
entering a virtualized system. The packet is first handled by the
physical NIC, which copies the packet in the memory space of



Bare-Metal KVM VirtIO
Cycles 11.5M/Sec 51.8M/Sec

LLC References 0.48M/Sec 2.3M/Sec
IRQs 600/Sec 2600/Sec

TABLE I. IPERF RECEIVING 10 MB/S TCP TRAFFIC

Bare-Metal KVM VirtIO
Cycles 4.1M/Sec 33.4M/Sec

LLC References 0.13M/Sec 1.3M/Sec
IRQs 180/Sec 1700/Sec

TABLE II. IPERF SENDING 10 MB/S TCP TRAFFIC

the host physical machine and alerts the physical machine of
the incoming data through the use of a hardware interrupt. The
kernel on the physical machine is then scheduled to run and
inspects the packet. The packet is then pushed through some
form of software switch; in our experiments we used a Linux
bridge. The switch then sorts the packet and sends it to the
virtual NICs back-end, which in the case of KVM is a network
tap device. The kernel then notifies the Virtual Machine’s hy-
pervisor process of the incoming packet(s) through a software
interrupt, and the KVM hypervisor is scheduled to run. The
KVM hypervisor process then copies the packet from the host’s
memory space into the virtual machine’s memory space, and
sends an interrupt to the virtual machine. Finally, the virtual
machine’s kernel collects the packet from the virtual NIC and
passes the packet to the networking layer. When sending, the
virtual machine simply pushes the packet along in the reverse
direction through these steps. All of these additional steps
cause a virtual machine to consume much more resources than
a bare-metal machine when processing network traffic, thus
potentially consuming much more energy.

The best way to show the increase in resource consumption
created by virtualization is a small experiment. To this end, we
designed an experiment to measure the virtualization overhead,
and therefore the excessive power consumption, of sending and
receiving on both virtual and hardware network interfaces. We
once again used the Iperf network benchmark to create the
TCP traffic to and from a remote host in the same subnet.
We used the Linux hardware performance analysis tool Perf
to collect system level statistics such as processor cycles
consumed, last level cache references (LLC), and interrupt
requests. We collected statistics for all cores in our physical
system, thus our data shows resource consumption both inside
and outside the VM. For each experiment, we instructed Perf
to collect five samples each with a duration of 10 seconds and
then averaged them. We tested two systems: our bare metal
Linux host, and KVM with VirtIO drivers.

The results for the receiving experiment are given in Table I
and the results for the sending experiment are given in Table II.
Both CPU cycles and LLC references are given in millions
per second. The interrupt requests are given in number per
second. We can see that, in the receiving experiment, KVM
with VirtIO takes nearly 5 times more cycles to deliver the
packets to the VM as the bare-metal host. KVM with VirtIO is
also much less efficient on cache than the bare-metal system.
This is due to the fact that the VM’s hypervisor must copy
each packet from the memory space of the host to the VMs
space. These copies use up valuable processor cycles and can
also evict data from the processor cache. Next we look at
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IRQs that are used by the physical device to notify the kernel
of an incoming packet, and by the hypervisor to indicate to
a running VM that it has received packets. Since KVM also
uses interrupts to indicate to a running VM that it has received
packets from the network, it comes as no surprise that they
would be considerably higher than the bare-metal baseline.
As such, if the number of interrupts can be reduced, we can
amortize the cost of network processing by batch processing
packets, thus reducing the amount of memory access and CPU
cycles consumed by the VMs, which would in turn improve
the power consumption for many network applications.

V. REDUCING POWER CONSUMPTION IN KVM

The results of our profiling experiment show that virtualiza-
tion systems introduce considerable overhead while processing
packets. From our previous description of how packets are
processed in virtual systems, we propose that buffering packets
will help reduce the overhead caused by the virtualization
system, and therefore reduce the energy consumption.

