
Advances in Formal Design
Methods for CAD

IFIP - The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for societies
working in information processing, IFIP's aim is two-fold: to support information processing
within its member countries and to encourage technology transfer to developing nations. As
its mission statement clearly states,

IFIP's mission is to be the leading, truly international, apolitical organization which
encourages and assists in the development, exploitation and application of information
technology for the benefit of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates
through a number of technical committees, which organize events and publications. IFIP's
events range from an international congress to local seminars, but the most important are:

• the IFIP World Computer Congress, held every second year;
• open conferences;
• working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the rejection
rate is high.

As with the Congress, participation in the open conferences is open to all and papers may
be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working
group and attendance is small and by invitation only. Their purpose is to create an atmosphere
conducive to innovation and development. Refereeing is less rigorous and papers are
subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings, while
the results of the working conferences are often published as collections of selected and
edited papers.

Any national society whose primary activity is in information may apply to become a full
member of IFIP, although full membership is restricted to one society per country. Full
members are entitled to vote at the annual General Assembly, National societies preferring a
less committed involvement may apply for associate or corresponding membership. Associate
members enjoy the same benefits as full members, but without voting rights. Corresponding
members are not represented in IFIP bodies. Affiliated membership is open to non-national
societies, and individual and honorary membership schemes are also offered.

Advances in Formal Design
Methods for CAD

Proceedings of the IFIP WG5.2 Workshop on Formal
Design Methods for Computer-Aided Design,
June 1995

Edited by

John S. Gero and Fay Sudweeks (associate editor)
Key Centre of Design Computing
University of Sydney
Sydney, Australia

~!'I SPRINGER-SCIENCE+BUSINESS MEDIA, B.v.

First edition 1996

© 1996 Springer Science+Business Media Dordrecht
Originally published by Chapman & Hali in 1996
Softcover reprint ofthe hardcover Ist edition 1996

ISBN 978-1-4757-4428-6 ISBN 978-0-387-34925-1 (eBook)
DOI 10.1007/978-0-387-34925-1

Apart from any fair dealing for the purposes of research or private study, or
criticism or review, as permitted under the UK Copyright, Designs and Patents
Act, 1988, this publication may not be reproduced, stored or transmitted, in any
form or by any means, without the prior permission in writing of the publishers,
or in the case of reprographic reproduction only in accordance with the terms of
the licences issued by the Copyright Licensing Agency in the UK, or in
accordance with the terms of licenses issued by the appropriate Reproduction
Rights Organization outside the UK. Enquiries concerning reproduction outside
the terms stated here should be sent to the publishers at the London address
printed on this page.

The publisher makes no representation, express or implied, with regard to the
accuracy of the information contained in this book and cannot accept any legal
responsibility or liability for any errors or omissions that may be made.

A catalogue record for this book is available from the British Library

§ Printed on permanent acid-free text paper, manufactured in accordance
with ANSIINISO Z39.48-1992 and ANSI/NISO Z39.48-1984 (Permanence
of Paper).

CONTENTS

Preface
Author electrouic addresses
International program committee
List of participants

Part One Evolutionary Methods in Design

2

3

Formalising design exploration as co-evolution:
a combined gene approach
Mary Lou Maher, Josiah Poon and Sylvie Boulanger

Evolving building blocks for design using genetic engineering:
a formal approach
John Gero and Vladimir A. Kazakov

DISCUSSION: Evolutionary methods in design
Mihaly Lenhart and Mary Lou Maher

Part Two Generative and Search Methods in Design

4

5

6

Modified shape annealing for optimally-directed generation:
initial results
Ken N. Brown and Jon Cagan

Incorporating heuristics and a meta-architecture in a
genetic algorithm for harness design
Carlos Zozaya-Gorostiza and Luis F Estrada

DISCUSSION: Generative and search methods in design
Ken N. Brown

Part Three Performance Evaluation Methods in Design

7

8

A performance-based paradigm of design
Yehuda. E. Kalay and Gianfranco Carrara

A formal method for assessing product performance
at the conceptual stage of the design process
Paul Rodgers, Alistair Patterson and Derek Wilson

vii
ix
ix
x

1

3

31

51

57

59

75

97

105

107

137

vi Contents

9 On a symbolic CAD-front-end for design evaluation based
on the Pi-theorem
Stephan Rudolph

10 DISCUSSION: Performance evaluation methods in design
Hans Grabowski

Part Four Formal Support Methods in Design

11 Formal concept analysis in design
Mihaly Linhart

12 Supporting the design process by an integrated knowledge
based design system
Hans Grabowski, Ralph-Stefan Lossack and Clemens Weis

13 DISCUSSION: Formal support methods in design
Stephan Rudolph

Part Five Design Process Methods

14 A logical theory of design
Frances Brazier, Pieter van Langen and Jan Treur

15 Representing the collaborative design process: a
product model-oriented approach
Bangyu Lei, Toshiharu Taura and Jun Numata

16 DISCUSSION: Design process methods
Leo Joskowicz

Closing Discussion

Advances in formal design methods for computer-aided design
John Gem

Author Index

165

181

187

189

209

231

241

243

267

287

291

293

299

PREFACE

Designing is one of the most significant of human acts. It is one of the bases for
change in our society. Designers are amongst the least recognised of society's
change agents. Surprisingly, given that designing has been occurring for many
millennia, our understanding of the processes of designing is remarkably limited.
Part of our understanding of designing comes not only from studying human de­
signers as they design but from postulating design methods which describe some
aspect of the design process without claiming to model the processes used by
human designers. The early approaches to design methods were prescriptive when
applied to human designers. More recently, design methods have been formalised
not as humano-centred processes but as processes capable of computer imple­
mentation. Amongst the goals of these endeavours are to develop a better under­
standing of the processes of designing, to develop methods which can be compu­
terised and to aid human designers through the introduction of novel methods
which have no human counterpart.

This move away from modeling human design processes and from prescrip­
tive methods for human designers has opened up new areas in the development of
formal design methods for computer-aided design. Although such methods have
existed previously they were not fully explored because of their lack of humano­
centricity. This nexus between a design method and its human use has been bro­
ken. This is not to imply that humano-centred design methods should not be de­
veloped or are of no significance, rather it is to suggest that they need to be aug­
mented by these alternate approaches.

The working group of the International Federation for Information Processing
(IFIP) which deals with computer-aided design (known as WG5.2) has been ac­
tively involved in a number of significant aspects of computer-aided design since
the Group's inaugural conference in 1972. Over the last decade or so it has been
pursuing artificial intelligence-based approaches to design methods and with is­
sues concerned with geometric modeling. These approaches have spawned areas
loosely called knowledge-based design, intelligent computer-aided design and
knowledge intensive design. Formal design methods covers all these areas and
more with its concern for the methodological process which is being modeled or
developed and with the ability to characterise it in a formal sense.

The eleven contributions were presented under five topic headings and were
followed by extensive discussions. A summary of the concepts traversed in the

discussion of each session is provided after each group of contributions. The five
sessions were:

1. evolutionary methods in design
2. generation and search methods in design
3. performance evaluation methods in design
4. formal support methods in design
5. design process methods

The overwhelming majority of the contributions describe design methods which
have no direct human counterpart. Thus, these methods become adjuncts to hu­
man designers. This can be readily seen in those design methods which utilise
large populations of designs rather than pursuing a single or very small number of
nascent designs to fruition. These papers demonstrate the progress in formal de­
sign methods for computer-aided design.

All papers were sent to three reviewers for refereeing. A special thanks is due
to these reviewers:

Orner Akin, Carnegie Mellon University, USA; Sylvie Boulanger, University
of Sydney, Australia; Dave Brown, Worcester Polytechnic Institute, USA; Ken
Brown, Carnegie Mellon University, USA; Jon Cagan, Carnegie Mellon Uni­
versity, USA; Jose Damski, University of Sydney, Australia; Chuck Eastman,
University of California-Los Angeles, USA; Patrick Fitzhorn, Colorado State
University, USA; Renate Fruchter, Stanford University, USA; Hans Grabowski,
University of Karlsruhe, Germany; Mark Gross, University of Colorado, USA;
Yehuda Kalay, University of California-Berkeley, USA; Vladimir Kazakov,
University of Sydney, Australia; Larry Leifer, Stanford University, USA; Mihaly
Lenart, University of Kassel, Germany; Mary Lou Maher, University of Syd­
ney,Australia; Josiah Poon, University of Sydney, Australia; Michael Rosenman,
University of Sydney, Australia; Tim Smithers, University ofthe Basque Coun­
try, Spain; George Stiny, University of California-Los Angeles, USA; Tapio
Takala, Helsinki University of Technology, Finland; Hideaki Takeda, Nara In­
stitute of Science and Technology, Japan; Toshiharu Taura, University of To­
kyo, Japan; Jan Treur, Vrije Universiteit, The Netherlands; Enn Tyugu, Royal
Institute of Technology, Sweden; Giorgio Valle, University of Milan, Italy

The undoubted success of this workshop was due to the support of the interna­
tional program committee (listed at the rear of this volume) assisted by additional
reviewers. The smooth management of the workshop was in large part due to the
efforts of the local chair Carlos Zozaya-Goristza along with the conference man­
ager Fay Sudweeks. Fay Sudweeks also acted as the associate editor of this vol­
ume, giving it its final shape and form in her inimitable manner. The assistance of
the Key Centre of Design Computing, University of Sydney is acknowledged.

John S Gero
University of Sydney

AUTHOR ELECTRONIC ADDRESSES

Boulanger, S., sylvie@arch.su.edu.au
Brazier, F. M. T., frances@cs.vu.nl
Brown, K. N., kb58+@andrew.cmu.edu
Cagan, J., jcag+@andrew.cmu.edu
Gero, J. S., john@arch.su.edu.au
Grabowski, H., gr@rpk.mach.uni-karlsruhe.de
Joskowicz, L., josko@watson.ibm.com
Kalay, Y. E., kalay@ced.berkeley.edu
Kazakov, V. A., kaz@arch.su.edu.au
Lei, B., lei@race.u-tokyo.ac.jp
Lenart, M., michael @architektur.uni-kassel.de
Lossack, R.-S.,

lossack@rpk.mach.uni-karlsruhe.de

Maher, M. L., mary@arch.su.edu.au
Numata, J., numata@ssd.sony.co.jp
Poon, J., josiah@arch.su.edu.au
Rodgers, P. A., rodgerp@westminster.ac.uk
Rudolph, S., rudolph@isd.uni-stuttgart.de
Taura, T., taura@race.u-tokyo.ac.jp
Treur, J., treur@cs.vu.nl
van Langen, P. H. G., langen@cs.vu.nl
Weis, C., weis@rpk.mach.uni-karlsruhe.de
Zozaya-Gorostiza, C.,

zozaya@lamport.rhon.itam.mx

INTERNATIONAL PROGRAM COMMITTEE

Chair: John S. Gero, University of Sydney, Australia

Co-Chair: Alice Agogino, University of California-Berkeley, USA

Local Chair: Carlos Zozaya-Gorostiza, Instituto Tecnol6gico Aut6nomo de Mexico, Mexico

Workshop Manager: Fay Sudweeks, University of Sydney, Australia

Committee: Dave Brown, Worcester Polytechnic Institute, USA; K~n Brown, Carnegie Mellon
University, USA; Jon Cagan, Carnegie Mellon University, USA; Patrick Fitzhorn, Colorado
State University, USA; Hans Grabowski, University of Karlsruhe, Germany; Yehuda Kalay,
University of California-Berkeley, USA; Larry Leifer, Stanford University, USA; Mary Lou
Maher, University of Sydney, Australia; William Mitchell, MIT, USA; Tim Smithers, Univer­
sity of the Basque Country, Spain; George Stiny, University of California-Los Angeles, USA;
Tapio Takala, Helsinki University of Technology, Finland; Hideaki Takeda, Nara Institute of
Science and Technology, Japan; Toshiharu Taura, University of Tokyo, Japan; Paul ten Hagen,
CWI, The Netherlands; Enn Tyugu, Royal Institute of Technology, Sweden; Rob Woodbury,
University of Adelaide, Australia

LIST OF PARTICIPANTS

Brown, K., Design Computation Laboratory, Carnegie Mellon University, Pittsburgh PA 15213,
USA

Cair6, 0., Divisi6n Academica de Computaci6n, Instituto Tecnol6gico Aut6nomo de Mexico, Rio
Hondo #1, Col. Tizapan, San Angel, Mexico DF 01000, Mexico

Dong, A., Department of Mechanical Engineering, University of California-Berkeley, Berkeley
CA 94720, USA

Gaffron, S., Divisi6n Academica de Computaci6n, Instituto Tecnol6gico Aut6nomo de Mexico,
Rio Hondo #1, Col. Tizapan, San Angel, Mexico DF 01000, Mexico

Gamboa, R., Divisi6n Academica de Computaci6n, Instituto Tecnol6gico Aut6nomo de Mexico,
Rio Hondo #1, Col. Tizapan, San Angel, Mexico DF 01000, Mexico

Gero, J., Key Centre of Design Computing, University of Sydney, NSW 2006 Australia
Gonzalez, M., Divisi6n Academica de Computaci6n, Instituto Tecnol6gico Aut6nomo de Mexico,

Rio Hondo #1, Col. Tizapan, San Angel, Mexico DF 01000, Mexico
Govela, A., Divisi6n Academica de Computaci6n, Instituto Tecnol6gico Aut6nomo de Mexico,

Rio Hondo #1, Col. Tizapan, San Angel, Mexico DF 01000, Mexico
Grabowski, H., Institute for Computer Application in Planning and Design (RPK), University of

Karlsruhe, Kaiserstra~e 12, D-76128 Karlsruhe, Germany
Joskowicz, L., IBM Thomas J. Watson Research Center, PO Box 704, Yorktown Heights NY

10598, USA
Kalay, Y., Department of Architecture, University of California-Berkeley, Berkeley CA 94720,

USA
Lei, B., Research into Artifacts, Center for Engineering, University of Tokyo, 4-6-1 Komaba,

Meguro-ku, Tokyo 153, Japan
Lenart, M., Department of Architecture, University of Kassel, CAD-Zentrum, Diagonale 12,

34109 Kassel, Germany
Lossack, R.-S., Institute for Computer Application in Planning and Design (RPK), University of

Karlsruhe, Kaiserstra~e 12, D-76128 Karlsruhe, Germany
Maher, M. L., Key Centre of Design Computing, University of Sydney NSW 2006, Australia
Rogers, P., SEMSE Design Group, University of Westminster, 115 New Cavendish Street,

London WIM 8JS, United Kingdom
Rudolph, S., Institute of Statics and Dynamics, Stuttgart University, Pfaffenwaldring 27, D-

70569, Stuttgart, Germany
Taura, T., Research into Artifacts, Center for Engineering, University of Tokyo, Komaba 4-6-1,

Meguro-ku, Tokyo 153, Japan
van Langen, P., Department of Mathematics and Computer Science, Vrije Universiteit Amster­

dam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
Weis, c., Institute for Computer Application in Planning and Design (RPK), University of

Karlsruhe, Kaiserstra~e 12, D-76128 Karlsruhe, Germany
Zozaya-Gorostiza, C., Divisi6n Academica de Computaci6n, Instituto Tecnol6gico Aut6nomo de

Mexico, Rio Hondo #1, Col. Tizapan, San Angel, Mexico DF 01000, Mexico

PART ONE

Evolutionary Methods in Design

1

FORMALISING DESIGN EXPLORATION AS CO-EVOLUTION

A Combined Gene Approach

MARY LOU MAHER, JOSIAH POON AND SYLVIE BOULANGER
University of Sydney, Australia

Abstract. This paper introduces a model for design exploration based on notions of
evolution and demonstrates computational co-evolution using a modified genetic
algorithm (GA). Evolution is extended to consider co-evolution where two systems
evolve in response to each other. Co-evolution in design exploration supports the
change, over time, of the design solution and the design requirements. The basic GA,
which does not support our exploration model, evaluates individuals from a population
of design solutions with an unchanged fitness function. This approach to evaluation
implements search with a prefixed goal. Modifications to the basic GA, are required to
support exploration. Two approaches to implement a co-evolving GA are: a combined
gene approach and a separate spaces approach. The combined gene approach includes
the representation of the requirements and the solution within the genotype. The
separate spaces approach models the requirements and the solutions as separately
evolving interacting populations of genotypes. The combined gene approach is
developed further in this paper and used to demonstrate design exploration in the
domain of braced frame design for buildings. The issues related to the coding of the
genotype, mapping to a phenotype, and evaluation of the phenotype are addressed.
Preliminary results of co-evolution are presented that show how exploration differs
from search.

1. Introduction

Most computer-based design tools assume designers work with a well-defined
problem. The traditional treatment of design as two discrete phases: problem
formulation and solution synthesis, is challenged by recent research. Though the
view on discrete phases may be applicable to a simple and trivial design task,
current research (Logan and Smithers, 1993; Corne, Smithers and Ross, 1994;
Gero, 1994; Jonas, 1993; Navinchandran, 1991) has shown that design is an iU­
structured problem and the discrete phases view is not a good (or correct)
description of design.

Design is an iterative interplay to "fix" a problem from the problem space
and to "search" plausible solutions from the corresponding solution space. The
features and constraints in the current solution can become new criteria that lead

4 MARY LOU MAHER, JOSIAH POON AND SYLVIE BOULANGER

to a redefined problem space, which in tum helps to generate a new design
space. We call this phenomenon exploration. This is a phenomenon generally
observed during conceptual design rather than detailed design. The present
design tools from different domains, CAD or CASE, assume the designer has a
clear picture of the problem and solution. These tools become a burden rather
than help when the designer tries to alter the design. It is because these tools are
not designed to cope with a change of requirements, change of design goals,
change of assumptions, etc. Hence, if this phenomenon is not fully understood,
it becomes difficult to know what kind of assistance could be provided to the
designer during conceptual design.

The difference between search and exploration can be characterised by the
input and output as illustrated in Figure 1. A typical search process generates a
solution as its output with a well-defined problem as its input. However, an
exploration process derives a problem and the corresponding solution from an
ill-defined problem. It is not only because of the ill-defined nature of the
problem that requires us to explore during design, the solution space also
creates a need for this exploration.

SEARCH

Figure 1. Input and output of search and exploration.

Genetic Algorithms (GAs) (Holland, 1962) provide an alternative to
traditional search techniques by simulating mechanisms found in genetics.
Three notions are borrowed from biological systems:

• the phenotype, which can be a living organism for biological systems or
a design solution for design systems;

• the genotype, which is a way of representing or encoding the
information which is used to produce the phenotype; and

• the survival of the fittest, which determines whether a genotype survives
to reproduce.

In GA systems the genotype is usually represented as a binary string whose
length varies with each application. For example, a genotype may look like:
001001101. GAs manipulate a representation (genotype) that differs from its

FORMALISING DESIGN EXPLORATION AS CO-EVOLUTION 5

expression (phenotype) in order to perform changes that couldn't be possible at
the phenotype level. The genotype representation allows combination or
mutation to occur in order to construct better strings. Some measure of fitness is
applied to each string after combination and mutation to determine which
strings participate in generating the next generation of the population.

A simple genetic algorithm considers a population of n strings and applies
the operators: reproduction (or selection), crossover, and mutation in order to
create the next generation. Reproduction is a process in which strings are copied
according to their fitness function. Crossover is a process in which the newly
reproduced strings are mated at random and each pair of strings partially
exchanges information. Mutation is the occasional random alteration of the
value of one of the bits in a string. Algorithms used to implement these
processes are described in detail in Goldberg (1989).

In this paper a design process based on a genetic algorithm is presented
which can model characteristics of explorative design: the search for problem
definition as well as the search for solution. The use of an evolutionary system
in which the genotypes represent alternative problem definitions and alternative
solutions provides the basis for the co-evolution of problem space and solution
space.

1.1. EXPLORATION IN DESIGN

Since design has been categorised as a problem solving activity (Simon, 1969),
design is tr~ated as a search of the solution space for a result. This idea has
dominated the direction of artificial intelligence in design for some time.
However, the validity of this hypothesis has been queried by recent work. For
example, Come, Smithers and Ross (1994) suggest that it is inappropriate to
consider design as a search problem because a search problem requires a well
defined problem space whereas a design problem is usually ill-structured. They
propose design as "exploration" as follows:

.. involves the construction and incremental extension of problem statements
and associated solutions ..

Logan and Smithers (1993) further elaborate this definition that

.. the formulation of the problem at any stage is not final ... As the design
progresses, the designer learns more about possible problem and solution
structures as new aspects of the situation become apparent and the
inconsistencies inherent in the formulation of the problem are revealed. As a
result, .. the problem and the solution are redefined ...

Navinchandra (1991) defined exploration in the program CYCLOPS as

.. Exploration is the process of generating and evaluating design alternatives
that normally would not be considered ..

He focuses on alternatives and this is achieved through criteria relaxation
and criteria emergence. The relaxation is not constraints relaxation but a

6 MARY LOU MAHER, JOSIAH PO ON AND SYLVIE BOULANGER

relaxation of the threshold value. This changing of threshold values causes a
part of the solution space which is originally inside bound of the pareto curve to
be explored. Solutions in this inside bound solution space can be examined as
alternatives. Emergence described in CYCLOPS is a recognition activity.
Criteria from precedent cases may be recognised to be relevant and interesting
enough to apply to the current situation. The introduction of new criteria adds a
new dimension for the designer to consider. The new criteria will be included to
be part of the evaluation of design solution.

Another definition of "exploration" is provided by Gero (1994) that:

.. Exploration in design can be characterised as a process which creates new
design state spaces or modifies existing design state spaces ...

This definition extends the "state space" concept of search (Simon, 1969), so
that the state space is changed during exploration. This definition implies that
the solutions in the given or predefined state space are insufficient for
exploration. Gero continues to suggest that

.. exploration precedes search and it, effectively, converts one formulation of
the design problem into another .. Part of designing involves determining what
to design for (function or teleology), determining how to measure satisfaction
(behaviour), and determining what can be used in the final artefact (structure) ..

The definition relates exploration to search, indicating that exploration
precedes search, and at the same time differentiates exploration from search.

Maher (1994) provides a definition which also relates search and
exploration:

.. search becomes exploration where the focus of the search changes as the
process continues ..

This definition identifies search as a part of exploration, but not the same as
exploration and also characterises the two as distinct, i.e. search has a definite
goal while exploration doesn't. An approach to adaptive design, with the
capability for exploration guided by the human designer, is described in Maher
and Kundu (1994). Search as part of exploration cannot guarantee convergence
because the design requirements change with the design solutions at the same.
time. However, convergence criteria could be externally defined and separate to
the design requirements, recognising the. fact that design usually completes
when time has run out or factors external to the concerned problem.

For the remainder of this paper, we present a formal model of exploration.
The model is illustrated in Figure 2 as the interaction of problem space and sol­
ution space. The problem space (or the functional requirements) is represented
by P, and the solution space is represented by S. Exploration is defined as a
phenomenon in design where P interacts and evolves with S over time.

FORMALISING DESIGN EXPLORATION AS CO-EVOLUTION 7

PROBLEM
SPACE
DIMENSION

DESIGN/
SOLUTION
SPACE
DIMENSION

E,oiutWn G
/ / \ Focus,

/ Focus,

FUm" ~Q
Evolution ~

Figure 2. Problem-design exploration model.

The phenomenon of exploration as illustrated in Figure 2 has the following
characteristics:

1. There are two distinct search spaces: Problem Space and Design Space.
2. These state spaces interact over a time spectrum.
3. Horizontal movement is an evolutionary process such that:

(a) Problem space P(t) evolves to P(t+l), P(t+2), and so on;
(b) Solution space S(t) evolves to S(t+1), S(t+2), and so on.

4. Diagonal movement is a search process where goals lead to solution.
This can be Problem leads to Solution (downward arrow) or Solution
refocusses the Problem (upward arrow).

The problem space P(t) is the design goal at time t and S(t) is the solution
space which defines the current search space for design solutions. The solution
space S(t) provides not only a state space where a design solution can be found,
but it also prompts new requirements for P(t+ 1) which were not in the original
problem space, P(t). This is represented by the dashed upward arrow from
design space S(t) to problem space P(t+ 1). The upward arrow is an inverse
operation where S(t) becomes the goal and a search is carried out in the
problem space, P(t+ 1), for a solution. This iterative relationship between
problem space and design space evolves over time.

This model of exploration depicts an evolutionary system, or in fact, two
evolutionary systems. The evolutionary systems are the problem space and the
solution space. The evolution of each space is guided by the most recent
population in the other space. This model is called co-evolution and provides
the basis for a computational model of design exploration. The basis for co­
evolution is the simple genetic algorithm where special consideration is given to
the representation and application of the fitness function so that the problem
definition can change in response to the current solution space.

8 MARY LOU MAHER, JOSIAH POON AND SYLVIE BOULANGER

1.2. RELATED RESEARCH IN GENETIC ALGORITHMS

Genetic algorithms provide the basis for modelling evolutionary systems. The
application of GAs to design include the solution to the truss design problem.
The ten-member truss problem (Goldberg and Samtani, 1986) aims to find the
optimal weight of each member for a given pre-determined configuration, such
that the whole structure is stable and has a minimum weight. The configuration
and the fitness function remains unchanged throughout the GA process. This
represents a basic application of genetic algorithms to a design optimisation
problem.

Watabe and Okino (1993) further study this problem by searching for
structural shape as part of the problem. This is achieved by the introduction of
new genetic operator called T-mutation. There are two types of T-mutation. The
first one, Tl-mutation, adds one new node to a randomly selected bar. The
second one, T2-mutation, changes the topological structure without changing
the number of nodes. The effect after the application of the T-mutation results in
a new species which consists of individuals with different structural
configurations. The changed configuration opens up a new solution space to
search. This application of a genetic algorithm shows how the representation of
the genotype determines the level at which the search occurs, in this case the
search included a search for a configuration. However, the goal as defined by
the fitness function remains to be the minimum weight configuration.

SAGA (Harvey, 1992), Species Adaptation Genetic Algorithms, allows the
genotype to change in length as well as content so that species can emerge. He
suggests that the notion of a search space is a metaphor when the question of
"Where in this whole search space is the optimum?" is asked. However, this
metaphor implies a space of pre-defined extent with a predefined goal. If a
structure is to be evolved with potentially unrestricted capabilities, the simple
GA, which has fixed length genotypes, is not an appropriate tool. The capability
to represent a variable-length genotype is important to evolution. As the length
increases, the population evolves as a species rather than global search.
However, his model does not show how individuals from the solution space can
affect the problem space.

Koza (1992) recognises the importance of co-evolution and suggests the
term in biology is sometimes used to reflect the fact that all species are
simultaneously co-evolving in a given physical environment. He uses Game
Playing Strategy to elaborate on co-evolution, where two players in a game are
represented as two populations of individuals. The fitness of a strategy of a
player is measured by its performance against all strategies deployed by the
other player. The fitness is, thus, a relative score. The performance of the two
players continue to evolve with respect to the strategies by the opposing player.
The mutual interactions and implicit relationships between players in a game
are extended to a general conclusion as follows:

FORMALISING DESIGN EXPLORATION AS CO-EVOLUTION 9

In co-evolution, there are two (or more) populations of individuals. The
environment for the first population consists of the second population. And
conversely, the environment for the second population consists of the first
population ... Co-evolution is a self-organising, mutually bootstrapping process
that is driven only by relative fitness.

This provides a model for co-evolution where two solution spaces evolve in
competition to each other, yet the goal remains the same. Co-evolution is
affected by each search space defining the threshold for survival in the other
search space. We present a co-evolutionary system in which the two spaces are
not in competition with each other, yet they evolve in response to each other.
Three differences between the co-evolution of Game Playing Strategy and the
co-evolution of Problem-Design Space are:

1. The two populations in a game are opponents with the aim to beat each
other, whereas in our co-evolution model, the aim is to explore the
Problem Space and Design Space and to help each other to acquire
better fitness values.

2. The purpose of co-evolution in the Game Playing Strategy is to measure
how good an individual strategy can stand when played against various
strategies by the opponent, while our co-evolution model aims to
measure how good an individual from a population can satisfy (adapt)
the expectations of individuals from another population.

3. The same fitness function is used for both spaces in the Game Playing
Strategy, only the threshold for reproduction is changed in co-evolution,
while our co-evolution model applies a potentially different fitness
function to each space.

2. A Co-Evolutionary Process for Explorative Design

A simple GA, as shown below, is the basis for developing an evolutionary
process model for explorative design.

When we apply the simple GA to the design process, we assume the process
begins with an initial population of design genes that provide the information
needed to generate a design solution. The evaluation determines which
genotypes survive. The evaluation is performed by evaluating a fitness function
and operates on the phenotype, which in the design process is the design
solution. The processes of selection, crossover, mutation, and evaluation are the
basis of the search for a design solution.

t=O;
initialise genotypes in Population(t);
evaluate phenotypes in Population(t) for fitness;
while termination condition not satisfied do

10 MARY LOU MAHER, JOSIAH POON AND SYLVIE BOULANGER

t=t+ 1;
select Popu1ation(t) from Popu1ation(t-1);
crossover genotypes in Popu1ation(t);
mutation of genotypes in Popu1ation(t);
evaluate phenotypes in Popu1ation(t);

Selection is a process in which individuals are copied according to their
fitness function. This means that an individual with a higher value has a higher
probability of contributing one or more offspring in the next generation. This
operator is an artificial version of natural selection, a Darwinian survival of the
fittest among individuals. In a natural population, fitness is determined by an
individual's ability to survive. In the context of design, a fitness function
representing the design requirements determines whether a design is suitable or
not. Once an individual has been selected for reproduction, an exact replica of
the individual is made. This individual is then entered into a mating place for
further genetic operator action.

Crossover is a process in which the newly reproduced individuals are mated
at random and each pair of individuals partially exchange information using a
cross site chosen at random. For example if we consider the individuals Al =
0110 I I and A2 = 1100 I 0 (where the separator symbol is indicated by I), the
resulting crossover yields the following two new individuals AI' = 01100 and
A2' = 11001. Crossover in a design process occurs when two design concepts
are partially combined to form a new design concept.

Mutation is the occasional random alteration of the value of one of the bits
in an individual. When used sparingly with reproduction and crossover,
mutation is an insurance policy against loss of notions. In fact mutation plays a
secondary role in the operation of GAs because the frequency of mutation to
obtain good results in empirical GAs studies is on the order of one mutation per
thousand bit transfers (Goldberg, 1989). Mutation has the potential to make
small changes to a design concept, rather than a crossover process that makes
large changes. We do not employ mutation in our co-evolutionary model of
design.

Evaluation is a process of determining if a genotype continues in the next
round of crossover. The termination condition is usually related to the
evaluation, that is, when the evaluation of the population yields a suitable
design, the process is terminated. Evaluation in the design process occurs by
testing the performance of the design against relevant criteria. In the GA model
of design, the fitness function is the basis for evaluation. The fitness function as
a representation of design requirements can be predefined for the entire search
process or it can be allowed to change as the genotype population changes. By
changing the fitness function in response to the current population, the process
models the ability of designers to change their focus when an interesting
solution is found. This can be modelled as co-evolution of the design space and

FORMALISING DESIGN EXPLORATION AS CO-EVOLUTION 11

the performance space, where each space then becomes the population of
genotypes for its own evolution and the fitness function for the other space.

The co-evolution of the design genes (solution space) and the fitness
function (problem space) provides a model for design as exploration. Two
approaches to representing coevolution are:

• CoGAl: A single composite genotype is formed by the combination of
a problem requirements and a design solution. The fitness function is
defined locally for each design solution.

• CoGA2: The two spaces are modelled as two sets of genotypes and
phenotypes: one for modelling problem requirements and one for
modelling design solutions. The current population of each space
provides the fitness measurements for the other.

2.1. COGAl: COMBINED GENE APPROACH

This first co-evolving algorithm has two modifications to the basic GA:

1. The fitness function (problem part, P) and design solution (solution part,
S) are put into one genotype.

2. There are two phases of crossover-evaluation operations in each
generation instead of the convention of one phase.

The algorithm, CoGA1, is shown below.

CoGAl
t=O;
initialise genotypes in Population(t);
evaluate phenotypes in Population(t) for fitness;
while termination condition not satisfied do

t = t + 1;
select Population(t) from Population(t-l);
1* Phase 1: from S to P *1

crossover genotypes in Population(t) at Performance_space;
evaluate phenotypes in Population(t);

1* Phase 2: from P to S *1
crossover genotypes in Population(t) at Design_space;
evaluate phenotypes in Population(t);

Inside the repeating loop, there are two phases of GA operations for each
generation. If no satisfactory solution is found in previous operations with the
stated problem, the problem is revised to give new dimensions for the solution
space. Hence, the first phase corresponds to the shift of attention of fitness
function when a solution space is given, i.e. the upward arrow from S to P in
our model of problem-design exploration. In phase 1, crossover occurs in the
problem part of the genotype, as illustrated in Figure 3(a). For example, the
crossover point to the parent genotypes cut the problem part to Pl1 and P12,

12 MARY LOU MAHER, JOSIAH PO ON AND SYLVIE BOULANGER

and P21 and P22. For the same solution carried forward from the previous
phase, the fitness is evaluated using a different fitness function, i.e. the same S 1,
which is evaluated by Pll and P12 in parent genotype, is evaluated by Pll and
P22 in the new recombined child genotype. The fitness value for each design
solution represents a local fitness.

After the problem is revised, the second phase relates to the search for a
solution with the reformulated fitness function from Phase 1. This corresponds
to the downward arrow from P to S in the model, as shown in Figure 2.
Crossover occurs on the design solution part of genotypes: the S 11, S 12, S2I
and S22 in Figure 3(b). The fitness of a design solution is not evaluated by a
common global fitness function, but by the fitness function defined as the
problem part in the same genotype. In other words, the fitness score of each
genotype is again a local fitness value. In our example, the offspring which has
solution part composed of Sl1 and S22 is evaluated by PI; while the other
offspring, which has S2I and SI2 in its solution part, is evaluated by P2.

Parents

Offsprings

Phase 1: Crossover Point Phase 2: Crossover Point

P S PI S

Rt:·EX>4
P21 P22 S2

I

I
P SI

r<'((J;~l
I

I
~14V//1 V//f t::~
P2IPI2 5 1 PI SlllS22

~K1'/1
Pl 5211512

(a) Crossover at Problem Space (b) Crossover at Design Solution Space

Figure 3. Crossover operation for CoGAl.

After phase 2 the solutions are used to check the termination condition to
determine whether another generation is necessary. Currently, the termination
condition is defined as a fixed number of generations, meaning that the
exploration stops when a predetermined amount of time has passed. However,
the termination condition can be any globally defined condition that does not
evolve in response to the alternatives found in the solution space.

2.2. COGA2: TWO INTERACTING POPULATIONS

A second approach to co-evolution is to maintain separate spaces of genotypes
for problem requirements and design solutions. As illustrated in Figure 4,

FORMALISING DESIGN EXPLORATION AS CO-EVOLUTION 13

CoGA2 uses the current selection from each population to be the fitness
function for evaluating the individuals in the other population. The problem
requirements is modelled as a collection of criterion, where each criterion is
represented as a genotype in the Problem Space.

Every problem criterion genotype has a label and a weighting (i.e. the
genotype has a length of 2). A problem is, thus, a combination of individual
genotypes with their current weights. If we allow the crossover operator to cut
and paste a different weight to a criterion, followed by selecting a random
number of genotypes, these problem criteria will collectively define a problem
which has a different perspective and emphasis to be solved. The fitness of a
solution is defined by the current collection of criterion. In the other direction,
the fitness of a criterion is defined by the number of times that criterion is
satisfied in the current collection of individuals in the Solution Space.

The CoGA2 starts with initialising the two populations which represent
problem and solution. An initial evaluation of individuals from the Solution
Space is performed using the initial design requirements as defined by the user.
The initial evaluation of the Problem Space is performed based on the selected
individuals from the Solution Space. The termination condition is checked and
the pattern of "phases" appear in CoGA2 as well. Each phase in CoGA2
corresponds to a different evaluation function, rather than to a different
crossover operation as in CoGAI. The CoGA2 algorithm is shown below.

CoGA2:
t=O;
initialise genotypes in Problem_space(t);
initialise genotypes in Solution_space(t);
initial-evaluate phenotypes in Solution_space(t) for fitness according

to user's initial requirements;
initial-evaluate phenotypes in Problem_space(t) for fitness according

to user's initial requirements;
while termination condition not satisfied do

t = t + 1;
1* Phase 1: from S to P *1

select Problem_space(t) from Problem_space(t-l);
crossover genotypes in Problem_space(t);
evaluate phenotypes in Problem_space(t) for fitness

according to selected individuals from
Solution_space(t-l);

1* Phase 2: from P to S *1
select Solution_space(t) from Solution_space(t-l);
crossover genotypes in Solution_space(t);
evaluate phenotypes in Solution_space(t) for fitness

according to selected sample of individuals from
Problem_space(t-l);

14 MARY LOU MAHER, JOSIAH POON AND SYLVIE BOULANGER

Problem Space Solution Space Problem Space Solution Space

Current Best Solutions Current Best Requirement

(a) Fitness evaluation of problem space (b) Fitness evaluation of solution space

Figure 4. Fitness evaluations in CoGA2.

3. The Combined Gene Approach for Braced Frame Design

The design domain selected to demonstrate the combined gene approach to co­
evolution is steel braced frames. The domain provides a range of design
solutions that can be described geometrically and more than one design focus.
The design of braced frames for buildings is done by a structural engineer with
some constraints/requirements imposed by the architect's layout of the building.
Two alternatives for the design focus considered here are: design for
architectural compatibility and design for structural resistance. These
alternatives are represented as more specific design performance criteria, as
listed below.

1. Architectural compatibility
• integration of frame into bay layout

2. Structural resistance
• efficiency of the frame
• integrity of the frame

Architectural compatibility is evaluated according to how well the braced
frame fits the bay layout as predefined by an architect in building design.
Structural efficiency is evaluated in one of two ways: as a measure of the
efficiency of the use of material in the braced frame or as a measure of the
integrity or ductility of the braced frame. The result of this formulation of the
design problem is that there are three possible ways to evaluate the performance
of a braced frame: how well the frame fits the bay layout; the structural

FORMALISING DESIGN EXPLORATION AS CO-EVOLUTION 15

efficiency of the frame; and the integrity of the frame. The implication of this
formulation is that one focus may lead to a different set of designs to the set that
would result from another focus.

In addition to the design focus, the design of braced frames is defined by the
geometric requirements imposed by the architectural design of the building. The
problem definition is formalised through the values of a set of parameters, as
shown below.

parameter
number of storeys (n_storey)
storey height (h_storey)
bay width (w_bay)
design focus (criteria)

range
5-20 storeys
3.0-4.5m
5.0 - 20.0m
compatibility, efficiency, or integrity

The braced frame solution description is represented by seven features,
where each feature may take on one of a range of values :

feature
range
type of panel (type)

flip within panel (flip)
mirror above panel (mirror)
eccentricity in panel
-at top beam level (eccenCl)

_ -at bottom beam level (eccenC2)
multi-storey panel (m_storeys)
ratio of bay size to panel width(c_panel)

cross, single diagonal,
chevron, diamond
none, horizontal, vertical
no, yes

none, 118 or 114 width of frame
none, 118 or 114 width of frame
1,2 or 3
0.5 to 2.0

A solution is generated from the above features by taking the type of the
panel (i.e. cross, single diagonal, chevron, or diamond) and applying the
transformations defined by the values of the remaining features. Figure 5
illustrates these transformations on a panel. Representing the alternative design
solutions as a set of transformation features allows for a very rich generation of
alternatives by concentrating on the geometric manipulation of the panel. These
features provide the basis for the genotype representation.

Additional parameters, not coded directly in the genotype, are derived from
the above features and contribute to the description and the evaluation of the
frame. These parameters are shown below. The combination of the features in
the genotype and the derived parameters below provide the basis for a
phenotype description. This distinction is important because the genotype is the
basis for producing the next generation, the phenotype is the basis for
evaluation and the survival of the fittest.

16 MARY LOU MAHER, JOSIAH POON AND SYLVIE BOULANGER

PANEL OF BRACED FRAME

cross
single diagonal [ZSJ
chevron -
diamond

[ZSJ-vSJ

FEATURES

type = chevron
This feature selects one of the four
types of panel listed to the left.

flip = horizontal
This feature takes the panel to the left
and flips it about a horizontal axis.

mirror = yes
This feature takes the panel to the left
and mirrors the geometry onto the
panel above the top beam.

eccenCl = w4 (w_paneI/4)
This feature takes the panel to the left
and introduces an eccentricity at the
diagonal intersection with the top beam.

eccenc2 = w8 (w_paneU8)
This feature takes the panel to the left
and introduces an eccentricity at the
diagonal intersection with the bottom beam.

m_storeys = 2
This features takes the panel to the left
and extends it vertically to two storeys.

c_panel = 1.25
This feature takes the panel to the left
and extends it or compresses it horizontally.

Figure 5. Example of braced frame features and their use in defining an alternative.

parameter
width of panel'
width of frame
height of panel
height of frame
aspect ratio of panel
aspect ratio of frame
zone of feasibility
coefficient of ductility

equation
w_panel = c_panel x w_bay
W _frame = w _panel
h_panel = m_storeys x h_storey
H_frame = n_storey x h_storey
h_panel / w _panel
H_frame / W _frame
z_feasib
c_ductility

FORMALISING DESIGN EXPLORATION AS CO-EVOLUTION 17

There is an important distinction between three entities: the frame, the bay
and the panel. A frame is an assembly of adjacent panels covering the full
height and full or partial width of the building. A bay relates to the layout of
beams in the building within which the frame is integrated and represents the
distance between two columns (vertical elements). A panel is a unit of the frame
which may be repeated vertically and/or horizontally.

In this example we define four possible fitness functions: one evaluates the
difference between the initial problem parameters and current parameters; the
other three evaluate the fitness of the current features for a design focus. The
first evaluation function is defined in order to follow the variation of the
population from the initial requirements, remembering that during exploration
the design requirements may change. The other evaluation functions are defined
to measure the performance of the phenotype according to a selected design
focus, remembering that the combined gene approach to co-evolution includes
the definition of performance criteria within the genotype.

The evaluation functions return a value between 0 and 1. The functions
themselves are based on heuristic evaluations of the alternatives, that is, no
mathematical modelling or analysis of the alternatives is performed. When a
function returns a value of 0.0, the alternative will not survive to reproduce in
the next generation. The lower the value, the less probability of its use for the
next generation. The details of the evaluation functions for braced frame design
are given in the Appendix.

3.1 REPRESENTATION OF BRACED FRAME AS GENOTYPE AND PHENOTYPE

Figure 6 illustrates a drawing of a frame and its associated formal description
for this demonstration. Each frame is considered in the context in which it was
designed; this is a consequence of the combined gene approach where the
genotype includes both the problem description and the design solution.
Consider a designer who needs to find a suitable frame for an 8-storey building
with 3.7 m storey height using 12 mbays, and the designer chooses to focus on
the structural efficiency of the frame. By letting the problem parameters and the
solution features vary, it is possible to explore a wide range of potential
solutions. One suitable solution, as shown in Figure 6, is a cross-braced panel,
over two storeys, which is 7.8 m wide. It is interesting to note that the initial
bay width was 12 m. This solution satisfies structural efficiency very well with
a value of 0.95.

The genotype of a braced frame comprises the initial problem parameters,
including the design focus, and the features of the design solution. Each
genotype is represented as a fixed length binary string. The bits in a genotype
are grouped into chunks, where each chunk is a contiguous block of bits. The
position of each chunk uniquely identifies a parameter or feature of the frame
and the binary string in the chunk maps onto the value of that feature/parameter.

18 MARY LOU MAHER, JOSIAH PO ON AND SYLVIE BOULANGER

In this example, each chunk occupies 5 bits, i.e. each chunk represents 32
possible values.

panel

rr ____ ~
I
I
I
I
I
I
I
L.... _________ ,

<
w _panel = W jrame =7. 8 m

Initial problem parameters
criteria = structural efficiency
n_storey = 8
h_storey = 3.7 m
w_bay = 12 m

Final solution features
type = cross
flip = vertical
mirror = yes
eccenCI = none
eccenc2 = none
m_storeys = 2
c_panel :;; 0.65

Derived parameters
acpanel = h_panel/w_panel = 0.95
arjrame = Hjrame/W jrame = 3.8

Evaluation
structural efficiency:;; 0.95

Figure 6. Example of a complete braced frame description.