It has been established in other contexts, such as mobile
devices, that buffering sending and receiving tasks has an
energy conservation benefit [21]. Much of this energy sav-
ing is due to the efficiency of batch processing of network
packets and powering down the radio between network bursts.
However, our novel approach in applying packet buffering
to virtual packet processing achieves it’s energy savings by
greatly increasing the efficiency with which the hypervisor
handles network traffic. Further, in [20] through hardware
profiling techniques, we found that virtualized systems use
more memory, cache and CPU cycles to process packets than
non virtualized systems do. We implement our modifications
in the VirtIO drivers of the KVM system. The choice of KVM
and the VirtIO drivers is motivated by the fact that VirtIO
is designed to be a driver system that is compatible with
many virtualization systems. Thus, our modifications to the
VirtIO drivers are likely applicable to many other virtualization
platforms.

A. Buffering Timer for VirtIO

We first modified the VirtIO driver to buffer incoming
packets, delivering them in bulk to the virtual machine. To
accomplish this, we carefully inspected the VirtIO’s virtual
NIC device code and changed how the VM is notified that



it has incoming packets. Instead of immediately sending an
interrupt on a packets arrival, the KVM hypervisor can now
set a timer. When the timer expires the VM is notified of the
original packets as well as all other that have arrived since the
timer was started.

Although we can configure the VirtIO virtual NIC device to
ignore the interrupts created by the VM’s transmitted packets,
it is not enough to reduce the sending overhead of the VM.
This is because the VirtIO drivers inside the VM perform a
queue ”kick” operation for every buffer of sent packets. The
kick operation not only raises an interrupt to the hypervisor, but
also performs an expensive locking operation to copy over the
packets into the hypervisor’s sending buffer. Thus, modifying
the VirtIO’s virtual NIC device is not enough to buffer the
transmitted packets from the VM, and we must also optimize
the driver residing inside the VM.

With this observation, we modified the VirtIO drivers
to set a timer instead of immediately performing the kick
operation. When the timer expires, a single efficient copy of
all the packets from the VM’s sending queue is made to the
hypervisor. Also, a single interrupt is sent to the hypervisor
instructing it to process these packets. Figure 6 shows the
location of our modifications in the VirtIO NIC structure.

B. Synchronizing Receiving and Transmitting Delay

After modifying the VirtIO virtual NIC subsystem to allow
buffering of transmitted and received packets, we next need
to develop a system to synchronize the Receiving (RX) and
Transmitting (TX) delays. Synchronization of the delays is
needed for a number of reasons. First, we must be able to
advertise to the KVM hypervisor the appropriate time to buffer
the received packets. Second, the hypervisor must be instructed
to only buffer the packets for systems running applications
that can tolerate the buffering delay. Finally, to ensure a
stable round trip time (RTT), the hypervisor and VM must
balance their buffer times. To this end, we developed and
implemented a new virtual “hardware” control message, which
can be sent from the VM to the virtual NIC device. The
control message specifies if the VM expects the hypervisor
to buffer incoming packets as well as how long to buffer
the packets for. Our modification allows for each VM on a
physical host to enable/disable and control its own buffering
independently. Figure 6 shows the path of hardware control
message as well as a high level overview of our modified
driver system. Current version of our source code is available
at www.sfu.ca/∼rws1/energy-kvm/.

To make our modifications adaptive to applications with
different sending and receiving packet rates, we choose our
buffering amounts based on a packet ratio estimate. We use
ns(ti) and nr(ti) to refer the total number of sent/received
packets between time slots ti and ti−1 when the ith timer
expires. The ratio of sent packets Ps(ti) is therefore

ps(ti) =

{
0 nt=nr=0

ns(ti)
ns(ti)+nr(ti)

else
(1)

Note that we can also let ps = ns/(ns + nr + 1) in the
real-world implementation. Based on this definition, we can
get the estimated sending packet rate p∗s using an exponentially
weighted moving average as:
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Fig. 7. Iperf Receiving 1000 Mb/s Improvement

p∗s(ti) = αps(ti−1) + (1− α)ps(ti) (2)

where the real number α ∈ [0, 1] is the weighting factor.
Smaller α makes the estimated packet rate more sensitive to
the changes of packet rate. Larger α on the other hand, makes
E immune to the short-term rate change. The size of sending
buffer bs and the size of receiving buffer br can therefore be
obtained as

bs = p∗s(ti)Tbuf (3)

br = p∗r(ti)Tbuf (4)

where Tbuff is the maximum tolerable RTT specified by the
user. p∗r(ti) is the estimated receiving packet rate.

VI. POWER SAVINGS WITH DRIVER MODIFICATION

Using the VirtIO modifications and packet rate calculation
formula described previously, we once again measure the
energy consumption of network tasks on our test platform.
We installed our modified drivers in our VM and configured
the drivers to calculate the packet rate estimate and update
the receiving and sending buffer amounts every 5 seconds.
The drivers calculate the estimated packet rate using an α of
0.75, implying we slightly favor the historical samples. For
all experiments, we once again run them three times and give
the average as well as express the standard deviation as error
bars on our graphs. We test different buffer times ranging from
0.1 ms to 1 ms, which, as compared to the typical wide area
network RTT, is generally negligible.

Figure 7 shows the results for receiving of running the
Iperf TCP benchmark using our modified KVM driver. In all
tests the modified drivers achieve a maximum throughput of
approximately 940 Mb/s. Even with a 0.1ms buffer there is
an approximately 12% drop in energy consumption from the
external Wall measurement, from 46.7 watts to 41.1 watts.
With steadily bigger buffer sizes we continue to see steady
improvement, up to an improvement of 19.5% over the unmod-
ified KVM. For the internal RAPL measurement, we also see a
steady improvement with increased buffer size, from an 18.8%
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Fig. 8. Iperf Send 1000 Mb/s Improvement
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Fig. 9. Apache2 Download Improvement

improvement in energy consumption with a 0.1ms buffer to a
32.3% improvement over the unmodified driver with a 1ms
buffer. Figure 8 shows the Iperf TCP benchmark results for
sending. In the wall measurements, with the smallest buffer
size, there is already a major improvement of 12.2%, from
44.3 watts with the basic KVM driver to 38.9 watts with our
modified driver. There is a gradual but steady improvement
with increased buffer size, up to 16.5% change in energy
consumption with a 1ms buffer. The RAPL measurements
show a very similar trend. With a 0.1ms buffer there is a 20.1%
change in energy consumption, and with a 1ms buffer we see
a 28.7% improvement with our modified KVM driver.

In Figure 9, we see the energy consumption of running
the Apache benchmark with the basic KVM driver compared
to with our modified driver using different buffer sizes. For
the wall measurements, there was a fairly steady increase with
increasing buffer size. With the smallest buffer size we only
saw a 5.7% improvement over the basic KVM driver, however
this increased to a 12.4% change in energy consumption with
a 1ms buffer. The results for the internal measurements are
similar. With a 0.1ms buffer we see a 6.2% change, from 24.2
watts with the basic driver to 22.7 watts with the modified
driver. With a 1ms buffer we see a 17.0% improvement over the
unmodified driver. It is important to note that our modifications
did not reduce the data transfer rate of the HTTP downloads,
thus the modified KVM system still served the files in the
same amount of time as the baseline systems.

VII. IMPACT TO COMPLEX NETWORK APPLICATIONS

So far we have focused on the basic network transac-
tions. We now establish the power consumption profiles of
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Fig. 10. RUBBoS - 100 Clients, 500,000 requests

advanced and more realistic network applications, as well
as the impact of buffering. Although the simple benchmarks
presented previously illuminate some important characteristics
of virtualized systems in terms of energy consumption, it is
critical to examine more complex applications which are more
commonly found in real world data-centers.