In our combined gene approach, a genotype consists of two parts: the
problem part and the solution part. The values found in the chunks among the
problem part represent the design requirements and focus while the solution part
provides values to describe the geometry of the solution. The template of a
genotype is shown in Figure 7, the positions before the double vertical line are
for problem parameters, and those which are found after the lines stand for
solution features.

I criteria In_storey I h storeyl w bayl type I flip I mirrorl eccent 11 eccent 21m storeys I c panel

Figure 7. Genotype template of a braced frame.

One genotype in a population is represented as a binary string as shown in
Figure 8. The figure has three parts: the top part shows the genotype as a binary
string, the second part shows the mapping from binary string to attribute-value
pairs and the third part shows the distribution of values in a 5 bit chunk,

FORMALISING DESIGN EXPLORATION AS CO-EVOLUTION 19

Since the features/parameters do not have 32 possible values, a mapping is
defined to identify the value to be used. In mapping some features, we used a
biased coding scheme such that certain values of an attribute are more preferred
than the other options. For example, there are three possible values for the
feature "eccentricity in panel": none, w/8, and w/4. The value none is preferred
over the introduction of an eccentricity. In the mapping we have given the value
none a probability of 0.5, and w/8 and w/4 probabilities of 0.25. The biased
mapping for "eccentricity in panel" is shown in the "chunk" in Figure 8, where
the first 16 values for the parameter are mapped onto none, etc.

genotype -11 100001 1001110011 100101 1111000000000111011011000100010

attribute eccenC2 (eccentricity at bottom beam level)

Figure 8. A genotype representation of a braced frame.

The phenotype is the representation of the braced frame that is evaluated.
The phenotype representation is defined through a mapping from the genotype
representation followed by a derivation of additional parameters. Basically, the .
phenotype is represented as a set of attribute-value pairs. The mapping process
involves three steps:

1. Divide the genotype into chunks.
2. Convert the binary string in each chunk to a decimal value.
3. Map this value to the appropriate symbolic value.

The first two steps are completed by a fixed mapping procedure, while the
last step is different for each attribute. The mapping takes into consideration the
biased coding of the feature. Hence, the feature "mirror" has two options, no or

20 MARY LOU MAHER, JOSIAH POON AND SYLVIE BOULANGER

yes, and there is no bias. Therefore, the chunk number of the mirror feature is
determined using the following rules:

if chunkJlumber < 16
then mirror = no
if chunk_number >= 16
then mirror = yes

The mapping is defined in such a way as to be consistent in either direction.
Once the mapping is completed, values for additional parameters can be derived
from these mapped values. For example, the aspect ratio of the panel (ar_ panel)
is defined to be h_panel/w _panel. The value of h_panel is defined to be
m_storeys x h_storey, etc.

The phenotype is given a fitness value according to one of the four
evaluation functions introduced above. The evaluation functions are:

fO: distance from initial requirements
f2: compatibility with bay layout
f3: structural efficiency
f4: structural integrity

The details of how the braced frame phenotype is assigned a value for each
of these functions is given in the Appendix. These evaluation functions provide
the value used to determine the probability of the genotype being used in the
next generation. The initial population is evaluated with a special evaluation
function in order to start with a population that is relevant to the initial
requirements. This function ensures that the designer's focus is considered
before the exploration process begins. The initial fitness function is defined
below, where finit is the value of the evaluation function that matches the
designer's original focus.

Fi: initial fitness function = fO + finit

where finit = f2, f3 or f4
In addition to these evaluation functions, another evaluation function has

been defined to follow the performance of the population. A global fitness
function, Fg, is defined to be the average of the values of the four evaluation
functions. This value is not used in the selection process since CoGA1 is guided
by a local fitness function.

3.2. RESULTS OF CO-EVOLUTION

This section presents the results of using CoGA1 on the braced frame problem
formulation. We decided to generate the initial population of genotypes
randomly and to run the co-evolution with a genotype population of 100. The

FORMALISING DESIGN EXPLORATION AS CO-EVOLUTION 21

algorithm uses roulette selection, i.e. fitness proportionate selection. Each new
population is generated with a probability of crossover being 1.0. No mutation
is applied at this stage.

In run A, the design focus is defined to be structural integrity for a building
that is 20 storeys high, each storey has a nominal height of 3.8 m, and the
suggested bay width is 12 m. In summary, the design requirements are:

Criteria (i_criteria)
No. of storey (i_n_storey)
Height of storey (i_h_storey)
Bay width (i_w_bay)

= structural integrity
=20
= 3.8 m
= 12 m

The best solution proposed after 23 generations is a very reasonable design
solution (Figure 9).

V'SJ IS71
Generation 9 best fit Generation 17 best fit

Generation 18 best fit Generation 23 best fit

ISZI
Designer's solution

Figure 9. Intennediate and final solutions for run A.

The chevron with an eccentricity of w/4 at the top beam level satisfies the initial
focus (integrity) very well and does not deviate significantly from the initial
problem parameters. Although the final best fit is different than the designer's
solution, it remains compatible with the concept of an eccentrically braced
frame chevron. Additionally, an interesting best fit emerges at generation 18,
with an eccentricity introduced in what appears to be a diamond. In reality, this
solution resulted from both flip and mirror features acting on a single chevron
panel. Finally, the best fit of generation 23 was first proposed at generation 9.

22 MARY LOU MAHER, JOSIAH PO ON AND SYLVIE BOULANGER

This indicates that convergence was not conclusive at generation 9 and more
exploration was required. The pursuit of a moving target (or change in focus)
resulted in a variety of alternatives before the final best fit was reached. Hence,
the evolution of alternatives is also reflective of the exploratory approach
expressed by the interplay between problem and solution spaces.

The algorithm converged after 23 generations with a design focus of
structural integrity. The chart shown in Figure lOis a summary of the
percentage of the population that had each evaluation function as its local
fitness (design focus) across all 23 generations until convergence. The chart
shows the variation in focus for the braced frame solutions. This demonstrates
that our goal of exploration as a change in focus during the design process
occurred through the rise and fall of the proportion of the population that used
each design focus.

The graph in Figure 11 shows the overall performance of each generation as
defined by the value of Fg. Fg did not influence the fitness of the phenotypes, it
is only shown here to measure overall performance in a computational method
that allows design exploration. It is interesting to note the fluctuation of the
value of the best fit solution vs the average value of the entire population. This
implies that the best fit influences the fitness of the entire population, regardless
of its local fitness function. In the graph below the population at t=O represents
the fitness of the randomly generated genotypes, the population at t=l and
greater represent phenotypes that have been evaluated for selection. Note that
the global fitness after t=l increases almost monotonically.

c
0 .=
'" "5
Q.
0
Q.

4-0
0

~
5 c
Q)

~
Q)
Q.

100%

80%

60%

40%

20%

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

generation

Figure 10. Evolution of design focus for run A.

f4

•
f3

f2

o
ill

o

FORMALISING DESIGN EXPLORATION AS CO-EVOLUTION 23

1.0

&? 0.9
I
c:
0 0.8 .~

0
c

.E average value ofFg
~ 0.7

of entire population .D
0

value ofFg of best fit eo
0.6

0.5 +-+--+--+--+--+--+--+-+-+-t--t---t-t-t-t-t-t---1Hr-t-t-t--i
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

generation

Figure 11. Overall performance of population during co-evolution for run A.

The chart shown in Figure 12 is a summary of the results of a different set of
initial requirements, run B. It is shown here to illustrate a different evolution of
the design focus through a different distribution of phenotypes with a specific
design focus in each generation. This distribution is remarkably different to
Figure 10. In Figure 12 one design focus dominates at convergence, where in
Figure 10 two different foci are present at convergence. In fact, as shown in
Figure 12, design focus f3 starts to dominate at generation 18 and at
convergence the dominate design focus is f4. This further demonstrates design
exploration through a change in design focus.

100%

c: 80'1l . 2
~
;:3

8'60'1l
0..
0

~40%
E
Q)
u
~ 20'1l
0..

,*

o 1 2 3 4 5 6 7 8 9 1014 182226 303438 42465052 5660 64 6872 76

generation

Figure 12. Evolution of design focus for run B.

f4

•
f3

o
f2

o
fO

o

24 MARY LOU MAHER, JOSIAH POON AND SYLVIE BOULANGER

4. Discussion

The development and implementation of a model of exploration as co-evolving
spaces has enabled a computational approach to changes in design focus. The
implementation as a modified genetic algorithm raises a number of issues.

The quality of the initial population has important effects on how the
evolution progresses. If generation 0 is not filtered by Fi, the evolution
converges quickly to the focus functions held by strong individuals of the initial
population. This suggests that the random number selected for a particular run
can be very influential on which functions dominate at convergence. If
generation 0 is filtered by Fi, this tendency is present but not as strong. For
instance, applying the initial Fi may reduce the overall Fg value from generation
o to generation 1, but at least, finit has a better probability of being favoured
although its value at generation 1 is low. This may influence the number of
generations until convergence but not the pattern of exploration.

The quality of the evaluation functions in terms of how they relate to each
other and not just how adequately they attribute a value within one evaluation
function is important. A heterogenous quality of functions may have an
immediate influence on which focus function takes over for convergence. In one
case, applying a weight < 1.0 to f4 made the next run shift from f4 to f3 as a
final focus. Although this is an important parameter to desensitise, at the same
time, a shift does not necessarily lead to low values for other functions.

The relative ease of satisfying a particular design focus changes the way
exploration works in this approach. In the first several runs we included an
additional design focus for architectural compatibility which checks whether the
frame accommodates openings as specified by the architect. We called this
fitness function fl. For the current formulation it was much easier to satisfy fl
than the other fitness functions. As a result, all runs were similar - fl dominated
and the best fit solution was always one that satisfied fl. We removed fl for
consideration until we could better calibrate its evaluation to be similar to the
other functions for design focus. This implies that the coding of the design focus
functions need to be considered in terms of their ease of satisfaction relative to
the other functions.

Pool size does not appear to have marked influences on the final results.
Rather, a higher number of individuals in the population seems to reduce the
number of iterations required for convergence. However, similar patterns of
exploration emerge.

The mapping approach used has a non-conclusive effect on the final results.
Scaling possible values of one feature from 7 values to 32 values, while
retaining the same minimum and maximum values, has caused an important
shift favouring the evaluation function which uses that modified feature.
However, no clear pattern has surfaced yet.

FORMALISING DESIGN EXPLORATION AS CO-EVOLUTION 25

The parameters which need to be analysed more carefully are: the sensitivity
of threshold values used on Fi to influence the initial population; the absence or
presence of fO as a problem evaluation function which co-exists with solution
evaluation functions such as f2, f3 and f4 ; the interdependence of evaluation
functions in terms of their maximum and obtainable values; the ease with which
designs can attain high evaluation values; the random number applied to a run;
the bias and granularity applied to map a parameter's symbolic values unto a
scale of 32.

s. Conclusion

The co-evolution of problem space and solution space shows promising results
on how changes in focus provide a framework for explorative design. In this
paper we present a model of exploration, a method of exploration that uses co­
evolution, and an implementation of this method for the design of braced
frames. Our preliminary results show that design exploration can be modelled
as computational methods. Our preliminary results also show that the
representation of the design domain can result in an unstable method - that is,
one that produces a different result for the same problem in two different runs.
This instability may be a desirable feature since it provides a computational
model that is as unpredictable as human designers. However, we need to test the
model further to understand why there is instability and how the genotype,
phenotype, and evaluation functions influence the nature of the exploration.

In addition to further testing CoGAl, the model of exploration needs to be
taken further to develop CoGA2, the separate spaces formulation, and to
consider formulations that allow a design focus to emerge that has not been
identified before the generation of alternatives.

Acknowledgments

This work is supported by the Australian Research Council and an Australian
Postgraduate Research Award.

References

Chien, E.: 1988, Multi-Storey Steel Building Design Aid, Canadian Institute of Steel Construction,
Toronto, Canada.

Corne, D., Smithers, T. and Ross, P.: 1994, Solving design problems by computational
exploration, in J. S. Gero and E. Tyugu (eds), Formal Design Methods for Computer-Aided
Design, North-Holland, Amsterdam, pp. 293-313.

Gero, J. S.: 1994, Towards a model of exploration in computer-aided design, in J. S. Gero and E.
Tyugu (eds), Formal Design Methods for Computer-Aided Design, North-Holland,
Amsterdam, pp. 315-336.

26 MARY LOU MAHER, JOSIAH POON AND SYLVIE BOULANGER

Gero, J. S., Louis, S. J. and Kundu, S.: 1994, Evolutionary learning of novel grammars for design
improvement, Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 8,
83-94.

Goldberg, D. E.: 1989, Genetic Algorithms: In Search, Optimization and Machine Learning,
Addison-Wesley, Reading, MA.

Goldberg, D. E. and Samtani, M. P.: 1986, Engineering optimization via genetic algorithm,
Proceedings of the Ninth Conference on Electronic Computation, pp. 471-482.

Harvey, I.: 1992, Species adaptation genetic algorithms: A basis for a continuing SAGA, in F. J.
Varela and P. Bourgine (eds), Toward a Practice of Autonomous Systems, Proceedings of
First European Conference on Artificial Life, MIT PresslBradford Books, Cambridge, Mass.

Holland, J. H.: 1962, Concerning efficient adaptative systems, in M. C. Yovits, G. T. Jacobi, and
G. D. Goldstein (eds), Self-organizing Systems, Spartan Books, pp. 215-230.

Jonas, W.: 1993, Design as problem-solving? or: Here is the solution - What was the problem?
Design Studies, 14(2), 157-170.

Koza, J. R.: 1992, Genetic Programming: On the Programming of Computers by Means of
Natural Selection, MIT Press, Cambridge, Mass.

Logan, B. and Smithers, T.: 1993, Creativity and design as exploration, in J. S. Gero and M. L.
Maher (eds), Modelling Creativity and Knowledge-Based Creative Design, Lawrence
Erlbaum Associates, Hillsdale, NJ, pp. 139-175.

Maher, M. L.: 1994, Creative design using a genetic algorithm, Computing in Civil Engineering,
ASCE, pp. 2014-2021.

Maher, M. L. and Kundu, S.: 1994, Adaptive design using a genetic algorithm, in J. S. Gero and
E. Tyugu (eds), Formal Design Methods for Computer-Aided Design, North-Holland,
Amsterdam, pp. 245-263.

Michalewics, Z.: 1992, Genetic Algorithms + Data Structures = Evolution Programs, Springer-
Verlag, Berlin.

Navinchandra, D.: 1991, Exploration and Innovation in Design, Springer-Verlag, New York.
Simon, H. A.: 1969, The Sciences of the Artificial, MIT Press., Cambridge, Mass
Watabe, H. and Okino, N.: 1993, Structural shape optimization by multi-species genetic

algorithm, in C. Rowles, H. Liu and N. Foo (eds), Proceedings of the 6th Australian Joint
Conference on Artificial Intelligence (AI'93) , Melbourne, Australia, pp. 109-116.

FORMALISING DESIGN EXPLORATION AS CO-EVOLUTION 27

Appendix: Evaluation functions for braced frame design

There are four evaluation functions used in this example for evaluating the
performance of a braced frame:

fO: measure of closeness to initial requirements,
f2: measure of conformance to bay layout
f3: measure of structural efficiency
f4: measure of structural integrity

The first function, fo, uses a combination of three functions, each
concentrating on measuring the distance between the current phenotype and the
one problem parameter in the initial requirements. The value of fO is the average
value of these three functions: fOl, for the parameter n_storey, f02, for the
parameter h_storey, and f03, for the parameter w_bay. The value of each
function is determined using a normal distribution shape applied to n_storey,
h_storey and w_bay, as shown in Figure A.l. The vertical axis shows the value
of fO and the horizontal axis shows the value d_parameter which corresponds to
the normalised difference between the phenotype and the parameter. For each
parameter, an acceptable deviation was assumed. The calculation of the value of
fO is shown below.

1* acceptable deviations from the initial problem parameters *1
bldg->sig_n_storey = 2 1* storeys *1
bldg->si~h_storey = 0.2 1* metres *1
bldg->sig_w_bay = 1.5 1* metres *1

1* normal distribution shape function used to assess the difference *1
bldg->fOl = exp(-pow«(bldg->n_storey - bldg->i_n_storey),2)1

(2 * pow(bldg->si~n_storey,2»)
bldg->f02 = exp(-pow«(bldg->h_storey - bldg->i_h_storey),2)1

(2 * pow(bldg->si~h_storey,2»)
bldg->f03 = exp(-pow«bldg->w_bay - bldg->i_w_bay),2)1

(2 * pow(bldg->si~w_bay,2»)

1* sum of the squares method for obtaining function fO *1
bldg->sum_square = pow(bldg->fOl, 2) + pow(bldg->f02, 2) + pow(bldg->f03, 2)
bldg->fO = pow(bldg->sum_square, 0.5)

The evaluation function, f2, is concerned with evaluating how well the
phenotype satisfies the design focus of architectural compatibility. This function
measures how well the panel configuration merges with the bay size as defined
by the architect. Designers are often faced with fitting a frame into a proposed
layout. In order not to restrict the geometry immediately to the proposed bay
width, some variation is permitted. This variation is represented by the panel
coefficient which ranges from 0.5 to 2.0. The panel width is obtained by

28 MARY LOU MAHER, JOSIAH POON AND SYLVIE BOULANGER

multiplying the bay width by the panel coefficient. This can simulate the
interaction between owner/architect/engineer during the preliminary phases. An
architect proposes a layout, the engineer proposes a frame, the emphasis on
architectural compatibility and structural efficiency might be discussed,
resulting in a layout change, or a frame geometry change. If the layout change is
an alternative, it is interesting not to limit the program to satisfy the bay size but
to give it a better rating when it does. The function f2 described in Figure A.1
gives the best rating of 1.0 to a perfect fit when c_panel = 1.0. A rating of 0.0 is
given when the resulting frame is less than 5 or greater than 15 metres.

fO f2

0.5 1---1---#1----I,-___1~___1-__j

0.0 ~-'--........... ---"--'-:-~
0.5 1.0 1.5 2.0 2.5

d_parameter c_panel

0.5 t----+--+--~-_t__---i

0.0 '----'--...... -'"-----'--. ~
o 1 2 3 5 1.0

zjeasib

Figure A. I. Evaluation functions fO, f2, f3 and f4.

1.5
c_ductility

The evaluation function, f3, measures structural efficiency by considering
load resistance through axial forces as more efficient than through bending
forces. Designers initially aim to obtain reasonable proportions of a frame so
that member selection and detailed verification does not initiate drastic
iterations of their design. To obtain reasonable proportions, aspect ratio
combinations are used. They are based on one designer's experience and data
from existing building frames (Chien, 1988). The aspect ratios of the panel and

FORMALISING DESIGN EXPLORATION AS CO-EVOLUTION 29

of the frame provide a good indication of its performance. The performance is
divided into zones of feasibility ranging from ° to 5, as illustrated in Figure A.2.

1.5

~ ZONE 3
:c
Q) ZONE I

W § 1.0 most feasible 0.. I I

'+-<

hIUIH
0
0

.~ 0.5 u
Q)

0..
<Jl I ,
o:l W

0.0

0 2 4 6 8 10

aspect ratio of frame: HIW

Figure A. 2. Zones of feasibility for f3 as a function of aspect ratios

The function f3 described in Figure A.1 gives a better rating for a lower zone. A
lower (more feasible) zone is obtained when the frame in question fits aspect
ratio guidelines proposed by Chien (1988). The highest (least feasible) zone gets
a rating of 0.0, indicating that the phenotype is not very well suited for its
design focus. The code below shows the calculation of the value of f3 when the
panel type is chevron.

if«bldg->type == TY_CHEVRON) &&
(bldg->mirror == NO) &&
«(bldg->eccenU == ECNONE) &&
«bldg->eccenC2 == EC_ W8) II (bldg->eccenc2 == EC_ W4))) II
«(bldg->eccenU == EC_ W8) II (bldg->eccenU == EC_ W4)) &&
(bldg->eccent_2 == EC_NONE))) &&
(bldg->m_storeys == 1) &&
«(bldg->acpanel > 0.3) && (bldg->acpanel < 0.4)) &&
«bldg->arjrame > 4) && (bldg->acframe < 10))))

bldg->z_feasib = 1;

The evaluation function, f4, assesses structural integrity through a measure
of redundancy and plasticity. Designers need to consider the integrity of the
frame, in particular for frames subjected to seismic loads, and for large surface
structures such as arenas and exposition halls. The configuration of the panel

30 MARY LOU MAHER, JOSIAH POON AND SYLVIE BOULANGER

and the eccentricities introduced at the member intersections, provided that
adequate measures are taken at the member design level, ensure that multiple
load paths and planned plastification will occur instead of hinge formations and
member instability. A ductility coefficient is given according to these
configuration factors, varying from 0.5 to 1.3, as shown in Figure A.2. A better
frame gets a 0.7 coefficient. A less ductile frame gets a coefficient of 1.0 . A
coefficient of 0.5 means the frame is too ductile. Such a frame gets a rating of
0.0.

2

EVOLVING BUILDING BLOCKS FOR DESIGN USING GENETIC
ENGINEERING: A FORMAL APPROACH

JOHN S. GERO AND VLADIMIR A. KAZAKOV

University of Sydney, Australia

Abstract. This paper presents a formal approach to the evolution of a representation for
use in a design process. The approach adopted is based on concepts associated with genetic
engineering. An initial set of genes representing elementary building blocks is evolved
into a set of complex genes representing targeted building blocks. These targeted build­
ing blocks have been evolved because they are more likely to produce designs which ex­
hibit desired characteristics than the commencing elementary building blocks. The tar­
geted building blocks can then be used in a design process. The paper presents a formal
evolutionary model of design representations based on genetic algorithms and uses pattern
recognition techniques to execute aspects of the genetic engineering. The paper describes
how the state space of possible designs changes over time and illustrates the model with
an example from the domain of two-dimensional layouts. It concludes with a discussion
of style in design.

1. Introduction

There is an increasing understanding of the role that a design language and its rep­
resentation play in the efficiency and efficacy of any design process which uses
that language (Coyne et al., 1990; Gero et al., 1994). A recurring issue is what is
the appropriate granularity of a language. If building blocks which constitute the
elements of a design map onto a design language then the question becomes what
is an appropriate scale for those building blocks in terms of the final design. At
one extreme we have parameterised representations where the structure of a design
is fixed, all the variables which go to define a design are predefined and what is
left is to determine the values of those variables. This defines a very small design
space, small in terms of all the possible designs which might be able to be pro­
duced for that design situation. At the other extreme we have elementary building
blocks which can be combined in a very large variety of ways and which, as a con­
sequence define a very large design space, the vast part of which covers designs

32 JOHN S. GERO AND VLADIMIR A. KAZAKOV

Figure 1. Se is the design space produced by all the possible combinations of the elementary build­
ing blocks, Sp is the design space produced by all the combinations of the values of the parameterised
variables, Si is the design space of interesting designs for the design situation.

which are likely to be uninteresting in terms of the current design situation. The
designs produced by the parameterised design representations are a subset of those
capable of being produced by the elementary building block representation, Fig­
ure 1. Examples of building block representations include constructive systems
such as design grammars as exemplified by shape grammars (Stiny, 1980b). Ex­
amples of parameterised variable representations include a wide variety of design
optimization formulations (Gero, 1985).

The advantage of the use of the elementary building blocks representation is
the coverage of the entire design space they provide, whereas the advantage of the
parameterised variable representation is the efficiency with which a solution can
be reached.

We present here a formal approach which generates a targeted representation
of a design problem. A targeted representation is the one which closely maps on to
the problem at hand. As an example consider a layout planning problem in archi­
tectural design. One representation may be at the material molecular level, where
molecules can be combined to make a variety of materials and particular combina­
tions in space produce physical objects; here the potential solution space includes
designs which bear no relations to architecture. A targeted representations may be
to represent rooms such that the potential solution space primarily includes designs
which are all recognizably architectural layouts.

In order to simplify our analysis we consider designs which are assembled from
some finite collection of spatial elements (we call them building blocks or compon-

EVOLVING BUILDING BLOCKS FOR DESIGN 33

Figure 2. The set of building blocks for Froebel's kindergarten gifts (Stiny, 1980b).

Figure 3. The set of six assembly rules for Froebel's kindergarten gifts.

ents) along with assembly rules. It is assumed that the assembly rules do not affect
the components - the design obJect is a union of non-overlapping building blocks.
We start with some set of building blocks which we call elementary components. It
is assumed that they cannot be decomposed into any smaller ones. We call a set of
building components and assembly rules a representation of the design problem
and the set of elementary components and corresponding rules the basic represent­
ation. We call it a representation because it implicitly defines the set of all designs
(design state space) which can be produced using this set of building blocks and
assembly rules.

The kindergarten gifts of Froebel (Stiny, 1980b) is a typical example of such
types of design problem. One of many possible elementary representations and as­
sembly rules for it is shown in Figures 2 and 3. One can easily extend it by adding
further elementary building blocks and/or further assembly rules.

34 JOHN S. GERO AND VLADIMIR A. KAZAKOV

1.1. TARGETED REPRESENTATIONS

A great variety of designs can be produced within a basic representation. Usually
the designer is interested in some particular class of designs. Assume we have some
additional set of composite building blocks and an additional set of assembly rules
to handle them. We can calculate the number of these composite building blocks
which can be found in all possible designs in that particular class and the number of
elementary building blocks used to build the rest of these designs (each elementary
building block should be counted only once as a member of composite building
or elementary building block, the largest composite blocks are counted first and
the elementary blocks are counted last). Then we can calculate the frequency of
usage of these composite building blocks and elementary building blocks in the
entire design space. The same values can be calculated for all designs which have
the property or properties we are interested in. If the frequency of the usage of the
composite building blocks is much higher for the designs of interest than for all
designs built from the elementary building block and the frequency of elementary
components usage is much lower than that of the composite building blocks for
the design space of interest then we can use the composite building blocks instead
of elementary one to produce designs of interest with much higher probability. In
other words a representation exists which maps into the area of interest of the entire
design space. Let us call it the targeted representation for the particular class of
designs. Obviously different targeted representations can be produced which cor­
respond to different sets of composite building blocks. We characterize these rep­
resentations by their "complexity" which is defined recursively as: O-complexity
for the basic representation, I-complexity for the representation whose building
blocks are assembled from elementary building blocks, 2-complexity for the rep­
resentation whose building blocks are assembled from the building blocks of 0-
complexity and I-complexity, etc. Assume an evolution occurs in an abstract space
of complex representations: initially only elementary building blocks exist then
a cycle proceeds when a new set of composite building blocks is produced from
the ones which are currently available. Then a representation of i-complexity (and
building blocks of i-complexity) simply means that composite building blocks of
this representation have been produced during i-th step of this evolution.

Different composite building blocks of the same i-complexity may contain dif­
ferent numbers of elementary building blocks: for example, assume some build­
ing block of 3-complexity contains 3 elementary building blocks and one of the
composite building blocks of 4-complexity is assembled from 2 building blocks of
3-complexity and thus contains 6 elementary components and another one is as­
sembled from one block of 3-complexity and one block of O-complexity and thus
contains 4 elementary components. It is also clear that because there are different
ways to assemble the same composite building block it may be produced multiple
times in representations of different complexity level during the evolution.

EVOLVING BUILDING BLOCKS FOR DESIGN 35

~
(a)

(b)

Figure 4. The set of composite building blocks of different complexity for building a staircase; (a)
I-complexity, (b) and (c) 2-complexity.

The search for a reasonably good design using the basic representation is very
difficult because significant part of the search effort is wasted in the search of un­
useful parts of the design space. If the targeted representation is used instead of ele­
mentary one the probability of producing designs of interest becomes much higher,
the design space becomes smaller and the design problem less complicated and
easier to deal with. The approach presented in this article automatically generates
the hierarchy of more and more complex building blocks (in general); ones which
are more and more close to the targeted representations which are capable of pro­
ducing better and better designs.

Assume we work with the representation of the kindergarten blocks shown in
Figures 2 and 3 and are trying to design a two-level building with walking ac­
cess from one floor to the next. The search for a design with this property is quite
difficult because only a very small fraction of all feasible objects exhibits it and
the probability of discovering the combination of building blocks which makes a
staircase during the search is low. However, if we add a composite object of 1-
complexity (Figure 4) and corresponding assembly rules Figure 5 to the repres­
entation we increase this probability, and if we add a composite building block with
2-complexity (Figure 4) then this probability increases further.

1.2. GENETIC ENGINEERING

Genetic engineering, as used in this paper, is derived from genetic engineering no­
tions related to human intervention in the genetics of natural organisms. In the ge­
netics of natural organisms we distinguish three classes: the genes which go to
make the genotype, the phenotype which is the organic expression of genotype,
and the fitness of the phenotype in its environment. When there is a unique identi­
fiable fitness which is performing particularly well or particularly badly amongst
all the fitness of interest we can hypothesize that there is a unique cause for it and

36 JOHN S. GERO AND VLADIMIR A. KAZAKOV

Figure 5. The set of additional assembly rules for handling composite building blocks.

that this unique cause can be directly related to the organism's genes which ap­
pear in a structured form in its genotype. Genetic engineering in concerned with
locating those genes which produce the fitness under consideration and in modify­
ing those genes in some appropriate manner. This is normally done in a stochastic
process where we concentrate on populations rather than on individuals.

Organisms which perform well (or badly) in the fitness of interest are segreg­
ated from these organisms which do not exhibit that fitness or do so only in a min­
imal sense. This bifurcates the population into two groups. The genotypes of the
former organisms are analysed to determine whether they exhibit common char­
acteristics which are not exhibited by the organisms in the latter group (Figure 6).
If they are disjunctive, these genes are isolated on the basis that they are respons­
ible for the performance of the fitness of interest. In natural genetic engineering
these isolated genes are either the putative cause of positive or negative fitness. If
negative then they are substituted for by "good" genes which do not generate the
negative fitness. If they are associated with positive fitness they are reused in other
organisms. It is this later purpose which maps on to our area of interest.

One can interpret the problem of finding the targeted set of building blocks
as an analog of the genetic engineering problem: finding the particular combin­
ations of genes (representing elementary building blocks) in genotypes which are
responsible for the properties of interest of the designs and regular usage of these
gene clusters to produce designs with desired features.

EVOLVING BUILDING BLOCKS FOR DESIGN

TOTAL POPULATION

I
Ix

.'

x

I X I
I x I

I x I
I'----"'x ____ ---'I

"good" genotypes

"bad"

I
I

"bad" genotypes

I
I

37

Figure 6. The genotypes of the "good" members of population all exhibit gene combinations, X,
which are not exhibited by the genotypes of the "bad" members. These gene combinations are the
ones of interest in genetic engineering.

2. Building Blocks

Thus, we establish that different building blocks define different design state spaces
(which are, in their tum, the subsets of the entire basic design space). More form­
ally we assume that for the design space of interest a set of composite building
blocks exists which is sufficient to build any design of interest from it (or which
are sufficient to build a significant part of any of these designs of interest).

We search for these building blocks using the consequence of the assumption
made in the introduction about frequencies of composite components usage: on av­
erage the sampling set of designs with the desired characteristics (the "good" ones)
contains more of such composite building blocks than the sampling set of designs
that do not have these characteristics (the "bad" ones). In some cases it is even true
in a deterministic sense - diat only the designs which can be built completely from
some set of composite building blocks possess the objective characteristics, all the
rest of the entire basic state space does not have them. One can easily come up with
corresponding examples.

In the next section, we describe an evolutionary algorithm which generates
"good" and "bad" sampling sets using the current set of building block (set of ele­
mentary block at the beginning) and use genetic engineering concepts to determine
new composite blocks which are closer to the "targeted" ones than the current set
of building blocks. These two steps proceed in cycle while the "good" sampling
set converges to the sampling set from the desired design state space and the set of

38 JOHN S. GERO AND VLADIMIR A. KAZAKOV

b b
a rule 1 a b a rule 2 .. a rule3 al a rule 4 b a .-- - .-- .-- .-- -

b

a rule 6 a a rule7 a a rUles"
a rule 5 a .-- .. .--.--". . -- bl

Figure 7. The assembly (transformation) rules used in the example.

complex building blocks comes closer and closer to the targeted set.

If the basic assumption about more frequent use of some composite building
blocks to generate the particular class of designs is not true for some problem then
the targeted representation for this problem does not exist and the algorithm which
is proposed below will not generate an improved representation but will be equi­
valent to the algorithm for solving the routine design problem (Gero and Kazakov,
1995) and will simply generate the improved designs.

If the sequence of assembly actions is coded as a real vector then the problem
of finding the complex building blocks becomes the problem of finding the key pat­
terns in the coding vector - the combinations of codes within it which are likely to
be associated with the property of interest in the designs. The vast arsenal of pat­
tern recognition methods can be used to solve this problem. Essentially they are
just search methods for subsets in a coding sequence which on average are more
frequently observed in objects with desired characteristics than in the rest of the
population.

Let us illustrate the execution of the cycle just outlined using a simple 2-dimen­
sional graphical example. We will describe it in more detail later but for now on it
is sufficient to say that there is only one elementary block here-the square and that
a design is assembled from cubes using the 8 rules shown in Figure 7. Any design
can be coded as a sequence of these rules used to assemble it. Assume we are trying
to produce a design which has the maximum number of holes in it and that each
design contains not more than 20 squares. We start the cycle by generating a set of
coding sequences and corresponding designs Figure 8. Then we notice that a num­
ber (4) of the designs have the maximal number of holes (designs 1,2,4, and 7 - the
"good" sampling set) contain the composite building block A and that for three of
them their coding sequences contain the pattern {2, 8, 5}. We also notice that only
a few (none in this case) of the designs without holes (designs 3,5,8 and 10 - the
"bad" sampling set) contain this block and none contain this pattern in their coding
sequence. Then we can generate the next population of coding sequences using the
identified sequence {2, 8, 5} as anew rule which uses the composite building block
A in the design. Assuming that we employ some optimization method to generate
this new population we can expect that the "good" sampling set from the new pop-

EVOLVING BUILDING BLOCKS FOR DESIGN

design 1 design 2 design 3

-=t:-g~ good

{ 1, 12,2,8,5,4,4,2,8.5,7} { 1,2,1,8,2,8,5,5,6,6,8,1 } {3,2,2,6,5,8,2,1 .4.4,3, 1 }

design 4

good

{6,4, 1,2,8,5,4,2,8,5,3,3 }

design 7

{3,1,8,5,5,6,4,6, 1,1,3,3 }

design 10

r
bad

{2,3,7,5,I,2,8,3,1,6,2,1 }

design 5 design 6

bad V"OW
{3,4,8,2,8, 1,6,5,7.3,} {2,3,2,3,4,3,5 ,6,5, 1 ,6,2}

design 9

neutral
(6,4, 1,2,3,4,5,2, 1,7,4 }

Composite building block A

{2,8,S} ...

39

Figure 8. The identification of the pattern {2, 8, 5} and corresponding composite building block A
in the genotypes of "good" designs.

ulation is better than the previous one (that is, the designs which belong to it have
on average more holes than the ones from the previous "good" sampling set). Then
we again try to identify the patterns which are more likely to be found in designs
from this "good" sampling set than from the "bad" one. This time these patterns
may contain the previously identified patters as a component. Then we generate a
new population of designs using these additional pattern sequences of rules as an
additional assembly rule and so on.

The sizes of the sampling sets in realistic systems is likely to be much larger

40 JOHN S. GERO AND VLADIMIR A. KAZAKOV

than the ones in this example and much more sophisticated techniques (Pearson
and Miller, 1992) should be employed to single out these key patterns.

3. Evolving Building Blocks

For a more formal analysis of the evolution of the building blocks we use the shape
grammar formalism (Stiny, 1980a). It consists of an ordered set of initial shapes
and an ordered set of shape transformation rules which are applied recursively. A
particular design x within the given grammar is completely defined by a control
vector v which defines the initial shape and transformation rules applied at each
stage of recursive shape generation. According to the discussion in the Introduc­
tion we consider a particular class of shape grammar similar to the kindergarten
grammar (Stiny, 1980b), where any shape is a non-overlapping union of building
blocks and feasible shape transformations are addition, replacement or deletion of
the building blocks.

Let B = {bo, b1 , ... , bn } be a set of n currently available building blocks, and
R = {ro, rl, ... , rm} be a set of m assembly rules applicable to these blocks.
Then the control vector vi = {bi, ri, r;, ... , rJv), bi E B, r} E R, j = 1, ... , Ni,

i = 1, ... , M defines the population of M designs x(v i), i = 1, ... , M.
The length of the control vector { vi}, Ni is a variable.

If we add new complex building block
b ({bn+l n+l n+l n+l}) d bl 1 n+l = x , r 1 , r 2 , ... , rk an newassem y ru es
r m+1, ... , r m+ln+ 1 for its handling then we get a new extended set of rules
R = R Uj=l,zn+l {rm+j}, B = B U {bn+d, n = n + 1 and m = m + zn+l.
Now we can produce the design x (v) which corresponds to the vector v whose
components belong to the extended B and R. Note that the additional building
blocks and assembly rules are generated recursively: they are completely defined
in terms of the previous R and B.

We assume that the design problem has a quantifiable objective vector-function
Fk (x), k = 1, ... , p and can be formulated as optimization problem

F(x(v)) = F(v) --+ max (1)

The problem (1) over the representation with a fixed set of building compon­
ents and assemble rules can be solved using any of optimization methods (Gero
and Kazakov, 1995) but the stochastic algorithms like genetic algorithms (Holland,
1975) and simulated annealing (Kirkpatrick et aI., 1983) look most promising at
the moment. We have chosen the genetic algorithm.

The evolutionary method has the following structure:

Algorithm
(0). Initialization. Set counter of iteration k = O. Take the set of elementary build­
ing blocks B = {bo, .. . , bn } and corresponding assembly rules R. Generate some

EVOLVING BUILDING BLOCKS FOR DESIGN 41

random population of vi,o, calculate x (vi,O) and F(x (vi,O)). Set the relative thresholds
for the design's ranking 0 < Ab < Ag < 1; they are used during an evolution
stage to divide the design into "good", "bad" and "neutral" sampling sets, that is,
the parts of population which exhibit (Ag) best, (Ab) worse and intermediate rel­
ative fitness level.
(1) Evolution of complex building blocks. For every component of the objective
function Fk divide the population into 3 groups:
"good" (Fk(X) > maxi=l,M Fk(Xi)- Ag*(maxi=l,M Fk(Xi) -mini=l,M Fk(Xi)),
"bad" (Fk(X) < mini=l,M Fk(Xi)+ Ab* (maxi=l,M Fk(Xi) -mini=l,M Fk(Xi)),
and "neutral" (the rest of population). .. .
Determine J combinations bn+j = x({b j , r&, ri, ... ,rL}), j = 1, ... , J of the
current building blocks which distinguish the "good" sampling set from the "bad"
one statistically significantly using anyone of the pattern recognition algorithms.
Add it to the current set of building blocks B = B U j =1 ,J {bn+ j }. Add corres­
ponding new assembly rules to R.
(2) Generation of new population. Compute new population using available in­
formation about current population vi,k+1 = G ((vi,k, X (vi,k), F(x (vi,k)). The com­
ponents of vi,k+1 belong to the new extended B and R. The G depends on the op­
timizationmethod employed. If the genetic algorithm has been chosen then v i ,k+1

is to be calculated using standard crossover and mutation operations. Because the
updated grammar includes the grammar from the previous generation the search
method guarantees that the new population is better than the previous one (at least
no worse) and the new "good" sampling set is closer to sampling set of the design
state space of interest.
(3) Repeat steps (1) and (2) until the stop conditions are met.

The stop conditions usually are the termination or slowing down of the im­
provement in F and/or the end of new building blocks generation.

4. Example

4.1. EVOLVING THE TARGETED REPRESENTATION

As an example we take the problem of the generation of a 2-dimensional block
design on a uniform planar grid (derived from Gero and Kazakov (1995». There
is just one elementary component here - a square and the eight assembly rules
(transformation rules in terms of a shape grammar) which are shown in Figure 7. If
the position where the current assembly rule tries to place the next square is already
taken then all the squares along this direction are shifted to allow the placement of
new square. It is assumed that the transformation rule at the i-th assembling stage is
applied to the elementary block added during the (i-I) -th stage. The characterist­
ics of interest are geometric properties of the generated design. In order to demon­
strate the idea, assume that the generated design can not consist of more than 32

42 JOHN S. GERO AND VLADIMIR A. KAZAKOV

0.9 r---,----,--..,-----,-----,----,,--,-----,-----,

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1 '----'-----'-----'----'----'---'---"'-----'-----'
o 20 40 W W 100 1~ 1~ 160 180

GENERATIONS

Figure 9. The fraction of composite building blocks in the total pool of building blocks used to
assemble the population vs. generation number. The objective function has two components: the area
of closed holes and the number of connections between holes and the outside space. The initial set
of building blocks contains only elementary building blocks. Evolution proceeds until it naturally
dies off.

elementary components. We generate a new population during the stage (2) of the
Algorithm using the modification of the simple genetic algorithm tailored to handle
multidimensional objective functions (Gero and Kazakov, 1995). We implement a
very simple pattern recognition algorithm based on the statistical frequency ana­
lyses of double and triple element building blocks with a high cut-off threshold
for the acceptance of the patterns. For more complex systems more sophisticated
technique is needed.

During the first iteration we begin with the set of building blocks which con­
tains only the elementary ones and search for the designs with maximal area of en­
closed holes and maximal number of connections between the holes and outside
space. The evolution was allowed to proceed until a stable condition was reached.
The result are shown in Figures 9 and 10. By plotting the fraction of the complex
building blocks in the total pool of building blocks used to assemble the popula­
tion at different generations Figure 9, one can see how complex building blocks
become dominant and how its fraction reaches a stable level after 110-120 itera­
tions. The fractions of building blocks of different complexity in the total pool at
different generation are shown in Figure 10. One can see that during the first 40
generations the total fraction of composite building blocks arises monotonically.
For the first 10 generations this rise is completely provided by the increasing num­
ber of I-complexity composite building blocks in the population. Then (from 15
to 30 generations) the fraction of I-complexity blocks remains stable but the num­
ber of 2-complexity building blocks increases and provides the continuing increase

EVOLVING BUILDING BLOCKS FOR DESIGN 43

0,8

l·COMPLEXITY ~
2·COMPLEXITY

0,7 S·COM PLEXITY ,
4·COMPLEXITY ... " .. ,
5·COMPLEXITY .. _-
6·COMPLEXITY -, .. .

0,6

'"
7·COMPLEXITY ,
8·COMPLEXITY

w
z
w
C!l 0,5 >< w
-' Co

~ 0,4
0
u.
0

~
i=

0,3

0

Cl!
u. 0,2

0,1

120 140 160 180

Figure 10. The fraction of composite building blocks with different complexities in the total pool
of the building blocks used to assemble the population vs. generation number. This figure shows the
building blocks of different complexities which are summed to produce the total fraction shown in
Figure 9.

in the total fraction of composite building blocks. From generations 40 to 70 this
total fraction is stable with approximately half of building blocks of I-complexity
and half of 2, 3 and 4-complexities. Then the number of I-complexity blocks and
total number of complex blocks declines sharply and from 70 until 11 0 generation
a transitional process occurs with a complex redistribution of populations between
representations with different complexities. At the end of this period the building
blocks of 8-complexity saturate the population when the fractions of the other com­
plex building blocks are shifted towards a noise level only. One of the evolution
paths in the space of complex building blocks is shown in Figure 11 (a). Some of
the designs produced are shown in Figure 11 (b). Here arrows show which pre­
viously evolved composite building blocks are used to assemble the new building
block. The O-complexity block and its contributions are omitted. As we already
noted composite blocks of the same complexity level sometimes have different
numbers of elementary components. Coincidently, the 5-complexity block is re­
produced again in the representations of 6-, 7- and 8- complexities and is one of
the dominant blocks at the end of the evolutionary process.

4.2. USING TARGETED REPRESENTATION

The set of targeted building blocks evolved during this process is then used as an
initial set of building blocks during the second experiment when we produce the
designs with maximal total area of holes inside and maximal number of connec-

44 JOHN S. GERO AND VLADIMIR A. KAZAKOV

.........
».. rI$

(a)
(b)

Figure 11. (a) An example of the evolutionary paths in the evolution of a complex building block,
(b) some of the designs produced using the set of evolved complex blocks.

EVOLVING BUILDING BLOCKS FOR DESIGN 45

0.9

fll
0.8

ij'j
0.7 (!l

X
W
...J a. 0.6 :::;
0
0
u. 0.5 0
z

§ 0.4

~ u.
...J 0.3
~ g

0.2

0.1

° ° 20 40 60 80 100 120 140 160 180
GENERATIONS

Figure 12. The fraction of composite building block in the total pool of building block used to as­
semble the population vs. generation number. In this experiment the objective function is the num­
ber of closed holes and the number of connection between the closed holes inside the structure. The
initial set of building blocks is inherited from the first experiment and is the targeted representation.

tions between these holes inside the structure. Here the fitnesses are close to but
not the same as those used to evolve the targeted representation. This experiment
is used to test whether the targeted representation is likely to be used more than the
original, elementary building blocks. If the targeted representation is used rather
thari the elementary building blocks then we have achieved our goal of evolving a
representation can be used to produce designs which exhibit desired characterist­
ics more readily. The results are shown in Figures 12 and 13. One can see that
the fraction of the composite building blocks used to produce these designs reaches
the saturation level during the first few iterations. The visible redistributions of the
population between the composite building blocks of 5,6 and 7-complexities are
purely superficial- this redistribution occurs between the same composite building
blocks which are present in all these representations. Evolution of the representa­
tion does not occur during this experiment - no new complex building block were
evolved. This can be interpreted as an indication of closeness of the targeted rep­
resentations for both problems. So if the targeted representation is evolved for one
set of objectives then it can be usefully applied to any of the objective sets which
are only slightly different to it.

4.3. EFFECTS OF INCOMPLETE EVOLUTION

In this experiment we repeat the first iteration but stop the evolution prematurely
after only 60 generations. After this we repeat the second iteration using the evolved

46

Cf)
UJ
Z
UJ
C!J
><
UJ
..J
(L
::;;
0
0
u.
0
z
0
>=
0

~
u.

JOHN S. GERO AND VLADIMIR A. KAZAKOV

0.9

O.B

0.7

O.S

0.5

0.4

0.3

0.2

0.1

0
0 20 40

1·COMPLEXITY -
2·COMPLEXITY -----
3-COMPLEXITY
4-COMPLEXITY .. - ..
5-COMPLEXITY ----­
S-COMPLEXITY -
7-COMPLEXITY -­
B-COMPLEXITY ..

I ",r

so BO 100 120
GENERATIONS

140 1S0 1BO

Figure 13. The fraction of composite building blocks with different complexities in the total pool
of the building block used to assemble the population vs. generation number in the experiment.

0.9

Cf) O.B
UJ z
UJ
C!J
>< 0.7
w
..J
(L
::;;
0
0

O.S

u.
0
z 0.5 0
>= 0
<C a: 0.4 u.
..J

;::
0 0.3 I-

0.2

0.1
0 10 20 3D 40 50 so

GENERATIONS

Figure 14. The fraction of composite building block in the total pool of building block used to as­
semble the population vs. generation number. In this experiment the objective function is the number
of closed holes and the number of connections between the closed holes inside the structure. The ini­
tial set of building blocks is inherited from first iteration which has been prematurely terminated at
generation 60.

incomplete set of composite building blocks. The results are shown in Figures 14
and 15. In this case the evolution of the representation continues for about a fur­
ther 10 generations and we end up with the same set of evolved composite building
blocks. The saturation of the population with the composite building blocks is also

EVOLVING BUILDING BLOCKS FOR DESIGN

0.9 ,------y-----,-----,---r----,.-----,

o.a

0.7

0.6

0.5

0.4

:/'\ .. /1\
0.3 ::

I \
i : l

I ,\ ! :

::~ 1\. }:,.:~~_%O
o 10 20 30

GENERATIONS

1·COMPLEXITY --
2·COMPLEXITY ••••.
3·COMPLEXITY
4·COMPLEXITY
5·COMPLEXITY _.-.-
6·COMPLEXITY
7·COMPLEXITY
a·COMPLEXITY

40 50 60

47

Figure 15. The fraction of composite building blocks with different complexities in the total pool
of the building block used to assemble the population vs. generation number in the third experiment.

completed after these 10 generations. Thus, one can start to evolve a representa­
tion for one set of objectives and then continue it for another closely related set of
objectives.

If we commence by treating the problem as one of finding improved designs
then from a computational viewpoint this form of evolution speeds up the conver­
gence to improved designs by up to 15% (in terms of the number of generations
required) when compared with standard genetic algorithms. It appears that the use
of a targeted representation can lead to the production of designs which are locally
optimal.

However, if we use the completion evolution approach presented in the second
experiment we get further improvements in performance. We wi11leave to the Dis­
cussion section further discussion of the other advantages of the approach presen­
ted.

5. Discussion

The analysis just presented can be easily extended to include general object gram­
mars of types different to the kindergarten grammar. The proposed approach can
be considered as an implementation of the simplest version of the genetic engin­
eering approach to the generic design problem. From the technical point of view
the algorithm presented is a mixture of a stochastic search method (which may be
a genetic algorithm) and a pattern recognition technique.

The genetic engineering approach can be applied in a similar fashion to the
problem of the generation of a "suitable" shape grammar (Gero and Kazakov, 1995)

48 JOHN S. GERO AND VLADIMIR A. KAZAKOV

where the complex building blocks correspond to the evolved grammar rules.

As already mentioned in the analysis of the numerical experiment, the evolved
representations are highly redundant-the same composite building blocks are evol­
ved many times along the different branches of the evolutionary trees. The redund­
ancy level of the current set of composite building blocks can be reduced in a num­
ber of different ways. The simplest is just to delete all the redundant copies from the
current set. In the general case, we have to find the minimal representation of the
subspace which can be generated using the current set of complex building blocks.

The introduction of ideas and methods from genetic engineering into design
systems based on genetic algorithms opens up a number of avenues for research
into both evolutionary-based design synthesis and into modified genetic algorithms.
In design systems based on such modified genetic algorithms it is possible to con­
sider two directions.

The first is to treat the sequence of the genes which results in certain behaviours
or fitness performances as a form of 'emergence' , emergence of the schema repres­
ented by that gene sequence. The use of the genetically engineered complex genes
changes the properties over time of the state spaces which are being searched. This
allows us to consider the process as being related to design exploration modelled
in a closed world. The precise manner in which the probabilities associated with
states in the state space change is not yet known. Clearly, this is also a function
of whether a fixed length genotype encoding is used or not. If a variable length
genotype encoding is used with the genetically engineered complex genes then
the shape of the state space remains fixed but the probabilities associated with the
states within it change. If a fixed length genotype encoding is used with the ge­
netically engineered complex genes then the shape of the state space changes in
addition to the probabilities associated with states in the state space.

The second is to treat the genetically engineered complex genes as a means of
developing a representation for potential designs. A fundamental part of designing
is the determination of an appropriate representation of the components which are
used in the structure (Gero, 1990) of the design. This is part of that aspect of design­
ing called 'formulation', i.e. the determination of the variables, their relationships
and the criteria by which resulting designs will be evaluated. In most computer­
aided design systems the components map directly on to variables. Further, in such
systems the variables are specified at the outset, as a consequence there is an unspe­
cified mapping between the solutions capable of being produced and the variables
chosen to represent the ideas which are to be contained in the resulting designs.
The genetic engineering approach described provides a means of automating the
representation part of the formulation process. The level of granularity is determ­
ined by the stability condition of the evolutionary process or can be determined
by the user. The targeted building blocks provide a high-level starting point for all
later designs which are to exhibit the required characteristics as evidenced in the
earlier designs. It is this latter requirement which is met by this formal method.

EVOLVING BUILDING BLOCKS FOR DESIGN 49

The following simple picture can be used to summarize the model described in
this paper. A group of children are playing with the "Lego" game using not more
than 50 squares. They join them together and want to build the object with the
largest number of closed spaces inside. After each child has built his or her ob­
ject the supervisor tries to find a combination of squares which is present in many
of the best designs but is present in none or only in a few of unsatisfactory designs.
Then he makes this combination permanent by gluing its components together and
adds a bunch of such permanent combinations to the pool of building elements
available to the children. Then the children make another set of objects using these
new building blocks as well as an old ones. The supervisor tries to find another
"good" composite block and the process is repeated. Thus, two steps occur in each
cycle: first children make a set of new designs from currently available blocks and
combination of blocks and second the supervisor tries to single out the additional
combination of blocks that should be employed. If there are no such combinations
which distinguish "good" design from the "bad" ones then we will not get new
combinations but only the improved designs.

Style
The choice of particular variables and configurations of variables is a determinant
of the style of the design (Simon, 1975). The label 'style' can be used in at least
two ways: either to describe a particular process of designing or as a means of de­
scribing a recognizable set of characteristics of a design. Thus, it is possible to talk
about the 'Gothic' style in buildings or the 'high tech" style of consumer goods.
Precisely what goes to make up each of these styles is extremely difficult to articu­
late even though we able to recognize each of these styles with very little difficulty.
An appropriate question to pose is: how can we understand what produces a style
during the formulation stage of a designing process? This brings us back to the
concepts described in this paper.

The history of taste and fashion is the history of preferences, of various acts
of choice between different alternatives [But] an act of choice is only of
symptomatic significance, is expressive of something only if we can really
want to treat styles as symptomatic of something else, we cannot do without
some theory of the alternatives (Gombrich, quoted from Simon (1975».

If we use a particular style as the fitness of interest then it should be possible
to utilise the genetic engineering approach described in this paper to determine if
there is a unique set of genes or gene combinations which is capable of being the
progenitors of that style. For this to occur satisfactorily a richer form of pattern
recognition will be needed than that alluded to here. We will need to be able to
determine a wider variety of gene schemas in the genotypes of those designs which
exhibit the desired style.

50 JOHN S. GERO AND VLADIMIR A. KAZAKOV

The use of genetic engineering in evolving schemas of interest opens up a po­
tential subsymbolic model of emergence including the emergence of domain se­
mantics (Gero and Jun, 1995). Style can be considered as a form of domain se­
mantics. This is of particular interest in design synthesis since, if domain semantics
can be captured in a form such as described in this paper, then they can be readily
used to synthesize designs which exhibit those semantics and even that style. This
is analogous to the induction of a shape grammar which captures the characteristics
of designer's style.

6. Acknowledgments

This work is directly supported by a grant from Australian Research Council, com­
puting resources are provided through the Key Centre of Design Computing.

References

Coyne, R, Rosenman, M., Radford, A., Balachandran, M. arid Gero, J. S.: 1990, Knowledge-Based
Design Systems, Addison-Wesley, Reading, Mass.

Gero, J. S.: 1990, Design prototypes: a knowledge representation schema for design, AI Magazine,
11(4), 26-36.

Gero, J. S. (ed.): 1985, Design Optimization, Academic Press, New York.
Gero, J. S. and Jun, H.: 1995, Emergence of shape semantics of architectural shapes, Technical Re­

port, Key Centre of Design Computing, University of Sydney, Australia.
Gero, J. S. and Kazakov, Y.: 1995, An exploration-based evolutionary model of a generative design

process, Microcomputers in Civil Engineering (to appear).
Gero, J. S., Louis, S. and Kundu, S.: 1994, Evolutionary learning of novel grammars for design im-

provement, AIEDAM, 8(2), 83-94. .
Holland, J.: 1975, Adaptation in Natural and Artificial Systems, U ni versity of Michigan, Ann Arbor.
Kirkpatrick, S., Gelatt, C. G. and Vecchi, M.: 1983, Optimization by simulated annealing, Science,

220(4598),671-680.
Pearson, W. and Miller, w.: 1992, Dynamic programming algorithms for biological sequence com­

parison, Methods in Enzymology, 210,575-601.
Simon, H.: 1975, Style in design, in C. Eastman (ed.), Spatial Synthesis in Computer-Aided Building

Design, Applied Science, London, pp. 287-309.
Stiny, G. : 1980a, Introduction to shape and shape grammars, Environment and Planning B, 7, 343-

351.
Stiny, G.: 1980b, Kindergarten grammars: designing with Froebel's building gifts, Environment and

Planning B, 7, 409-462.

3

EVOLUTIONARY METHODS IN DESIGN: DISCUSSION

MIHALY LENART

University of Kassel, Germany

AND

MARY LOU MAHER

University of Sydney, Australia

There are numerous approaches to modeling or describing the design process
by using formal methods. Different approaches are taken for tackling different tasks
or for modeling different aspects of the design process. For example, formal gram­
mars are used for capturing generative tasks or knowledge-based and case-based
reasoning for utilizing domain knowledge or expertise in order to find solutions in a
large and complex search space. In recent years evolutionary methods became pop­
ular in engineering and computer science for solving hard, and with other methods
sometimes intractable problems. They have proven to be successful in such areas
where there is little domain knowledge available and the solution needs not to be
perfect, just good enough for the particular task.

Research on evolutionary methods started in the 1950s and the first computa­
tional models were developed in the 1960s by 1. Rechenberg, H. P. Schwefel and
L. Fogel. A significant development came with J. Holland's and K. De Jong's work
on Genetic Algorithms (GAs) in the 1970s. Since the early 1980s there has been
an explosion of research and the number of new applications in science and en­
gineering has been growing exponentially. In design, evolutionary methods have
first been applied to optimization problems. More recently, they are also used for
solving design problems which require creativity. The main concern of the papers
presented at this workshop and the subsequent discussion was the role of evolu­
tionary methods in design exploration, in particular, how evolutionary methods can
support human creativity in the design process.

1. Papers

This session included two paper presentations:

1. Modelling Design Exploration as Co-Evolution: A Combined Gene Approach
by Mary Lou Maher, Josiah Poon and Sylvie Boulanger.

52 MIHALY LENART AND MARY LOU MAHER

2. Evolving Building Blocksfor Design Using Genetic Engineering: A Formal
Approach by John S. Gero and Vladimir A. Kazakov.

The presentations showed two different approaches to the use of GAs in form­
alizing aspects of the design process. The first presentation was concerned with
how GAs provide a mechanism for change over time and applied this mechanism
in a way that allowed the design focus to change as well as the design solution.
This was modeled as a co-evolutionary process in which two spaces co-evolve:
the problem definition space and the solution space. The presentation emphasized
the focus on exploration rather than on search that is characteristic for other com­
puter based design models. The co-evolutionary paradigm has been chosen for it is
less deterministic than traditional evolutionary paradigms. Problem solutions and
definitions cooperate in order to improve their fitness. Fitness is defined, however,
only locally which means that the fitness function, i.e., the focus of the design pro­
cess might change as new generations evolve.

The second presentation was concerned with how GAs provide a basis for identi­
fying representations that achieve a high level of performance. This mechanism
is applied in a manner that is analogous to genetic engineering in which the rep­
resentation of design genes evolved. The approach allowed the representation of
design knowledge to change in response to good performance. It generates build­
ing blocks of a design language, starting from simple blocks from which success­
ively more and more complex ones will be generated during the design process.
Analogous to genetic engineering, emerging patterns are recognized and used for
subsequent evaluation. The evaluation also identifies bad genes in which case either
the proliferation of bad genes is cut off by halting the generation process or the bad
genes are "treated" in order to get rid of undesirable features.

2. Discussion

The issues raised during the discussion were directed at one or the other presenta­
tion and are presented here according to the presentation that raised the particular
issue.

2.1. CO-EVOLUTION ISSUES

Three major issues were raised:

1. Should the problem definition change or should it be refined during
co-evolution?
This discussion raises a basic question of whether formal methods developed
for solving a particular design problem should be allowed to change the design
problem in the course of the process or should the formal methods be refin­
ing and adding to the problem definition. In other words, the question is how
to define design exploration; where are the limits for changing the problem

EVOLUTIONARY METHODS IN DESIGN: DISCUSSION 53

definition and at which abstraction (meta) level we want to carry out such
changes.
The discussion introduced a few scenarios in which the problem definition
would be changed and whether the problem should have been restated at a
higher abstraction level rather than changed at a lower level. In particular,
the design of a bridge was discussed where the initial design may prove to
be intractable and the designer may change his mind and choose to design a
tunnel crossing. This, as an example of a change in problem definition, could
also be considered a refinement of a problem definition of designing a harbor
crossing.

2. Do the dominant criteria eliminate consideration of other criteria?
This discussion raises the issue of loss of information when using GAs. When
allowing the problem definition as a set of criteria to evolve according to a fit­
ness function, it is possible that some initial criteria may be lost due to poor
performance. In the model of design exploration as co-evolution, this poten­
tialloss may mean that the formal method does not solve the initial problem
at all but solves some evolved representation of the problem. This problem is
related to the lack of global fitness and thus to the possibility of changing fo­
cus in the course of the design process. There was some concern as to whether
this was an appropriate model for CAD.

3. Do such formal methods need to model a global set of design criteria, or is it
reasonable to model the fitness as a set of local criteria?
This discussion dominated the discussion period by raising an issue that could
not be resolved. The model of co-evolution that uses the combined gene ap­
proach relies on a local fitness function that is defined within a genotype. This
local fitness function provides the criteria for evaluating the individual gen­
otype and there is no model of a global fitness. The global fitness introduced
in the paper was used to track progress but was not used to guide the evolu­
tionary process.
The arguments for aglobalfitness include: a set of criteria by which all design
solutions are evaluated means that there is a common unit of measure for fit­
ness; global criteria means that there is a representation of the prol;llem being
solved that is related to the context rather than the solution; a global fitness
can directly be compared to the original problem as defined by the user's ini­
tial requirements. The lack of global fitness means also that the process does
not converge and after a certain number of steps there is no way to tell what
we have accomplished so far and where to stop.
The arguments for a localfitness include: each design solution should be eval­
uated on its own merit rather than on a predefined ruler; a local fitness allows
other criteria to be introduced based on the solutions being considered; local
criteria need not relate to the original problem definition since the initial re-

54 MIHALY LENART AND MARY LOU MAHER

quirements for a design problem may not be an appropriate characterisation
of the need.

2.2. GENETIC ENGINEERING ISSUES

Three major issues were raised:

1. Is the correlation between good genes and performance causal or statistical?
The concern in raising this issue is in the use of the genetic engineering ap­
proach to develop representations of design knowledge that are used as a basis
for new designs. If the genes are evolved according to performance without
an understanding how the performance relates to the genes in a causal way,
then new representations are statistically good. A lack of causal understand­
ing may cause the evolution to follow the limited measure of performance.
The discussion was resolved that the presented method did rely on a statist­
ical correlation and that this was as good a correlation as any other.

2. Are the evolved genes specialised for a specific criteria?
Given that the new genes evolved in response to performance of a specified
criteria the implication is that these are specialised genes. This lead to a sim­
ilar, related issue of whether the evolved genes could be used for other pur­
poses. A flexibility of representation would be sacrificed because the method
relies on a fixed performance measure.

3. Can a bad gene be used again?
This issue is similar to the loss of information issue raised in Section 2.1. If
the bad genes are discouraged from being used, does this result in a loss of
information in the genotype representation? The discussion brought out the
details of what is meant by a bad gene. In fact, genotype representations are
not modified, but certain combinations are encouraged and others are discour­
aged. This means that theoretically there is no loss of information. Practically
there may be a loss if certain genotypes are discouraged to a point where they
are not used at all. However, if the performance criteria changes, these bad
genes may start to reappear again.

3. Summary

The discussion could be summarised as two statements and two questions:
Statement 1: The use of GAs presented and discussed in this session employs a

mechanism to change the design space: the co-evolution methods change the rep­
resentation of the design requirements and design solutions, and the genetic engin­
eering method changes the representation of design knowledge.

Statement 2: Evolutionary methods provide a set of mechanisms for generating
design solutions and rely on evaluation knowledge to guide the design process.

EVOLUTIONARY METHODS IN DESIGN: DISCUSSION 55

Question 1: How do we know if the changing design space is still relevant? The
co-evolution methods change the design requirements to a point where they may
not have anything in common with the original requirements. The genetic engin­
eering method changes the design knowledge to a point where the original design
knowledge representation may never be used at all.

Question 2: Do these evolutionary methods do something fundamentally dif­
ferent to other formal methods of design? What kind of design problems can be
tackled with evolutionary methods better than with other formal methods?

The answers to these two questions point to new research directions for formal
design methods based on evolutionary approaches.

PART TWO

Generati ve and Search Methods in Design

4

MODIFIED SHAPE ANNEALING FOR OPTIMALLY-DIRECTED
GENERATION: INITIAL RESULTS

KEN N. BROWN§ AND JON CAGAN
Carnegie Mellon University, USA

Abstract. Fonnal generative design systems may describe large and complex spaces,
making good designs hard to find. The problem of directing generation towards good
solutions is addressed by considering the shape annealing algorithm. The algorithm is
modified in an attempt to make optimization over the final generation sequence more
uniform. Seven variations of the algorithm are investigated, and their perfonnance
compared. The results suggest that an enhanced backtracking ability may significantly
improve the perfonnance of the algorithm.

1. Introduction

Formal generative systems promise a number of advantages for a science of
design. They provide an executable specification of a design space,
supporting the generation of designs within the space. They offer, in
principle, an analyzable definition of the design space, allowing candidate
designs to be recognized as elements of the space. They provide (again in
principle) a means to analyze properties of the spaces themselves. They offer
a formal basis for reasoning about designs in progress, via their semantics. In
order to meet these promises, a number of questions have to be answered.

Although formal systems can be concise and elegant descriptions of
design spaces, the spaces themselves can be vast and the relationship between
the description and the designs its specifies unclear. The result of applying
sequences of individual rules is not obvious. How is a designer to know what
designs exist in the space, and which regions of the space contain what types
of designs? How is a designer to find good designs within the space? How
should the syntax of a system be interpreted, and in particular, how should
partial, incomplete designs in the space be interpreted? Intelligent generation
within a space would seem to require either a knowledge of the space's
overall structure, or some method of judging intermediate states and making

§ Now at University of Aberdeen, Scotland.

60 KEN N. BROWN AND JON CAGAN

decisions about which directions to follow. More complete discussions of
these issues are given by Carlson (1994b) and Cagan (1994b).

One technique that has been proposed for searching large design spaces
is shape annealing (Cagan and Mitchell, 1993), a search method directed
towards optimal solutions, based on the stochastic optimization technique of
simulated annealing (Kirkpatrick et aI., 1983). Shape annealing is useful in
cases where the intermediate assessments are such that simply applying the
locally best operation at each stage does not necessarily lead to the best final
designs, as its stochastic nature allows it to backtrack out of local optima.
Shape annealing produces good solutions efficiently; however, it is not
guaranteed to find the optimum, and seems to find it only rarely. In this
paper, we consider why this should be so, and suggest some modifications to
the basic technique in order to make reaching the optimum more likely.

2. Background

The use of grammars (formal generative systems) for the design of complex
structures was popularized by the development of the shape grammar
formalism (Stiny, 1980). In this formalism, rewrite-rules are recursively
applied to two-dimensional shapes to produce languages of two-dimensional
shape designs. Parametric shape grammars can also be defined, in which rule
schemas with variable parameters are specified, and rule application proceeds
with an instantiated version of one of the rule schemas. A number of shape
grammars have been presented in the literature, including a grammar of
Palladian villas (Stiny and Mitchell, 1978) and a grammar of Queen Anne
houses (Flemming, 1986). A general definition of the algebra of shapes is
given by Stiny (1991). Grammars were originally used as a means of
analyzing and understanding existing corpuses of designs, by showing that
the designs conform to a regular structure.

Viewed in the abstract, the whole design process can be considered to be
generation. Stiny and March (1981) proposed design machines, while
Fitzhorn (1989) has proposed a formal computational theory of design. In
both of these papers, the design process is modeled as the interaction of
constraints and the design context with the grammar rules used to generate
the designs. Brown et al. (l993b) discuss some possible roles for
grammatical methods in engineering design, in the context of a
transformational model of design (McMahon et aI., 1993). Recently, there
has been some effort in building grammatically-based design tools, allowing
designers to explore design spaces interactively (Carlson, 1994a; Heisserman
and Woodbury, 1994).

The use of grammars as design tools raises the question of how designs
should be interpreted. The conventional view of the semantics of a design
representation provides a mapping from the elements of the representation

MODIFIED SHAPE ANNEALING 61

to real world objects. We can also look at performance criteria, or objectives,
as the semantics of a design, either in terms of rigorous mathematical notions
of performance, or the more fluid and subjective assessments of human
users. We can use the constructive nature of grammatical tools to construct
these semantics in tandem with the syntactic generation. Stiny (1981)
proposed the generation of design descriptions by associating rules
operating on descriptions with the grammar rules which operate on the
shapes. Brown et al. (1994a, 1994b) have applied variants of this formalism
to the interpretation of engineering artifacts in terms of feature descriptions
and manufacturing plans. For string and graph based formalisms, attribute
grammars (Knuth, 1968) have been used, in which attributes representing
additional information augment symbols, and attribute rules define the
computation of the attribute values. Variations on this theme are proposed
by Penjam (1990), representing the resistance of electrical circuits, Rinderle
(1991), representing forces and weights of boom designs, and Brown et al.
(1992), representing stress concentrations on loaded shafts. However, these
applications are oriented towards providing a final interpretation or
assessment of a design. When used in design tools, the assumption is that the
partial interpretation constructed as a design is in progress can be used to
direct generation towards a desired end result. This is not necessarily the
case, and depends on the particular semantic functions being used. The
problem remains for each particular design space and design task of
determining objective functions with which variations in the intermediate
assessments after individual rule applications accurately reflect the variations
in the assessment of the final designs resulting from those rules.

The question then arises of how best to guide search or exploration
through these design spaces, which are generally too large for exhaustive
search to be practical. For exploration, random sampling of the space may
suffice, although as Carlson (1994b) points out, for a truly uniform sample
of the space, the frequency with which particular rules are applied in
particular situations should depend on the size of the sub-space below the
states that result. For search in relatively small spaces, standard artificial
intelligence search algorithms may be applied. For larger spaces, Cagan and
Mitchell (1993) proposed shape annealing as a means of directing search
towards optimal solutions. Shape annealing attempts moves more or less at
random which are accepted according to a steadily more discriminating
acceptance criterion. Thus, a search in a design space consists of successive
rule applications and retractions which are initially randomly selected and
accepted almost regardless of their effect on the objective function. As time
progresses, moves which degrade the objective function are accepted with
decreasing probability. Eventually, the algorithm converges to a good local
optimum. Because shape annealing is stochastic, it is able to recover from

62 KEN N. BROWN AND JON CAGAN

early, poor local optima. Thus, intermediate objective functions do not need
to be strictly accurate, as moves which initially appear to take us closest to
our goal but later turn out to have been non-optimal are not fatal to the
algorithm. However, the choice of intermediate objective function is still
crucial to the algorithm's success. Shape annealing has been applied to
component layout (Szykman and Cagan, 1994), the generation of truss
topologies (Reddy and Cagan, 1994), and geometric knapsack problems
(Cagan 1994a).

As stated earlier, although shape annealing is an optimally-directed
search technique, and produces good solutions, the final designs are rarely
the global optimum, and in many cases are far from it. In the following
section, we discuss the algorithm in more detail, and consider why this might
be the case.

3. Shape Annealing

Let G = (S, L, R, I) be a shape grammar, consisting of a set of shapes, S, a set
of labels, L, a set of shape rules, R, and an initial labeled shape I. Let f:(S,L)+
~ R be the objective function, mapping labeled shapes to real numbers. Let
T be a real-valued variable, called the temperature.

A state Sj is a labeled shape obtainable by recursively applying a
sequence of n rules from R to I (n ~ 0). Let f(sj) = Cj A shape annealing
move is then the application of a grammar rule rj to Sj or the retraction of
the last rule applied to obtain Sj, to obtain the labeled shape Si+l. Let f(Si+l)
= Cj+l' If Cj+l < Ci, then Sj+l is accepted as the next state. If Cj+l > Cj, then
Sj+l is accepted as the next state with a probability defined by

Pr(accepting Sj+l) = e-I(Cj+l - Cj)/T*Z(T)I

where Z(T) is a normalization factor. T decreases with time.
Although it can be proven that simulated annealing under certain

conditions relating to the parameters of the algorithm will always find the
global optimum, the conditions are unfeasibly restrictive for real
applications. At least the same restrictions apply to shape annealing.
However, it appears that when tested on the same problem, shape annealing
can produce inferior solutions to standard simulated annealing (Szykman
and Cagan, 1994). There are two main reasons for this. Firstly, as stated
above, the choice of objective function for intermediate designs is
significant. It appears to be harder to relate the early stages of a design to the
final design and make decisions on that basis than it does to represent
violations of constraints in fully instantiated designs and minimize those
violations. Secondly, there is a subtle difference in the implications of
accepting a move in the two algorithms. This point is discussed below.

MODIFIED SHAPE ANNEALING 63

In the original shape annealing application of Cagan and Mitchell
(1993), a design is produced by a sequence of moves, each one of which
constrains the subspace that is subsequently reachable. Each step in a
generation can thus be said to contribute to the final cost of the design by
imposing constraints on the costs that can be reached. After accepting a
particular move, in order to generate a design in the subspace that is outside
the resulting subspace, the shape annealing algorithm has to backtrack over
the moves responsible. The length of the move sequence generally grows
with time. However, the acceptance criterion becomes more discriminating
with time as the temperature drops. Thus decisions on whether rule
applications and retractions are accepted are not uniform over the length of
the sequence, and optimization is concentrated towards the end. If we had
complete knowledge of the design space and the objective function (i.e. we
could characterize completely the relationships between the states in the
space and the objective functions of the final designs below them) we would
see that the optimality of the individual moves increases with the length of
the sequence. This phenomenon was referred to implicitly in the original
paper by Cagan and Mitchell (1993), in which they discussed the way in
which the results are crucially dependent on the early choice of moves. In
other words, if we are fortunate in our initial choices, we end up with a
solution close to the optimum; if we are unfortunate, then no amount of
optimization at the end of the sequence will produce the optimum. (This is
not to say that the early moves in the sequence are randomly chosen, as the
algorithm frequently backtracks over those moves and tries alternatives. It is
simply that when the algorithm is concentrating on the early stages, the
acceptance criteria is loose, and as the criteria becomes more stringent and
the sequence lengthens, the algorithm is less able to backtrack long
distances). In addition, the algorithm has no memory of the states it has
visited, and once it has backtracked out of a superior path, it has no
knowledge of the previous objective functions it had discovered and may
subsequently settle on poorer states. Finally, it should be noted that shape
annealing in itself is not the cause of the above behavior, but its application
to generative systems in which each move narrows the space of reachable
designs. These arguments do not apply to systems in which any state can be
reached from almost any other state by forward rule applications - for
example, Reddy and Cagan's (1994) truss topology grammar. In this paper,
we restrict our comments to those systems in which a forward move does
limit our space of designs.

These comments suggest a number of possibilities for improving the
algorithm. One is to ensure that the objective functions at the early stages
better reflect the utility of the sub-spaces that the moves create, either by
finding a better objective function, or by changing the grammar so that the

64 KEN N. BROWN AND JON CAGAN

initial moves create better partitions of the whole space. A second is to
implement some form of memory, so that previous objective function
evaluations are incorporated in some way into the algorithm. A third to is
change the move set available to the algorithm to try to compensate for the
non-uniform optimization. Cagan and Kotovsky (1994) have investigated
the propagation of objective function evaluations from states to neighboring
states, effectively combining the memory approach with the improved
objective function approach. Schmidt and Cagan (1994) have considered
recursive annealing, in which design progresses through different levels of
abstraction, annealing at each stage, and thus providing better estimates of
subsequent costs when deciding upon moves at higher levels. For the
remainder of this paper, we will consider the third option, and investigate
alternative move sets.

4. Experiments

In the experiments described below, we had two main aims: to allow the
acceptance criterion to use information about the costs of subsequent states
in the algorithm, and to increase the likelihood of the algorithm
backtracking out of deep local optima. We compared seven different
backtracking strategies, sketched in Figure 1, and described below. In what
follows, we will refer to the current state as Sold, and the state the algorithm is
attempting to move to as Snew.

Sold is a state obtained by applying rules (fi l' ri2' ... , rin) to the initial shape.
Let COld be the old evaluated cost and Cnew be the new evaluated cost used in
the probability calculation.

A. Snew is the state obtained by applying a rule fin+l to Sold, or by retracting
fin' Cold = f(Sold), Cnew = f(snew)'

B. Snew is the state obtained by applying a rule rin+l to Sold, or by retracting
rules fin back to rij' for 1 :::; j :::; n. COld = f(Sold), Cnew = f(snew).

C. Snew is the state obtained by applying a rule rin+l to Sold, or by retracting
rules rin back to fij to get state Sj, followed by applying a rule ri/ to Sj. Cold =
f(fi/Sj», Cnew= f(snew)·

D. Snew is the state obtained by applying a rule rin+l to Sold, or by retracting
rules fin back to ri/o get state Sj, followed by applying a rule rij' to Sj. Cold =

f(Sold), Cnew = f(snew)·

A B c

?

MODIFIED SHAPE ANNEALING

•
~

*

D E

current state
candidate state
compared state

F

Figure 1. Alternative backtracking moves.

65

G

E. Snew is the state obtained by applying a rule fin+ 1 to sold, or by retracting
rules fin back to fi/O get state Sj, followed by applying rules fij', ... , fim', such

that m-j = min(n-j, x) for some fixed x. Cold = f(Sold), Cnew = f(snew).

F. Sold is a finished design. Snew is the finished design obtained by retracting
rules fin back to fij' for 1 ~ j ~ n, followed by applying rules rij', ... , rim'· Cold

= f(Sold), Cnew = f(snew)·

G. sold is a finished design. snewk for all k such that 1 ~ k ~ p, for some fixed
p, is the finished design obtained by retracting rules fin back to fij' for 1 ~ j
~ n, followed by applying rules rk/, ... , rkmk'. Snew is a state snewt such that

f(snewt) = min(f(sneWk)) for all k: 1 ~ k ~ p . Cold = f(Sold), Cnew = f(snew).

Move set A is the original shape annealing algorithm. B is intended to make
it easier to back out of local optimum, by allowing the retraction of an
arbitrary number of the applied rules. Although the probability of
acceptance will be lower than for any single backtrack step, it should be
higher than the accumulated probability of accepting the equivalent
sequence of single backtracking steps. For C and D, it was noted that
backtracking involves the loss of useful information. Suppose the transition
from Si to Si+l was a good transition, but that we backtrack to state si. The
algorithm will now accept any move that results in a better state than Si, even
though it may be much worse than si+ 1. We need some way of balancing the

66 KEN N. BROWN AND JON CAGAN

ability to backtrack out of local optima with the retention of information
from previous moves. Thus for C, a backtracking move consists of the
retraction of a number of rules to state Si, followed by a forward rule
application to give a new state Si+l'. Comparison of costs for the acceptance
criterion is then between Si+l and Si+l'. D is the same as C, except that
comparison is between Sn and Si + 1 '. E extends this "look forward" idea by
applying a number of forward rule applications (up to a limit) before
comparison. F is motivated by an attempt to use as good an estimate of the
final objective functions as possible. The best possible estimate is the
objective function for finished designs - therefore, in F, comparisons are
only made between completed designs. This algorithm first randomly
applies rules until a completed design is obtained; an annealing move then
consists of a backtrack to state Si, followed by a new random completion
from Si to sm'. The objective function values for Sn and sm' are then
compared as normal. Finally, G is based on F, except that after a backtrack, a
fixed sample of completions are generated, and the best completion is used
for comparison.

In order to test the various moves sets, we used a simple generative system
as a test problem. The problem was devised to have a seemingly obvious
optimum move at every stage, but with a small number of local optima. The
system generates descending lists of real numbers from 100 to o. Given a
partial list, a move consists of simply selecting the next element. Generally, a
move involves subtracting a number between 1 and 5 (in integer multiples of
0.01) from the current last element, Xi, to obtain the next element Xi+l, such
that Xi+l ~ O. However, there are a few exceptions. If Xi is between 61 and
62, then Xi+l = 55. If Xi is between 60 and 61, the Xi+l = 59.99. If Xi =
59.99, then Xi+l = 59.98. Corresponding exceptions apply to values in the
range 29.99 to 32. A more formal description of the system is given in the
appendix.

Our design task will be to generate short lists, and thus the objective
function for a completed list is simply its length minus 1. The optimum cost
is 20, and there are many lists with that cost, for example,

<100 95 90 85 80 75 7065 61.5 55 5045 40 35 31.2 25 20 15 10 5 0>.

Note that without knowledge of the structure of the space, the best move
at any time would appear to be to sll:btract the largest number possible from
Xi. However, in certain cases (where this would leave us in the ranges
[59.99,60.99] or [29.99,30.99]) the best move is actually to subtract a
smaller number. Thus a straightforward hill-climbing search with a naive
cost estimate, which always selects the best local move, will not find the
optimum cost.

MODIFIED SHAPE ANNEALING 67

In addition to the different move sets, we also implemented a number of
different intermediate objective functions, to see if there was a relationship
between objective function and move set. The cost functions are described
below.

Let L be a partial list of length N with last element i. Each cost function
uses an estimate of the number of moves required to complete the list, by
assuming an average decrement over all the moves. The "max(1000*i,0)"
function is to reward moves which complete the list when i < 1, and the lIN
factor in function 5 encourages forward generation.

1. f(L) = N + (i *100) + max(1000*i, 1)
("worst cost" - assumes an average decrement of 0.01).

2. f(L) = N + i + max(1000*i, 1)
("poor cost" - assumes an average decrement of 1).

3. f(L) = N + il2.5 + max(1000*i, 1)
("average cost" - assumes an average decrement of 2.5).

4. f(L) = N + il4 + max(1000*i, 1)
("good cost" - assumes an average decrement of 4).

5. f(L) = N + il5 + max(1000*i, 1) + lIN
("best cost" - assumes an average decrement of 5).

In running these experiments, the adaptive annealing schedule of Huang et
al. (1986) was used, which calculates initial temperatures, temperature
decrements and equilibrium criteria by statistical sampling of the algorithm's
performance. For determining the size of a backtracking move, we
considered five percentage bands (0-20%, 20-40%, etc.). First we select a
percentage band, compute the limits on backtracking that imposes, and then
randomly select a backtrack height within those limits. To select the
percentage band, we use the probabilistic move selection technique
suggested by Hustin and Sangiovanni-Vincentelli (1987). This technique
computes the average objective function change induced by each accepted
move type, and updates the probability of applying a move based on these
statistics. This ensures that there is a bias towards moves which are likely to
have the most effect on the objective functions at each temperature. We
expect large backtracks during the early stages of an annealing run, and
small backtracks during the later stages. Finally, to include a degree of
intelligence in the forward move selection, we have imposed a 25%
probability of selecting a decrement of 5 where appropriate.

68 KEN N. BROWN AND JON CAGAN

We ran algorithms A to E ten times each for each of the five cost
functions, and we ran F and G a total of ten times each (as F and G use the
evaluated objective functions for completed designs, the different cost
estimates do not apply). The results are tabulated in Table 1. The first row of
each block lists the average number of attempted moves. The second row
states the number of times the algorithm converges on its best solution, as
opposed to simply visiting it in the higher temperature stages, but
converging on poorer local optima. The "+" symbol indicates that in a
small number of cases, the algorithm converged around the best cost, but did
not actually settle on it. The third row contains the average best cost over the
ten runs - the numbers in brackets list the number of runs which produced
a completed list if this was less than ten. The fourth row lists the best cost
obtained over the ten runs, if a completed list was obtained .

5. Discussion

First, consider the first five algorithms (those not requmng a complete
generation at each move). From these results, it can be seen that in terms of
approaching the optimum, original shape annealing (A), although it does
find relatively short lists, is restricted by its limited backtracking strategy. In
general, B, which jumps back to higher states, produces better solutions in
fewer iterations. C is consistently best at finding the optimum for the first
four objective functions. However, it takes at least an order of magnitude
more iterations than the other algorithms, and rarely converges on its best
cost. The increase in the number of iterations is largely due to the irregular
cost comparison and Huang et al.' s method of calculating statistics based on
the average costs of the states at a given temperature. This increased number
of iterations allows the algorithm to sample more of the space, and it tends to
visit the optimum cost during the early to middle stages. Its inability to
converge on good solutions is also caused by the irregular comparison
method. The algorithm is able to backtrack at very little cost: by comparing
the costs of the states at the high level, it makes its decisions without
consideration of how close the previous state was to a complete list. Finally,
by comparing states at that level, decisions are taken solely in terms of the
local objective functions, and thus the algorithm gets caught in the "traps"
at values 60 and 30. D, which uses the same backtracking move but
compares the new state with the previous state, requires significantly fewer
iterations, and has better convergence. E, which extends the look ahead limit,
tends to converge more frequently on better solutions in less time.

MODIFIED SHAPE ANNEALING 69

TABLE 1. Results

A 1 2 3 4 5
iterations 79495 59545 54667 46083 89052
converge 0 0+ 1 + 7+ 0
average 26.9 27.1 25.9 21.1 26 (2)
best 23 26 22 20 26

B 1 2 3 4 5
iterations 58811 51275 30704 23631 101590
converge 1 + 2 8 8 0
average 26.5 24.6 23.3 20.5 *
best 24 21 22 20 *
C 1 2 3 4 5
iterations 217000 267858 330362 366261 181698
converge 0 0 0 0 0
average 20.5 20.4 20 20 21 (2)
best 20 20 20 20 21

D 1 2 3 4 5
iterations 94447 51503 49860 31359 65747
converge 1+ 1 + 4 10 0
average 24.1 23.5 22.2 20.6 21 (1)
best 23 21 21 20 21

E 1 2 3 4 5
iterations 94282 46986 48259 20633 31560
converge 0+ 2+ 4+ 9+ 8
average 23.7 22.9 21.4 20.4 20.44 (9)
best 22 22 21 20 20

F
iterations 65662
converge 6
average 21.4
best 21

G
iterations 9252
converge 8
average 20.7
best 20

70 KEN N. BROWN AND JON CAGAN

Note also that the different cost estimates also playa significant role. The
worst cost objective function (1) causes every forward move to be accepted,
and thus all optimization is carried out during the backtracking moves. As
the cost estimates improve, selection of forward moves becomes more
discriminating. Generally, the solutions improve as the local cost estimates
better reflect the final cost, except in the case of the "best cost" estimate (5),
which generally causes the algorithms to converge in the local optima. The
exception to this rule is E. It appears that the extended look ahead allows the
algorithm to backtrack out of the local optima by jumping over the moves
that trap the other variations, in both the "good cost" and "best cost"
objective functions. For the first three cost functions, E is also better, but less
markedly so. E's success may be attributed to the fact that it is able to jump
back above local optima, and then look ahead far enough to identify better
moves.

Finally, consider the performance of the two algorithms requiring
complete generations. The first (F) consistently finds and converges on good
solutions, in relatively few iterations, although each iteration is a longer and
more complex move than in the first 5 algorithms. However, F rarely finds
the optimum. G finds and converges on the optimum regularly, in fewer
iterations. In turn, though, each iteration for G is on average 10 times as
complex as for F, and the algorithm takes a correspondingly longer time to
finish. The improved performance of G appears to be due to the sampling of
final solutions compensating for the random nature of the forward
generation. Suppose in the mid to late stages of a run that the move from Sj

to Sj+I was a poor move, and that Sj appears relatively early in the move
sequence. Because we are at least in the middle of a run, we will have
optimized the moves below Sj+I to some extent. Suppose also that we now
backtrack to Sj, move forward to Sj+I' and then complete the generation, and
that the move to Sj+I' is better than the move to Sj+I in global terms. Because
the list completion from Sj + I' is random, it is unlikely to result in a better
final list than the part-optimized completion from Sj+I, and thus it is unlikely
to be accepted, even though the move from Sj to Sj + I' was better. For this
problem, the sampling of completions in G appears to be sufficient to direct
the algorithm towards the best moves.