A. Benchmark Setup

RUBBoS Bulletin Board Benchmark: To further understand
the overall system power consumption, we have devised a
comprehensive benchmark based on a simple 2-tier web server
and database. We used the Debian repositories to install the
Apache 2.2 Web Server and the MySQL Server 5.5. To create
a web application representative of a real-world service, we
installed the RuBBoS bulletin board benchmark [22]. We
chose the PHP version of the RuBBoS and installed the
necessary Apache extensions for PHP. We then installed the
RuBBoS data into our MySQL database.

Although RuBBoS comes with its own client simulator, we
used the one from the Apache benchmark instead, which has
been more commonly used for web server stress testing [23].
Also, we only require the maximum request rate, which is
more straightforward to extract with the Apache Benchmark.
We ran the Apache Benchmark against the RuBBoS website in
each of the test setups. We emulated 100 clients requesting the
latest forum topics page. By using this page, the web server
must perform a single SQL query and render the PHP page
for each user request. We then used the Apache benchmark to
calculate how long it takes to service the 500,000 requests.

Tbench Network File System Benchmark: Our final ex-
periment employs Tbench [24], which emulates the network
portion of the standard Netbench performance test. Tbench
sends TCP data based on a workload profile, which simulates a
network file system. We specified our test system as the Tbench
server and then configured our client emulator to simulate 100
processes reading and writing the remote file system.

B. Power Consumption

Our results for the RUBBoS benchmark, the comprehensive
web server test, are shown in Figure 10. The Bare metal
system consumed an average of 10460 joules total and 6002
joules for the CPU. OpenVZ was comparable, with an average
consumption of 10767 joules for the whole system and 6360
joules for the CPU. KVM and Xen performed worse, with
KVM consuming an average of 14880 joules total and an
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Fig. 11. Tbench, 100 network processes, read/writing remote file-system

average of 8591 joules for the CPU, and Xen consuming an
average of 15664 joules total and an average of 8910 joules for
the CPU. Unlike the previous benchmarks we have performed,
the RUBBoS benchmark is not strictly a network-bound ap-
plication. This multi-tier benchmark has to render a PHP page
as well as perform database look ups to service each incoming
request, both of which are hard on memory and CPU resources.
This leads to even higher energy consumption because not only
are the network accesses causing virtualization overhead, but
the access to memory by the database is also contributing to
the virtualization overhead.

Figure 11 shows the power used by each of our systems
running the Tbench benchmark test. The Bare metal system
uses 43.5 watts for the total system measured at the wall, and
16.2 watts for the internal CPU. OpenVZ performs nearly as
well, consuming 44.5 watts at the wall and 18.8 for the RAPL
counter. KVM also performs fairly well on this test, using
50.9 watts externally and 23.3 watts for the CPU. Finally, Xen
uses 63.3 watts for the total system and 33.1 watts for the
CPU. In this benchmark the Tbench server must emulate the
responses to the read and write file system requests generated
by the remote clients, while at the same maintaining high
network throughput. This is a more complex use of the network
communication infrastructure as performance is dependent on
the Tbench server processing the clients’ requests quickly.

C. Impact of Buffering

Using our modified drivers VirtIO drivers described previ-
ously, we test the candidate buffer time of 0.1 ms, 0.25 ms,
0.5 ms and 1 ms. For all experiments we once again run them
three times and give the average as well as express the standard
deviation.

Figure 12 shows the improved energy consumption while
running the rubbos benchmark, comparing the unmodified
KVM driver to the modified driver at our specified buffer
sizes. The external measurements taken from the wall show
that even with the smallest buffer size, there is a significant
improvement in energy consumption. With a 0.1ms buffer,
there is a 11.4% drop in energy consumption, from 14880
joules with the unmodified driver to 13181 joules with the
introduction of the buffer. There is then a steady improvement
with increasing buffer size, up to a 16.5% change from the
unmodified KVM with a 1ms buffer. The internal RAPL mea-
surements are similar, with the major improvement occurring
with the introduction of even the 0.1ms buffer size, with a
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Fig. 12. RUBBoS Improvement
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Fig. 13. Tbench, 100 network processes Improvement