Although E appears to be the most successful, care should be taken in
assuming that it is the best algorithm to use. The particular look ahead limit
imposed here may be suited to the particular local optima found in the
design space. In addition, it is probably also significant that the design space
is relatively uniform away from these optima, and a simple, regular cost
estimate is a good characterization of the space. With irregular spaces, it is
not clear that E would perform so well. In such cases, G, although slower,

MODIFIED SHAPE ANNEALING 71

may prove superior. More research is required relating the characteristics of
the design space to the move set and intermediate objective functions.

6. Conclusions

Shape annealing is a robust, efficient method for generating good solutions
in large design spaces. Its performance for those applications where a
forward move restricts the design space can be improved by modifying its
backtracking moves, incorporating a jump backtrack and limited look
ahead. Annealing based on the sampling of completed designs also improves
performance, although at the expense of time.

Acknowledgments

The authors would like to thank the National Science Foundation under
grants DDM-9300196 and DDM-925-8090, and United Technologies for
supporting this work. We also thank the members of the Computational
Design Laboratory, Carnegie Mellon University, for their contributions to
this work; in particular, Simon Szykman provided his implementation of the
dynamic simulated annealing algorithm, and spent a lot of time helping us
understand its behavior.

References

Brown, K. N., Sims Williams, 1. H. and McMahon, C. A: 1992, Grammars of features in
design, in J. S. Gero (ed.) Artificial Intelligence in Design '92, Kluwer Academic
Publishers, Dordrecht, pp. 287-306.

Brown, K. N., McMahon, C. A and Sims Williams, J. H.: 1993, The role of formal grammars
in the engineering design process, Internal Report, Department of Engineering
Mathematics, University of Bristol.

Brown, K. N., McMahon, C. A. and Sims Williams, J. H.: 1994a, Features, aka The
Semantics of a Formal Language of Manufacturing, Research in Engineering Design (to
appear).

Brown, K. N., McMahon, C. A and Sims Williams, J. H.: 1994b, Describing process plans
as the formal semantics of a language of shape, Artificial Intelligence in Engineering (to
appear).

Cagan, J., and Mitchell, W. J.: 1993, Optimally directed shape generation by shape
annealing, Environment and Planning B, 20, 5-12.

Cagan, J.: 1994a, A shape annealing solution to the constrained geometric knapsack
problem, Computer-Aided Design, 28(10), 763-769.

Cagan, 1.: 1994b, Research issues in the application of design grammars, in J. S. Gero and
E. Tyugu (eds), Formal Design Methods for CAD, North-Holland, Amsterdam, pp. 191-
198.

Cagan, J. and Kotovsky, K.: 1994, The generation of the objective function in a simulated
annealing model of problem solving, Working Paper, available from the authors.

Carlson, C.: 1994a, A tutorial introduction to grammatical programming, in J. S. Gero and
E. Tyugu (eds), Formal Design Methods for CAD, North-Holland, Amsterdam, pp. 73-84.

72 KEN N. BROWN AND JON CAGAN

Carlson, C.: 1994b, Design space description formalisms, in 1. S. Gero and E. Tyugu (eds),
Formal Design Methods for CAD, North-Holland, Amsterdam, pp. 121-131.

Fitzhorn, P. A.: 1989, A computational theory of design, Preprints NSF Engineering Design
Research Conference, College of Engineering, University of Massachusetts, Amherst.

Flemming, U.: 1987, More than the sum of their parts: The grammar of Queen Anne houses,
Environment and Planning E, 14, 323-350.

Heisserman, J. and Woodbury, R.: 1994, Geometric design with boundary solid grammars, in
J. S. Gero and E. Tyugu (eds), Formal Design Methods for CAD, North-Holland,
Amsterdam, pp. 85-105.

Huang, M. D., Romeo, R. and Sangiovanni-Vincentelli, A.: 1986, An efficient general
cooling schedule for simulated annealing algorithm, ICCAD-86 IEEE International
Conference on CAD, Digest of Technical Papers, Santa Clara, CA, pp. 381-384.

Hustin, S. and Sangiovanni-Vincentelli, A.: 1987, TIM, a new standard cell placement
program based on the simulated annealing algorithm, IEEE Physical Design Workshop on
Placement and Floorplanning, Hilton Head, Sc.

Kirkpatrick, S., Gelatt, C. D. Jr. and Vecchi, M. P.: 1983, Optimization by simulated
annealing, Science, 220(4598), 671-679.

Knuth, D.: 1968, Semantics of context-free languages, Mathematical Systems Theory, 2(2),
127-145.

McMahon, C. A., Sims Williams, J. H. and Brown, K. N.: 1993, A transformation model for
the integration of design computing, International Conference on Engineering Design
(ICED'93), The Hague.

Penjam, J.: 1990, Computational and attribute models of formal languages, Theoretical
Computer Science, 71, 241-264.

Reddy, G. and Cagan, 1.: 1995, An improved shape annealing algorithm for truss topology
generation, ASME Journal of Mechanical Design, 117(2A), 315-321.

Rinderle, J. R.: 1991, Grammatical approaches to engineering design, Part II: Melding
configuration and parametric design using attribute grammars, Research in Engineering
Design, 2(3), 137-146.

Schmidt, L. C. and Cagan, J.: 1995, Recursive annealing: A computational model for
machine design, Research in Engineering Design, 7, 102-125.

Stiny, G. and Mitchell, W. J.: 1978, The Palladian Grammar, Environment and Planning E,
5, 5-18.

Stiny, G.: 1980, Introduction to shape and shape grammars, Environment and Planning E, 7,
343-351.

Stiny, G. and March, L.: 1981, Design machines, Environment and Planning E, 8, 245-255.
Stiny, G.: 1981, A note on the description of designs, Environment and Planning E, 8, 257-

267.
Stiny, G.: 1991, The algebras of design, Research in Engineering Design, 2(3), 171-181.
Szykman, S. and Cagan, J.: 1995, A simulated annealing approach to three dimensional

component packing, ASME Journal of Mechanical Design, 117(2A), 308-314.

MODIFIED SHAPE ANNEALING 73

Appendix

Symbols: {<, >}

Initial list: < 100 >

X and Y are real-valued variables.

Rules:

1) X > -7 X max(X - Y, 0) > where X < 29.99 or 32 ~ X < 59.99 or 62 ~ X ~ 100
and Y E {O.OI, 0.02, ... ,4.99, 5}

2) X> -7 X 55 > where 61~ X < 62

3) X> -7 X 59.99 > where 60 ~ X < 61

4) 59.99 > -7 59.99 59.98 >

5) X> -7 X 25 > where 31~ X < 32

6) X> -7 X 29.99 > where 30 ~ X < 31

7) 29.99 > -7 29.99 29.98 >

5

INCORPORATING HEURISTICS AND A META-ARCHITECTURE IN
A GENETIC ALGORITHM FOR HARNESS DESIGN

CARLOS ZOZA YA-GOROSTIZA AND LUIS. F. ESTRADA
Instituto Tecnol6gico Aut6nomo de Mexico, Mexico

Abstract. This paper presents some recent results that were obtained when a basic
genetic algorithm (GA) for optimizing the cost of electrical wire harnesses was
modified. These modifications included the incorporation of two operators that were
specific for the problem being solved: a) a gauge propagation operator, and b) an
operator that attempts to improve a solution by randomly changing wire gauges
associated with a particular device of the harness. In addition, the modified GA included
the implementation of a meta-architecture that was useful to overcome the problem of
finding a set of good input parameters for running the single-layered GA. These
modifications differ from other general purpose techniques that have been suggested for
improving the search in GAs. Results obtained with the modified GA for an example
harness showed that the modifications were helpful for improving the effectiveness and
efficiency of the basic GA.

1. Introduction

The design and optullization of the wire harnesses that compose the
electrical system of a vehicle is a complex and challenging task. It involves
coming up with a product that not only is easy to manufacture at a low cost,
but that also satisfies a set of multiple design constraints. Some of the
constraints that have to be considered when designing an automotive wire
harness include physical constraints related to the physical configuration of
the vehicle; thermal constraints related to the behavior of wires conducting
the currents required to operate the electrical devices to which the harnesses
of the vehicle are connected; voltage constraints associated with the
minimum voltage that each of these devices requires to operate properly;
and other constraints related to the manufacturability and maintainability of
the product.

Recent studies have shown that the use of computer tools for optimizing
the cost of the harness can lead to important savings in the cost of the

76 CARLOS ZOZAYA-GOROSTIZA AND LUIS. F. ESTRADA

product and to more reliable designs. Previous work with genetic algorithms
(GAs) in this problem has shown that this technique can lead to lower cost
solutions than those found with mathematical programming or heuristic
methods (Zozaya-Gorostiza, Sudarbo and Estrada, 1994). One reason for
this is that GAs search for solutions effectively regardless of the convexity of
the search space (Goldberg, 1989). However, using a general purpose GA
for this problem required many evaluations of possible solutions before
finding low cost solutions that were comparable with those found by other
methods. In addition, our experiments showed that the GA was very sensitive
to the set of parameters used in its application. As a result, we decided to
explore on modifying the basic GA for improving its performance in this
particular problem.

In this article, we describe some modifications that were incorporated in
the basic GA described in (Zozaya-Gorostiza, Sudarbo and Estrada, 1994) to
improve its behavior. In particular, the incorporation of design heuristics and
the development of a meta-architecture that is used to find appropriate
values for the parameters of the single-layered GA were included. The
modifications that incorporate design heuristics into new genetic operators
differ from other techniques that have been suggested for improving the
search in a general purpose GA (Booker, 1987; Back, 1992), as explained in
section 4. The results obtained with the modified GA showed that these
changes were helpful for improving the effectiveness and efficiency of the
basic GA.

The article is organized as follows. First, a description of the problem
being addressed is presented, with a brief discussion on the results obtained
when trying to solve it by using a heuristic search program and a
mathematical programming model. This presentation is followed by a
description of how GA were initially applied to the harness optimization
problem. Then, the modifications that were incorporated into this basic GA
are described. Finally, the results that we observed in the performance of the
modified GA for an example harness are discussed.

2. Harness Optimization

Harness optimization is the process that involves obtaining a set of
appropriate wire gauges for a particular harness topology. It may be
considered a subprocess of the broader problem of harness design. When
conceptualizing a new harness, the designer creates a layout of the electrical
system, decides upon its main electrical components and specifies an initial
set of wire gauges and fuse sizes for the harness. Then, he or she tries to
identify potential reductions in cost for a given layout of the electrical
system (i.e., the harness topology) and a given set of devices to be operated
in order to optimize the cost of the harness.

HEURISTICS AND A META-ARCHITECTURE IN A GA 77

Harness optimization is not a simple task. On one hand, the designer tries
to use as small wire gauges as possible to minimize the cost of the harness;
but on the other, wire gauges have to be large enough to provide all devices
with enough voltage to operate appropriately and to be able to transmit the
corresponding current intensities without burning.

Figure 1 shows an example of a harness layout that may the used to
illustrate the activities involved in the harness optimization process:

Initially, the designer has the following information regarding the harness
layout: length and insulation type of each of the wires (A through I),
minimum current and voltage required by each device (1 through 3),
connecting points for each wire and voltage intensity of the battery (+).

Depending on the minimum current intensity required for each device to
operate, each of the wires of the harness will need to transmit a particular
value of current; this computation is straightforward unless the harness
has switches that constrain the simultaneous operation of the devices. For
example, the current transmitted by wires Band F will be at least equal to
the current required by device 1 to operate; the current in wire I will be
the sum of the currents in wires F and G, and so forth.
Based on these currents, the designer identifies which is the minimum
gauge that each wire needs to have in order to be able to transmit the
corresponding current value. In this task, the designer is helped by a
thermal model that provides information about the temperature reached
by a particular wire, as a function of the current intensity being
transmitted, the insulation type and thickness of the wire, the temperature
of the environment surrounding the wire, and the gauge of the wire. This
model also provides the designer with information about the voltage drop
that will be present along the wire per unit length.

• Having identified the set of minimum gauges for the wires, the designer
evaluates whether all devices have enough voltage to operate properly. If
this were the case, the current harness design would be optimum for the
given layout and device information. However, it is usual to find multiple
devices without enough voltage to operate.

• The designer has to increase the gauges of some of the wires of the
harness in order to provide all devices with the required voltages. At this
point, the designer is faced with multiple choices. For example, if devices
1 and 2 of the example layout require more voltage, the designer can
increase the voltage of any of the wires, except wires E and H, to provide
them with more voltage. Furthermore, we can have multiple possibilities
for satisfying the voltage constraints associated with these devices, and
each of them has a different cost.

78 CARLOS ZOZA Y A-GOROSTIZA AND LUIS. F. ESTRADA

B

A

C

Figure 1. Example of a harness layout.

At this moment, the reader might argue that the problem can be
formalized as a mathematical program, where the objective function is
expressed as the minimization of the cost of the harness (I CijXij, where Cij
is the cost of wire i for gauge value j, and Xij is a binary variable that is set to
1 when wire i is assigned gauge value j), and voltage requirements are
expressed as constraints of the model. In fact, this assertion is true, but only
for harness layouts where all devices are connected in parallel (as in Figure
1) since all voltage constraints can be expressed as linear functions. For
example, the voltage constraint associated with the first device would be
expressed as follows:

Vbatt - VdropA - VdropB - VdropF - VdropI ~ VminDev1

where Vbatt is the voltage provided by the battery, V dropA through V dropI
are the voltage drops observed at each of the wires that are in the path that
leads from the device being considered (i.e., Device 1) to the battery and to
the ground (and can be expressed as a function of the wire gauges), and
VminDev1 is the minimum voltage required by device 1 to operate properly.

In more complex topologies, however, the use of a mathematical model is
not straightforward. For example, consider the harness topology shown in
Figure 2. For this topology, we can describe the voltage restrictions on
devices 1 and 2 as linear functions; however, the voltage restriction on device
3 is not a linear function of the voltage drops observed in some of the wires
of the harness. Furthermore, our research (Zozaya-Gorostiza, Sudarbo and
Estrada, 1994) has shown that even if the mathematical model can be
formulated, the results obtained when solving the model using powerful
modeling tools such as GAMS (Brooke, Kendrick and Meeraus, 1987) are
not optimal.

An initial approach in trying to solve the harness optimization problem
was the development of OPTAR (Zozaya-Gorostiza, 1991). OPTAR
implemented a hill-climbing heuristic search procedure in which the gauge
of a selected wire was increased to the next allowable gauge value for each
iteration of the algorithm until all devices had enough voltage to operate.

HEURISTICS AND A META-ARCHITECTURE IN A GA 79

Wires were selected using a heuristic formula that included the number of
devices that were affected by each wire, the marginal cost incurred when
increasing the corresponding gauge, and the additional voltage supplied
when doing this gauge change. The results obtained with OPTAR received
encouraging comments from harness designers of the Packard Electric
Division of General Motors, because at that moment the only tools available
to support the harness design process were some simulation packages and
empirical models (O'Keefe, 1989; Styer and Burns, 1990).

Figure 2. Example of three devices that are not connected in parallel.

The next attempt was to use genetic algorithms for improving the results
obtained by OPTAR. This technique had shown good results when applied
to other design and optimization problems, and have the power to search in
complex solution spaces regardless of their shape. In the next section we
summarize how we initially used this technique for solving the harness
optimization problem.

3. Basic Genetic Algorithm

Genetic algorithms (GAs) are search methods based on the mechanics of
natural selection and genetics (Holland, 1975). They employ string
structures (called chromosomes) to represent sets of solution variables and a
fitness function to evaluate these sets. New solutions are obtained through a
combination of the material included in these strings by means of different
genetic operators. A simple genetic algorithm uses various kinds of random
operators: a selection operator identifies those chromosomes that may be
used to generate new chromosomes, a crossover operator creates two
children chromosomes by randomly exchanging portions of the parent
chromosomes, and a mutation operator randomly modifies parts of the
strings. In addition, a GA has a replacement operator that inserts and
replaces chromosomes of a certain population to create a new one. Starting
with an initial population, the GA proceeds iteratively until a stopping
criteria is achieved. Each iteration in which a new population is obtained is
known as a generation (see Figure 3).

80 CARLOS ZOZAYA-GOROSTIZA AND LUIS. F. ESTRADA

Population N Population N+l
I I
I I
I I

Evaluation

I . ..J
Selection l I I I I J

I&S$SSS9 I Crossover I
&

Mutation

......

./

I '\1, I
l$SSi II

Figure 3. Operation of a basic GA.

I I
I I
I I

l'

In our initial application of a GA to the harness optimization problem, we
used binary strings to represent the set of wire gauges associated with a
particular harness design. Each wire gauge was represented by 4 bits, and the
chromosome was formed by concatenating these segments for all the wires
in the harness. The order in which these 4 bit segments are concatenated IS

completely independent from the harness topology (see Figure 4).

I 0110 0111 11 00 1110...... 0010 I +-- Chromosome

Wire 1 Wire2 Wire3 Wire 4 Wire N 1 Decoding

'--_12 ___ 10 __ 2 _______ 18_-'1...-- Set of Wire Gauges

Wire 1 Wire2 Wire3 Wire 4 Wire N l Cost & Voltages

Fitness Evaluation

Figure 4. Harness representation and decodification.

The initial population was randomly generated by taking into
consideration all possible gauge values a wire might have (22, 20, 18, 16, 14,
12, 10, 8, 6, 4, 2, 1 and 0), and the evaluation function was responsible for a)
decoding the chromosomes into a set of gauge values, b) computing the
fitness of the chromosome by considering the cost of the solution being
represented, the violation to the voltage constraints of the devices and . the
violation of the thermal constraints on each wire. In the basic GA, decoding
is performed by linearly mapping the 16 possible values obtained by the 4-
bit segment to the 13 possible gauge values; for example, if the 4-bit
segment consists is 1110, the associated gauge value would be the 12th
element (i.e., round(l3*(14+1)116)= 12) of the set of possible gauge values,
which is equal to value 1. The selection, crossover, mutation and replacement

HEURISTICS AND A META-ARCHITECTURE IN A GA 81

operators were used to generate the next population of solutions, and the
procedure continued until a predefined value of generations was achieved.

Figure 5 shows an example of how the crossover operator is applied to a
pair of parent chromosomes. A random number that represents the position
of the string that will be used to exchange the genetic material of the two
parents, called the locus for crossing, is generated. The children
chromosomes are generated by exchanging left and right portions of the two
chromosomes with respect to the locus position. It is interesting to note that
even though the only wire whose gauge changed in the children
chromosomes was wire 3, the set of wire gauges in the children chromosome
represent different configurations for the harness.

I Locus for crossing::;: 11

, 0110 0111 11?0 1110...... 0010 ,
Wire 1 Wire2 Wife3 Wire 4 Wire N ----. .------

0011 1111 0101 0111 1 1 1100
Wire 1 Wire2 W~e3 Wire 4 Wire N

! 1 Crossover

1 0110 0111 1101 0101...... 0111 ,
Wirel Wire2 Wire3 Wire 4 Wire N _____

1 1100 0011 1110 1110...... 0010 ,----

Wire 1 Wire2 Wire3 Wire 4 Wire N

Figure 5. Crossover operator.

4. Modified Genetic Algorithm

Parent
Chromosomes

Children
Chromosomes

The results obtained with the basic GA described in the previous section were
stimulating. In fact, we were able to obtain better solutions than those
obtained with the GAMS model. However, we found that the basic GA
required a large number of evaluations to obtain designs that were
comparable in cost and performance than those obtained by the other
techniques (i.e., mathematical programming and heuristic search) described
earlier.

In order to improve the efficiency and effectiveness of the GA, we
decided to incorporate various heuristics associated with the design of
electrical wire harnesses. These heuristics include:

including chromosomes with minimal gauges in the initial popUlation;
• using an operator that modifies the chromosomes according to a design

heuristic;

82 CARLOS ZOZA YA-GOROSTIZA AND LUIS. F. ESTRADA

• mapping the gauge values obtained when decoding the chromosomes to
values greater than or equal to the minimal gauges; and

• using an operator that inserts new chromosomes into the population.
In addition, we found that the basic GA was very sensitive to its input

parameters. After various attempts to obtain a good and robust set of
parameters, we implemented a meta-architecture that could provide us with
appropriate input parameters. In the discussion that follows we describe how
these modifications to the GA were implemented.

4.1. INITIAL POPULATION

In the basic GA, the initial population was generated randomly by allowing
each wire to take any possible gauge value. In this population, each solution
(i.e., chromosome) might have gauge values that violate the thermal
restrictions associated with the type of insulation of the wire.

In the modified GA, the initial population is obtained by using the
minimal gauges that are thermally feasible for each wire. Some
chromosomes with these values are introduced in the population, and the rest
of the population is generated by using the crossover and mutation
operations on these chromosomes. These genetic operators are applied with
high probability values (0.8 and 0.01 respectively) to ensure that there is
enough diversity in the initial population. After these operators are applied,
resulting gauge values are mapped to the set of thermally feasible gauge
values to ensure that there are no violations in the thermal constraints of the
design problem.

4.2. GAUGE PROP AGA TION

A simple design heuristic in the case of electrical wire harnesses requires that
the gauge of a cable that splits into two or more cables is greater than 0 r
equal to the gauges of these cables. Conversely, if two or more cables join
into another cable, the former cables have to have a gauge value that is less
than or equal to the gage of the latter cable. Figure 6 illustrates this
heuristic: the gauge value of cable A has to be greater than or equal to the
gauge values of cables Band C, and cables X and Y have to have gauge
values that are less than or equal to the gauge value of cable Z.

WireB
Wire A

Wire C
Gauge A >= Gauge B

Gauge A >= Gauge C

Wire X

__ --'I Wire Z

WireY

Gauge Z >= Gauge X

Gauge Z >= Gauge Y

Figure 6. Gauge heuristic.

HEURISTICS AND A META-ARCHITECTURE IN A GA 83

In a GA, this heuristic can be violated when the crossover or mutation
operators are applied to generate new chromosomes in the population. In the
modified GA, we use a gauge propagation operator that adjust gauge values
to comply with this heuristic. This operator allows the GA to reduce wide
gauge values in wires that, because of their location in the topology of the
harness, may have thinner gauge values.

The application of the gauge propagation operator is not deterministic.
Even with the heuristic it is impossible to know if the propagation has to be
"upwards" (i.e., towards the devices or the harness) or "downwards" (i.e.,
towards the battery or the ground). Considering the examples shown in
Figure 6, and assuming that in a particular chromosome the gauge of wire A
is less than or equal to the gauge of wire B, we have two manners of
complying with the gauge heuristic:
• to increase the value of wire A, which takes us to a harness with higher

cost but more voltage to those devices that are affected wire A;
• to decrease the value of wire B, which takes us to a harness with lower

cost but less voltage to those devices affected by wire B.
In the GA, the voltage available to each device of the harness is computed

by the fitness function of the algorithm. Therefore, it is impossible to know
which decision might be more appropriate. Furthermore, we did not want to
create a deterministic operator that would constrain the search for new
solutions. As a result, the gauge propagation operator is applied either
"upwards" or "downwards" randomly, and the wire that is used as the
starting point in this operation is also selected in a random manner.

Another possibility that could have been explored to comply with the
design heuristic would have been to modify the crossover and mutation
operators directly. This modification would have implied to alter these
operators so that the chromosomes that are being generated do not violate
the heuristic. For example, in the crossover operator, we could have modified
the manner how the locus for crossover is selected, or we could have
implemented a loop to apply this operator as many times as needed until a
new individual that complies with the heuristic is obtained. It is also possible
to include the heuristic as part of the evaluation function so that
chromosomes that comply with it have higher fitness values.

In our GA we decided not to alter the basic GA operators directly. The
gauge propagation operator is applied randomly using a new input
parameter called the propagation probability. We generate a random
number for each chromosome in the population, and if it is less than or
equal to the propagation probability, the propagation process is applied. In
this case, a new random number is generated to select the wire that will be
used as the starting point of the propagation and another number to decide
whether the propagation is "upwards" or "downwards". Then, we search in

84 CARLOS ZOZA Y A-GOROSTIZA AND LUIS. F. ESTRADA

the chosen selection for wires that violate the design heuristics and alter their
gauge values to comply with it. The random selection of the wire chosen as
the starting point allows the GA to incorporate new genetic material into the
population and to obtain different modified individuals even if the operator
is applied in identical chromosomes. In addition, the compliance with the
design heuristic was also included as part of the evaluation function in order
to penalize those individuals that violate this heuristic. Figure 7 shows an
example of the application of the gauge propagation operator for a sample
harness topology.

Harness topology

WireB

CD Wire All----_

Original Gauge Values

Wire A I Wire B I Wire C
16 I 12 I 18

WireC

Type of From
Gauge Values after
Propagation

Propagation Wire Wire A WireB WireC
Upwards A 16 16 18
Downwards B 12 12 18
Downwards C 18 12 18

Figure 7. Gauge propagation.

Gauge propagation can be undertaken easily by representing the wire
harness by double linked lists. This representation allows the operator to
navigate upwards or downwards in the structure of the harness from a
particular wire. Recursive functions are used to implement this navigation.
Two data structures are used to represent the topology of the harness. The
primary structure stores the identifier of the cable and two pointers, one that
points to the "father" wire of the cable, and one to the first of its "s 0 n s " .
The second structure is used to identify all cables that are at the same level of
ramification.

4.3. GAUGE MAPPING

Another type of heuristic that was implemented consisted of mapping the
values that are obtained from the execution of the crossover and mutation
operators. Since we use 4 bits to represent each wire, the set of 16 possible
values that may be obtained with these four bits have to be mapped to the set
of possible gauge values. In a simple GA, each wire might have any of the

HEURISTICS AND A META-ARCHITECTURE IN A GA 85

13 gauge values described earlier. However, some of these values might
violate the thermal constraints associated with its type of insulation. For
example, if a wire transmits a high current value, a gauge value of 22 or 20·
might cause its insulation to melt. Therefore, we represent the minimal gauge
values that were obtained using the thermal model RADWIRE, and map the
16 possible 4-bit values to those wire gauges that are wider than these
minimum values. This modification of the simple GA ensures that all the
individuals of the population comply with the thermal constraints of the
model. In other words, this mapping allows us to exclude the satisfaction of
the thermal constraints from the fitness function of the algorithm.

Gauge mapping is implemented in a straightforward manner. The value
associated with the 4 bits of a wire is divided by 16 and multiplied by a
number that represents the size of the set of possible gauge values for this
wire. If all gauge values are permitted (i.e., the cable transmits a low current
intensity), this number is 13. However, for wires with higher current
intensities, this number might range from 13 to 1. The result is used as an
index for finding the corresponding wire gauge.

4.4. INSERTION OF IMPROVED CHROMOSOMES

When a GA is being executed, the fitness of the solutions being generated
improves through the iterations of the algorithm. However, the convergence
of the algorithm is slower as the algorithm finds better solutions to the
problem. In the case of our GA, the basic algorithm converged rapidly
during the first generations (l00 to 200) but it found difficult to improve
this solutions after these initial iterations.

In order to deal with this problem, several authors have discussed
mechanisms to ensure the diversity of the population (Goldberg, 1989).
However, our experiments showed that diversity was not the cause of the
problem; what we needed was a mechanism that would fine-tune the
solutions being proposed in order to improve the effectiveness and
efficiency of the algorithm.

We modified the basic GA to include an operator that a) proposes
cheaper solutions for a given chromosome by trying to reduce the gauges of
some of the wires without affecting the performance of the devices of the
harness, or b) attempts to satisfy the required voltage for particular devices.
This operator takes the best solution found in a given population (i.e., the
one that has the higher value of the fitness function), picks a particular
device of the harness, and explores whether it can reduce or increase the
gauges of the wires that are in the path that leads from this device to the
battery, or from this device to the ground, in order to reduce the cost of the
harness without violating the constraint associated with the minimum voltage
of this device, or provide it with enough voltage to operate.

86 CARLOS ZOZA Y A-GOROSTIZA AND LUIS. F. ESTRADA

The operator proposes solutions using a procedure that resembles a hill­
climbing type of search. Since this technique can lead to local optima, we
decided to use it carefully in order not to affect the benefits of using a GA.
The operator is executed only after the GA has been run through a given
number of iterations, in order to ensure that it has already explored a good
portion of the search space.'

The operator that proposes an improved solution for a given
chromosome, works as follows:
1. We give the GA as inputs several variables that indicate whether this

operator should or should not be applied, the starting generation for
using this operator, and a constant that represents the gap between
generations in which the operator should be applied.

2. When the modified GA gets to the point at which the operator may be
applied, the algorithm picks the best solution found in the preceding
population.

3. The GA identifies those wires that are associated with the first device of
the harness (i.e., those whose gauge values affect the available voltage in
this device) and selects one of them randomly.

4. The gauge of this particular wire is decreased to the next allowable lower
value of those thermally feasible. As a result, the available voltage for the
device and the total cost of the harness are reduced. The algorithm then
checks whether the selected device has still enough voltage to operate. If
this is the case, the algorithm goes to step 8; otherwise, the gauge of the
wire is restored to its original value and the algorithm goes to step 5.

5. If the device being analyzed does not have enough voltage to operate, the
gauge of the selected wire is increased to the next allowable higher value.
As a result, the available voltage for the device is also increased. The
algorithm then checks whether the selected device has enough voltage to
operate. If this is the case, the algorithm goes to step 8; otherwise, the
gauge is restored to its original value and the algorithm goes to step 6.

6. In the case in which no improvements could be made in the cost of the
harness (by reducing the gauge of the selected wire in step 4) or in the
satisfaction of the voltage constraint of the device (by increasing the
gauge of the selected wire in step 5), the algorithm picks randomly
another cable of those associated with the device. If all the wires
identified in step 3, or if five of these wires have already been selected,
the algorithm stops; otherwise, the algorithm returns to step 4 with the
newly selected wire.

7. If none of the gauge changes proposed was useful for satisfying the
voltage in the device or for reducing the cost of the harness, the
algorithm selects randomly one of the wires identified in step 3 and
applies the gauge propagation operator. This is performed in order to
force the insertion of new genetic material into the population.

HEURISTICS AND A META-ARCHITECTURE IN A GA 87

8. The new combination of wire gauges is introduced in the best individual
of the preceding generation, and the modified chromosome is included
into the new population.

9. The algorithm repeats steps 4 through 8 for the remaining devices of the
harness, so that one new individual is introduced into the new population
for each device.

4.5. META-ARCHITECTURE

One of the problems that we found when using GA to optimize wire harness
costs was the selection of appropriate input parameters for the GA. Even with
the incorporation of the mechanisms described in the previous section, the
performance of the GA was very sensitive to the set of input parameters
being used. Initially, we attempted to find a set of good input parameters
using a manual trial-and-error procedure. However, the results obtained with
this method were not encouraging. Therefore, we decided to explore other
alternatives and an innovative idea was to use a meta-population in which the
meta-chromosomes represented various combinations of input parameters
for running the modified GA. This allowed us to use the same genetic
operators in order to find the set of inputs we were looking for.

In the meta-population, each individual (i.e., meta-individual represented
as a meta-chromosome) stores information of the following six input
parameters for the modified GA (see Figure 8): three associated with the
probabilities in which the GA operators will be applied (crossover, mutation
and gauge propagation), and three associated with the relative weight for
each term of the fitness function (satisfaction of voltage constraints, cost of
the harness, and satisfaction of the design heuristic). Again, we used 4 bits
for representing the values of each of these parameters, and we encapsulated
these bits using two unsigned integers in a similar manner how we
represented the wires in the regular population.

Unsigned integer 1 Unsigned integer 2

Crossover Mutation Propagation Voltage Cost Propagation
Probability Probability Probability Weight Weight Weight

1011 0011 1101 0010 1101 0011

Probabilities for applying the different Relative weights for each term of the
Operators Fitness Function

Figure 8. Representation of a meta-chromosome.

88 CARLOS ZOZAYA-GOROSTIZA AND LUIS. F. ESTRADA

Mapping of values was done by considering that the crossover and
propagation probabilities could have values that range from 0 to 1 in
increments of 0.1, and that mutation probabilities could have values ranging
from 0 to 0.01 in multiples of 0.001. Similarly, the allowable values for the
relative weights of each of the parameters in the fitness function was done by
taking a range from 0 to 100% in mUltiples of 10% for each of the weights.
However, since we want to ensure that the sum of the relative weights is
always set to 100%, the GA adjusts these weights by increasing or decreasing
them until this sum is satisfied. If the sum is greater than 100%, the
algorithm reduces the relative weights associated with the satisfaction of the
design heuristic, the voltage constraints or the cost, in this order, until the
sum is set to 100%. If the sum is less than 100%, the algorithm increases the
weight values in the opposite order until the sum is satisfied.

Figure 9 shows the operation of the Meta-GA (i.e., the modified GA with
a meta-architecture). For each meta-individual (1 through M), the lower level
GA is run independently through N generations with the set of input
parameters stored in the meta-individual. At the end of each meta­
generation, each meta-individual is associated with the best solution found in
the corresponding population N of the lower level GA, and the GA will
proceed to combine the genetic material of these meta-individuals to come
up with new sets of parameters (i.e., new meta-individuals) for running the
modified GA.

META-POPULATION 1 META-POPULATION 1+1
S 1 . Replacemenr t _________ •

,...------------,. e ectJon ~

Crossover
meta-chromosome 1 & Mutation meta-chromosome 1

T
Fitness

Evaluation of
Meta-chromosome

Input
Params

Figure 9. Operation of the meta-genetic algorithm.

HEURISTICS AND A META-ARCHITECTURE IN A GA 89

In order to provide a GA with a self-adaptation mechanism, other authors
such as Back (1992) have incorporated additional bits into the chromosomes
of a the GA for representing varying mutation probabilities. With this
representation, each individual of the population may have associated a
different set of mutation probabilities that control the execution of the
mutation operator. Our solution differs from this idea for three main
reasons: a) we provide the algorithm with the possibility of changing not
only the values of mutation probabilities, but also the five other parameters
of the GA described in Figure 8 (i.e., crossover and propagation
probabilities, and the three relative weights of the fitness function); b) the
adaptation of parameters in our modified GA is performed by combining
the genetic material in the meta-chromosomes of the meta-popUlation, and
not by combining the genetic material in the chromosomes of the lower level
population; c) for each meta-individual, the parameters encoded in its
representation are taken as constant input parameters through all the N
popUlations of the lower level GA associated with it.

At this point it is important to consider how to rank the meta-individuals
in order to select which of them are more appropriate for being used for the
application of crossover and mutation operators in the meta-population.
Initially, one could consider using the fitness of the best individual in the
lower level population as the basis for comparison. However, the problem
with this alternative is that this fitness depends on the relative weights
assigned to the voltage, cost and design heuristic, which are parameters
encoded in the meta-individual. Therefore, an individual which has a good
fitness value in one of the populations might have a bad fitness value in
another. In other words, the fitness value associated with the best individuals
cannot be used directly to rank the meta-individuals.

In the literature, we found no straightforward recommendation for
solving this problem; in fact, we did not find a reference where a meta­
architecture is implemented in a GA to find a good set of parameters for a
lower level GA, since other solutions deal only with single-layered GAs
(Booker, 1987; Back, 1992). As a result, we thought of two alternatives:

To evaluate the best individuals associated with the meta-chromosomes
using a common set of weights (i.e., a meta-fitness function); or

To evaluate the best individuals associated with the meta-chromosomes
by considering only the cost of the harness, and penalizing the
evaluation by taking into account how many devices do not satisfy the
voltage constraints.

The problem with using the first alternative was that we need to come up
with a set of parameters for the meta-fitness function. For the second
alternative we used the following formula, which is expressed as a function
of terms that do not depend on a set of predefined weights:

90 CARLOS ZOZAYA-GOROSTIZA AND LUIS. F. ESTRADA

fitness = (minimum costlcost of the best individual) * (no. of satisfied
devices/no. of devices)

where:
• minimum cost is the cost of a harness with the minimum wire gauges

that satisfy the thermal constraints.
• cost of the best individual is the cost of the individual with highest

fitness in the last generation of the lower level GA obtained using the
parameters encoded in the meta-chromosome.

• no. of satisfied devices is the number of devices that have enough
voltage to operate appropriately in the individual with highest fitness in
the last generation of the lower level GA obtained using the parameters
encoded in the meta-chromosome.

• no. of devices is the total number of devices in the harness being
designed.
Once each meta-individual has an associated fitness value, the genetic

material of the meta-individuals is exchanged using regular crossover and
mutation operators. These operators are used to create new meta-individuals
which are included in the new meta-population. As in the lower level GA, we
include the best meta-individual from the previous generation into this new
population to ensure a monotonic behavior of the GA.

5. Results

To measure the performance of our GA we used the same example harness
that we had used in our previous research with heuristic search (Greiff and
Zozaya-Gorostiza, 1989), mathematical programming and a basic GA
(Zozaya-Gorostiza, Sudarbo and Estrada, 1994); this harness has 26 wires
and 7 devices. The purpose of using the same harness was to be able to
isolate the benefits obtained when using the meta-architecture and the new
operators described in the previous section. As mentioned earlier, this
harness has all its devices connected in parallel, and therefore it can be
modeled using a simple mathematical program.

In the following graphs, we present the average results obtained by doing
ten runs of the GA for a given set of parameters. Each point corresponds to
the best individual found on multiples of ten generations. All the solutions
satisfy the thermal restrictions on the wires, since we always decoded the
chromosomes by mapping to allowable gauge values that do not violate
these constraints. Also, since we are interested only in solutions that provide
enough voltage to the devices, we only plot those solutions that satisfy this
second type of constraints. Therefore, if the algorithm was run for a total of
400 generations, the graph might have less than 40 points.

~

HEURISTICS AND A META-ARCHITECTURE IN A GA 91

Graphs are ordered to illustrate the benefits obtained when a new
operator was included in the basic GA. The performance of the GA when all
the modifications as well as the meta-architecture were incorporated IS

shown in Figure 13. The other graphs show the performance of the GA
without using the meta-architecture, for a given set of input parameters.

5.1. RESULTS OF THE BASIC GA

Figure 10 shows the performance of the basic algorithm through 400
generations for different values of the crossover and mutation probabilities.
The algorithm performs better for high values of the crossover probability
and for low values in the mutation probability.

--II.- Cross=O.2,Mut.=0.008 ------.. Cross=0.5,Mut.=O.005 --II.- Cross=0.8,Mut.=0.002

J
24000

22000

20000

18000

16000

14000

12000

10000
0 50 100 150 200 250 300 350 400

Generations

Figure 10. Performance for different values of crossover and mutation probabilities
(Cost weight: 0.4, Voltage weight: 0.6, Population size: 30)

5.2. EFFECTS OF THE GAUGE PROPAGATION OPERATOR

As mentioned earlier, gauge propagation has the objective of making more
effective the performance of the GA by obtaining solutions that comply with
the design heuristic described in section 4.2. This operator is randomly
applied to increase or decrease wire gauges in order to eliminate those cases
in which a wire that transmits a high current intensity has a lower gauge
value than a wire that transmit less electrical current.

Figure 11 shows the results obtained with the gauge propagation operator
for different values of the probability associated with its application, and for
the same set of crossover and mutation probabilities. The first graph corres­
ponds to the case in which the operator is never applied, and is included here
for comparison purposes. As in the previous graph, only solutions that
provide enough voltage for the seven devices of the harness are plotted.

~

92 CARLOS ZOZA Y A-GOROSTIZA AND LUIS. F. ESTRADA

n Cross=O.8. Mut.=O.OO2,

Prop.=O

___ Cross=O.8, Mut.=O.OO2,

Prop.=O.5

_____ Cross=0.8, Mut=O.002,

23000

21000

19000

17000

15000

13000

11000

9000

7000

5000

50 100 150 200 250 300 350

Generations

Figure 11. Performance of the GA with the Gauge Propagation Operator
(Cost weight: 0.4, Voltage weight: 0.6, Population size: 30)

400

It is interesting to note that the best result was obtained when the
probability of applying the gauge propagation operator was 0.5 and not 0.8.
This fact might indicate that too much manipulation of the chromosomes
might affect the power of the GA to search the solution space. By
introducing the new operator we are trying to converge more rapidly to
good solutions; however, the theory of GA is based on letting the traditional
operators (i.e., crossover and mutation) to act freely in the population.
Nevertheless, the results were in both cases better than those obtained when
the operator was not applied.

5.3. EFFECTS OF THE INSERTION OF IMPROVED CHROMOSOMES

The insertion of improved chromosomes has the objective of modifying a
particular solution to reduce its cost or to satisfy the voltage constraints
associated with the devices of the harness. Once an improved solution has
been obtained from the best individual in a given population, the
chromosome that represents this solution is inserted in the succeeding
population. The combination of its genetic material with that of other
chromosomes is made by the crossover operator of the basic GA.

Figure 12 shows the performance of the GA with and without the
application of the operator that inserts improved chromosomes into the
population, The first 400 generations were run without applying this
operator; starting with generation 400, every ten generations the operator
was applied, and the algorithm was run until generation 700. The graph
shows only those solutions that satisfied the voltage constraints for all the
devices of the harness.

17()()()

15000

13000

~ 11()()()

9()()O

7000

HEURISTICS AND A META-ARCHITECTURE IN A GA 93

II Without modifying

chromosomes

_ _ Modifying and insertinJ!

chromosomes from

generation 400

5000 +-------;-------;--------r-------+-------;-------;------~
100 200 300 400 500 600

Generations

Figure 12. Perfonnance of the GA when the operator that modifies the best individual in
the preceding population is applied starting at generation 400.

(Crossover prob: 0.8, Mutation prob: 0.002, Gauge propagation prob: 0.5, Cost
weight: 004, Voltage weight: 0.5, Heuristic weight: 0.1, Population size: 30)

SA. EFFECTS OF USING THE META-ARCHITECTURE

Figure 13 shows the performance of the GA after iterating through 40 meta­
generations with 6 meta-individuals in the meta-population. In this case, we
plotted the cost of the best individual obtained in each meta-population. To
generate this graph, the lower level GA was run through 700 generations,
using the operator that modifies the best individual in the preceding
population starting at generation 400. Therefore, the set of solutions that had
to be tested was 700 for each of the 6 meta-individuals, giving a total of
700*6*40= 168,000 generations; where each set of 700 generations was run
with a particular set of the input parameters discussed in section 4.5. Since
each generation has 30 individuals, the number of solutions that were
evaluated is 5.04 * 106 which is still a very small fraction of the solution
space (13 possible gauge values for each of the 26 wires of the example
harness, gives a total of 9.17 *1028 possible solutions).

In each series of the graph, the manner how the GA evaluated the fitness
of the meta-individuals was different. In the first series, each meta-individual
is evaluated by applying a common fitness function to the best individual
obtained after the modified GA was run through 700 generations using the
parameters encoded in its chromosome. In the second series, we applied the
same kind of evaluation, but we preserved in the meta-population the best
meta-individual of the previous generation (i.e., elitism was incorporated).
Finally, in the third series the meta-individuals were evaluated by using the
formula described in section 4.5. In this series, elitism was also applied.

700

94 CARLOS ZOZA Y A-GOROSTIZA AND LUIS. F. ESTRADA

_ Common meta-fitness

function

5650

5600

5550

~ 5500

5450

5400

______ Common meta-fitness _ Meta-evaluation using

function using elitism relative cost and

voltages

5350 01----_---1__---+---_---_--_---_----1
o 10 15 20 25 30 35

Meta-Generations

Figure 13. Performance of the GA when the Meta-Architecture was implemented.
(Crossover prob: 0.8, Mutation prob: 0.002, Gauge propagation prob: 0.5, Cost

weight: 0.4, Voltage weight: 0.5, Heuristic weight: 0.1, Population size: 30;
Generations for each meta-individual: 700; Meta-population size: 6)

40

The graph shows that incorporation of elitism did not lead to
significantly better results in the performance of the meta-GAo This can be
explained by considering that the initial population of a meta-individual is
generated by using the best individual of the populations associated with the
meta-individuals whose genetic material was combined to create the new
meta-individual; therefore, these individuals are likely to be preserved in the
new population unless there were a drastic change in the input parameters
used to run the lower level GA. As a consequence, the effect is the same as if
the original meta-individuals had remained in the meta-population.

The graph also shows that the results obtained when using a common
fitness function for the meta-individuals were similar to those obtained when
we apply the formula that evaluates the meta-individuals using relative
factors with respect to the solution with minimum gauges. This can be
explained for those cases in which the common fitness function has similar
relative weights for its cost and voltage weights.

'6. Conclusions

This paper presents some recent results that were obtained when a basic
genetic algorithm (GA) for optimizing the cost of electrical wire harnesses
was modified. These modifications included the incorporation of two
operators that were specific for the problem being solved: a) a gauge
propagation operator, and b) an operator that attempts to improve a possible

HEURISTICS AND A META-ARCHITECTURE IN A GA 95

solution by randomly changing wire gauges associated with a particular
device of the harness. In addition, the modified GA included the
implementation of a meta-architecture that was useful to overcome the
problem of finding a set of good input parameters for running the single­
layered GA.

The results obtained when trying to optimize the design of an example
harness show that the incorporation of domain heuristics, as well as the use
of a meta-architecture in a GA, can lead to significant improvements in the
performance of the GA.

These modifications could be incorporated in other applications of GAs
for design activities that present similarities with the harness optimization
problem. For example, the design of hydraulic networks with a given
topology could be analogous to this problem by replacing voltages with
pressures and current intensities with flows. However, the techniques here
suggested, in particular the use of a meta-architecture, might also be
applicable to generic implementations of genetic algorithms.

Further research and experimentation with other applications of GAs
could help to answer questions that remain open with respect to the manner
how meta-chromosomes can be evaluated in a two-layered GA. The two
alternatives that were implemented in this work constitute only some of the
possibilities that could be tested in the future. In addition, the convenience of
implementing new operators similar to those used for the gauge propagation
and chromosome improvement processes would have to be evaluated when
using GAs in other types of design problems.

References

Biick, T.: 1992, Self adaptation in genetic algorithms, in F. J. Varela and P. Bourgine (eds),
Toward a Practice of Autonomous Systems, MIT Press, Cambridge, Mass., pp. 263-271.

Brooke, A., Kendrick, D. and Meeraus, A.: 1987, GAMS, Scientific Press, Redwood City,
California.

Booker, L.: 1987, Improving search in genetic algorithms, in L. Davis (ed.), Genetic
Algorithms and Simulated Annealing, Morgan Kaufmann, Los Altos, California, pp. 61-
73.

Goldberg, D. E.: 1989, Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley, Reading, Mass.

Greiff, W. and Zozaya-Gorostiza, C.: 1989, OPTAR: A system for the optimization of
automotive electrical wire harnesses, Technical Report, Condumex Harness Division,
Mexico D.F.

Holland, J.: 1975, Adaptation in Natural and Artificial Systems, University of Michigan
Press, Ann Arbor, Michigan.

O'Keefe, T.: 1989, Basic Harness Circuit Design, Internal Report, Packard Electric Division,
Warren, Ohio.

Styer, J. P. and Bums, C. D.: 1990, Electrical system simulator and optimizer, Internal
Report, Packard Electric Division, Warren, Ohio.

Zozaya-Gorostiza, C.: 1991, Use of AI-based tools in a Mexican automotive part supplier, in
F. CantU-Ortiz (ed.), Expert Systems Applications in Mexico, Pergammon Press, Oxford,

96 CARLOS ZOZA Y A-GOROSTIZA AND LUIS. F. ESTRADA

pp. 124-144.
Zozaya-Gorostiza, C., Sudarbo, H. and Estrada, L. F.: 1994, Use of genetic algorithms to

optimize the cost of automotive wire harnesses, in R. Baeza-Yates (ed.) Computer Science
2: Research and Application, Plenum Press, New York, pp. 103-115.

6

GENERATION AND SEARCH METHODS IN DESIGN: DISCUSSION

KEN BROWN
Carnegie Mellon University, USA

1. Introduction

Design generation is the process of formulating design solutions within a
design space. An early view of design as a search process was discussed by
Simon (1969), in which knowledge can be modeled as a set of operators, and
design problems modeled as goals; design is then the process of searching
for sequences of operators which produce solutions to those goals.
Depending on the nature of the operators, this process may involve the
refinement and transformation of incomplete designs until a complete
solution is obtained, or a traversal through a space of possible solutions
occurs, or a combination of both. The process may be deterministic, in
which the space is searched systematically, according to fixed procedures, or
stochastic, in which probabilistic methods are used to sample the space.
Design as search has been criticised as being too restrictive to capture the
real nature of design. Smithers et at. (1994) argue that a large part of design
is concerned with formulating the problem and discovering the relationship
between the design goals and design knowledge, and thus that design is
better captured by the term exploration. The session summarized here
considered methods of formally describing and searching spaces in order to
generate design solutions, and discussed the adequacy of search as a
characterization of design.

Two papers were presented in this session. Brown and Cagan (1996)
present some results on the use of shape annealing for searching large state
spaces. Moves within a space are selected probabilistically, where a move
may include backtracking to an arbitrary height. The result of each move is
evaluated, and is then either accepted or rejected with a probability derived
from the evaluation. The algorithm converges to good solutions. The paper
presents evidence that both the evaluation function and the details of the
backtracking moves are important to the algorithm's success. Zozaya­
Gorostiza and Estrada (1996) also investigate searching large spaces,
although this time using genetic algorithms, which apply moves
probabilistic ally to populations of designs. Again designs are evaluated, and

98 KEN BROWN

multiple designs are selected to remain in the population. The paper
demonstrates that both domain-specific heuristics and search in the meta
space are important factors in the algorithm's performance.

These two papers have many features in common. Both considered large
spaces, for which systematic search methods were assumed to be unsuitable;
the ability to evaluate designs or states in the space was assumed; moves
within the space were selected using random or probabilistic methods; and
all three relied on statistical convergence to settle on good designs. Brown
and Cagan's method considered only one candidate at a time, but ensured
diverse paths through the space were considered by only gradually
introducing stability as the search progressed. Zozaya and Estrada's method
ensured diversity through maintaining multiple options throughout the
search.

The discussion which followed was structured around three questions
arising from these presentations:

1. Is the notion of random generation followed by evaluation and
selection an adequate characterization of design?

2. Are there other methods of searching large design spaces?
3. Is modifying existing algorithms to suit particular problems a better

approach than recoding the problem descriptions?

The text that follows does not strictly adhere to this structure, but reflects the
flow of the discussion.

2. Design as Random Generation and Selection

The papers in the session presented methods in which design consisted of a
series of more or less random moves to produce new states, interleaved with
evaluation and selection. Is this a reasonable view of design? Firstly, it seems
far from human design practice, in which steps are chosen with specific goals
in mind. This raised the question of whether design is a human activity, or a
more general phenomenon of which human design happens to be the best
example. Secondly, assuming this approach is design, why should it be
considered? One of the main reasons is that it is relatively easy to implement
in computer systems, as it requires very little domain-specific design
knowledge. There is no need to partition the search spaces, or to encode
routines for deciding which options should be pursued in which
circumstances. Once the space is described in terms of primitive elements
and legal operators, generation is knowledge-free. All the knowledge is
embedded in the evaluation function (and thus is only concerned with the
designed artifacts and not the structure of the space used to create them).

GENERATION AND SEARCH METHODS IN DESIGN: DISCUSSION 99

This approach views design as more of a mathematical optimization process
than a human-centered artistic endeavour.

The approach above is dependent on the assumption that the knowledge
for evaluating designs is available. In many design domains, and in
architecture in particular, this is not necessarily true. A distinction has to be
made between book-keeping evaluation, in which a design is assessed against
specific well-defined criteria-for example, conformance to building
standards, fire codes, safety regulations-and performance evaluation, in
which a design is assessed for its likely performance in its environment - for
example, its aesthetic appeal. The distribution of evaluation criteria between
these two categories will have a big impact on the effectiveness of computer­
based design tools.

As the randomly-generate-and-test methods lose the purposive feel of
design, the question arises as to whether any generative methods can be
intent-driven: instead of simply randomly generating a change, assessing its
effect, and then deciding whether to accept it, is there a method of proposing
synthesis moves oriented towards meeting a goal? Applying a pre-filter to
the available moves before generating a change simply brings an implicit,
approximate evaluation into play earlier in the process. Indexing or
classifying operators according to the expected goals they will contribute to
allows move selection to be based on intent, but the problem then becomes
one of establishing a useful classification scheme. One type of approach
which, it was suggested, does capture this intent-driven aspect of design is
that found in case-based and analogical reasoning. Here, a library of known
designs is searched and compared to the existing problem. Particular designs
are selected, based on their perceived match with the problem. Modifications
(moves in a design space) are then made to these designs in order to obtain a
full solution to the given problem. Thus the design intent (the problem
description) is used to select a set of seed designs. Selecting the appropriate
modifications may still require the same approaches as above, but now a
localized area of the design space has been selected for investigation.

Note that if the knowledge of the search space is available, then better
solutions would probably be found more easily by using intent-based
selection of the moves. However, this knowledge is not always available or
easy to code, nor is it general. In that case, more general methods, in which
all the knowledge is removed from the generation and put into the
evaluation may be preferable. Machine learning may be applied to these
systems in order to improve their performance on the specific problems, and
the resulting move selection techniques would then correspond to intent­
based synthesis.

100 KEN BROWN

3. Design as Search

The second main area of discussion was the issue of whether design can be
adequately characterized as search at all. Again, this hinged in part on the
issue of whether human behaviour defines design. A number of points were
raised which cast doubt on the adequacy of search as a description of the
human design process. It was asserted that architectural designers, for
example, tend to pursue a single idea, pushing it to conclusion, and forcing
the idea to fit the requirements (or forcing the requirements to fit the idea).
If this is the case, the process should not be described as search, as other
options are simply not considered. Allied to this is the notion that good
design follows from an inspiration, or a "great idea", and that good designs
result from adapting that good idea to the present circumstances, rather than
vaguely searching through the range of all logical options.

A number of other objections, more specific to formal design, were also
raised. There is, in general, no well-defined path from function to form,
contrary to the underlying assumption of many prescriptive design methods,
and thus design is a matter of choice and judgement, rather than a search for
the single answer implied by the problem statement. As discussed in the
previous section, designs are frequently not quantifiable, and so search,
requiring definite criteria against which different states are compared, cannot
be carried out. Even if the designs can be evaluated, the requirements of the
problem frequently change, either as a result of finding that the
specifications are inconsistent or overly restrictive, or through explicit
changes in the requirements or the environment during the process, or
through discovering that the problem is under-specified, and that choices
have to be made regarding which particular paths will be pursued. Design
also involves the phenomenon of emergence: the re-interpretation of a
representation producing structures which were not explicitly intended or
created, and the use of these emergent structures in later design decisions.
Standard search methods give little support for emergence, using fixed
representations and interpretations throughout the process. This highlights
the need for schemas which can be adapted dynamically as design proceeds.

Contrary to the flow of the above discussion, the question was raised as to
whether there can be anything other than search in computer-based design.
Almost every proposed approach can be reduced to search, usually by
moving up a conceptual level. For example, instead of representing a design
task as a problem with changing requirements, we could represent it as a
search through a space of (requirement, design) pairs. However, if everything
can be reduced to search, it is then doubtful that reducing processes to
search is useful for understanding design. Although characterizing a
problem as search might make it easier to implement as a computer system,

GENERATION AND SEARCH METHODS IN DESIGN: DISCUSSION 101

it hides the difference between different approaches, and obscures their
significant characteristics.

Finally, the point was raised that even if all the above objections are
accepted, and search is not an adequate characterization of design, that does
not mean that search should be abandoned as a tool-many specific design
problems can be characterized as search, and many of the alternative
approaches would require search as significant sub-processes.

4. Research in Search-Based Design

The third area of discussion during the session was the topic of research
methods in search-based design. Firstly, the question was raised as to whether
it is advisable to modify existing algorithms (as in the two presentations) to
improve results on specific problems, or whether it is better to search for a
better representation of the problem, allowing the standard algorithms to be
applied successfully. The response was that if the problems are generic, then
there is an advantage to modifying the algorithms. Two approaches are
possible: designing better algorithms, or designing algorithms which are
adaptive, varying their operation according to the specifics of the problem.
Related to this topic, it was suggested that as we gather more knowledge on
which algorithms perform best on which particular types of spaces, and at
what phases of the design process, we should be progressing more towards
hybrid algorithms, which start with one method, and then switch to another
as we move to a different phase.

A more basic discussion point concerned the purpose of research into
design methods. Our efforts should not be restricted to current design
practice, but should principally be aimed at producing better designs. Of
course, this may well involve providing better support for current practice,
but it may also involve radically different methods, either in producing
autonomous design systems, or using computer-based tools to change the
way in which designers design. For example, it was mentioned above that
architectural designers typically only pursue a single idea. Why is this? Is it
because this is the best way of producing good designs, regardless of the
support available, or is it a result of the limitations of human information
management? It could be that managing multiple alternatives to any
significant level of detail, including diagrams, models, evaluations, and
ramifications is too complex a task for unsupported humans, but if support
for these aspects was provided, and all the information made readily
available, the standard design process might change from pursuing a single
option to pursuing multiple options. Such questions need to be investigated,
in order to direct future research towards the goal, as stressed above, of
producing better designs.

102 KEN BROWN

As a related point, we should consider whether or not "great idea"
design is a good exemplar for our research. On a number of occasions
during the discussion approaches were evaluated by comparing them to the
approaches used to design well-known objects-for example, the Sydney
Opera House. It is not clear that such examples provide a good focus for
design computing research. In many ways, the successes or failures of these
projects are discussed in terms of their uniqueness, the way in which they
shift the bounds of current taste, and their innovative approach, and not
necessarily in terms of how well they meet their original purpose. These
criteria depend on an understanding of human reactions to buildings, human
preferences, and attitudes to art and aesthetics. If our aim is to produce better
designs, then our efforts should perhaps be directed towards more
commonly encountered design tasks. Research would thus be centered on
increased automation of design tasks which can be readily evaluated, and on
generating alternatives and providing bookkeeping support for these more
speculative tasks.

Finally, it is worth noting the seeming change in focus of design research
between the workshop discussed here and the previous one in the series
(Gero and Tyugu, 1994). In that previous workshop, there were six papers
explicitly concerned with generative systems (Carlson, 1994; Heisserman and
Woodbury, 1994; Shih and Schmitt, 1994; Brown et aI., 1994; Andersson,
1994; Cagan and Mitchell, 1994). All six of them considered grammatical
systems in particular. All except Cagan and Mitchell were largely concerned
with presenting the spaces and the formalisms, with little concern for how
those spaces would be searched. In the current workshop, there were five
papers explicitly concerned with generation and search (the first three from
this session, plus Maher et al. (1996) and Gero and Kazakov (1996». All
five of these papers focussed on methods of searching the spaces, and
further, all five used non-systematic methods to carry out that search.
Although conclusions should not be drawn from such a small sample, it
would appear to indicate a development in the field, in that the research is
now building on a framework laid down earlier, and considering how that
framework can be used in practice.

5. Conclusion

Very little consensus was reached during the discussion. One point worthy of
note was the acceptance by almost all present of the idea of exploration
being a better description of the design process than pure search. Other than
that, the discussion served to highlight that there are many questions which
remain unanswered, both in the general area of relating the design process to
generation, and in specific issues in the control of the search and generation
process.

GENERATION AND SEARCH METHODS IN DESIGN: DISCUSSION 103

Acknowledgments

I would like to thank Stephan Rudolph, for providing the clear and
comprehensive notes on which this summary is based, and Mary Lou Maher,
who chaired the discussion and gave it its structure by posing the three
questions to be discussed. Jon Cagan provided a number of helpful
comments on an earlier draft. Finally, I must thank all the participants of the
workshop, who were responsible for most of the ideas raised in this
summary; I apologize for not providing individual attributions.

References

Andersson, K.: 1994, A vocabulary for conceptual design, in J. S. Gero and E. Tyugu (eds),
Formal Design Methods for CAD, North-Holland, Amsterdam, pp. 157-171.

Brown, K. N., McMahon, C. A. and Sims Williams, J. H.: 1994, A formal language for the
design of manufacturable objects, in J. S. Gero and E. Tyugu (eds), Formal Design
Methods for CAD, North-Holland, Amsterdam, pp 135-155.

Brown, K. N. and Cagan, J.: 1996, Modified shape annealing for optimally-directed
generation: Initial results, in J. S. Gero (ed.), Advances in Formal Design Methods for
CAD, Chapman & Hall, London, pp. 59-73.

Cagan, J., and Mitchell, W. 1.: (1994, A grammatical approach to network flow synthesis, in
J. S. Gero and Tyugu, E. (eds), Formal Design Methods for CAD, North-Holland,
Amsterdam, pp. 173-189.

Carlson, C.: 1994, Design space description formalisms, in 1. S. Gero and Tyugu, E. (eds),
Formal Design Methods for CAD, North-Holland, Amsterdam, pp. 121-131.

Gero, J. S. and Kazakov, V. A.: 1996, Evolving building blocks for design using genetic
engineering: A formal approach in J. S. Gero (ed.), Advances in Formal Design Methods
for CAD, Chapman & Hall, London, pp. 31-50.

Gero,1. S. and Tyugu, E. (eds): 1994, Formal Design Methods for CAD, North-Holland,
Amsterdam.

Heisserman,1. and Woodbury, R.: 1994, Geometric design with boundary solid grammars, in
J. S. Gero and Tyugu, E. (eds), Formal Design Methods for CAD, North-Holland,
Amsterdam, pp. 85-105.

Kirkpatrick, S., Gelatt, C. D. Jr and Vecchi, M. P.: 1983, Optimization by simulated
annealing, Science, 220(4598), 671-679.

Maher, M. L., Poon, J. and Boulanger, S.: 1996, Formalizing design exploration as co­
evolution: a combined gene approach, in J. S. Gero (ed.), Advances in Formal Design
Methods for CAD, Chapman & Hall, London, pp. 3-30.

Simon, H.: 1967, The Sciences of the Artificial, MIT Press, Cambridge, MA.
Shih, S.-G. and Schmitt, G.: 1994, The use of post interpretation for grammar-based

generative systems, in J. S. Gero and Tyugu, E. (eds), Formal Design Methods for CAD,
North-Holland, Amsterdam, pp. 107-120.

Smithers, T., Corne, D. and Ross, P.: 1994, On computing exploration and solving design
problems, in J. S. Gero and Tyugu, E. (eds), Formal Design Methods for CAD, North­
Holland, Amsterdam, pp 293-313.

Zozaya-Gorstiza, C. and Estrada, L. F.: 1996, Incorporating heuristics and a meta-architecture
in a genetic algorithm for harness design, in 1. S. Gero (ed.), Advances in Formal Design
Methods for CAD, Chapman & Hall, London, pp. 75-96.

PART THREE

Performance Evaluation Methods in Design

7

A PERFORMANCE-BASED PARADIGM OF DESIGN

YEHUDA E. KALAY
University of California, Berkeley, USA

AND

GIANFRANCO CARRARA
Universita degli Studi di Roma La Sapienza, Italy

Abstract. This paper proposes an alternative approach to existing design paradigms
(and their CAD implementations) that are based on the traditional, causality-based
notion that 'Form follows Function.' The proposed approach, which will be referred to
as performance-based design, is founded on the argument that the relationship between
form and function is contextual rather than causal. Hence, the expected performance of a
given design proposal can only be determined by an interpretive evaluation, which
considers the form (and other physical attributes) of the proposed design, the functional
objectives (goals) that it attempts to achieve, and the circumstances under which the two
come together (the context). The paper develops a performance-based design
methodology and demonstrates its application in an experimental, knowledge-based
CAD system.

1. Introduction

The quest for understanding how humans perform complex cogmtlve
activities such as architectural design, and for developing methods and tools
that can help them consistently achieve desired results, has been the raison
d'etre of design methods research for the past four decades. The
formulation of such methods has followed, by and large, the scientific
method of developing theories that explain the process of design, then
casting them in models that can be represented explicitly and implemented
by computational and other means. This endeavor has been mostly guided
by the conventional wisdom that architecture, more than any other design
activity, is a process that seeks a convergence of form and function within a
particular spatio-temporal context: a physical container, or a stage, which will
support certain human activities, subject to certain conditions and constraints,
while being embedded in a particular social and physical context.

108 YEHUDA E. KALAY AND GIANFRANCO CARRARA

Following Thomas Kuhn's influential work concerning the nature of
scientific inquiry (Kuhn, 1962), many design methods researchers sought a
causal relationship between form and function, and a method for deriving
form from function, or function fromform. At the core of this quest lay two
assumptions:

1. That a physical system's significant geometrical (and material)
properties have some functional utility, and that one form is more
suitable to fulfilling that function than other, alternative, forms.

2. That finding a causal relationship between form and function will
lead to the development of a method, which can be applied with some
assurance of success in every case where a form must be produced
that will optimally facilitate and support a given set of functional
needs, or that the function of a given object can be determined by
closely examining its form.

Two fundamentally different paradigms of design have emerged,
representing two different interpretations of the causal relationship between
form and function. The first, attributed to Simon, Newell, and Shaw (Simon,
1979), attempts to explain design as a unique instance of general problem
solving. It postulates that designers start with the sought function (i.e., the
desired behavior of the system), which is often represented as a set of goals
and constraints. The designers then attempt to discover a form that will
support the desired function, using deductive search strategies.

The other paradigm, which is called puzzle-making, has emerged from the
work of researchers like Alexander (1964) and Archea (1987). It postulates
that designers begin with a set of forms (that include materials as well as
geometry), which are modified and adapted until they achieve some desired
junctional qualities. This paradigm is based on inductive reasoning, and has
been modeled with the aid of analogical inferencing methods (metaphors,
symbols, and case studies).

While logically consistent and computationally convenient, neither one of
these two paradigms, nor their many derivatives and permutations, has
gained favor with architects themselves. The essence of the profession's
criticism can be summarized as the failure of the proposed paradigms to
account for the celebrated intuitive leap, that elusive but well-known moment
when form and function seem to converge into a meaningful whole
(Norman, 1987). From a logical point of view, the intuitive leap represents a
discontinuity in the causal relationship between form and function, hence a
stumbling block in developing a uni-directional (form-to-function, or
function-to-form) design theory.

This paper proposes an alternative approach to understanding the process
of architectural design, which attempts to account for the 'intuitive leap'

A PERFORMANCE-BASED PARADIGM OF DESIGN 109

experience and fit it within a design paradigm that can be formally modeled
and explicitly represented. The proposed approach, which will be referred to
as Performance-Based Design, does not attempt to formalize the intuitive
leap itself, only to accommodate it in the paradigm. It proposes to do so by
promoting interpretive evaluation over causality. Instead of deriving form
from function, or function from form, it advocates the development of
means that measure performance-the interpreted utility derived from a given
form and a given set of functional requirements within a particular spatio­
temporal context.

The notion of performance is derived from the argument that the
relationship between form and function is context-based, rather than
causality-based. That is, the performance of a proposed design solution can
only be determined by an interpretive evaluation which considers the form
(and other physical attributes) of the proposed solution, the functional
objectives (goals) that it attempts to achieve, and the circumstances under
which the two come together. Performance-based design recognizes that
different forms can successfully achieve similar functions, and that different
functions can often be derived from similar forms. In addition, it accounts
for performance variances of the same form/function combinations within
different contexts. Consider the following example:

If all the chairs in a lecture hall are occupied, students will often sit on
the floor. The shape (form) of the floor is not at all similar to the form
of the chairs (nor is it usually made of the same materials). Yet, under
certain circumstances and within certain limits, it is functionally
equivalent to chairs. The same floor can also be used for many purposes
other than sitting. For example, it can be walked upon, danced upon, and
large objects can be placed on it. It can even be used to identify groups of
spaces (as in 'first floor'). Included among all these varied functions is
also the function of sitting. Obviously, the floor is not as well adapted
for the function of sitting as are chairs, and most students will prefer to
sit on chairs whenever possible. However, if chairs are not available,
they will, in many cases, consider the floor functionally adequate for the
purpose of sitting. The floor will not be considered functionally adequate
for sitting when the context is an elegant cocktail party in the White
House, as compared to a lecture in a university, and when the
participants are foreign diplomats and not foreign students. In that case,
the participants will prefer to stand, even if standing causes them
considerable discomfort.

A computational implementation of this paradigm, which considers form
and function to be equally important, requires that both be represented
explicitly, along with the context of the particular design problem. The
'adequacy' of a particular combination of form-function-context will then
be determined by evaluators (which may very well include the designer
himself), which use a variety of means to predict the performance that will

110 YEHUDA E. KALAY AND GIANFRANCO CARRARA

ensue from the combination of form, function and context, then judge the
desirability of that performance in comparison with alternative form­
function-context combinations.

In the following pages, we develop the argument for performance-based
design. Then we present a model of computer-aided performance-based
design, and present an experimental knowledge-based CAD system that
implements it. Initially, we will use the terms 'form,' 'function,' 'context'
and 'performance' loosely, relying on the reader's intuitive understanding
of their meaning. We will define these terms more precisely in the second
part of the paper, where such rigor is needed.

2. Causality-Based Design Paradigms

The notion that Form follows Function is derived from the assumption that a
system's significant geometrical (and material)! properties have some
functional utility, and that one form is more suitable for fulfilling that
function than other, alternative forms. This notion, and its inverse (function
is derived from form), have guided architects and engineers for millennia.
Among other achievements it has also provided a convenient causal
relationship between form and function, the two pillars of architectural
design, hence for developing theories and methods intended to assist
architects in performing their increasingly more demanding task of finding
the "right" form-function combination.

Many formal theories and methods that were developed over the years to
assist architects have been based on this logical foundation. They can,
nonetheless, be classified into two general groups (Aksoylu, 1982): those
that follow Simon, Newell and Shaw's (1979) Problem-Solving paradigm,
and those that follow what Archea (1987) called "Puzzle-Making."

2.1. PROBLEM-SOLVING

Problem-solving is a general theory that attempts to explain the cognitive
process of creative thinking. It was first formalized by Simon, Newell and
Shaw in the late 1950s, and implemented in a computer program called GPS
(General Problem Solver). Problem-solving assumes that the desired effects
of some intellectual effort can be stated in the form of constraints and goals
at the outset of the quest for a solution to achieve them. To find the solution,
the problem solver uses a variety of search strategies to generate successive
candidate solutions and test them against the stated goals, until one is found
which meets them. The goals thus 'guide' the search for a solution right

1 In the following, the term 'form' will be used to refer to all the physical attributes of objects, including
their material composition, surface finish, and so on.

A PERFORMANCE-BASED PARADIGM OF DESIGN 111

from the beginning of the problem-solving process. Problem-solving
assumes that setting goals (i.e., knowing what should be accomplished) can
be separated from the process of finding a solution that meets them, and that
such knowledge can be acquired through an independent inquiry (analysis),
which should be completed before the search for a solution has been
initiated (Akin, 1978). For example, using this approach, selecting a
structural system to span some opening will generally follow after an
analysis of forces, cost, and other characteristics of the structure have been
determined.

Since the characteristics of the problem, according to the problem­
solving paradigm, are known prior to commencing the search for the
solution itself, its proponents hold that the search for a "satisficing,,2
solution is goal-directed, and therefore that means-ends analysis can be
employed to guide the search towards finding the desired solution. Thus, the
skills that are employed when following the problem-solving paradigm are
mainly analytical: the ability to compare the current "state" of the designed
artifact to its desired "state" (in terms of its expected utility and behavior),
and the ability to draw operational conclusions from this comparison so that
the differences can be reduced.

Such goal-driven approaches have been computationally represented as
deductive, backward-reasoning search strategies, where operators are applied
to the goal statement in order to convert it into a set of sub-goals that are
easier to solve. This method is applied recursively until a set of subgoals that
can be solved without further reduction is found (Laird et aI, 1986).
Examples of tools based on this paradigm include space allocation programs
(Armour and Buffa, 1969; Shaviv and Gali, 1974), and a large number of
evaluation programs, such as wayfinding and energy (Gross and Zimring,
1992; Shaviv and Kalay, 1992).

2.2. PUZZLE-MAKING

The assumption that, in architecture, the characteristics of the desired
solution can be formulated prior to and independently of the search for the
solution that satisfies them was rejected by critics like Archea (1987) and Bijl
(1987). They argued that such knowledge cannot exist prior to the search
itself, since the sought solution is unique, and the process of finding it is
characterized by discovery and has to contend with uncertainty. Kim (1987)
and others have argued that the brief that architects are given by their clients,
and which often constitutes the basis for the design goals, is much too vague,
in most cases, to form a complete goal statement. Rather, it is merely a

2 Meaning "good enough." The term was coined by Herbert Simon in his book Sciences of the Artificial,
MIT Press, 1969, pp. 35-36.

112 YEHUDA E. KALAY AND GIANFRANCO CARRARA

statement of intents, which defines a general framework for the sought
solution, and some of the constraints it must abide by. Instead, they suggest
that architects must gradually develop the statement of goals as they proceed
with the design process itself. The additional information needed to
complete the goal statement must either be invented as part of the search
process, or adapted from generalized precedents, prototypes, and other
relevant past experiences (so-called 'design cases'). Since the relationship
between the newly invented information, as well as the precedents, to the
particular needs of the problem can be discovered only as the problem
becomes clearer, the adaptation itself is problem-specific, and cannot be
accomplished prior to engaging in the search process itself.

Design, according to this view, is a process of discovery, which generates
new insights into the problem. The design search process may, therefore, be
compared to puzzle-making-the search for the most appropriate effects that
can be attained in unique spatio-temporal situations through the
manipulation of a given set of components, following a given set of
combinatorial rules. Since architects cannot invent information from scratch
in every case, they rely on design 'cases,' either from the architect's own
experience or from the experience of the profession at large, to provide
them with a rich pool of empirically validated information which has been
refined through many years of practice and has gained society'S or the
profession's approval. This information comes in the form of proven
solutions (Alexander et aI, 1977), architectural styles, celebrated buildings,
established metaphorical relationships, and recognized symbolisms (Venturi,
1972). How architects adapt this body of knowledge to the particular
problem at hand is not known-it is the essence of architecture's celebrated
'intuitive leap' and creativity.

Therefore, rather than rely on a goal-driven strategy, the puzzle-making
paradigm relies on adaptation of precedents, symbols, and metaphors. The
main skills employed when following this paradigm are synthetical: the
ability to compose given parts into a new, unique, whole. Such data-driven
approaches have been computationally represented as forward-reasoning
search strategies: operators are applied to the current state of the problem
with the aim of transforming it according to pre-set rules. Example of tools
based on this approach include generative expert systems, shape grammars,
and case-base design systems (Coyne et al, 1990; Flemming, 1994; Oxman,
1992).

3. Different Kinds of Relationships between Form and Function

In this paper we argue that the relationship between Form and Function is
much more complicated than implied by the causality-based notion of

A PERFORMANCE-BASED PARADIGM OF DESIGN 113

'Form Follows Function,' and its inverse. Indeed, a particular form is often
capable of many different functions, and a similar function is often afforded
by many different forms. The following examples will serve to illustrate this
argument.

3.1. MANY FORMS, SAME FUNCTION

The over-simplicity of the notion 'Form Follows Function' is evidenced by
the multitude of different forms which essentially were designed to support
similar functions.

Chairs provide one of the best examples of different forms that were
developed to support exactly the same function (sitting). Figure 1 shows
some of the many designs of dining/table chairs.

Figure 1. Chairs demonstrate how different forms can support the same function.

Design competitions, where competitors must respond to the same set of
functional requirements within the same context, provide additional evidence
that in architecture, form does not necessarily follow function. Each and
every competitor will, invariably, produce a very different form.

Some scholars have tried to explain this apparent lack of causality by
arguing that, typically, the functional requirements of a building do not
tightly constrain its form, thus leaving the architect with much room to
entertain 'styles' and other 'non-practical' considerations. Herbert Simon,
for example, has defined style as "one way of doing things," chosen from a
number of alternative ways (Simon, 1975). Since design problems generally
do not have unique or optimal solutions, says Simon, style can be used to
select a solution from among several functionally equivalent alternatives, just
as any other criteria can. He offers the following analogy:

Mushrooms can be found in many places in the forest, and the time it
takes us to fill a sack with them may not depend much on the direction
we wonder. We may feel free, then, to exercise some choice of path, and
even to introduce additional choice criteria ... over and above the
pragmatic one of bringing back a full sack (of mushrooms).

114 YEHUDA E. KALAY AND GIANFRANCO CARRARA

Most architects, however, would reject this notion that form is the result of
less 'practical' functional considerations than other aspects of the building,
and therefore an afterthought, something to be contemplated only when all
the other 'important' aspects of the design have been dealt with. Rather, they
would argue, it is something a competent architect will consider before,
during, and after the development of solutions satisfying the functional
needs. Moreover, the two issues cannot be separated, since each one informs
the other, and influences its development.

3.2. MANY FUNCTIONS, SAME FORM

The notion that a given form can support many different functions is
demonstrated well by designs of playgrounds, parks, and civic plazas. Joost
van Andel (1988) observed that playgrounds for children between the ages 3
and 7 function best if the activities they afford are less structured, in terms of
the equipment they contain. For instance, placing an old fire engine in a
playground (a form) will direct the children's activities towards particular
play patterns. Furthermore, van Andel observed that this particular form
tends to create gender-biased play patterns, which appeal more to boys than
to girls. On the other hand, a playground which consists mostly of a
sandbox, some rocks, and a few trees or bushes affords less restricted play
patterns, and is equally accessible to both boys and girls. He attributes this
performance to the creative imagination of the children, who can translate
the existing, generic forms into particular ones, as needed for playing games
such as 'house,' 'cops and robbers,' or the landing of an alien spaceship.

Another example of architectural multipurpose (i.e., functional) spaces
has been described by Elizabeth Cromley in her paper on the history and
evolution of modern bedrooms (Cromley, 1990). In addition to providing a
place for sleeping, bedrooms through the seventeenth century also
functioned as parlors, dining rooms, and as places for entertaining guests. In
the eighteenth century, the function of bedrooms became more focused, as a
place for sleeping and dressing, for quiet retirement, and for socializing with
close friends and family members. In the nineteenth century, bedrooms
became a place to occupy only at night. In the 20th century, the definition
of their function was broadened again, especially as far as children's
bedrooms were concerned. Today such functions include sleeping, doing
homework, reading, and playing with friends. Bedrooms for the adults (the
so-called 'Master Bedroom'), have turned into 'suites,' which include full
bathrooms, dressing rooms, and walk-in closets.

The ability of the same form to afford different functions is further
demonstrated by what we now call adaptive re-use. The term designates the
conversion of older buildings to meet modern needs. It is rooted in the

A PERFORMANCE-BASED PARADIGM OF DESIGN 115

economic realities of the late 20th century, and the growing need for urban
renewal and rehabilitation. This trend is characterized by corporations,
shops, and even residential units moving into older buildings in the core of
cities. Rather than tear down a building which may have some historical or
cultural significance, new tenants may rehabilitate it while preserving its
character. A typical case in point is Adler and Sullivan's Guarantee building
in Buffalo, New York (Figure 2). In its 100 years history, this landmark
building has served successfully as an office building, department store, and
a variety of commercial, government, and other functions. While the
building's interior has undergone some changes, the building has remained
largely intact.

Figure 2. Same form, many functions : the Guarantee building, in Buffalo, New York.

3.3. OTHER KINDS OF FORM-FUNCTION RELATIONSHIPS

Peter Eisneman' s structuralist approach to buildings, which derives from his
own interpretation of N oam Chomsky's linguistic theories (as well as
Jacques Derrida and other philosophers), demonstrates well the complexity
of the possible relationships between form and function . His proposed
design for the Max Reinhardt Haus in Berlin (a cultural center and office
building), is modeled as a huge, three-dimensional Mobius strip-an abstract
topological construct (Figure 3).

116 YEHUDA E. KALA Y AND GIANFRANCO CARRARA

Figure 3. Arbitrary form: Peter Eisenman's proposed design for Reinhardt Haus, Berlin.

3.4. THE IMPORTANCE OF CONTEXT

The form of a building also depends upon the physical, cultural, social, and
other contexts in which it is embedded, at least as much as it depends on the
function it must serve. The form of the Sydney Concert Hall, which is
depicted in Figure 4, is an example of a form derived from the physical
context of the building (the Sydney harbor), as much as from its function (a
symphony hall).

Figure 4. Context-influenced form: the Sydney Opera House.

A PERFORMANCE-BASED PARADIGM OF DESIGN 117

Likewise, the shape of Le Corbusier's Ronchamp Chapel has been
derived from its spiritual context, as much as from its functional and
physical site considerations; and Gerrit Rietveld's colorful SchrOder House
in Utrecht, The Netherlands (1931), has been shaped as much by the
neoclassicist cultural ideas of the De Stijl movement to which he belonged,
together with painters like Theo van Doesburg and Piet Mondrian, as much
as by functional requirements.

3.5. THE RELATIONSHIP BETWEEN FORM, FUNCTION AND CONTEXT

The position taken in this paper is that Form, Function and Context are
linked through tri-Iateral, mutual interdependencies. It would be futile,
however, to look for causality among these relationships. The utility of the
links can only be revealed by observing, measuring, and interpreting their
overall, combined result, which is what we call performance. Performance
evaluation is intended, therefore, to assess the desirability of the confluence
of the three factors. It may reveal, for example, that a particular form is
capable of supporting a certain functional need in a particular context, in
which case it will be deemed 'successful.' On the other hand, it may reveal a
need to modify the form to meet the desired function in the particular
context, or to modify the desired function to meet the functionalities
afforded by that form in that particular context.3

The complexity of this relationship is exacerbated by the fact that the
nature of Form, Function and Context are dissimilar. Functional objectives
are often abstract, expressed in terms of social, psychological, economic, and
other behaviors. Forms, on the other hand, are often quite specific, and are
expressed in terms of topology, geometry, and materiality. Context typically
involves given social, cultural, and economic situations, in addition to
physical ones (which include topography, climate, flora, etc.). To bridge the
representational gap between the functionalities afforded by a given form, or
the form that will afford a particular function in a particular context, the
designer must rely on an interpretive-evaluative process, with its intrinsic
fuzziness, value-laden biases and subjective belief systems. He must attempt
to predict the functionality (behavior) afforded by the chosen form within
the prescribed context, thus translating the form into a functional
abstraction. At the same time, he must envision the form that might afford
the sought function, thus translating the functional abstraction into a
physical form. He must then compare the two abstractions to determine if
they match (Figure 5). In addition, he must map the emerging composition
onto the context, to determine if they match it too.

3 In some cases it may also be possible to modify the context itself, for instance by obtaining exemptions to
zoning codes, modifying the socio-economic makeup of the inhabitants, or even the physical characteristics
of the site.

118 YEHUDA E. KALA Y AND GIANFRANCO CARRARA

Figure 5. Specification and abstraction in the design process.

Another complication arises from the multiplicity of functions that must
be supported by the same form, often at the same time, as well as the
multiplicity of forms that are needed to support a given function. Windows in
a building offer a good example: they are needed to admit light and view
into the building, but they interfere with the shelter-providing functions of
the walls they puncture (from thermal, humidity, air infiltration, and other
environmental control points of view). At the same time, they also contribute
to the aesthetic appearance of the building, where their shape, pattern and
rhythm mayor may not correspond to their function. Consider, for example,
the two functionally-equivalent, but aesthetically-different views of Le
Corbusier's Villa Savoye (Figure 6). The task of the designer, in many cases,
is to find a good compromise of form, function and context, rather than an
optimal relationship between them (which may be the goal in certain
engineering fields) .

4. Performance-Based Design

Having denounced the causal relationship between Form and Function,
which, as argued earlier, is the basis for the prevailing design paradigms, we
must find another paradigm that will explain how designers can bridge the
gap between Form and Function, and are thereby able to justify the selection
of a particular Form to meet specific a Function within a particular Context.

A PERFORMANCE-BASED PARADIGM OF DESIGN 119

Figure 6. Functionally-equivalent, but aesthetically-different views of Villa Savoye.

This paper suggests that such a paradigm can be formulated . We call it
performance-based design: the specific confluence of form and function in a
particular context (Figure 7). We define Function as the desired behavior of
the building (or other artifact). This behavior can be quite specific (e.g.,
budget), or more abstract (e.g., provide a conducive environment for work).
We use Form in its conventional connotation, as a physical manifestation of
topology, geometry, and materiality. By Context we mean the physical,
social, economic, cultural, legal, and other settings and events in which the
building is located. By comparing the physical manifestation of a given
building form with the conditions necessary to fulfill a desired set of
behavioral characteristics of that building, within the particular context in
which it is situated, we can determine the performance of both its form and
function, relative to another composition of form and function within the
same context.

This design paradigm also explains (and rationalizes) why designers may
begin the search for a form-function-context composition either with a given
function or with a given form, while progressing towards the other, as well as
skipping around, back and forth, between the two (Figure 8). Designing,
accordingly, can be considered an iterative process of search, where desired
functional traits are defined, forms are proposed, and a process of evaluation
is used to determine the desirability of the performance of the confluence of

120 YEHUDA E. KALA Y AND GIANFRANCO CARRARA

forms and functions within the given context (Carrara et aI, 1994). The
search terminates when the designer finds a form that fulfills the function, or
is satisfied by the functionalities afforded by the chosen form, within the
given context. We call this condition functional adequacy: the instance when
form and function come together to achieve acceptable performance within a
given context.

Performance

Context

Figure 7. Performance, as the confluence of form, function and context.

Figure 8. Design as a bi-directional search.

A PERFORMANCE-BASED PARADIGM OF DESIGN 121

s. Implementation

To implement the proposed paradigm, a computable model of performance­
based design had to be developed, which can represent explicitly function
and form, as well as the context of the particular design project. Additionally,
for the sake of computability, the process that helps to identify an acceptable
convergence of form, function and context also had to be represented
explicitly.

Through a succession of projects, beginning in 1985, we have developed
such a model, which consists of four strongly related components:

1. A structured set of goals, representing the functional requirements
that a design solution must meet.

2. A structured set of solutions, representing the physical and spatial
components of the emerging solution (rooms, walls, windows, etc.).

3. A representation of the context, in which the project is embedded
(physical, social, cultural, etc.).

4. A structured set of evaluators, whose purpose is to predict the
performance of the form-function-context composition based on the
physical attributes of the objects and the goals, within the particular
context of the design problem.

These four components rely on different methods of representation.
Goals are represented by sets of functionally equivalent constraints.
Solutions are represented by specific building elements (e.g., walls, spaces,
and materials). Contexts are represented through constructs we call settings
and events. Evaluators are represented by a variety of methods, including
simulation, case-based knowledge, and other computational means.

5.1. REPRESENTATION OF DESIGN GOALS

Many (but obviously not all) functional needs can be represented as
objective constraints. For example, the nature, morphology, and sizes of
spaces, their material composition, the equipment and furniture used in them,
and the procedures for managing them can be represented as a class of use
constraints. Desired temperatures, humidity, lighting, and other comfort
parameters can be represented as a class of environmental constraints. The
structural and mechanical behavior of buildings comprise additional sets of
constraints, as do their behaviors under exceptional conditions such as fire
and earthquakes, which can be represented as a class of safety constraints.
Such classes can be further divided recursively into sub-classes, creating a
hierarchical structure of increasingly more specific and detailed constraints
(Figure 9). The classifications are, of course, highly arbitrary, and can be

122 YEHUDA E. KALAY AND GIANFRANCO CARRARA

tailored to the needs and preferences of each designer. They demonstrate,
nonetheless, the ability to define design objectives explicitly, in terms of
testable sets and subsets of goals and constraints. Some of these objectives
are derived from the clients preferences (e.g., budget). Others may be
derived from the context (e.g., views, temperature, size limitations). And still
other objectives may reflect the architect's own aspirations, style, and ethical
code.

Figure 9. Hierarchical, recursive relationship between goals and constraints.

A set of constraints can be used to indicate a particular combination of
desired behaviors that must be accomplished by a candidate design solution
in order to achieve a specific design objective. We call this set a goal. For
example, the number of bedrooms in a single-family house determines the
number of bathrooms it should have, because it is often indicative of the size
of the family that will occupy the house. Likewise, the adjacencies of the
rooms cannot be separated from their number and the types of activities they
contain. The number of rooms and total floor area is directly related to the
budget, which is also influenced by the quality of the construction.

The goals are considered to be achieved if all their constraints have been
satisfied. The particular combination of constraints that is considered a goal
is established when the goals are first introduced. This forces the designer
(and the client) to consider and establish reasonable combinations of
objectives, which then guide the design process. Additional goals may be
added, or existing goals may be modified or deleted during the design
process, thereby providing a measure of flexibility and a means for
representing changing preferences as the design evolves.