12.1% drop in joules consumed. There continues to be an
improvement in energy consumption with increasing buffer
size, with our largest buffer size, 1ms, resulting in a 16.2%
improvement, from 8591 joules using the standard KVM driver
to 7196 joules with our modified driver. The modified drivers
were not only able to reduce the energy consumption of our
virtualized system but actually increased the performance as
well. With a buffer of 1.0 ms our modified KVM virtual
machine was able to service nearly 10% more request per
second than the unmodified KVM system. As stated previously,
this benchmark requires many subsystems in addition to the
network, leading to even higher overhead due to non-network
causes. However, we show that in this complex case, we still
manage the impressive energy reduction of up to 16.2%, while
improving performance. This improvement in performance is
because the system resources are now freed to do useful work
inside the VM such as answering queries or rendering PHP
pages.

In Figure 13, we present the results of the Tbench test,
comparing the power consumption of the Bare metal system
to the unmodified KVM system and to a KVM system running
the modified driver with varying buffer sizes. The unmodified
KVM system consumes 50.9 watts at the wall, and 23.3 watts
at the CPU. Running the modified KVM driver with a buffer
of 0.1ms, the power consumption is 49.5 watts at the wall,
and 23.1 at the RAPL counter. With a larger buffer size, the
power consumption improves, down to 49.0 watts at the wall
and 22.8 watts at the CPU with a buffer size of 0.25ms. With
a buffer size of 0.5ms, the system consumes 47.6 watts at
the wall and 22.0 watts at the CPU, an improvement of 6.5%
and 5.6% respectively over the unmodified KVM. The largest



buffer size we test, 1ms, does have lower power consumption
but unfortunately it suffers from an approximately 6% decrease
in throughput. However, the buffer sizes 0.1ms 0.25 ms, and
0.5 ms have identical performance to their KVM base-line.
The loss of performance with Tbench as our buffer sizes
approaches 1ms is likely due to the fact that network file
systems are more susceptible to increases in latency than our
web server benchmark RUBBoS, for example. Tbench serves
to illustrate that many applications benefit from this buffering
technique, however the amount of buffering to ensure optimal
performance of the application could vary.

VIII. CONCLUSION AND FURTHER DISCUSSION

In this paper we showed, through both external power
meter measurements and internal RAPL hardware profiling
counters, the energy overhead created by using virtualized
systems. We found that due to virtualization overhead, hy-
pervisor based virtualization systems such as KVM and Xen
can consume considerably more energy when running typical
network tasks. On the other hand, we find that the container
virtualization system OpenVZ consumes near identical amount
of power as our non-virtualized baseline system.

Our initial experiments with other complex network appli-
cations, such as the distributed memory object caching system
Memcached [25] and Online Transaction Processing (OLTP)
benchmarked by sysbench [26], their energy consumption
does decrease but at the cost of a slight loss of performance.
After inspecting these two systems, we conjecture the follow-
ing reasons. First, both applications’ benchmarks appear to
employ a stage that incorporates blocking I/O, meaning that
any delay in response will slow down the process of the entire
benchmark. Second, both applications are sensitive to increases
in latency, especially memcached, which is designed to be a
low latency memory object caching system. However, it is
likely that non-blocking I/O implementations of these appli-
cation would also see improvement in energy consumption.

Further, our modifications to KVM’s VirtIO driver are
likely compatible with recent advances in VM packet switching
such as the VALE [27] software switch. For a future work
we plan to analyze the energy consumption of these advanced
packet switching techniques as well as test their performance
with our VM packet buffering techniques.

We show that it is possible to conserve energy without
loss of performance for many typical networked applications
through the use of packet buffering. Our real world practical
modifications show that a busy virtualized web server can
reduce it’s energy consumption by over 16% by buffering its
incoming and outgoing packets. However, it remains to be
discovered what other networked applications can benefit from
our optimizations.
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