A PERFORMANCE-BASED PARADIGM OF DESIGN 123

The specificity of design goals must not be confused with the specificity
of the design solutions that satisfy them. As argued earlier, different design
solutions may achieve the same goal, albeit each may satisfy the constraints
that comprise the goal differently. The different performance levels at which
alternative sets of constraints may be satisfied represent tradeoffs in the
context of achieving a particular goal. The different windows on Le
Corbusier's Villa Savoye (Figure 6) demonstrates such trade-offs with
respect to aesthetical and functional considerations, although both provide
the same basic utility of light, ventilation, and view.

While alternative goals represent acceptable combinations of performance
levels, some combinations may be preferable to others. A prioritization of
goals, reflecting a descending order of preferences, may be imposed by the
designer or by the client, indicating which combination of performances the
designer should attempt to accomplish first. Such prioritization is not only a
common practice when architects and clients are faced with limited
resources, but it also has a very profound effect on the direction of the
design search process and on its results. This is due to the fact that all the
decisions leading to the specification of a design solution are connected to
each other, and decisions made earlier in the process may limit the options
available to the designer in later design phases, sometimes to a degree where
no options are available at all. For example, choosing a particular
construction method early in the design process (e.g., wooden frame)
imposes many constraints on the building, limiting the options available to
the architect in designing its form, details, and construction schedule.

5.2. REPRESENTATION OF DESIGN SOLUTIONS

The stated constraints can be achieved by different, yet functionally
equivalent solutions, comprising building objects. Computationally, objects
can be defined in many ways.4 Recently, frame-based, object-oriented
methods have been gaining popUlarity. In addition to their computational
advantages, object-oriented programming methods appear to be intuitively
similar to the building objects they represent. Frames make it possible to
encapsulate many of the attributes constituting an object, and they can be
organized into hierarchical classes and other types of relationships according
to their properties.

According to the frame formalism, the relationship between an object and
its attributes is fixed. The values of the attributes themselves, however, are
not fixed: they are variables. Such fixed-attribute, variable-value

4See, for example "Computer Integration of Design and Construction Knowledge" (Eastman) and
"Intelligent Systems for Architectural Design" (Watanabe), in Knowledge-Based Computer-Aided
Architectural Design (1994), Carrara & Kalay, eds., Elsevier Science Publishers, B.V., Amsterdam.

124 YEHUDA E. KALAY AND GIANFRANCO CARRARA

relationships are known as name-value pairs. Attributes (also known as slots)
can be thought of as 'place holders,' or as predefined properties that are
associated with particular types of values. Values (also known as fillers),
include the permissible range of numbers (and other types of values) that
can be associated with a particular attribute, defaults, and even instructions
(so called 'demons') that allow the attribute to calculate its value when it
depends on values associated with other attributes. For physical objects of
the kind used in architectural design, there would typically be an attribute
called shape, whose value would be a particular topological/geometrical
entity describing the form of the object and its location in space relative to
some frame of reference. There would also be attributes for material
composition, structural properties, cost, thermal properties, and so on.

Every type of entity in the database is accompanied by operators that can
create, delete, and modify it, and associate it in various types of relationships
with other entities. These operators help to maintain the consistency of the
information in the database, by propagating changes caused by outside
operators (e.g., by the designer). We have chosen to link objects with four
types of relationships, as depicted in Figure 10. They include:

• Classification relationships, which provides the means for associating
individual objects with classes of objects of the same kind, such that
shared properties can be inherited along generalization hierarchies.

• Instantiation relationships, which provide the means for making
instances of a template object, and maintain a measure of control over
the instances by automatically changing them when certain key
attributes of the template change.

• Assembly relationships, which connect instances to each other through
links that form part-whole hierarchies. Assembly hierarchies allow
propagation of changes from 'parent' objects to their dependent
'children .'

• Aggregation relationships, which bind together objects that share
some common property, or objects that must be considered together
when some database changes occur, but do not fall into one of the
other categories. Aggregation relationships require explicit definition
of the nature of the link that connects them. This explicit definition
makes aggregation a more general type of relationship than
classification and assembly relationships, where the nature of the link
is implied by the type of the link itself. By adding a conditional
component to the definition (in the form of a set of rules), the
aggregation relation can exercise the link selectively, depending on
the nature of the change and the nature of the affected objects.

A PERFORMANCE-BASED PARADIGM OF DESIGN 125

5.3. REPRESENTATION OF CONTEXT

We consider context to comprise of project-independent information that the
architect must respond to in his design, and over which he has little or no
control. For example, the topography of the site, its climate and views, are
such information. Likewise, the cultural environment, the economic and
political makeup of the society in which the project is embedded, and often
building and zoning codes, comprise project-independent factors that the
building must respond to. Additionally, we also include in the term context
the predominant activities that the building (or urban place) must support,
which are typically implied by the nature of the project itself. For example,
the medical procedures for treating patients in a hospital, the method of
teaching in a school, and even the traditional habits of a family within its
own house, are factors the architect must account for in his design.

Objects Instances Aggregation tables

'~--------~vr----------"
Prototypes

Figure 1 O. The schema of objects and the relationships between them.

Context thus comprises two kinds of information: settings and events.
Settings include physical (topography and additional characteristics of the
site, such as its susceptibility to earthquakes, its climate, views, etc.), cultural
(built environment, customs, etc.), socio-economic, legal (codes, etc.),
political, and other factors. Events represent the nature of the activities that
will occur within and around the building. For example, in case of a
restaurant, events include cooking, bringing supplies, removing garbage,
parking, serving food, dining, as well as hosting birthday parties, dancing, or
political rallies.

Some of the information included in the context might be translated into
functional requirements, and be represented as design goals and constraints.
For example, construction in an earthquake zone carries many UBC

126 YEHUDA E. KALAY AND GIANFRANCO CARRARA

regulations and design constraints. Likewise, designing a hospital is subject
to a long list of very specific requirements. However, many contextual facts
are too subtle to be formalized into explicit goals and constraints. Architects
are, nonetheless, aware of them, and do respond to them in their buildings.
The result is what we call a 'good' building, which 'fits' within its context.
Frank Lloyd Wright's Fallingwater in Bear Run, Pennsylvania, is a prime
example of contextual awareness, which cannot be formalized through goals,
but has nevertheless strongly influenced the design of the house.

By its very nature, context is inherently difficult to represent explicitly.
Architects understand context by visiting the site, photographing it,
rendering it in their sketchbooks, interviewing its residents, studying
historical records, and, in general, spending much time there. We have
proposed, therefore, an indirect representation of context, through the goals,
the solutions, and primarily through the evaluators. Goals and evaluators, in
particular, provide a convenient means for representing context-specific
trade-off of needs, and for including problem-specific predictors and
interpreters of performance. Still, we suggest that an explicit representation
of context is desired, and ought to be the subject of further research. It can
be achieved in the form of scripts, narratives, case studies, photo albums, and
other media that have the ability to capture the above-mentioned attributes
and qualities, as well as by the knowledge the architect himself brings to the
design process.

5.4. EVALUATION

We consider evaluation to be a process that compares what has been
achieved (or is projected to have been achieved) to what ought to be
achieved. Evaluation, therefore, can be defined as measuring the fit between
achieved or expected performances and stated objectives, within a given
context. The process of evaluation can, however, only be applied to a given,
specific set of performance characteristics (form, function and context), such
as the form, composition and location of a building within a given site, and
intended to meet the needs of a specific client, much like medical diagnosis
can only be applied to the physical condition of a particular patient, under
particular circumstances. When evaluating hypothetical design solutions
where performances are not yet in evidence and cannot, therefore, be
assessed directly, evaluation must be preceded by prediction. Prediction is
the process whereby the expected performance of buildings (or other
artifacts) is simulated, hypothesized, imagined, or otherwise made evident, so
that it can be subjected to evaluation. For example, the rate of heat loss
through a given building envelope must be predicted, often by way of
simulation, before an evaluative procedure can determine whether this rate is

A PERFORMANCE-BASED PARADIGM OF DESIGN 127

acceptable for the activities that will take place in the building at a particular
location. Likewise, the fire resistance properties of a wall or a door must be
determined before its behavior under emergency conditions can be
evaluated. Some building behaviors can be predicted by using established
scientific methods, based on first principles. These include energy, structural,
lighting, and other physical phenomena. Other behaviors lack such a
scientifically rigorous base, and depend upon experience, rules of thumb,
and sometimes sheer guesswork. These include color schemes, building
parties, proportions, and other psychological and behavioral phenomena.
Evaluation and prediction are, therefore, often value-based and dependent
upon judgment, taste, and other subjective variables.

Such variables depend not only on the attributes of the solution itself, but
also on the context in which it is embedded. The context-specificity of
evaluation and prediction are, in fact, their most valuable characteristic for
the development of a performance-based design paradigm. However, they
are also the least computable aspect of the proposed implementation of the
paradigm. Context, in the general sense that was discussed earlier, is hard to
represent computationally and, therefore, difficult to incorporate in the
evaluation procedures.

Moreover, evaluation refers not only the general suitability of the project
as a whole to the stated goals and its context, but also to the suitability of the
developing solution to goals and contexts that are particular to specific
phases of the design, construction, and use of the building, and the
concurrent relationships and influences of certain criteria on other criteria.
For example, the disruption caused by the construction of a building (or a
freeway) to its neighborhood may outweigh its benefits once completed.
Likewise, the materials from which the building is made may be harmful to
the environment or to the inhabitants of the building (asbestos and lead are
prime examples).

Thus we distinguish between Multi-Criteria evaluation and Multi-Phased
evaluation, where Multi-Criteria is an evaluation modality that examines a
given design solution from several different points of view (e.g., energy, cost,
structural stability, etc.), and Multi-Phased evaluation is a modality that
examines how the design solution, or a succession of design solutions, satisfy
a particular design objective (e.g., energy) throughout the study period
(typically, the life-span of the building). To complicate matters even further,
the designer must often engage in both evaluation modalities at the same
time. Each modality informs the other, as well as the process as a whole. It is,
unfortunately, very difficult to develop computational tools that can perform
both kinds of evaluation, and at the same time, be cognizant of the particular
context of the design problem. Most, if not all of the evaluation programs
developed to date have chosen one of the two modalities (Kalay, 1992).

128 YEHUDA E. KALAY AND GIANFRANCO CARRARA

Nonetheless, as a methodology, we suggest that such multi-modal evaluation
tools ought to be considered (Shaviv and Kalay, 1992).

6. Case Study

We developed a system called KAAD (Knowledge-based Assistant for
Architectural Design), which is intended, among other things, to be a proof­
of-concept for the proposed design paradigm and its implementation model.
KAAD was designed to help architects specify design objectives, adapt
existing or create new design solutions, predict and evaluate their expected
performance, and compare them with the stated objectives within the specific
context of designing health-care facilities for treating infectious diseases in
Italy. KAAD is founded on a knowledge-base, comprising prototypical
design solutions, which includes much of the information pertinent to
generic building objects, such as walls, windows, doors and fixtures, as well as
information specific to nursing units, infectious diseases suites, and other
hospital-related data. The knowledge-base includes not only syntactical
information (form, materials, cost, etc.), but also semantic information which
explains the meaning and contextual relevance of the information (e.g., that
a particular door in the proposed design violates infection-containment
protocols). Particular solutions are derived from prototypes by adaptation to
the specific context of the problem.5

To demonstrate the concepts discussed in this paper, we will consider the
design of a small nursing unit intended to house two patients in the
infectious diseases suite of a hospital located in northern Italy. A typical
solution to the problem is depicted in Figure 11, which shows a collection of
spaces superimposed with some access-control constraints: the gray arrows
represent physical accessibility, while the white arrow represents visual access,
but not a passage. For the sake of simplicity, the adjacencies with the outside
and with other units of the hospital have not been represented here.

This case study, albeit of reduced complexity, is significant because
hospital suites for treating infectious diseases must respond to a considerable
number of constraints, many of which are often crucial. These include
support· for specific treatments of symptomatic seropositive or AIDS­
infected patients, as well as the guarantee of adequate protection of the
patients against the risk of crossed or opportunistic infections. At the same
time the designer must also guarantee an adequate level of protection to the
visitors and the staff by carefully considering paths, entrances, filter and
reclamation areas and dressing rooms. Some for the stated goals of the
design of such a nursing unit are:

5 A full description of KAAD is beyond the scope of this paper, and is irrelevant for its purpose. The
interested reader is referred to (Carrara et al 1994) for more details.

A PERFORMANCE-BASED PARADIGM OF DESIGN 129

Internal
Corridor

Room

I External
: Corridor

Internal
Entrance

Bathroom

Visitors

Figure 11. Layout of a typical nursing unit for treating infectious diseases.

• Proper connectivity to other hospital units
• Size limitations
• Environmental constraints, such as the number of air exchanges, air

velocity, air purity, relative humidity, etc.

• Specific fixtures and furniture
• Social and personal welfare requirements.
Additionally, such suites are context-specific in term of medical

procedures, and culture-dependent in terms of care and visiting patterns. The
particular contextual setting of the case study included the following data:

• Location-Northern Italy, not far from the Adriatic sea, implying
certain climatic and soil conditions, as well as a particular socio­
economical profile of the patients and their visitors

• Date of construction/use-first decade of the 21 century (which
implies certain medical procedures)

• Legislative context-an infectious diseases hospital is subject to
certain rules and regulations that must be observed, in addition to
customary construction methods and practices.

The event-contextual data included the following:
• Patient visiting habits, implying certain amenities for non-care­

givers/receivers (e.g., parking lots, lounges, cafeteria, etc.).
• Treatment methods, including contact between staff and patients, with

all the attendant risks (to both parties) that are incurred from treating
patients in an infectious diseases hospital suite

• Emergency egress procedures for patients, staff, and visitors.

130 YEHUDA E. KALAY AND GIANFRANCO CARRARA

6.1. REPRESENT A nON

For the sake of simplicity (as well as other constraints, such as time and
human resources), we have chosen to combine the solutions, the goals, and
the context within a single frame-based representation. Furthermore, some of
the evaluators have also been represented through the same formalism, by
means of procedural attachments. Two kinds of generic frames have been
developed:

• Space Units (SU), representing classes of objects that meet require­
ments associated with individual rooms (or their equivalents) in a
hospital, such as dimensions, type of use, environmental conditions,
and so on.

• Functional Elements (FE), representing the physical components of
the building that delimit spaces and define safety and environmental
comfort levels.

These entities form two hierarchical structures: Building Units (BU), which
represent the spaces in the building, and Functional Systems (FS), which
represent the structure of the building.

As an example, consider the implementation of a simple SU (Space Unit)
prototype of a nursing room in a hospital (Figure 12). The frame includes
slots that establish the spatial relationship between this particular SU and
other SUs; slots that define the maximum and minimum values for certain
variables; as well as slots that define the current values associated with
different variables.

6.2. PROCESS

From the user's point of view, the design process in KAAD is similar to
other design processes using CAD. The user may begin by drawing lines,
representing walls, doors, and other building elements, or he can begin by
specifying the desired goals (constraints) the building ought to achieve, in
the form of bubbles representing the functional units (rooms, corridors,
outdoor spaces, etc.) and the adjacencies between them. Such drafting and
modeling activities are supported by KAAD in a manner similar to other
CAD systems.

The bulk of KAAD's action happens in the background. Each action of
the user causes KAAD to do one of three actions:

1. search its knowledge-base for a prototype FE (Functional Element) or
SU (Space Unit) which matches the characteristics of the object
specified by the user, and instantiate it;

2. check to see if the modification made by the user conforms to the
constraints associated with the affected FEs and SUs, and report back
to the user if it does not;

A PERFORMANCE-BASED PARADIGM OF DESIGN 131

3. initiate a prediction/evaluation process that will provide the user with
information concerning the designed artifact as a whole (e.g., energy
performance, emergency egress, etc.).

(dg3 (ako value su))
(description (value "space unit for patient's
nursing room"))

(com (value connl))

(adj (value dg6 dg7))

(far (value dg2 dgll dg15 conn2))

(ims (value hfur3 ite))

(sup (min 22)

(unit mq)
(max 28)
(unit mq)
(description "minimum and
maximum net area")

(wtemp (range 1921)

(unit DC)
(description "interior winter temperature")

(stemp (range 25 27)

(unit DC)
(description "interior summer temperature")

(rewh (range 40 60)

(unit %)
(description "winter relative humidity")

(resh (range 40 60)

(unit %)
(description "summer relative humidity")

(vent (value 2)

(vela (value 0.2)
(unit m1sec)
(description "air velocity")

(pura (value 4)

Communication (part of
the routes between SUs)
This SU must be adjacent
to the specified SUs

This SU must be far from
the specified SUs

SU is an instance of speci­
fied prototype
Boundary values for sur­
face areas

Range of acceptable inte­
rior winter temperatures

Range of acceptable inte­
rior summer temperatures

Range of acceptable
winter relative humidity

Range of acceptable sum­
mer relative humidity

Desired number of air
changes

Desired air velocity

Desired level or air purity

Figure 12. An example Space Unit (SU) of a nursing unit in a hospital.

The first two actions (instantiation and checking compliance with the
constraints) are transparent to the designer, triggered by the expression of
goals (constraints) or the specification of design solutions. Typically, not all
the information needed to completely define an FE or SU instance is given

132 YEHUDA E. KALA Y AND GIANFRANCO CARRARA

at once. KAAD follows a progressive slot-filling process, using the values
specified by the designer as they become available. It automatically
calculates many of the values needed to complete the instantiation, using
default geometrical and material information, such as adjacencies, paths,
areas, costs, and so on. Since FEs and SUs represent both goals and solutions,
the two actions are conveniently similar from a programming point of view
(which is, of course, why we chose to combine them in the first place).

When KAAD detects a conflict between the input and the stated
constraints, it notifies the user by opening a 'warning' window (Figure 13).
The user has the option to modify the input, override the constraint
temporarily, or modify it (the user, in this case, is assumed to be the
'expert').

Figure 13. A typical screen of KAAD, showing a warning window.

Similarly, the user can override any number of KAAD's automatic
options (including the ones normally hidden from the user), defer them, and
otherwise control the actions of the system. Additionally, KAAD supports
many typical CAD functions, such as grids, snapping, 2D and 3D views,

A PERFORMANCE-BASED PARADIGM OF DESIGN 133

automatic handling of drawing details such as insertion of doors and
windows, two-, three-, and four-way wall intersections, and a full range of
geometric modeling operations. Nonetheless, every form that the user can see
on the screen (other than drafting aids), is the graphical representation of an
instance residing in KAAD's database, along with its full functional
description.6

KAAD has been implemented by a team of 12 programmers in Italy and
in the USA over a five year period. They were supported by a $1.25 million
grant from CNR (Italy's national research council). The knowledge-based
parts of the system were implemented in Allegro Common Lisp 3.0 from
Franz, Inc. The graphical and the database management components of
KAAD were implemented in C. The user interface was developed under
XIIR3. The first prototype of KAAD was developed in the UNIX operating
environment, on MicroVax and Tektronix workstations. Several PC versions,
developed under Microsoft Windows 3.1 using Allegro CLl/PC 1.0 and
Borland C++, are in final stages of development.

7. Conclusion

The development of computational tools that can truly assist humans in
performing complex activities such as architectural design relies upon
developing a deep understanding of the process that is to be assisted, and on
casting this understanding into a model that can be represented explicitly
(and thus can be translated into a computer program). Having identified the
two main characteristics of architecture as Form and Function, the search for
formal theories that can explain the process of design tended to converge on
causality-based paradigms. Hence the attraction of statements such as 'Form
follows Function,' and its converse 'Function follows Form.' These
statements provided a convenient logical foundation for design theories,
much like other causalities have formed the foundation of many engineering
and practically all scientific paradigms.

Many architects found these logically-convenient statements inadequate
to describe what their experiences taught them. These experiences were often
characterized by a discontinuity in the relationship between form and
function, which they called 'the intuitive leap' (Norman, 1987). This leap
occurs when architects, engaged in the search for a form that will facilitate
some desired function, actually find the 'right' form. The paradigm
presented in this paper attempts to recognize this experience, and use it as a

6 As a concept-demonstration program, KAAD lacks many features that would be desirable in a more fully
developed program. Particularly, it lacks means to easily extend and update its knowledge base. Changing
or extending KAAD's knowledge base currently requires extensive knowledge of programming in LISP, as
well as knowledge of KAAD's specific data structure. Since we have not intended KAAD to be a
production CAD system, these limitations are not considered unacceptable by its design team.

134 YEHUDA E. KALA Y AND GIANFRANCO CARRARA

basis for an alternative formal model of the design process, which can be
implemented by computational means. It did not attempt to formalize the
intuitive leap itself, only to accommodate it in the model. This
accommodation takes the form of contextuallity: the convergence of form
and function in a particular context. It strives to eliminate the precedence of
either form or function, and hence of the causal relationship between the
two. To compensate for this, it develops the notion of context-based
performance, as a means for interpreting and determining the confluence of
the two entities.

The novelty of the proposed approach lies in considering form and
function equal, hence deserving explicit representation when implemented in
computational design systems, and in striving to explicitly represent the
context of the design project. The particular implementation described in
this paper chose to represent form, function and context in bundles called
Space Units (SUs) and Functional Systems (FSs), following object-oriented,
frame-based programming practices. It stands to reason, however, that a
more radical separation is conceivable, where the three primary entities will
be represented by entirely different means. In that case, the interpretive
mechanism will have to be separated as well.

The proposed design paradigm fits well with our view that computers
ought to be partners in the design process, tools the designer can draw upon
when developing forms, specifying functions, and interpreting their
confluence (Swerdloff and Kalay, 1987). The partnership approach is
intended to facilitate design but not to fully automate it. It is based on the
observation that designers are able to cope with and manage complex design
processes, and have, for centuries, achieved outstanding results doing so
without the aid of computers. It also eliminates the immediate need to deal
with difficult and (so far) intractable computational problems such as
representing the processes of learning, creativity, and judgment as overt
knowledge structures. Rather, the partnership approach, combined with the
performance-based paradigm of design, permits the designer to provide
these hallmarks of architectural design himself, while drawing upon those
aspects of the design process that have already been successfully computed,
such as a host of analyses, visual presentations, and even certain solution­
generating algorithms.

8. References

Akin, 0.: 1978, How do architects design, in J. Latombe (ed.), Artificial Intelligence and
Pattern Recognition in Computer-Aided Design, IFIP, North-Holland, New York, NY.

Aksoy1u, Y.: 1982, Two different systematic approaches to design, Technical Report,
University of California, Berkeley, CA.

A PERFORMANCE-BASED PARADIGM OF DESIGN 135

Alexander, C.: 1964, Notes on the Synthesis of Form, Harvard University Press, Cambridge,
Massachusetts.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I. and Angel, S.:·
1977, A Pattern Language, Oxford University Press, Oxford.

van Andel, J.: 1988, Expert systems in environmental psychology, JAPSlO Conference,
Delft, The Netherlands.

Archea, J.: 1987, Puzzle-making: What architects do when no one is looking, in Y. E. Kalay
(ed.), Computability of Design, Wiley Interscience, New York.

Armour, G. C. and Buffa, E. S.: 1968, A heuristic algorithm and simulation approach to
relative location of facilities, Management Science, 9(2), 294-309.

Bijl, A.: 1987, An approach to design theory, in H. Yoshikawa and E. Warman (eds), Design
Theory in CAD, North-Holland, Amsterdam.

Carrara, G., Kalay, Y. E. and Novembri, G.: 1994, Knowledge-based computational support
for architectural design, Automation in Construction, 3(2-3), 123-142.

Coyne, R. D., Rosenman, M. A, Radford, A. D., Balachandran, M. and Gero, J. S.: 1990,
Knowledge-Based Design Systems, Addison-Wesley, Reading, MA

Cromley, E. C.: 1990, Sleeping around: A history of American beds and bedrooms, Journal of
Design History, 3(1), 1-17.

Flemming, U.: 1994, Case-based design in the SEED system, in G. Carrara and Y. E. Kalay
(eds), Knowledge-Based Computer-Aided Architectural Design, Elsevier Science
Publishers, Ams.terdam.

Gross, M. D. and Zimring, C.: 1992, Predicting wayfinding behavior in buildings: A schema­
based approach, in Y. E. Kalay (ed.) Evaluating and Predicting Design Performance, Wiley
Interscience, New York.

Kalay, Y. E. (ed.): 1992, Evaluating and Predicting Design Performance, Wiley Interscience,
New York.

Kim, M. K.: 1987, Development of machine intelligence for inference of design intent
implicit in design specifications, in Y. E. Kalay (ed.), Computability of Design, Wiley
Interscience, New York.

Kuhn, T.: 1962, The Structure of Scientific Revolutions, University of Chicago Press,
Chicago.

Lenat, D. B. and Feigenbaum, E. E.: 1991, On the thresholds of knowledge, Artificial
Intelligence, 47(1-3), 185-250.

Laird, J., Rosenbloom, P. and Newell, A.: 1986, Universal Subgoaling and Chunking, Kluwer
Academic Publishers, Boston, MA

Oxman, R.: 1992, Multiple operative and interactive modes in knowledge-based design
systems, in Y. E. Kalay (ed.), Evaluating and Predicting Design Performance, Wiley
Interscience, New York.

Norman, R. B.: 1987, Intuitive design and computation, in Y. E. Kalay (ed.), Computability
of Design, Wiley Interscience, New York.

Simon, H. A: 1969, The Sciences of the Artificial, MIT Press, Cambridge, MA
Simon, H. A.: 1975, Style in design, in C. Eastman (ed.), Spatial Synthesis in Computer­

Aided Design, John Wiley, New York.
Simon, H. A: 1979, Models of Thought, Yale University Press, New Haven, CT.
Shaviv, E. and Gali, D.: 1974, A model for space allocation in complex buildings, Build

International,7(6), 493-518.
Shaviv, E. and Kalay, Y. E.: 1992, Combined procedural and heuristic method to energy­

conscious building design and evaluation, in Y. E. Kalay (ed.), Evaluating and Predicting
Design Performance, Wiley Interscience, New York.

Swerdloff, L. M. and Kalay, Y. E.: 1987, A partnership approach to computer-aided design, in
Y. E. Kalay (ed.), Computability of Design, John Wiley and Sons, New York.

Venturi, R., Scott-Brown, D. and Izenour, S.: 1972, Learning from Las Vegas, MIT Press,
Cambridge, MA.

8

A FORMAL METHOD FOR ASSESSING PRODUCT PERFORMANCE
AT THE CONCEPTUAL STAGE OF THE DESIGN PROCESS

PAUL RODGERS, ALISTAIR PATTERSON AND DEREK WILSON
University of Westminster, United Kingdom

Abstract. The paper describes a fonnal methodology for defining and assessing product
perfonnance and its implementation in a prototype computer system. The methodology
is based on high level abstract descriptions of the operations conducted within the design
process. It is consequently extremely generic and succeeds in fonnally bridging the gap
between physical product performance and actual end-user requirements. The
methodology is based on defining product attributes as observable behaviour of the
product in use. Defining an attribute in this way inherently reflects its required
interaction with the end-user and consequently can truly be said to be in "end-user
tenns". A product will have a range of attributes and a perfonnance indicator is found by
combining them in a way that reflects their relative importance to the end-user. At the
conceptual stage of the design process, however, the actual product does not exist, only
some representation of it. To assess products at this stage requires a model or simulation
of its attributes. This methodology has been implemented in a prototype Computer
Aided Design Evaluation Tool (CADET) and tested with an existing product range. An
example of which is presented within the paper.

1. Introduction

Human beings have always designed things. One of the most elementary
traits of human beings is that they make a wide range of artifacts and tools to
suit their own needs. As those needs alter, and as artifact users' reflect on the
currently-available artifacts, so refinements are made to the artifacts, and
completely new kinds of artifacts and tools are created and manufactured
(Cross, 1994).

In the past twenty years or so there has been a significant cultural change
towards manufactured goods in that product designers and manufacturers
have passed through the period in which it was a challenge to manufacture
an artifact to one in which the challenge is to 'Design and Manufacture' a
product that satisfies user needs, wants or desires (JIDPO, 1990).

Today the quality of many products reaches such a high standard that it
becomes very difficult to evaluate their intra-quality differences. Product
users' judge manufactured goods not on a good-bad criterion, but on like-

138 PAUL RODGERS, ALISTAIR PATIERSON AND DEREK WILSON

dislike preferences. For example Akita (1991), suggests that beauty and
user-friendliness is more important than the sense of high technology within
high-tech products, such as cameras, personal computers, and audio-visual
equipment etc. Indeed Sipek (1993), goes as far to state that product
designers have forgotten that their designed artifacts are made for people to
use.

Potential users range widely, from the very young to the very old, men to
women, healthy people to hospital patients, amateurs to professionals and so
on. Therefore equipment should be designed to be adaptable, or in some
cases specific to different peoples needs, in the most satisfying and efficient
way for their personal use. This poses a new set of challenges for the
designer in that a design proposal has to be evaluated at the concept stage of
the design process, prior to detailed design, when s/he does not have a
physical artifact, and no definite knowledge of how the market will respond
to it, but simply a representation of it, for example; a design drawing or a 3-
D prototype model.

This challenge presents a new requirement to the work of design in that
there is a need to create a methodology to evaluate designs more accurately
and earlier in the design process (conceptual stage) that ideally has some
universal characteristics. It is unlikely that there is a first law of design
analogous to the first law of thermodynamics, but nonetheless there is a need
for a procedure with a quantifiable result to guide the designer towards his
goal of satisfying the needs, wants or desires of the user.

The paper presents a review of current progress in a research project,
which is based on the work of Alexander (1964), in particular, who sought to
introduce a generic methodology which could satisfy the needs of designers
to describe and evaluate their designs. These basic ideas have been
developed into a comprehensive methodology which has been instantiated
into a framework for a Computer Aided Design Evaluation Tool (CADET),
described further in Rodgers et al. (1993) and Rodgers et al. (1994).

Many authors including Ulrich and Seering (1988), Miles and Moore
(1989), and Hollins and Pugh (1990) highlight the neglect of research
activity into the early stages of product design and manufacture, for example
the concept design evaluation stage. They suggest that this may be because
concept design evaluation is generally SUbjective in nature, relying heavily
on the knowledge, intuition and experience of designers and engineers and
therefore does not readily lend itself to formal expression.

Cross (1994), suggests that although there may be many different models
of the design process, they all have one thing in common - the need to
improve on traditional methods of working in design. There are several
reasons for this interest in developing new design methodologies, strategies
and procedures, including for example:

A FORMAL METHOD FOR ASSESSING PRODUCT PERFORMANCE 139

1. The fact that design problems designers· have to solve nowadays has
become extremely complex, for example industrial and plant
machinery. Demands concerning materials and manufacturing
processes' information, for example, is now so vast that it is well
beyond the grasp of the individual designer to keep up to date.

2. Costs and investments involved in design projects are now so great,
for example in setting-up of plant and machinery, purchase of raw
materials, etc. that there are now greater pressures on the designer or
design team to get it right first time before the project goes into
production. Table 1 illustrates the costs involved throughout the
various stages of the design of a new product.

Table 1: Costs involved in New Product Design (Hollins and Pugh, 1990).

Market research
Product design specification
Concept design
Detail design
Manufacturing
Selling

6.9%
5.5%
12%
17.5%
45.7%
12.5%

3. The fact that the needs of end-users are perceived as having far more
relevance nowadays, subsequently adding to the demands placed on
designers (Heskett, 1992).

2. Alexander's Design Model

The presented method of product performance assessment is based on a
formal model of the design process developed from that of Alexander
(1964). Alexander developed his methodology in an attempt to help
designers solve increasingly complex problems. Alexander highlighted the
fact that the information required to solve even the simplest design problem
is well beyond the limits of the individual designer. In an attempt to rectify
this shortcoming designers tend more and more nowadays to. rely on their
intuition, personal experiences, gut-feeling and limited knowledge when
making decisions throughout the various stages of product design. For
example choosing materials, deciding product finishes, manufacturing
methods to be utilised and so on. Alexander's main argument is that by
relying on judgment and intuition alone, what is at best vague, but more
often wholly inadequate. He asserts that by adopting logical structures to the
process of design, this will result in making clear or explicit what is exactly
involved or required in the design process.

140 PAUL RODGERS, ALISTAIR PATTERSON AND DEREK WILSON

Alexander's design model is based on reducing the gap that exists
between the designer and the user. The core of Alexander's approach is a
formal description and representation of the design problem. The work
presented here acknowledges the critiques that have been made of
Alexander's work, by, for example, Lawson (1990). Lawson suggests that
Alexander's work leads to a "rather mechanistic view" of design problems
and illustrates this by pointing out two notions that are now commonly
rejected:

1. That there exists an exhaustive set of requirements which can be
listed at the start of the design process.

2. The listed requirements are all of equal value.
The work presented here directly addresses the second cntlclsm of

Alexander's method, specifically his listing of requirements being of equal
value. It is fairly obvious that certain requirements of products are more
important than others. This work incorporates this view by weighting the
requirements and combining them, in tum, to give an overall measure of the
product's performance.

In particular, this work is only utilising Alexander's analysis of the
process, it is not utilising his suggested method of solution. The design
model reported here is also extended to deal explicitly with mass produced
manufactured items rather than 'one off' constructed items of architecture.

The design model utilises operators and entities to describe what are
believed to be the fundamental actions and their objects respectively.
Although the associated diagrams give the appearance of a procedural or
flowchart model, they are not. They are intended to illustrate the abstract
functional relationships between the various operators!.

2.1. UNSELFCONSCIOUS PROCESS

The ultimate objective of design is form. Every design problem commences
with an attempt to attain 'fitness' between the two entities of: (i) the form,
and (ii) its context. The form is the solution to the design problem; the
context determines the design problem. Usually, in product design the actual
goal for the designer is not the form alone, but the ensemble comprising the
form and its context. 'Good fit' is a required characteristic of the ensemble.
For example a kettle (form) should be able to rest safely on a work-surface
(context) within a kitchen (ensemble) (Alexander, 1964: 15).

Alexander (1964: 48) describes the unselfconscious process as a type of
built-in fixity-types of myth, tradition and taboo which oppose strong
modification. Creators of form will only introduce modification under

1 An abstract function defines the relationship between two sets independent of the actual set
membership (Blyth 1975).

A FORMAL METHOD FOR ASSESSING PRODUCT PERFORMANCE 141

sound compulsion where there are strong and obvious errors ("misfits")
within the existing forms which demand correction.

In the unse1fconscious process the designer operates directly on an actual
form within its actual context. Determining the fit of form in context is by
direct observation of the ensemble and in the absence of fit the design
process determines actions to eliminate the misfits. An example of the
unselfconscious process is the bespoke tailor fitting a suit to a client. The
designer (bespoke tailor) will observe misfits in the ensemble of form (suit)
and context (client) and make changes such as letting in or taking out seams.
Formally the process is illustrated in Figure 1.

Actual World

Actual _I Combining Form tA waIF Manufacturing

Context & Context C F 1 onn Plant & Tools

CI ~ IEI..-Coml (FI,CI)I FI..- Man (8)

Actual Ensemble ~ t ~lgnal
(Preferred Situadon)

EI

I I Actuation I Obre~ation of fue I 8'- Act (I) Ensemble

MIE- Obsl (EI)

Actual Measure of L
Actions to
Implement
Decisions

~~~fe~i~ii~:~~n 
I 

Fit I f- Invl (MI) 
MI 

Figure 1. The unselfconscious process. 

The nature of this abstract approach is that the work is not, at this stage, 
defining the content of entities or operators,- but only the functional 
relationships between them. Figure 1 is explicitly not intended as a flowchart 
representation of the design process. 

Actual Form Fl and actual context Cl are (real) entities combined by the 
operator Coml to create the ensemble entity El. The designer observes the 
ensemble by operator 0 bs 1 to determine the misfit entities M 1. The 
designer then applies some cognitive process described by the operator Invl 
to determine the entity I of actions to be taken to eliminate the misfits. These 
actions are realised in the ensemble by actual tools or plant. 

The actions are information in the memory of the designer which have to 
be converted into real physical events. This is done by a process of actuation 
described by the operator Act which converts information into power 
denoted by the entity S. The entity S has both physical and informational 
significance in that it must be sufficient to cause an effect but controlled to 
produce the correct effect. For example the operator Act may describe an 
actuator such as a servo motor which (via other hardware) drives a machine 
tool from instructions I in the form of a part program. The output from the 



142 PAUL RODGERS, ALISTAIR PATTERSON AND DEREK WILSON 

servo motor must supply sufficient power to cut material but with sufficient 
accuracy to cut it in the way required. The effect of S in producing a new 
form Fl depends on the actual machinery it connects to which is in turn 
described by the operator Man. These operators are intended to be complete 
and generic describing all processes required to generate the new form Fl. 

A more realistic model may be to describe Man as a differential operator, 
i.e. causing a change to an existing actual form rather than generating a 
completely new form. The given definition is used in the interests of 
simplicity later. 

In the unselfconscious process actuation Act is predominately performed 
by the human mind in determining how tools should be operated or utilised. 
The unselfconscious designer need not be able to invent forms at all just 
respond to misfits (Alexander, 1964: 58). Most importantly the iterative 
modification of form to fit context occurs physically and is defined by the 
actual experience and satisfaction of the designer. Although an apparently 
obscure name the "Unselfconscious Process" is particularly apt. The 
designer is conscious of the form in context and responds directly to direct 
experience of the ensemble without consciously considering the change in 
form required to eliminate the misfit. 

The observations made by the designer are determined by the physical 
configuration of the ensemble, which may be inorganic or organic, and the 
physical, social, cultural, and/or economic laws that apply to the 
configuration. Whilst the unselfconscious designer need have only intuitive 
knowledge of them, since he deals directly with the consequences, it will be 
seen later that they must be codified to produce rationalised predictions. 

The unselfconscious approach is clearly unsuitable for industrially mass­
produced goods for the reasons cited by Jones (1980): 

1. Specifying dimensions (form) in advance of manufacture makes it 
possible to split up the production work into separate pieces which 
can be made by different people. This is the 'division of labour' 
which is both the strength and the weakness of industrial society. 

2. Initially this advantage of defining before making made possible the 
planning of things that were too big for a single craftsman to make 
on his own, for example, large ships and buildings. Only when 
critical dimensions have been fixed in advance can the works of 
many craftsmen be made to fit together. 

3. The division of labour made possible by scale drawings can be used 
not only to increase the size of products but also to increase their rate 
of production. A product which a single craftsmen would take several 
days to make is split up into smaller standardised components that 
can be made simultaneously in hours or minutes by repetitive hand 
labour or by machine. 



A FORMAL METHOD FOR ASSESSING PRODUCT PERFORMANCE 143 

2.2. THE SELFCONSCIOUS PROCESS 

The method of form creation in the selfconscious process is very different 
from that in the unselfconscious process. Modifications are no longer made 
upon observation of error or misfit. They are, however, only made after a 
process of recognition and description by the specialist involved (Alexander, 
1964: 55). 

In the selfconscious process (Figure 2) the designer has become removed 
and is remote from the user of the product and the final physical product 
itself. Instead of being able to directly observe the ensemble, the designer 
investigates, explores and researches the actual context Cl and constructs a 
mental picture of it C2. This process is described by the operator Exp. 

Actu<li World 

Cl---t.~IElt-coml (Fl.C1l l04 Fl 

"! 
Fl ~ Man (S) 

s ~ Act (I) 

Complete 
Representation 
of Form (e.g. 
BS 308 
Drawing) 
F2 

Figure 2. The selfconscious process. 

Instead of working on the actual form the designer must work with a 
description or representation of it, F2, and through the operator Com2 
combine the form and context to make a mental picture of the ensemble E2. 
From this mental picture of the ensemble the designer attempts to estimate 
potential misfits M2. This process is described by the operator Obs2. In the 



144 PAUL RODGERS, ALISTAIR PATTERSON AND DEREK WILSON 

same way as in the unselfconscious process the designer makes intuitive 
judgments, but this time on modifications to the form rather than actual 
actions to be taken. This process is described by the operator Inv2. 

The process of inventing a form and physically realising it are separate. 
As Dormer (1993) indicates designers do not manufacture things. They 
think, they analyse, they may model or draw, and they specify. The most 
important distinction between the unselfconscious designer and the 
selfconscious designer is that the latter must define in detail complete and 
unambiguous descriptions of the shape, size, materials, and material finishes 
of the form prior to manufacture. Although designers may take 
manufacturing considerations into account there are further operations of 
manufacturing planning PIa, which determines the instructions I that will 
physically realise the form represented by F2, for example a BS 308 
drawing (Parker, 1984). 

The process of determining fit is a mental simulation of the observations 
the unselfconscious designer uses to determine his actions. Whilst the 
unselfconscious designer is dealing with reality the selfconscious designer is 
attempting to mentally predict a future reality. 

Representation of Form 
In the unselfconscious process the designer works directly with the physical 
form. In the selfconscious process he works on some representation of it. 
The representation is a complete definition of the shape, material and finish 
that the form will consist of2. When the actual form is realised measurements 
taken from it should correspond exactly to the measurements in the 
representation. 

The representation of the form does not define a unique physical form. 
Because of inevitable tolerancing and measurement errors it defines a class 
of admissible actual physical forms and the actual form realised from it must 
be within that class. 

Misfits within the Mental Picture 
In the selfconscious process misfits are determined in part intuitively or by 
intuitively designed tests. In practice the selfconscious designer may well go 
through a process similar to that of the unselfconscious designer. In the 
example of the "off-the-peg" suit, the designer may well go through the 
same process of a series of successive changes or "fittings" with respect to 

2 The representation may contain symbolic descriptions of standard components, e.g. 
(electrical or electronic) but these will always be supported by shape and material 
representations elsewhere. 



A FORMAL METHOD FOR ASSESSING PRODUCT PERFORMANCE 145 

the standard mannequin as the bespoke tailor does with a client. However, 
unlike the bespoke tailor the result of identifying and eliminating misfits is 
not within the actual suit, but it is the cutting patterns representing the typical 
form of the suit. Although apparently identical the "off-the-peg" designer 
is undergoing a process of testing whilst the bespoke tailor is going through 
a process of production. 

Difficulties with the Self conscious Process 
The operations defined within the selfconscious process are still 
predominately intuitive and imaginative. The designer uses drawings and 
diagrams to support the mental picture in his mind, however in that picture 
the decisions of fit of the proposed form within it are not clear. As stated 
initially, although the invention of form may well be intuitive, imaginative 
and not completely understood there is no reason why the fit of form with 
context should not be rationalised in an attempt to maintain the designer's 
intent. Alexander (1964: 77) addresses this problem by creating a formal 
picture of the mental picture by abstracting and defining its necessary 
features in formal terms. The fit of form with context can be formally 
defined in terms of the formal picture. 

2.3. FORMAL PROCESS 

Alexander asserts that within the selfconscious process the designer works 
entirely from the mental picture in his mind, and this picture is almost always 
wrong. He suggests eradicating this problem by constructing a formal 
picture of the design problem. This formal picture can then be scrutinised in 
a way not subject to the bias of language and experience (Alexander, 1964: 
78). The formal picture is not intended to eliminate the intuitive and 
imaginative components of the design process, but to make it visible, 
discussable, open to criticism and make the designer accountable (Lawson, 
1990). 

Alexander defines the formal picture in terms of the observations of the 
form in context which could cause a misfit (Figure 3). The observations are 
called misfit variables which are either true or false. Alexander requires the 
selfconscious designer to state the criteria of the intuitive judgment of fit 
from the mental picture. Overall fit is the conjunction of the misfit variables. 
In the formal process the designer constructs a formal picture of the context 
C3 from the mental picture of the context C2. This process is described here 
by the operator For. The designer combines the formal picture of form F3 
and context C3 to produce the formal picture of the ensemble E3. This 
process is described here by the operator Com3. The measure or quality of 
fit M3 is then determined through predicted observations of the ensemble 
E3. This process is described here by the operator Obs3. Synthesis of a new 



146 PAUL RODGERS, ALISTAIR PATTERSON AND DEREK WILSON 

form F3 is created in response to the predicted measure of fit or misfit M3. 
This process is described here by the operator I n v 3. The concept 
representation of the form F3 (e.g. drawing, annotated sketch, etc .) is then 
subject to a process of embodying the concept and adding greater detail 
which results in a complete and unambiguous description of the form F 2 
(e.g. BS 308 Drawings). The procedure from concept of form (F3) to 
detailed description of form (F2) generally follows along the following 
lines, (French, 1985): 

1 . Conceptual design 
2. Embodiment design 
3. Detail design 

This process is described here by the operator Emb. 

AcltUlI \Vorld 

c l--...... ~~I EI~oml (FI.col ~ f'l 

"! 

L Formalised Observation 
Formal of Ihe Eru;emble 

EllSCm~; 1\13 (- Ob.3 (E.~ ) 

FI ~M.n (S) 

S ~ACI ( I ) 

I ~ Pia (1'2 ) 

1'2 

Coile-Crill 
'----; Rcprcscntalinn 

(e.g. alll'lOl;)lCd 
.,kelch) 
F3 

F3 ~ Inv3 (M3) 

Figure 3. Formal picture of the mental picture. 



A FORMAL METHOD FOR ASSESSING PRODUCT PERFORMANCE 147 

Determining the formal measure of fit M3 within the formal picture (Figure 
3) is the process of product performance assessment at the conceptual stage 
of the design process. 

2.4~ ATTRIBUTES AND ENSEMBLE 

Misfit Variable 
Alexander's formalisation of context is based on a set of Boolean variables. 
However this implies that each requirement is of equal importance, a notion 
now widely rejected by many authors including Lawson (1990). 

It is important to note that a misfit variable is defined as an observation 
that could be made of an actual ensemble. The paper will demonstrate later 
that the designer's problem at the conceptual stage of the design process is 
to predict this observation, since the actual ensemble does not exist. 

To enable requirements of differing importance to be defined the misfit 
variable is extended to an attribute variable which can take on a wider range 
of values appropriate to the observation. 

Attributes 
An attribute a is defined by the set of values it may take which is defined as 
its type A. 

A= {a: S (a)} 

where S is an open sentence defining inclusion within A (Blyth, 1975). 

ae A, 

with the constraint that A must be scalar and totally ordered. 
Misfit variables (Alexander, 1964), are special cases of attribute variables 
equivalent to an enumerated type: {false, true} 

The meaning or semantic of an attribute, for example 'consumes_fueC 
efficiently', is its method of observation from an actual ensemble. An 
attribute observation Oba is a function from an actual ensemble El to an 
attribute value A. 

Oba I El-7 A 

An attribute is the observation of an element of performance of an actual 
form Fl within an actual ensemble El, i.e. the product in use. For example, 
a performance element of a car could be that it should consume fuel 
efficiently. The attribute 'consumes_fueCefficiently', for example miles per 
gallon, could be directly measured under stated conditions. Another attribute 
such as 'looksjast' would have to take values from an enumerated set such 
as {slow, average, good, quick, fast} but ultimately could only be measured 
from the stated responses of individuals. 



148 PAUL RODGERS, ALISTAIR PATTERSON AND DEREK WILSON 

It is important that attributes are based on direct observation and do not 
implicitly contain theories about their causes. For example a suitcase may 
have an attribute 'comfortable_t03arry' which could be reasonably 
objectively defined and evaluated in terms of muscular discomfort. It should 
not however be defined in terms such as weight which implicitly reflect 
ergonomic theories of human capacity. Such considerations are clearly 
essential to the assessment but are not contained within definitions of 
attributes. 

In general attributes range from the objective to the subjective (Figure 4). 

OBJECTIVE SUBJECTIVE 

Quantifiable ... Measurable .•. Ergonomic ... Aesthetic .•. Emotional 

Figure 4. Attribute spectrum. 

Definition of the attributes formalises the designer's view of the significant 
requirements of the form in use. All the attributes A for a form is the 
product set of the n individual attribute types defined, 

A = A 1 X A2 X .... An. 

The elements of A are the n-tuples reflecting the evaluations of each 
attribute, 

a E A, a = <al,a2, .... an>. 

The corresponding n attribute observation functions are, 

Oba 1 ,Oba2,····Oban , 
and the single function which produces the attribute n-tuple is, 

Oba I El ~A 

a = <Obal (El), Oba2(El), .... Oban(El» 

The attribute variables define the relevant aspects of the product in use. 

2.5. FORM 

The detailed representation of form F 2 should be a complete and 
unambiguous representation of an actual form Fl. However due to the 
inevitable measurement and manufacturing errors, F2 in practice defines a 



A FORMAL METHOD FOR ASSESSING PRODUCT PERFORMANCE 149 

class of actual forms. F2 is in fact an inclusion condition for a class of 
admissible actual forms F. The usual practice is to treat measurement as 
perfect and incorporate measurement error within the range of permissible· 
actual forms. For example a component is measured and that measurement 
compared to a toleranced drawing. If the measurement is within tolerance 
then the component is, in that respect, within the class of admissible forms, 
otherwise it is not. It is not generally assumed that if a component is out of 
tolerance that it may still be within the class of admissible forms due to the 
measurement error. 

This leads to algebraic complications since the manufacturing operator 
Man would have to be defined as producing classes of admissible actual 
forms rather than a single actual form. Consequently tolerancing and 
measurement error will be ignored and it will be assumed that there is a 
unique actual form Fl associated with its representation F2. The relationship 
between Fl and F2 is defined by a measurement operator Mes, 

Mes.' Fl ~ F2. 

Similarly it will be assumed that a concept representation F3 is associated 
with a unique actual form Fl also related by the operator Mes, 

Mes' Fl ~ F3. 

This of course implies that the process of embodiment, detailing Emb, 
and manufacture Man are completely deterministic for a given concept. This 
is clearly not the case in practice but makes little difference to the problem 
of product performance assessment at the concept stage of the design 
process. 

2.6. PERFORMANCE 

To get a single performance evaluation of the form in context the individual 
attributes must be combined in a way that reflects their relative importance 
(Lera, 1981). The final measure of performance M3 is the formal picture of 
the actual performance Ml. The combination of attributes to find M3 is 
described by a combination function Cob which defines their relative 
importance. 

Cob'A~M3. 

This addresses Lawson's (1990) major criticism of Alexander (1964) of not 
accounting for the relative importance of the attributes. 

2.7. CONTEXT 

The formalisation of context is the combination function Cob. Notice that 
defining the combination function implicitly defines the attributes as well as 



150 PAUL RODGERS, ALISTAIR PATTERSON AND DEREK WILSON 

explicitly defining their relative importance. This definition is equivalent to 
Alexander's formalisation of context when all attributes are Boolean and 
their combination is conjunction. Notice again that the formalisation of 
context is defined in terms of observations that could be made of an actual 
ensemble. 

2.8. EVALUATION 

The definition of product performance is illustrated below (Figure 5). 

Entities 

Product Ensemble Attributes Performance 
Fl El a M3 

--I El f- Coml(Cl,Fl) H a f- Oba(El) H M3 f- Cob (a) ~ 
Placed in Context Observation Combination 

Operators 

Figure 5. Perfonnance assessment of an actual product. 

The assessment of an actual product in context is by implementation of the 
operators Oba, which evaluates the attributes and Cob, which combines them 
into a single performance assessment. However, at the conceptual stage of 
the design process there is no actual product. From Figure 3, M3 is predicted 
by the operator Com3(C3,)-Obs3. Consequently this operator is required to 
simulate Oba-Cob. 

3. Product Performance Assessment 

Definition of Assessment 
Product performance assessment at the conceptual stage was described as 
implementation of operators, 

Com3(C3,)-Obs3, 

on the concept representation of form F3 (see Figure 3). 
The product performance assessment method has two elements of: 

1. Problem Definition-definition of entity C3 by implementation of 
operator Exp-For 

2. Evaluation-implementation of operators Com3 and Obs3 on F3 to 
produce the measure of performance M3. 



A FORMAL METHOD FOR ASSESSING PRODUCT PERFORMANCE 151 

This work will start with the evaluation problem since the requirements of 
evaluation influence problem definition. 

At the concept stage, where there is no actual product, the operator Oba 
must be simulated to predict the performance M3. This requires prediction 
of each individual attribute to be combined by the operator Cob. The 
operator Oba is simulated using two further operators Ext and Mod to be 
described later. 

Concept 
Representation 

F3 

-~ 

Entities 

Characteristics 

ch 

ch f- Ext(F3) ~ a f- Mod(ch) 

Extraction Model 

Model of Product in Context 

Operators 

Attributes Performance 

a M3 

~ M3 f- Cobia) ~ 

Figure 6. Performance assessment at concept representation stage. 

3.1. ATTRIBUTE PREDICTION 

The prediction of objective attributes such as: 'consumesjuel_efficiently' is 
well defined, although in many cases may be mathematically difficult. The 
engineering sciences, for example thermodynamics, are predominately 
concerned with making these types of predictions, the results of which are 
embodied in available computer software, e.g. RASNA MECHANICA®. 

Theoretical models for predicting behaviour are based not of the 
complete form itself but on specific properties extracted from it. In many 
cases the same property will appear in more than one attribute. It is therefore 
convenient and expedient to decompose the operator Obs3 into a 
composition of a further operator of extraction Ext, a model Mod, and a new 
entity reflecting the extracted properties called characteristics Ch. 

Characteristics are inherent properties of any product, independent of the 
product's use, and can be determined purely from the representation. 
Product characteristic examples include mass, colour, material specifications, 
dimensional information (length, width, height, etc.). 

Characteristics have the same mathematical structure as attributes. A 
characteristic ch is defined by the set of values it may take which is defined 



152 PAUL RODGERS, ALISTAIR PATTERSON AND DEREK WILSON 

as its type Ch. 

Ch = {ch : S (ch)} 

where S is an open sentence defining inclusion within Ch (Blyth, 1975). 

ch E Ch, 

The characteristics of a form Ch are the product set of the n individual 
characteristic types defined for the form, 

Ch = Ch 1 X Ch2 X .... Chn. 

Consequently the elements of C h are the n-tuples reflecting the 
determination of each characteristic, 

ch E Ch, Ch = <ch Ioch2, .... chn>. 

The operator Ext is a function from form F3 to characteristics Ch. 

Ext I F3 ~ Ch 

and the model Mod a function from characteristics Ch to attributes A. 

Mod I Ch~A. 

3.2. ATTRIBUTE EVALUATION EXAMPLE 

The assessment method, developed within this work, is illustrated by the 
following example. The example will outline the assessment of a single 
attribute. 

3.3. TOOTHBRUSH 

In this example the concept representation F3 is an annotated sketch (Figure 
7). In this case the attribute is objective but less easy to define since one has 
had to use natural language to describe the observation rather than 
mathematical language representing specific observations. 

Attribute 

reaches_alI_teeth E {True, False} 

Method of Observation 

reaches_alI_teeth = filament ends contact with every tooth 
surface in the mouth". 

In this example natural language formulation has been used and is denoted 
within double quotation marks. 



A FORMAL METHOD FOR ASSESSING PRODUCT PERFORMANCE 153 

I \ 

Figure 7. Design sketch of toothbrush. 

Model 
The model is constructed from considerations of spatial occupancy of the 
toothbrush drawn from computer-generated three-dimensional models 
representing the access region in the mouth for a given brushing action 
drawn from expert knowledge (Walsh and Lamb, 1992/93). 

In this case the model was constructed empirically by using a plaster cast 
of teeth and estimates of cheek flexibility to determine the region Access 
(Figure 8). The sweep trajectory M is a conservative approximation to ideal 
brushing action determined from interviews from dentists (Walsh and Lamb, 
1993). The model is expressed as : 

reaches_all_teeth = (SWEEP(V,M) n* Access* = 0 ) 
where: V is the volume describing toothbrush spatial occupancy, 

M is the path it is to be moved along, 
SWEEP(V,M) denotes the SWIVEL 3DTM PROFESSIONAL operator 
for moving a volume V along a path M, 
Access* is the regularised complement of the mouth access volurae, 
n* denotes regularised set intersection 

and 0 the empty set. 
(i.e. The work requires the toothbrush to be fully contained within the Access 

volume for the tooth brushing action) 

Characteristics 
V is the volume representing the spatial occupancy of the toothbrush. 



154 PAUL RODGERS, ALISTAIR PATTERSON AND DEREK WILSON 

Direction of Motion 

Volume V - Toothbrush 

Figure 8. Diagram of access volume within mouth (empirically based model). 

Attribute Evaluation 
A = {<reaches_all_teeth> I reaches_all_teeth E {true,false} }, 
Oba = "filament ends contact with every tooth surface in the mouth". 
Ch = {<V> I V E bounded regular subsets of E3 }, 
ch = Ext(F3) = "Construction of V in SWIVEL 3DTM PROFESSIONAL", 
Mod(ch) = "Definition of M and Access within SWIVEL 3DTM PROFESSIONAL", 
a = "Execution of the Sweep operator in SWIVEL 3DTM PROFESSIONAL and visual 

inspection of the generated image (Figure 9)" 
a =True 

Figure 9. SWIVEL 3DTM PROFESSIONAL generated model of toothbrush in mouth. 



A FORMAL METHOD FOR ASSESSING PRODUCT PERFORMANCE 155 

3.4. CRITIQUE OF WORKED EXAMPLE 

The example illustrates the method of assessment. The example shows the 
organisation of information embedded within the assessment system. The 
system contains the following elements: 

Association between User and Designer Views 
An attribute is a formalisation of the intuitive judgment that would be made 
by the designer, or in other words the designer's "feel" for the problem, 
based on the requirements of the user. However, disagreement and misunde­
rstanding can, and does, arise between the designer and the user (of the 
product, system, etc.). Cross (1994), states that this is because the designer 
and the user focus on different aspects of the product's requirements. The 
user generally focuses attention on the attributes of the product and states his 
or her requirements in natural terms, for example 'easy _to_clean'. The 
designer, however, concentrates more on the product's characteristics, which 
seek to establish the product attributes, which in turn attempt to satisfy the 
users' requirements. This approach addresses the problem by formally 
linking the physical characteristics of the product to a clear statement of the 
user requirements. For example, in the case of the toothbrush, the attribute 
and its observation, 

reaches_aU_teeth = "filament ends contact with every tooth surface 
in the mouth". 

clearly reflects the user requirement whilst the model links the relevant char­
acteristics of spatial occupancy, which are under the control of the designer, 
to it. 

Attribute Selection 
It is questionable whether a complete list of requirements (attributes) can be 
defined for a product at the start of the design process. Many requirements 
of products become apparent only through the actual process of assessing 
design proposals. 

Model 
Whilst the problem of attribute selection is in determining an adequate, even 
if incomplete, set of attributes, the potential difficulty in the model is in 
accurately simulating those attributes that are defined. Moreover, the model 
itself, (i.e. the equation) says little to the designer about the rationale for its 
construction, for instance: the toothbrush example is based on ergonomics 
and human factors theory. If such a system is to be of use to the designer 
then the rationale must also be available in an explanation facility. 



156 PAUL RODGERS, ALISTAIR PATTERSON AND DEREK WILSON 

Attribute Type 
The assessment of the attribute in the example was to predict whether the 
form proposed would be suitable, for example would the toothbrush 
'reach_alL teeth'. The assessment of this example was either true or false, in 
other words Boolean. However, it would be more useful to facilitate the 
designer with a numerical result that rates or scores the attributes. This would 
then assist the designer to address the specific characteristics that failed. 

4. FLEX Implementation of the Evaluation Methodology 

A computer implementation of the assessment method has been written in 
FLEX -an expert system toolkit that offers frame based, data driven and 
rule based functionality fully integrated into a PROLOG environment. 

The computerisation of the assessment methodology (Figure 10) requires 
implementation of exactly the same operators used in the toothbrush 
example previously. 

Extraction Model Combination 

F3 ~I ch .... Ext(F3) ~ a .... Mod(ch) H M3 .... Cobia) ~M3 
(Concept 
Representation) (Characteristics) (Attributes) (Performance) 

Figure 10. CADET tool implementation requirements of Obs3. 

FLEX implementation of the previous defined operators, Ext, Mod, and Cob 
is required. The implementations are illustrated using the performance of an 
actual product, i.e. a toothbrush, as an example. In this example the 
attributes of the toothbrush and their methods of observation are: 

AI: long_lasting E {a .. lOa} 
Obal: long_lasting = "lasts a minimum of three months without wearing 
out" 

A2: comfortable_to_hold E {a .. 100} 
Oba2: comfortable_to_hold = "comfortable to hold whilst brushing 
teeth" 

A3: removes_plaque_efficiently E {a .. lOa} 
Oba3: removes_plaque_efficiently = "removes enough plaque each time 
to prevent a significant amount of tooth decay" 

A4: does_noCirritate_gums E {O . .lOO} 
Oba4: does_noCirritate_gums = "doesn't make gums bleed or cause 

sore gums" 



A FORMAL METHOD FOR ASSESSING PRODUCT PERFORMANCE 157 

A5: reaches_aU_teeth E {0 .. 100} 
Oba5: reaches_aU_teeth = "filament ends contact with every tooth 
surface in the mouth" 

A6: looks_attractive E {0 .. 100} 
Oba6 : looks_attractive = "looks attractive within a bathroom 
environment" 

The attribute set for this problem is: 

A = Al X A2 X A3 X A4 X A5 X A6, 

a E A = <long_Iasting,comfortable_to_hold,removes_plaque_ 
efficientI y, does_noCirritate_gums,reaches_aILteeth, 
looks_attractive >. 

and the corresponding observation set, 

{"lasts a minimum of three months without wearing out", "comfortable 
to hold whilst brushing teeth", "removes enough plaque each time to 
prevent a significant amount of tooth decay", "doesn't make gums bleed 
or cause sore gums", "filament ends contact with every tooth surface in 
the mouth", "looks attractive within a bathroom environment"} . 

The combination function in this case is a linear weighting of the attributes, 

Cob (a) = L 1 ::; i::; 6 Wi ai . 

4.1. FLEX IMPLEMENTATION OF OPERATOR COB 

Operator Cob is implemented by the FLEX structure action. Within this 
structure each attribute is identified by a FLEX relation identifier of the same 
name (Figure 11). 

:0 combination function 

do re,1Ut 
and 100k.!_at1laCti~(Name,Score) 
and reache,_all_1eetll(Name,Score) 
and comtonable 10 hold(Name,Score) 
and doe, _MUrrtllliO ..J:=(Name, Score) 
and 1a3t1_long(Name,Score) 
and remo~'JJaq\U!_e!!jcil!nUy(Name,Score) 

and 1OtalJerfonnaru:e(Name , Score) -
100k.!_&ttmcti~(Sl • Weight) + reaches_all_1I:etll(S2" Weigh1) + 
comfonable_1O_hold(S3" Weigh1) + doe'_MUrrilll1l:..J:=(S4 .. Weigh1) + 
wlS_long(SS" Weight) + remo~'Jla.que_ef!jcil!nUy(S6" Weigh1) 16 .. (100) . 

Figure 11. Combination function. 



158 PAUL RODGERS, ALISTAIR PATTERSON AND DEREK WILSON 

4.2. FLEX IMPLEMENTATION OF OPERATOR MOD 

The model for each of the attributes in the combination function is coded as 
a relation in FLEX based on knowledge extracted from experts, for example 
Walsh and Lamb (1992/93), and Delaunay (1982). 

For example the model for the attribute 'does_noCirritate_gums' is a 
model of the observation "doesn't make gums bleed or cause sore gums" 
and is shown below (Figure 12). 

=0 does not irritllte gums 

/. DOES NOT I~RITATE GUMS CODE ./ 

relAtion does_noUIIila1r:-,um:I(Name,Score) 

if Name is an ln3\anCe of lOo1h.blU3h 

if 1h.e hee.dJeng1h. of Name is g rea1r:r 1han 18 and 1h.e 
hee.d_leng1h. of Name is Ie" 1han 31 

if 1h.e hee.d _ w 1h. of Name is grea1ler 1han 6 and 1h.e 
hee.d_ will of Name isle" 1han 13 

if 1h.e filament diame1r:r of Name is grea1r:r 1h.e.n 0.15 and 1h.e 
filament_dwne1ler of Name isle" 1h.e.n 0,31 

if 1h.e f.ilament ma1r:rial of Name is some ln3\anCe of 
nonjIIit8.1r:_oIaI_ma1r:rial 

if 1h.e lOo1h.blU3h ma1r:rial of Name is some ln3\anCe of 
non_init8.1le_oxaCma1r:rial 

if 1h.e hee.d_shape of Name is some ln3\anCe of 
non_init8.1r:_hee.d_shape 

if 1h.e hee.d_clOss_section of Name is some ln3\anCe of 
non_ini1:a1le_section 

Figure 12. 'does_noCirritate_gums' model. 

The model consists of a collection of clauses based on either the product 
characteristics or sub-relations. For example, the first clause, 'if Name is an 
instance of toothbrush', ties the attribute to the class of product defined as 
toothbrushes. The second clause, 'if the head_length of Name is greater than 
18 and the head_length of Name is less than 31', is directly based on the 
product characteristic 'head_length' and reflects expert opinion (Chong and 
Beech, 1983). The fifth clause, 'if the filamenCmaterial of Name is some 
instance of {non_irritate_oral_material}', is based on the sub-relation 
'{ non_irritate_oral_ material}'. This sub-relation is intended to be 
applicable to any item which is placed in the mouth and forms part of a 
library of similar sub-relations. This is implemented in FLEX by the 
following code shown below (Figure 13). 



A FORMAL METHOD FOR ASSESSING PRODUCT PERFORMANCE 159 

::0 Sub-Relations 

,. SUB-RELATION LIBRARY'" 

relation non_iIri1B1e_OraUM1Ierial (Ma1erial) 

if Material is an instance of plastic 
and 
1he deI\3ity of Material is grea1er than 1.0 and 1he deI\3ity of 
MI111erial is Ie" than 5.0 
and 
1he valllr_ab50rption of Malllrial i3 le53 than 4.0 
and 
1he 1IeI\3ile _,treng1h of Ma1lerial is grealllr than 65 and 1he 
1IeI\3ile _3treng1h of Ma1lerial isle" than 80 
aruiI 
1he impe.ct_streng1h of Malllrial is grea1ler than 100 or some 
instance of no break 
and -
the meltill(_ temperature of Material is greJr than 200 
and 
1he Ma1lerial i3 some instance of non_lOxic . 

g 

I 

IIII 

Figure 13. CADET tool library of sub-relations. 

Each attribute has a similar model and their combination IS the FLEX 
implementation of the operator Mod. 

4.3 . FLEX IMPLEMENTATION OF OPERATOR EXT 

Each of the attribute models defines the characteristics necessary for its 
computation. The list of characteristics required are shown below (Figure 
14). Notice that certain product characteristics such as 'filamenCdiameter', 
'handle_cross_section' and 'head_shape' occur in more than one attribute 
model. The process of extraction is manual. The designer must inspect what 
ever concept representation s/he is assessing in response to system prompts. 
In principle however if the system was linked to a CAD system then the type 
of feature extraction facilities available on some systems could be exploited 
either to automatically extract the characteristics or at least provide user 
friendly interactive methods, analogous to the systems described by Tovey 
(1994) and Buck (1992/93). 

5. Example of the CADET System in Use 

The CADET system may be used for either a total evaluation or for 
individual attribute evaluations. Each attribute can now be computed by 
selecting it from the pull down menu (Figure 15). The designer is requested 
to fill in the product characteristics describing his or her concept design 
proposal at the CADET system dialog box prompt (Figure 16), in this case 
actual characteristics of the toothbrush concept design proposed, e.g. 
'toothbrush_length' , 'handle_thickness', 'handle_cross_section', etc . 



160 PAUL RODGERS, ALISTAIR PATTERSON AND DEREK WILSON 

... ,.., .... 
Attributes, z 

'" in users' E:l ::i! 
terms Q '"' ;::> ,.., E '" 0 = = '" !!: .... '" 0 '" '" == .. ;::> ... !!: t; 

'" 
0- 5 '" ... ,.., Oi ~ 

,.., ,.., e: ,.., 
'" ... !: ... .... ... ... to; f2 0 '" ... 

Product ,.., z '" ~ 
>- = r:.l Characteristics fiE 
0 '" '"' ::i! '" ... 0 

0 0 !il g !il 0 ,.., 
'"' 

,.., 
Handle Length X 

Toothbrush Length X X 
Head Length X X 

"namem Leng<n X X X 
Filament Diameter X X X 

Handle Wldtn X 
Head Width X 

Handle Thickness X 
Head TnlCKness 

Number Ol~ ..... aments n une 
X 

Tuft (PackinJ!: Density) 

Number of Tufts in Head 
Filament Material X X X 

Toothbrush Material X X X 
Head Shape X X X 

Handle Shape X X X 

Filament-End Shape X 
Handle Cross-Section X X 

Head Cross-Section X 
Tuft Arrangement X 

Toothbrush Colour(s) X 

Filament Colour(s) X 
ToothbrUSh .'-Inlo .. X 

Angle between Toothbrush 
Head & Handle X X 

Figure 14. Selection of attributes with product characteristics required to construct each 
model. 

Figure 15. Attribute selection menu. 



A FORMAL METHOD FOR ASSESSING PRODUCT PERFORMANCE 161 

-~ 

(omfortable to hold EualuatlOn 

Toothbrush Name: I Rquafresh FleH 

Toothbrush Length ,;...(m_m.,;,.)_: _____ ---, 

1191 

Handle Length (mmj-): _______ ---, 

1110 
Handle Width (mm): 

1'1-2-------, 

Handle Thickness (mm): 
'16--'---------, 

Handle Shape: 

Icontoured 

Handle Cross Section: 
rlr-e-c-ta-n-g-u-Ia-r----. 

TeHture/Finish: 

Ismooth 

( cancel) 

Figure 16. CADET system product characteristics extraction dialog. 

Notice that the system obliges the designer to have defined sufficient detail 
for the concept to be evaluated. Having entered the product characteristic 
data into the system the designer can then quickly evaluate the potential for 
success of his or her concept design proposal. 

The result is displayed which gives the designer a numerical indication of 
how well or how badly the concept proposed has done (Figure 17). 

WOULU NOT [J£ (OMFOflfABl[ ro IIUlU 

TOOTHBRUSH CONCEPT: Rquilfresh FleH 100 
WOULD NOT BE COMFORTRBLE TO HOLD (Cilncel] ~ 
SCORE: B5.71428 

(EHPlilin] 

Figure 17. CADET system evaluation dialog. 

The designer may investigate the reasons for the evaluation by referring 
back to the FLEX relations previously described. However as was found in 



162 PAUL RODGERS, ALISTAIR PATTERSON AND DEREK WILSON 

the previous examples whilst the FLEX language makes the calculations clear 
the underlying rational is not apparent. To achieve this an explanation 
facility containing the expert knowledge used is available for each attribute 
(Figure 18). 

6. Conclusions 

EHplain Eualuation (( OK )] 

WOULD NOT BE COMFORTRBLE TO HOLD 

Toothllrush eDneell1 would nDt be comfDrtable :Q 
to hold! r= 
'11 The ollerlill toothbrush length should range mm 
between 155-190 mm. (Oral-9 Techl1ical mm 
Report, 1992) (ChDng el ai, 1'383). i!iii! 
'21 The handle lel1g1h of 1he IDo1hllrush should mm 
be between 1 DIl-155 mm. !OlllJies et ai, 1 '389). iiim 
131 The width of the toothbrush handle should lliili 
range between 10-13 mm. 'Walsh lind Lamb, ,[], 

Figure 18. CADET system explanation facility. 

The paper has presented a new methodology for assessing product 
performance in user rather than product terms. The methodology developed 
addresses the problem of predicting the measure of fit of product design 
proposals at the conceptual stage of the design process. 

The method of assessment is made up of three major stages: 
1. Defining the attributes, in users' terms. 
2. Determining the model of each attribute. 
3. Defining the combination function. 

The intention for the future is to consolidate and further verify this work by 
introducing the following features: 

1. Verification of CADET System Testing 
The CADET System evaluation results will be tested against conclusions 
drawn from conducting appropriately controlled experiments on different 
groups of parties, for example product designers, manufacturers and users. 
These tests will seek to determine if: 

(a) The evaluations are equivalent 
(b) They are equivalent for the same reasons as those embodied within 

the system 
or otherwise. 



A FORMAL METHOD FOR ASSESSING PRODUCT PERFORMANCE 163 

Formally in terms of the system description the tests will seek to establish, 
(a) If the combination ·function Cob contains sufficient and relevant 

attributes 
(b) If the operator Mod is an accurate model of the observations it is 

intended to predict. 

2. Assessment of Other Products 
A great deal of design work in practice is concerned not with the creation of 
radical new design concepts but with the making of modifications to existing 
product designs. These modifications seek to improve a product-to 
improve its performance, to enhance its appearance, and so on. 

The prototype CADET System is at present being tested against 
established product designs, particularly consumer products whose purpose 
and use is well defined, for example: telephones, electric kettles, electric hair­
driers, system and disposable shavers. This type of product has evolved 
through several generations of products as end-user needs have developed. 

3. Design Model Development 
For the designer the CADET assessment of product performance is an 
optimisation criteria slhe is working towards, i.e. slhe is attempting to 
maximise the rated performance of the concept. The design model 
developed so far has deliberately not had a chronological element, it has 
only demonstrated the relationship between defined operations. It is 
intended to develop this model into a chronological model by treating it as 
an optimisation problem of performance. It is also anticipated that the 
design process will be described by some form of genetic algorithm within 
this. 

7. References 

Akita, M.: 1991, Design and ergonomics, Ergonomics, 34(6), 815-824 
Alexander, c.: 1964, Notes on the Synthesis of Form, Harvard University Press, Cambridge, 

Massachusetts. 
Blyth, T.S.: 1975, Set Theory and Abstract Algebra, Longman, London. 
Buck, P.: 1992-93, Providing intelligent support for design, Manufacturing Intelligence, 

Winter, 10-13. 
Chong, M. P. and Beech, D. R.: 1983, Characteristics of toothbrushes, Australian Dental 

Journal,28(4), 202-211 
Cross, N.: 1994, Engineering Design Methods: Strategies for Product Design (2nd edn), John 

Wiley, Chichester. 
Delaunay, P.: 1982, Some current data involved in the choice of toothbrush, Actualites 

Odonto-Stomatologiques, 138, 249-258. 
Dormer, P.: 1993, Design Since 1945, Thames and Hudson, London. 
French, M. J.: 1985, Conceptual Design for Engineers (2nd edn), The Design Council, 

London. 
Heskett, J.: 1992, Product integrity, Innovation, Spring, 17-19. 



164 PAUL RODGERS, ALISTAIR PATTERSON AND DEREK WILSON 

Hollins, B. and Pugh, S.: 1990, Successful Product Design: What to do and when, 
Butterworth, London. 

Japan Industrial Design Promotion Organization (ed.): 1990, Good Design Products 1990, 
JIDPO, Japan. 

Jones,1. C.: 1980 edn, Design Methods: Seeds of human futures, John Wiley, Chichester. 
Lawson, B.: 1990, How Designers Think-The Design Process Demystified (2nd edn), 

Butterworth Architecture, London. 
Lera, S. G.: 1981, Architectural designers' values and the evaluation of their designs, Design 

Studies, 2(3), 131-137. 
Miles, J. C. and Moore, C. J.: 1989, An expert system for the conceptual design of bridges, 

Proceedings of the Artificial Intelligence in Civil and Structural Engineering Conference, 
pp. 171-176. 

Parker, M. (ed.): 1984, Manual of British Standards in Engineering Drawing and Design, 
British Standards Institution/Hutchinson, London. 

Rodgers, P. A., Patterson, A. C. and Wilson, D. R.: 1993, A computer-aided evaluation 
system for assessing design concepts, Manufacturing Intelligence, 15, 15-17. 

Rodgers, P. A., Patterson, A. C. and Wilson, D. R.: 1994, Evaluating the relationship 
between product and user, lEE Computing and Control Division Colloquium on Customer 
Driven Quality in Product Design, Digest No: 1994/086. 

Sipek, B. (ed.): 1993, The International Design Yearbook, Laurence King, New York. 
Tovey, M.: 1994, Form creation techniques for automotive CAD, Design Studies, 15(1), 85-

114. 
Ulrich, K. and Seering, W.: 1988, Computation and conceptual design, Robotics and 

Computer-Integrated Manufacturing, 4(3/4), 309-315. 
Walsh, T. F. and Lamb, D. 1.: 1992/93, Update of oral hygiene aids: Toothbrushes, Dental 

Health,31(6), 3-5. 
Walsh, T. F. and Lamb, D. J.: 1993, Research visit to conduct knowledge engineering 

exercise with T. F. Walsh and D. J. Lamb, Department of Restorative Dentistry, School of 
Clinical Dentistry, Sheffield University Dental School, 19 March. 



9 

ON A SYMBOLIC CAD FRONT-END FOR DESIGN EVALUATION BASED 
ON THE PI-THEOREM 

STEPHAN RUDOLPH 

Stuttgart University, Germany 

Abstract. The current implementation and theoretical foundation of a possible symbolic 
front-end for CAD systems for the evaluation of engineering design objects during the 
design process is described. Based on implicit functional descriptions of the design object 
(i.e. the design parameters contained in the database ofthe solid modeler), the Pi-Theorem 
is used to derive the associated dimensionless groups. Based on the assumed validity of the 
evaluation hypothesis that "any minimal description in the sense o/the Pi-Theorem is an 
evaluation", these automatically generated dimensionless groups serve then as a symbolic 
representation for the purpose of design object evaluation. 

1. Introduction 

Due to the complexity of problems inherent to the design process of engineering 
objects, there has been a significant amount of effort to support the designer by 
means of CADI CAE systems able to ease many of the designers routine tasks (SDRC, 
1993). Since the benefit and gain of productivity of such software systems is widely 
accepted, the development of software systems with an even greater functionality 
is an area of intensive current research (ten Hagen et aI., 1991; Dym, 1994). 

While in many new developments the emphasis lies on the application of new 
AI-based techniques to the area of design, there has also been a significant effort in 
the traditional engineering community to formalize the design process from an en­
gineering viewpoint (Pahl and Beitz, 1993; Suh, 1990). Since the design of a tech­
nical product involves the definition of its purpose, functional descriptions defined 
as functional relationships between physical input, output and state variables may 
be used throughout the design process to represent design object properties inde­
pendent of a particular solution (VDI, 1987). During the design process, this func­
tional description becomes then more and more concrete (Andreasen, 1992). 

Since the formalism of dimensional analysis based on the Pi -Theorem requires 
only qualitative information about the relevance list of the physical design para-



166 STEPHAN RUDOLPH 

meters, this method is most ideally suited for processing qualitative physical know­
ledge encoded in such functional descriptions of the design object. Dimensional 
analysis has therefore been already been applied to engineering design problems 
in the past (Kloberdanz, 1991; Dolinskii, 1990), where it was used to ease the mod­
eling and helped to gain a deeper understanding of the functional behavior of the 
design object. Other works using dimensional analysis as a basis for the technique 
of qualitative reasoning (Bhaskar and Nigam, 1990; Sycara and Navichandra, 1989) 
on design objects have originated from the field of AI and have once more under­
lined the usefulness of this symbolic technique. 

In this work it is shown that dimensional analysis can be used to solve the eval­
uation problem which frequently occurs during design synthesis when choosing 
among various design alternatives. Since dimensional analysis relies on the func­
tional modeling of the design object, the applicability of the method is restricted 
to the concept and limitations of functional modeling in the CAD process (Kut­
tig, 1993). The implementation of this symbolic method could represent an use­
ful enlargement to existing CAD systems by creating more abstract, symbolic in­
formation created from the physical descriptions of the design object contained in 
the database of the solid modeler. It is important to note that the existing proto­
type could simply be incorporated into the application programming interface of 
commercially available CAD/CAE systems (SDRC, 1993) without imposing any 
changes of the currently valid CAD/CAE paradigms or technologies (Hoschek, 
1993; Hoschek and Dankwort, 1994). 

To introduce the theoretical concept of the evaluation hypothesis based on di­
mensional analysis heavily used in the later sections, the evaluation problem of 
technical design objects as one of the key problems of design analysis and its place 
in the design process during design synthesis is briefly introduced in section 1. Sec­
tion 2 states the key ideas of the evaluation hypothesis. Section 3 contains the ne­
cessary proofs and section 4 presents the most important properties which can be 
derived from these proofs. Section 5 gives two short analytic engineering examples 
to demonstrate the suggested technique. Section 6 presents the current status of the 
implementation of the suggested symbolic front-end and closes with an outlook on 
further conceptual developments. 

In the following, the general framework of the design process is described and 
the evaluation problem inherent to the design process is identified. 

1.1. DESIGN PROCESS 

In a simplified view the design process can be understood as a sequence of more 
or less related decisions. These decisions affect the selection of a design topology 
as well as the selection of appropriate sizes of the related design parameters Xl to 
Xn which describe the selected topology with sufficient precision. 

It is evident that at almost every moment during the design process, design al-



SYMBOLIC CAD-FRONT-END FOR DESIGN EVALUATION 167 

tematives have to be evaluated with respect to the design evaluation criteria. How 
these decisions based on evaluation techniques are made is therefore of crucial im­
portance for the sequence of events in the design process. For this reason, the prob-' 
lems underlying the construction of evaluation models will be investigated further 
in the following section. 

1.2. EVALUATION PROBLEM 

If one accepts the principle of decomposition of a general goal into several smaller 
subgoals and the aggregation of evaluations components into a global evaluation 
respectively, then an evaluation model based on such an assumption can only be 
a valuable tool for decision making in the design process if at least acceptable an­
swers can be found for the following central questions: 

- how to structure the used goal criteria hierarchy? 
- how to determine the evaluation of various distinct goal criteria? 
- how to aggregate multiple goal criteria into one single goal criterion? 

Due to the lack of a formal methodology providing answers to these fundamental 
questions, most classical decision making models require these questions to be 
answered by a human decision maker (Hwang and Yoon, 1981). The task of the 
human decision maker is to establish the description graph of the design object, 
to determine the evaluation graph and then find the corresponding mapping of the 
description onto the evaluation. This is shown in Figure 1. The influence of the 

mapping 

Figure 1. Object description space X, mappings and evaluation space II. 

decision maker leads to the central question of to what extent a decision reflects 
the personal beliefs of the decision maker or whether an evaluation should be the 
unique property of the design object. This issue will be discussed in the following 
section. 

2. Motivation 

From a comparative analysis of some existing decision theories and evaluation 
models (Rudolph, 1995) it can be concluded that: 



168 STEPHAN RUDOLPH 

Under the assumption that an objective evaluation exists in general, it may not 
depend on the arbitrarily chosen definitions of physical units and therefore has 
to be dimensionless. 

- A reproducible and objective evaluation can only exist if it is based on and 
derived from some type of law which has to be dimensionally homogeneous. 

- An evaluation method should tum into exact physics and be consistent in the 
case of complete knowledge about a design object. 

A universal method to construct dimensionless quantities from dimensionally ho­
mogeneous equations is given through the Pi-Theorem, which will be presented in 
the next section. To ease the understanding of the introduced model, from now on 
the following terminology will be used as shown in Figure 2, which is essentially 
the same diagram as shown in Figure 1. In Figure 2 the Xi and X represent the 
description, while 7rj and II represent the corresponding evaluation. The mapping 
is represented by !.po and !.p j, while!.pl and !.p3 are the aggregation functions of the 
partial evaluations and the partial descriptions respectively. 

!.po 
II X 

!.p3 r r !.pl 

( 7rl, ... , 7rm ) • 
!.pj 

(Xl, ••• ,Xn ) 

Figure 2. Object description space X, mappings 'P and evaluation space II. 

3. Foundation 

Physical quantities may be grouped into the two classes of so called primary and 
secondary quantities (Bridgman, 1922). Primary quantities are hereby quantities 
whose reference measurement is one of the base units of the employed unit system. 
Secondary quantities are derived from primary quantities by some function f. In 
this respect time (measured in s) and length (in m) are primary quantities, while 
velocity (in m/ s) is a secondary quantity. Ratios of both primary and secondary 
quantities are invariant under scale transforms of the type x' = ax of physical 
units, e.g. l[inch] = O.0254[m]. For the special properties of the function f the 
so called Product-Theorem can be proven (Bhaskar and Nigam, 1990; Bridgman, 
1922): 

Product-Theorem. Due to the in variance of ratios of physical quantities under 
scale transforms of physical units, it can be shown that the function f relating a 
secondary quantity to some appropriate primary quantities Xl, •.. ,Xn is of the 



SYMBOLIC CAD-FRONT-END FOR DESIGN EVALUATION 169 

form 

(1) 

with n c lN, C and the Oiji c JR. 

This property of secondary quantities is then used to prove the so called Buckingham­
or Pi-Theorem (Bhaskar and Nigam, 1990; Bridgman, 1922): 

Pi-Theorem. From the existence of a dimensionally homogeneous and complete 
equation f of n physical quantities Xi the existence of an equation F of only m 
dimensionless quantities 7rj can be shown 

(2) 

where r = n - m is the rank of the dimensional matrix constructed by the Xi and 
with dimensionless quantities 7r j of the form 

r IT (l!" 

7rj = Xj x; J' (3) 
i=l 

with j = 1, ... , me lN and the Oiji c JR as constants. (Examples of dimensional 
matrices are given in the application section.) 

An evaluation represents a qualitative and quantitative measure of an object or 
process. As long as its representation form is still redundant, this redundancy can 
be eliminated without loss of information. Therefore an evaluation possesses the 
property of a redundancy-free representation form and is minimal in this respect 
(Rudolph, 1995). This means that the number of independent parameters can't be 
reduced any further. This is expressed in the hypothesis that "any minimal descrip­
tion in the sense of the Pi-Theorem is an evaluation". 

4. Evaluation 

Using the proof of the Pi-Theorem, the following list of selected properties can be 
shown for the evaluation method (Rudolph, 1995): 

- Evaluation. The problem of evaluation can be principally reduced to a prob­
lem of description. The problem of evaluation is solved exactly in those cases 
where a complete description exists. 

- Minimality. The dimensionless product exponents form a basis in the sense of 
a linear vector space. The properties of a vector space basis like minimality 
is therefore also valid for fundamental systems of dimensionless products. 



170 STEPHAN RUDOLPH 

Granularity. The addition of one more X n +1 to the original description set 
of Xl, . .. , Xn adds one more ITm+1 and leaves the original set of evaluation 
components 11·1, ••• , IT m unchanged. This property supports the experience of 
hierarchical refinement in the sequence of the design process. 

- Hierarchy. Solving F for a specific ITj creates immediately a consistent hier­
archy as shown in Figure 2. This property can be extended to multiple hier­
archies. 
Sensitivity. The differential formulation of the model laws with IT j = const is 
dITj = O. Differentiating equation (3) leads to 

(4) 

and setting d ITj = 0 leads to the general form of an iso-line of an evaluation 
component. If only infinitesimal changes of two design parameters X j and Xi 

are permitted, with all other changes equal to zero one obtains 

i = 1, ... , r 
j = 1, ... ,m 

(5) 

which is analogous to the expression derived in Bhaskar and Nigam (1990) 
for the purpose of "qualitative reasoning". 

- Modularity. The structure of the dimensionless products can be encoded into 
a topological matrix a. With additional use of the unit matrix I the coupling 
matrix K, = aT a is 

(6) 

This is an analogy to the construction of a stiffness matrix of a structure cre­
ated from stiffness matrices of multiple finite elements, see also Table 4. 

A few ideas on how the method can be tested is given by the fulfillment of the 
following selected statements and arguments (Rudolph, 1995): 

- Causality. The evaluation II is determined by the complete description X in 
the mathematical sense as a necessary and sufficient condition. 

- Invariance. The evaluation II is invariant under scale transforms of the phys­
ical units employed in the description X of the object or process. 

- Abstraction. Since the evaluation II is the property of a whole class of similar 
but well distinct objects in X, the mapping from X to II is mathematically 
surjective and not injective. 
Consistency. Since the evaluation is generated by a mapping, the consistency 
over multiple hierarchy levels is guaranteed if the theory underlying the de­
scription hierarchy is consistent. 



SYMBOLIC CAD-FRONT-END FOR DESIGN EVALUATION 171 

5. Application 

The evaluation method is shown using two examples. The first example focuses on 
the demonstration of some of the properties of the method like the derivation of the 
evaluation components and the demonstration of hierarchy and consistency. The 
second example is taken from a publication in the area of AI (Bhaskar and Nigam, 
1990), so that the link established by the mathematical formulation between en­
gineering design evaluation and AI reasoning techniques becomes evident. 

5.1. AUTOMOBILE 

If one tries to evaluate the aerodynamic propenies of an automobile like the one 
sketched out in Figure 3, the relevant physical quantities for the description of the 

P,1l c; V 
\ 

()). w 

I' -I 
Figure 3. Relevant design parameters of car drag model. 

underlying physical process construct the dimensional matrix shown in Table 1. 
From this dimensional matrix with dimension n = 5, rank r = 3 the following 

TABLE 1. Dimensional matrix of car drag parameters. 

I Symbol" [M] [L] [11" SI-Units I Meaning 

l 1 m characteristic length 
v 1 -1 m/s velocity of car 
p 1 -3 kg/m3 density of air 
p. 1 -1 -1 kg/ms viscosity of air 
w 1 1 -2 kgm/s 2 drag of car 

m = n - r = 2 dimensionless products 71"1 and 71"2 can be derived. According to 
the 

w 
(= Cw ) 71"1 

pv 212 
(7) 

71"2 
vIp 

(= Re) 
Il 

(8) 



172 STEPHAN RUDOLPH 

completedescription/(xl, ... ,X5) = 0,arelationoftheformF(1l"I,1l"2) = Oof 
two dimensionless variables exists. With reference to the general scheme in Fig­
ure 2, this interrelation is shown in Figure 4. While 'PI is given by the chosen 

air, p,J.l shape, v, I 

Figure 4. Description and evaluation graph of car drag w. 

explicit form w = I ( v, 1, P, J.l) of the implicit formulation of I, 'Po and 'P2 are de­
termined by equation (7) and (8). Thus only 'P3 still needs to be determined. This is 
mostly done by function approximation of experimental or numerical data for the 
whole class of geometrically similar objects, as shown in Figure 5 for the class of 

103"~~~~~~~~,,~~~~,, 

102~~~~~rr~~+rrH++~Hr~ 

1 101~~~~~rr~~+rrH++~Hr~ 
Cw 
100~~++H-~~d+~+H~~++H-~~ 

10-1~~~~~~~~~~~~~~~ 

10-1 100 101 102 103 104 105 106 107 

Re-
Figure 5. Drag coefficient Cw of spheres. 

spheres (Zierep, 1972). The approximation and visualization of experimental or 
numerical data using 'P3 instead of <PI is advantageous, since the number of inde­
pendent parameters is reduced and the interpretation of the obtained relationship 
more general (Kline, 1986). 

5.2. PRESSURE VALVE 

The modeling of the pressure valve is done according to the presentation in Bhas­
kar and Nigam (1990). There the whole mechanism as shown in Figure 6 is modeled 
in two parts: (A) the pipe, using a functional description of IA(p, a, Pi, Po, q) = 0, 
(B) the orifice, using a functional description of IB (k, x, p) = O. The correspond­
ing dimensional matrices are named A and B, see table 2. The interaction of both 



SYMBOLIC CAD-FRONT-END FOR DESIGN EVALUATION 173 

q, Po 

Figure 6. Relevant design parameters of pressure valve. 

TABLE 2. Dimensional matrices of pressure valve com­
ponents And B. 

I A ,,[M] [L] [T]" SI-units I Meaning 

p 1 -3 kg/m 3 density 

a 2 m2 area 

Pi I -1 -2 N/m 2 pressure in 

po 1 -1 -2 N/m 2 pressure out 
q 3 -1 m 3 /s stream flow 

I B ,,[M] [L] [T]" SI-units I Meaning 

k I -2 kg/s2 spring constant 
x 1 m elongation 

P 1 -1 -2 N/m2 local pressure 

components is modeled using (C) two coupling conditions, with functional de­
scriptions fC1 (p, Po) = 0 and fcz (x, a) = o. The corresponding dimensional 
Matrices are named C1 and C2, see table 3. Using these four matrices, the follow­
ing dimensional products can be constructed, which in Bhaskar and Nigam (1990) 
are also called ensembles 

q p1/Z 
(9) 7rlA ~ aPi 

7rZA 
Po (10) 
Pi 

7rlB 
XP 
k 

(11) 

7rlC 
P 

Po 
(12) 

x 
(13) 7rZC 

a1/ Z 



174 STEPHAN RUDOLPH 

TABLE 3. Dimensional matrices of functional coupling 
conditions Cl and C2. 

I 01 II [M] 

I 02 II [M] 

[L] 

-1 
-1 

[L] 

1 
2 

[T] II SI-units I Meaning 

-211 N/m2 
1 local pressure 1 

-2 N/m2 pressure out 

[T] II SI-units I Meaning 

" 

1 
elongation 
area 

Since the five ensembles have some of the variables in common, they are not in­
dependent from each other and the coupling relationship can be drawn as an un­
directed graph as shown in Figure 7. 

~ ________ ~Pli ________ ~ 

la Pol 
8----=x---S------I:..p---8 

Figure 7. Undirected graph of ensembles (Bhaskar and Nigam, 1990). 

With the calculus derived in equation (5), the qualitative behavior of Po due 
to small changes in Pi can now be determined with a strategy called "qualitative 
reasoning". Using the chain rule, the sign ofthe derivative ~:~ can be determined, 
when expanding the derivative along the path 7rlC -+ 7riB -+ 7r2G -+ 7riA in the 
undirected graph. 

(14) 

The coupling matrIx K, of the design variables constructed using equation (6) de­
pends only on the product form of the dimensionless products and is shown in 
Table 4. 

In analogy to the construction of a stiffness matrix in cartesian coordinates 
(Argyris and Mlejnek, 1986) of a structure created from stiffness matrices of mul­
tiple finite elements in natural coordinates, the five dimensionless variables can be 



SYMBOLIC CAD-FRONT-END FOR DESIGN EVALUATION 175 

TABLE 4. Design coupling matrix f>. 

q p a Pi po P x k 
1 1 1 1 

1 1 
a 1 1 1 

1 1 
1 1 

1 1 1 1 1 

1 1 1 
f 1 1 1 1 

1 1 1 
1 1 1 

1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 2 1 1 
1 1 1 1 1 2 1 

1 1 1 2 1 
1 1 1 2 1 1 
1 1 1 1 2 1 
1 1 1 1 

11"1 A 

11"2 A 

1I"1B 

1I"1C 

1I"2C 

fa 

interpreted as the natural degrees of freedom of the design object. In this repres­
entation the off-diagonal elements are indicators for the implicit coupling of the 
design variables. 

In the following, a short description of the current implementation of the sug­
gested symbolic CAD-front-end based on the suggested techniques will be given. 

6. Symbolic CAD Front-End 

Using the previous example of the pressure valve design, the currently implemen­
ted features of the suggested symbolic front-end for CAD/CAE systems are shown 
in Figure 8. Since the UNIX-based, network-transparent software programmed in 
MotiflC is not yet fully incorporated into the CAD application programming in­
terface, a rough sketch ofthe pressure valve and its physical design parameters in­
volved in the modeling are displayed as a postscript image in the upper right comer. 
The engineer can then select the appropriate variable descriptions in a database 
provided by the system, as shown in the upper left comer (see window Database 
Form). 

By selecting the appropriate design variables, the dimensional matrices of the 
two components of the pressure valve and their topological coupling conditions are 
constructed (see the three windows Analyze Form), and, according to equation 3, 
the associated dimensionless groups are automatically generated. The symbolic in-



176 STEPHAN RUDOLPH 

-1 0 
0 0 

0 a_ q, P. 0 PI, P 
1 -. ".trKJ I -3 0 
2 0 

-1 -2 
-1 -. 
3 -1 
0 -2 

q pll' 
"Al 

ap~" 

"A' ~ 
PI 
:z:p 

T 
l!... 
p, 

:z: 

1 -1 a'l' 
1 -1 
0 
0 

q m, . pi pO p . k 

1 a 0 
1 0 a 
1 0 0 
1 1 0 
0 2 0 
0 1 1 
0 0 1 
0 0 1 

Figure 8. Symbolic CAD front-end prototype. 

formation of the building structure of the dimensionless groups is then converted 
into a postscript format and displayed on the screen as well (see background win­
dow in the middle). Using this symbolic information, the coupling matrix accord­
ing to equation 6 (see window kJnatrix) and the corresponding undirected graph 
(see window Analysis) are also generated by the system. 

The manual selection of the design variables and the generation of the symbolic 
information takes the designing engineer about less than a minute. Once incor-



SYMBOLIC CAD-FRONT-END FOR DESIGN EVALUATION 177 

porated into the application programming interface, this step can be further auto­
mated. This means that it could be imagined that the current design parameter val­
ues Xl, ••. , Xn are extracted and continuously updated from the database of the 
solid modeler of the CAD system. The information automatically created by the 
system in this way would provide the engineer with valuable qualitative insights 
into the interdependencies of his design. In this respect, the closed loop in the un­
directed graph window indicates the existence of possible feedback (Bhaskar and 
Nigam, 1990). 

Despite the relative little time of the availability of this software tool and the 
little experience gained with it until now, the potential of the approach of com­
bining symbolic properties of finite components in analogy to the combination of 
numerical properties in classical finite element methods seems apparent. Due to 
the fact that the theoretical basis of the approach relies on the traditional engineer­
ing method of dimensional analysis, any other techniques relying on this notation, 
such as qualitative reasoning techniques (Bhaskar and Nigam, 1990) or engineer­
ing design using similar size ranges (Pahl and Beitz, 1993), both based on dimen­
sional analysis, might be straightforwardly added. This concept seems therefore to 
be worthwhile further investigation. 

7. Conclusion 

By interpretation of the postulated evaluation hypothesis, it is most interesting to 
note that it can be shown that in a rigorous sense an evaluation is only possible if a 
complete description in form of functional relationships of the design parameters 
are known. Since complete functional descriptions are generally difficult to ob­
tain, incomplete descriptions in the case of complex design problems will not al­
low to evaluate missing technical aspects nor give a complete set of dimensionless 
products. Therefore not all coupling between design variables will be detected and 
originally coupled design spaces will be looked at as orthogonal. This fact however 
is not a specific weakness of the suggested approach, but reflects the fact of incom­
plete modeling of physical phenomena only. The coupling matrix K in Table 4 will 
reflect these facts by less off-diagonal entries. 

Even though the method put that much emphasis on a clear understanding and a 
complete description of the problem, dimensional analysis based on the Pi-Theorem 
has always been a valuable tool for engineers facing and investigating complex 
technical problems. Proving the completeness of the relevance list Xl, ..• , Xn of 
parameters is restricted to areas of "sharp" physical knowledge but the method 
with its property as a mathematically necessary condition can't lead to formal con­
tradictions by itself. This imposes no principal restrictions on the use of the method 
in areas of "unsharp" physical knowledge. 



178 STEPHAN RUDOLPH 

Of further interest is also the question, what consequences will be caused by 
the necessary selection of one specific set of 11"1, ••• , 11" m out of the mathematically 
equivalent (n - r) -parametric solution space of dimensional matrices. Due to the 
mathematical formulation, the link between classical similarity methods, design 
evaluation methods and qualitative reasoning techniques could be shown. Such a 
consistent formulation might ease algorithmic and implementation aspects of fu­
ture design systems combining these features. 

A future design system could possibly exploit detection of similarity for the 
creation of associations or analogy conclusions (Kodratoff, 1990). Further, the iden­
tification of weak coupling of design variables could be used to develop decompos­
ition strategies for automatic design optimization. The investigation of such pos­
sibilities might be a first step to make one day more efficient or even more intelli­
gent design support systems a reality. 

8. Acknowledgments 

The author wants to thank Peter Hertkom for his programming support of the Mo­
tifle based interactive software interface and thanks Robert Schutz for the partial 
implementation of the underlying algorithms. The financial support of this work 
by the Deutsche Forschungsgemeinschaft (DFG) and the German interdisciplin­
ary research group Forschergruppe im Bauwesen (FOGlB) "lngenieurbauten­
Wege zu einer ganzheitlichenBetrachtung", is greatly acknowledged. 

References 

Andreasen, M.: 1992, The theory of domains, Technical Report CUED/G-EDGfIRll, Engineering 
Department, Cambridge University, Cambridge. 

Argyris, J. and Mlejnek, H.-P.: 1986, Die Methode der Finiten Elemente I, Vieweg Verlag, Braun­
schweig. 

Bhaskar, R. and Nigam, A: 1990, Qualitative physics using dimensional analysis, Artificiallntelli­
gence, 45, 73-111. 

Bridgman, p.: 1922, Dimensional Analysis, Yale University Press, New Haven. 
Dolinskii, I.: 1990, Use of dimensional analysis in the construction of mechanical assemblies for 

optical instruments, Soviet Journal of Optical Technology, 57(8), 512-514. 
Dym, c.: 1994, Engineering Design. A Synthesis of Views, Cambridge University Press, Cambridge. 
Hoschek, J. (ed): 1993, Was CAD-Systeme wirklich konnen, Teubner, Stuttgart. 
Hoschek, J. and Dankwort, W. (ed): 1994, Parametric and Variational Design, Teubner, Stuttgart. 
Hwang, C.-L. and Yoon, K.: 1981, Multiple Attribute Decision Making, Lecture Series in Economics 

and Mathematical Systems, Springer-Verlag, Berlin. 
Kline, S.: 1986, Similitude and Approximation Theory, Springer-Verlag, New York. 
Kloberdanz, H.: 1991, Rechnerunterstiitzte Baureihenentwicklung, Fortschrittsberichte Reihe 20, 

Nummer 40, VDI-Verlag, DUsseldorf. 
Kodratoff, y.: 1990, Combining similarity and causality in creative analogy, Proceedings ECAl-90, 

pp. 398-403. 



SYMBOLIC CAD-FRONT-END FOR DESIGN EVALUATION 179 

Kuttig, D.: 1993, Potential and limits of functional modelling in the CAD process, Research in En­
gineering Design, 5, 40-48. 

Pahl, G. and Beitz, w.: 1993, Konstruktionslehre, Springer-Verlag, Berlin. 
Rudolph, S.: 1995, Eine Methodik zur systematischenBewertung von Konstruktionen, VDI Fortsch­

rittsberichte, Reihe 1, Nummer 251, VDI-Verlag, Dusseldorf (In German. An English version 
entitled: A methodology for the systematic evaluation of engineering design objects is available 
on request by email torudo1ph@isd.uni-stuttgart.de. 

SDRC Master Series: 1993, User's Guide: Model Solution and Optimization, Structural Dynamics 
Research Corporation, Milford, Ohio. 

Suh, N.: 1990, The Principles of Design, Oxford Press, New York. 
Sycara, K. and Navinchandra, D.: 1989, Integrating case-based reasoning and qualitative reasoning 

in engineering design, Proceedings Applications of AI in Engineering, pp. 231-250. 
ten Hagen, P. and Tomiyama, T.: 1991, Intelligent CAD Systems I, Springer-Verlag, New York. 
VDI Guideline-2221: 1987, Systematic Approach to the Design of Systems and Products (trans. of 

the German edn 1111986), VDI-Verlag, Dusseldorf. 
Zierap, J.: 1972, Ahnlichkeitsgesetze und Modellregeln in der Stromungslehre, Braun Verlag, Karls­

ruhe. 



10 

PERFORMANCE EVALUATION METHODS IN DESIGN: 
DISCUSSION 

HANS GRABOWSKI 
University of Karlsruhe, Germany 

Product development has a close connection with the theory of decision 
making. That theory deals with the human behaviour of decision making in 
its social context. It is an interdisciplinary branch of economics. The 
interdisciplinarity is caused by the influences of mathematics, psychology 
and sociology. 

Von Neumann and Morgenstern published their classic work on game 
theory called Theory of Games and Economic Behaviour in 1944. In their 
work, the authors prove the similarity between the behaviour of an 
economics system and the mathematical representation of certain technical 
games. While classical decision theory deals with the behaviour of 
individuals in deciding, game theory developed as an independent discipline 
which studies the conflict of interest between at least two decision makers. 

In contrast to game theory, stands the area of vector optimization, which 
is also known under the terms multiobjective optimization or multicriteria 
optimization. It deals with the problem of multiple goals of one single 
individual with the help of multicriteria decision models. Multicriteria 
optimization also originated from economics and has been used by 
engineering disciplines, especially by civil engineering. 

Decision theory distinguishes between normative, descriptive and 
prescriptive approach. Normative decision theory assumes the concept of an 
optimal decision. Its behaviour is described with a formal logic of decision 
making. Descriptive decision theory assumes, in contrast to the closed model 
of normative decision theory, an open model of decision making. This open 
model takes the creation of the decision criteria and the insufficient capacity 
of human information processing into account. This model explains why in 
complex decision making situations, the individual does not always decide in 
an optimal way. Prescriptive decision theory does not aim to develop its own 
models of decision making but supports the decision maker through the 
conservation of consistency. 



182 HANS GRABOWSKI 

There is a growing unification of decision theory and the theory of 
cognitive problem solving processes is developing. While decision theory 
focuses on the problem of the solution process as preparation for the 
decision, cognitive theory focuses on the decision as the end of the problem 
solving process. It is implicitly assumed that the problem definition also 
contains a request for optimization so that a requirement for a decision is 
explicit. The almost identity of the decision and problem solving processes is 
clarified by a schema of the phases of the decision process which 
distinguishes six steps: 
• Identification of the problem, 
• Acquisition of necessary information, 
• Development of possible solutions, 
• Evaluation of the solution, 
• Selection of a strategy for the action, 
• Action followed by learning and revision. 
This phase schema of the decision process is very similar to the model of the 
systematic procedure for the problem solving process which was integrated 
into the phase oriented design process in design methodology. The iterative 
character of the problem solving process is explicitly shown in the last step. 
As a consequence, the phase schema develops a cyclic process which is 
called "cybernetic control cycle" or "cognitive program" by 
psychologists. Figure 1 shows this cybernetic control cycle in a so-called 
"Test-Operate-Test-Exit" (TOTE) unit. 

Congruity ...... End 

Incongruity 

Operate 

Figure 1. TOTE unit. 

The program of a decision and optimization process is caused by an 
incongruity between the requirements which are valid for a decision and the 
current situation. With respect to the design process, the situation is described 



PERFORMANCE EVALUATION METHODS: DISCUSSION 183 

by the description of the design problem or by a first solution of this 
problem. In both cases an analysis (test) shows the necessity to correct 
detected errors. This cycle of analysis and synthesis is repeated until a 
sufficient (congruous) solution was found (exit). 

With the help of low-level and high-level TOTE units, which represent 
strategic or tactical units respectively of a problem solving process plan, a 
hierarchical structure of TOTE units, can be designed where specific TOTE 
units can contain other TOTE units. In addition to the iterative character of 
the decision making and problem solving process, a recursive element 
occurs. This recursive element realizes a higher level goal by satisfying 
several low-level sub-goals. This produces problem structuring. 

The efficiency of the product development process would be improved if 
realistic goals of the design intent could be derived from the requirement 
specification at an early stage of design. In most cases of product planning 
some idealistic concepts about the future product very often cannot be 
satisfied. The designer now has to answer the question which of these goals 
are important and must be reached by the design and which of them are not 
that important and can be neglected. A clarification of the task in advance 
would augment the efficiency of the product development process. 

A number of approaches have been developed as part of design 
methodology to deal with these multiple and often conflicting goals. These 
approaches fall into two clearly distinguishable groups. The first group 
consists of methods which use weights attached to goals to indicate their 
relative importance. This approach has obvious difficulties associated with 
how these weights are arrived at and how they should change with a change 
in the available information. Often weights are implied but never explicitly 
stated. The second group consists of methods which explicitly do not use 
weights-the Pareto methods. These methods delay the final decisions to a 
later phase. 

In many cases the weights only represent the importance of the respective 
design goals whereas a relation to the actual instances of the weighted 
parameters is not given. Design evaluation methods must consider both facts, 
the reJative importance of a specific goal and the possible range of its values. 

So, in the decision making process evaluation methods are necessary 
between every design stage because if a design solution cannot be evaluated 
no progress in the design process is possible. Three papers dealing with 
evaluation methods from their respective points of view were presented and 
discussed in this session. The paradigm form follows function or function 
follows form and the fomalization of that paradigm is no longer the point at 
issue as it was in the past. Most of the authors introduced terms like context 
explicitly to express that the concept of causality between form and function 
does not lead to practical and "good" design solutions. So each author had 



184 HANS GRABOWSKI 

to incorporate and to formalize more semantics in the data models which 
have to be evaluated. The requirements specification has to be formalized so 
that formal methods can evaluate a design solution against the requirements. 

Requirements can be specified quantitatively or qualitatively. Every 
evalution method presented supports quantitative and qualitative evalution 
explicitly. Differences could be seen in the support of the design process 
itself and the design stages in which the evalution methods are embedded. 
Kalay et al. and Rodgers et al. embedded their evaluation concept in a 
design process while Rudolf's evaluation method supports evaluation at a 
unique design stage. 

The paper A Performance Based Paradigm of Design by Yehuda Kalay 
and Gianfranco Carrara proposes an approach which is called performance 
based design. The main idea is that the relationship between form and 
function is not causal but contextual which means that finding a design 
solution does not only depend on the relationship between form and 
function but on additional information such as social, physical or cultural 
context information. We can say that contextual information is all the 
information which is not form and function. The computational model 
explicitly represents function and form, as well as the context. The main 
elements of the model are a structured set of goals, representing the 
functional requirements, a set of solutions, a context and a set of evaluators. 
In the paper On a Symbolic CAD Front End for Design Evaluation Based on 
the Pi-Theorem by Stephan Rudolph, an evaluation method which is based 
on the Pi-theorem of physics is presented. The basic idea to the evaluation 
problem is to transform a given functional relationship of design parameters 
into a dimensionless evaluation form. The design parameters are described 
in an object description space x, which is a homogeneous and complete 
description f of n physical quantities Xi: f(xi, ... ,xn). The dimensionless 
representation is described by an equation F of m dimensionless quantities 
1tj- The mapping is performed by a mapping function <po Using the theory of 

Pi-theorems it can be proved, that the dimensionless graph of F(1tl, ... ,1tm) 
is complete and consistent. It can be shown, that this evaluation method has 
theoretical properties such as minimality, consistency, granularity, hierarchy, 
sensitivity and modularity and provides a sensitivity analysis of the design 
parameters. In addition to that the Pi-theorem shows, that the evaluation 
problem can be reduced to the object description space x,: f(xi, ... , xn). 
Rudolph demonstrated the practical feasibility of this method with a 
prototype of a symbolic CAD front end that has been integrated with a CAD 
system. The practical benefit is based on supporting the designer by 
automatic generation and display of the dimensionless groups. In order to 
obtain this, the designer only has to select the appropriate design variables 
and to construct the topological coupling conditions. For the graphical 



PERFORMANCE EVALUATION METHODS: DISCUSSION 185 

output the symbolic information of the dimensionless groups is converted 
into a graph of the coupling of the design variables on the screen. 

In the paper A Formal Method for Assessing Product Performance at the 
conceptual Stage of the Design Process by Paul Rodgers et aI., the 
interrelation between form of an intended product and the context of its use 
is the driving factor of design, where context represents product behaviour 
from users' point of view. In the paper, context is understood to determine 
the design problem. 

There are two different classes of design processes, the unselfconscious 
and selfconscious process. The first is classified by the designer operating 
directly on an actual form, determining misfits and correcting them. 

One characteristic of the latter is that the designer is not able to directly 
observe the ensemble. The designer investigates, explores and researches the 
actual context and constructs a mental picture of it. With this mental picture 
of the context and with a representation of the product, the designer makes a 
mental picture of the ensemble in order to try to determine potential misfits. 

In the approach to product performance assessment presented, attribute 
prediction plays an important role as well as the extraction (recognition) of 
product characteristics. Characteristics are inherent properties of any 
product, independent of the product use. They can be determined purely 
from their representation. 

The methodology was implemented in an expert system where the 
following procedure for product performance assessment is used: 

1. Define the attributes in users' terms, 
2. Determine the model of each attribute (design of the related rule 

base), 
3. Define the combination function. 

The implemented system evaluates the proposed design by evaluating the 
attribute model with the help of the defined combination function. It answers 
the main criterion and returns an objective value determined for it. 

All presentations explained that it is a unique problem to extract the 
criteria against which a design is evaluated. The discussion on this topic led 
to the conclusion that the product requirements represent these criteria and 
that this is the reason why the product requirements, which must contain 
information of all stages of the product life cycle and especially different 
views on the product (design view, users' view), have to be formalized in a 
computable model. However there still remains the problem of weighting 
different requirements if weights are used. An absolute weighting of the 
design parameters (requirements) is not useful and it does only makes sense 
to weight the requirements relative to each other. The question how to 
represent "trade-offs" leads to the result that trade-offs too can and should be 
modeled by requirements and that an evaluation system should not only be 



186 HANS GRABOWSKI 

used in order to justify a design but also to aid the designer in the decision 
making process. 

In which way requirements can change throughout the design process 
was another important topic of the discussion and was discussed vigorously. 
For example, a designer is given the task of designing a bridge over a river 
and because of certain problems and restrictions, the design ends up as a 
tunnel. There was consensus that new requirements can appear during the 
design process but the point at issue was the nature of requirements, the 
abstraction level of the represented information and, of course, the than open 
problem of formalizing requirements. The inadequacy in this example was 
that the problem definition was not abstracted enough, which means that 
during the definition of the design task the product (bridge/tunnel) has been 
specified and not the problem represented by the requirements. The 
designer has to start at a fixed point. That point is the main function 
representing the intended design. If the main function of the design, to 
transport objects from one side of a river to the other, is given then the 
intended design will not be preordained and it is possible that requirements, 
especially costs etc., can change over time without necessarily producing a 
totally different product. 



PART FOUR 

Formal Support Methods in Design 



11 

FORMAL CONCEPT ANALYSIS IN DESIGN 

MIHALY LENART 

University of Kassel, Germany 

Abstract. Formal concept analysis is a research method using set theoretical models of 
concepts and their hierarchical orderings. The model is based on concept or Galois lattices 
whose application for analyzing design contexts has been proposed earlier by Ho (1982a). 
Although concept lattices have been widely used for analyzing contexts in various areas, 
such as music, social sciences, or cognitive science, the analysis of design contexts by 
concept lattices has not gained acceptance. In particular, it has not been recognized yet that 
Hasse diagrams, a representation of concept lattices by line diagrams, can not only help to 
visualize important hidden properties of a design context, but also provide a new kind of 
analytical tool that can support the decision making process. The paper shows that Hasse 
diagrams contain all information of the underlying context and reveal inherent structural 
dependencies not captured by any other graphical representation of the given context. It 
shows also how concept lattices, or rather their Hasse diagrams, can be used for supporting 
the design process in general and for analyzing design contexts in particular. 

1. Introduction 

Many attempts have been made to describe design contexts exactly by fonnal, math­
ematical means. The purpose of such description is to understand relations or de­
pendencies between design objects and to develop computer programs for auto­
mating certain parts of the design process. One way to characterize a design context 
is to describe design objects as elements of a set and relations and/or operations on 
these elements. The result is an algebraic model of the design context. There are 
numerous such models and the fonnal description of a context we are using here 
is probably the simplest one. Nevertheless, this simple model can capture basic 
features of a design context. The same model has been used also for Q-analysis 
that was developed by Atkin (1974) in the early 1970s. It was quite popular and 
widely used for the analysis of design contexts in the late 1970s and early 1980s. It 
turned out, however, that some of the infonnation get lost in the process and other 
algebraic tools, such as concept lattices, are superior to or more adequate than Q­
analysis for analyzing design concepts. 



190 MIHALY LENART 

In the early 1980s, Ro has proposed the use of new algebraic tools, in partic­
ular set and category theoretical ones, for a formal description of the design pro­
cess (Ro, 1982a; Ro, 1982b; Ro, 1982c). One of these tools was concept or - as 
Ho called them - Galois lattices. Although Ho's proposal was novel to design, 
concept lattices have been widely used previously in other social and scientific 
areas. The ground work for these applications has been laid down by Wille (1981; 
1983; 1984; 1987; 1992). He has developed not only the lattice theoretical found­
ations but also various lattice generation and representation methods. Beyond the 
theoretical part, Wille and his co-workers have demonstrated the scope and the 
power of these methods by numerous applications. The aim of this paper is to util­
ize Wille's methods for design purposes. 

2~ Concept Lattices 

Concept analysis is based on a common data type called (formal) context. From a 
context several mathematical objects, such as concept lattices, can be derived. 

Definition 2.1 A context is a triple (0, P, '"'I) where 0 and P are sets and '"'I ~ 
o x P is a binary relation between 0 and P. 
The elements of 0 and P describe entities of a given design situation or problem. 
According to March (1982), we need at least "two descriptive systems" in order 
to be able to describe design tasks or processes. In many cases two distinctive sys­
tems are also sufficient to describe relevant characteristics of a design context. A 
simple example is given in Figure 1 describing building structures and their main 
characteristics. 

The two sets 0 and P can be chosen arbitrarily, however, for all practical pur­
poses the "two distinctive description systems" mean that we usually have two sets 
of different kinds of entities, such as facts and values, objects and features, forms 
and functions, or locations and activities (Ho, 1982a). Keeping this in mind, we 
can assume - without loss of generality - that 0 is a set of objects and P is a 
set of properties. If an object 0 E 0 has a property pEP, i.e. (0, p) E "'( then we 
write o"'(p. The context (0, P, "'() can be represented by a matrix with the objects 
heading the rows and the properties the columns. If an object 0i has the property 
Pj then we put an x into the field (i, j) and leave it empty otherwise (see Figure 1). 
For all subsets X ~ 0 and Y ~ P we define the following derivation operations 
represented by "prime": 

X I-t X' = {p E PI O"'(P forall 0 EX} (1) 

Y I-t y' = {o E 0 I o"'(P forall p E Y} (2) 

Let gaX denote the power set of X and gaY the power set of Y. Then the pair (F, G) 
of mappings F : X gaX' and G : Y gaY' are said to form a Galois connection 
between gaX and gaY for which the following properties hold (Birkhoff, 1967): 

(3) 



FORMAL CONCEPT ANALYSIS IN DESIGN 191 

..... ..... .I!l ~ i a ~ ~ '" 0 ~ 
t' Q.o u 'J:! 'Q) 

~ 1 ti ~ ~ bIl 

t ~ 
Q 

'" .g Q 

1 
0 u 

'" u -c. 1 fo j 
buUding structure bIl :a '" 

cast in place x x x a 

steel frame x x x x b 

wood frame x x c 

aluminum frame x x x d 

masonry x x e 

prefab. concrete x x x x f 

1 2 3 4 5 6 

Figure 1. A context describing relations between building structures and structural properties. 

YI ~ Y2 implies Y~ ~ Y{ for YI, Y2 ~ P 

X ~ X" and X ~ XIII for X ~ ° 
Y ~ yll and Y ~ ylll for y ~ P 

(U X t )' = n X: for X t ~ O(t E T) 
tET tET 

(U yt)' = n Yt' for yt ~ P(t E T) 
tET tET 

(4) 

(5) 

(6) 

(7) 

(8) 

The relations above show a natural 'duality' between objects and properties. 

Definition 2.2 For a given context (0, P, 1'), we call a pair (A, B) a concept if 
A ~ 0, B ~ P, A = B' and B = A'. A and B are called the extent and the 
intent of the concept (A, B) respectively. 

Figure 2 shows all the 11 concepts of the context of Figure 1. 
Let us denote the set of all concepts of the context (0, P, 1') by L ( 0, P, I' ). It 

can be shown that there is an ordering structure on L (0, P, 1') defined by the set in­
clusionrelation: For any two concepts (AI, Bd and (A2' B 2) we have (AI, B I ) ~ 
(A2' B 2) if and only if Al ~ A2 which is equivalent to B2 ~ BI by 4. In this 
case we call (AI, B I) a subconcept of (A2' B 2) and (A2' B 2) a superconcept of 
(AI, Bd. For the sUbconcept-superconcept relation we denote the ordered set (L 
(0, P, I'),~) by L(O, P,I'). 



192 MIHALY LENART 

B'=A • A'=B 

1 0 1,2,3,4,5,6 

2 b 3,4,5,6 

3 f 1,2,4,6 

4 a,f 1,2,6 

5 b,d 3,4,5 

6 b,f 4,6 

7 a,b,f 6 

8 a,e,f 1,2 

9 b,c,d 4,5 

10 b,c,d,f 4 

11 a,b,c,d,e,f 0 

Figure 2. The concepts derived from the building structure context. 

In order to formulate the basic theorem showing that.1( 0, P, 1') is a complete 
lattice, we need to introduce some lattice theoretical notations 1. 

Definition 2.3 A partially ordered set P (or for short poset) is a set with a binary 
relation ~ 2 such thatforall x, y, z E P we have reflexivity: x ~ x, antisymmetry: 
if x ~ y and y ~ x then x = y, and transitivity: if x ~ y and y ~ z then x ~ z 

Such a (reflexive, symmetric and transitive) relation is called a partial order on 
P. If any two elements of a poset are ~-related we say that the poset is a totally 
ordered set or a chain. 

Definition 2.4 If X is a subset of a poset P (i.e. X ~ P), then a E P is an upper 
bound of X iffor each element x E X a 2: x. The least upperbound or supremum 
of X denoted by supX(VX) is the smallest upperbound of X. (It can easily be 
shown that each subset has at most one.) Similarly, an element b E P is a lower 
bound of a subset X ~ P iffor each x E X b ~ x. The greatest lower bound or 
infimum of X denoted by in f X (I\X) is the greatest of all lower bound of X. 

Definition 2.5 A lattice .c is a poset P such that any two elements x, yEP have 
a supremum called join' and an infimum called 'meet '. Therefore join and meet 
are (total, binary) operations on a poset P and for any two elements x and y of a 
lattice we write x V y for their join and x 1\ y for their meet. 

lPor a detailed discussion see Birkhoff (1967) 
2Notice that S; is used here in a more general sense than in the case of concepts. 



FORMAL CONCEPT ANALYSIS IN DESIGN 193 

Definition 2.6 A lattice £ is called complete if each subset X C P has a su­
premum and an infimum in £. We also say that £ is closed under supremum and 
infimum. 

Since we restricted ourselves to finite examples, all our lattices will be also finite. 
Since any finite lattice is complete, we can take completeness of our lattices for 
granted. 

Definition 2.7 A subset D of a complete lattice £ is called infimum dense if each 
element of the a lattice is an infimum of a subset X of D i.e. £ = {i\X I X ~ D}. 
Similarly a subset of a complete lattice £ is called supremum dense if £ = {V X I 
X ~ D}. 

Now we can state the basic theorem mentioned earlier (Wille, 1992): 

Theorem 2.1 1.(0, P, I) is a complete lattice of the context (0, P, I) whose in­
fimum is: 

(9) 
tET tET tET 

and supremum is: 
(10) 

tET tET tET 

Conversely, a complete lattice £ is isomorphic to 1.( 0, P, I) if and only if there are 
mappings a : 0 ---7 £ and (l : P ---7 £ such that aO is supremum-dense in £ 
and (lP is infimum-dense in £, and 0IP is equivalent to ao ~ (lP for all 0 E 0 and 
pEP, i.e. £ ~ 1.(£,£,~) and, if£ hasafinitelength, £ ~ 1.(.7(£), M(£), ~). 

We call 1.(0, P, I) a concept lattice. 

3. Generating and Drawing Concept Lattices 

Before going into the discussion of how to interpret information provided by concept 
lattices or rather how to use concept lattices for design purposes, let us discuss the 
following questions: How can we obtain the concept lattice of a given context, and 
how can the concept lattice be represented conveniently by easily surveyable line 
diagrams? In fact, the primary aim of this paper is to discuss the use of such dia­
grams as decision support tools in design rather than discussing theoretical ques­
tions related to concept lattices. 

The most obvious derivation method to obtain all concepts from a context (0, 
P, I) is to generate for all subsets X ~ 0 the concept (X ", X ') by 5 or for all 
subsets Y ~ P the concept (Y', ylI) by 6 By ordering the concepts using the ~­
relation, we obtain the concept lattice 1.( 0, P, I). Even though this method might 
work well for smaller contexts, it requires the generation of at least 2101 subsets 
and their "prime" derivates, if 0 ~ P or at least 21P1 subsets if P < O. (It is also 
possible to use a combination of subsets X and Y in order to obtain all concepts.) 
In case of larger contexts, this method becomes obviously inefficient. It is more 



194 MIHALY LENART 

o 

o 

Figure 3. Hasse diagram of the concept lattice generated from the building structure context. 

efficient to use the formulae X' = noEX { O}' or Y' = npEY {p}' which are special 
cases of7 and 8, and then form (X", X') or (yl, yll). This means that we can start 
with arbitrary intents {o}' (0 E 0) or extents {p}' (p E P) and derive new extents 
and intents by the above formulae. Repeating the process provides all concepts, 
since every extent or intent is the intersection of certain other extents or intents. 
There are other, more efficient ways to generate the concepts by computer as well. 
For a discussion and the comparison of concept generating algorithms see Gantner 
(1987). 

Lattices, in particular concept lattices, are usually represented by line diagrams, 
called Hasse diagrams. The nodes of the diagrams represent concepts and if we 
have (AI, Bd 2': (A2' B2) then we place the node representing (At, Bd higher 
in the diagram than the node representing (A2' B2). If (AI, Bd 2': (A2' B2) and 
there is no concept (A3, B3) such that (AI, B I) 2': (A3, B3) 2': (A2' B2) then the 
nodes representing (AI' Bd and (A2' B2) are connected by a line in the diagram. 
This representation of the concept lattice is a graph displaying the ordering rela­
tion. Such a graph is called Hasse diagram. Figure 3 shows the Hasse diagram of 
the concept lattice generated from the context of Figure 1. In the diagram the intent 
is placed above and the extent below the corresponding node. 

It is, however, s11fficient to attach the name of an object 0 to a node representing 
(J"O := ({ O}", { o}') which is the smallest concept containing 0 in its extent, and 



FORMAL CONCEPT ANALYSIS IN DESIGN 

\ 

\ 

Figure 4. The simplified Hasse diagram of the building structure lattice. 

195 

similarly, it is sufficient to attach the name of a property to the node representing 
f2P := ({p}', {p }") which is the largest concept containing p in its intent. This 
follows from 0 E A <=> ao ~ (A, B) and p E B <=> f2P ;::: (A, B). Figure 4 
shows the simplified Hasse diagram. The missing labels can easily be obtained by 
consecutive addition of extents or intents along the upward or downward sloping 
paths. 

Any concept (or other kinds of) lattice can be represented by an infinite number 
of different Hasse diagrams. Some diagrams are more, other less appropriate for 
representing and analyzing lattice properties. Therefore, regardless of the particu­
lar use of the lattice, there are some guide lines for generating 'nice' and useful dia­
grams. The most important one is that the diagram should display or even emphas­
ize important structural lattice properties. This can be achieved by various meth­
ods and we will discuss one of these methods in section 5. It is also desirable that 
connecting lines are straight sloping segments. 3 It is also common to draw planar 
or 'as planar as possible' diagrams, i.e., to minimize the number of crossing lines. 
Hasse diagrams are often composed of parallelograms or rather the underlying grid 
of the diagram is parallelogram grid. Boolean lattices can nicely be represented by 
n-dimensional cubes drawn on such grids. This is the reason that Hasse diagrams 
are often composed of Boolean sublattices depicted as n-dimensional cubes. (For 

3 Sometimes, however, we want to represent important features that can be achieved only by 
abandoning straight lines. 



196 MIHALY LENART 

2 4 5 6 

a b d e 

Figure 5. Representation of the building structure context by a bipartite graph. 

more on the representation oflattices by line diagrams see Rival (1989).) 
Besides concept lattices, other methods can be used for representing structural 

properties of a context as well. First of all the context might not be given in the 
(convenient) matrix form as in Figure 1, such that recognizing objects, proper­
ties and relations itself can be a representational task. For example, the list I! p = 
(1,2,6; 3, 4, 5, 6; 4, 5; 3, 4, 5; 1; 2; 1,2,4,6), or the lisUo = (a, e, I; a, e, I; b, d; 
b, c, d, I; b, c, d; a, b, I) describes the exact same context as Figure 1. Although this 
representation is more efficient and better for programming purposes, it is hard to 
recognize structural properties by such lists. We can also represent the same con­
text by a bipartite graph as it is shown in Figure 5. This representation is also hard 
to read and provides little information about the structure of the context. 

In contrast, as Wille (1992) states: "Concept lattices constitute a structural ana­
lysis of data contexts without reducing the the data. A labeled line diagram of a 
concept lattice still represents all knowledge4 coded in the underlying context and, 
furthermore, unfolds (and reveals to the eye) the inherent conceptual structure of 
the coded know ledge." In fact, concept lattices display information provided by all 
other structural representation methods. For example hierarchical concept cluster­
ing provides clusters like the one of building structures with good fire and sound 
proof capabilities, or the one of those with short construction time and low weight 
(see Figure 6). The same clusters can easily be obtained from the concept lattice 
in Figure 4 where we can find these two clusters on the left and right branches of 
the diagram respectively. 

The concept lattice also represents all implications between the attributes. An 
implication Y -+ Z of a context (0, P, 'Y) is a pair of subsets Y, Z ~ P such that 
Y' ~ Z', i.e., each object of 0 that has all the properties of Y will also have the 
properties of Z. Similarly, the implication X -+ T is a pair of subsets X, T ~ 0 
such that X' ~ T',i.e., each property of P that belongs to the the objects of X 
will belong also to the objects of T. This can be considered as an 'inheritance'­
relation in object oriented terms that is displayed by the diagram. We can read the 
implications from the diagram because of Theorem 2.1, Y' C Z' {:} VI E Z : 

4Emphasis added. 



FORMAL CONCEPT ANALYSIS IN DESIGN 

fire & sound proof 

short installation 
& 

low weight 

b~,s/C 
d 

Figure 6. Two clusters whose elements share the same properties. 

Ordering of objects Oredering of properties 

Figure 7. Ordering of the properties and objects. 

197 

(yl, yll) ::; £11 in L(O, P, 'Y) and (yl, yll) = I\kEY ek and X, ~ T' {:} 'lin E 
T : (X", X') ::; an in L(O, P, 'Y) and (X", X') = V mEX am. For example 
{a, c} --t {e, J} because aa A ac ::; ae and aa A ac ::; a j, i.e., the properties 
of a and c will also be properties of e and j. 

Implications with one element premise provide a natural ordering on the set of 
properties by k ::; 1 :{:} 1 --t k ({:} £11 ::; ek) and similarly, we obtain a natural 
ordering on the set of objects by m ::; n :{:} m --t n ({:} am ::; an). This 
ordering is shown in Figure 7. Figure 8 shows implications on the objects. 

4. Analyzing Contexts by Concept Lattices 

The following example from Lenart (1990) describes a common design task by 
statements and their connections. (Another example in Lenart (1988) shows an­
other novel application of concept analysis in design.) The extents of the concepts 
are statements about the current situation at a certain university describing the prob­
lem of having unsatisfactory student accommodations. Using Ho's (1982a) terms, 
these statements represent the state space of the design process. The intents of the 
concepts are sets of decisions changing the current situation. This corresponds to 
the decision space (Ho, 1982a). The context is represented as a matrix in Figure 



198 MIHALY LENART 

f .. a,e b,c .. d 

a .. e b,d .. c 

b .. d,c b,e .. a,c,d,f 

d .. c b,f .. a,c,d,e 

a,b .. c,d,e,f a,b,c .. d,e,f 

a,c .. e,f a,b,d .. c,e,f 

a,d .. b,c,e,f a,b,e .. c,d,f 

a,f .. e a,b,f .. c,d,e 

Figure 8. Implications on the objects. 

9. In this context x'YY means that the statement x is effected by the decision y, or 
in other words, the decision y changes the validity of the statement x. We notice 
that we did not specify how the decision y effects the statement x nor the strong 
or weakness of the influence. However, by refining the relation between the two 
sets (i.e. expanding the context) several modifications are possible. The new con­
text replaces a single statement by a certain number of sub statements and defines 
the relation on these new statements. Such a method for the extension or refine­
ment of contexts was described in Macgill (1983). However, it is also possible 
to have many values or a scale describing the relationship between objects and 
properties. A method for dealing with many-valued contexts is described in Wille 
(1987; 1992). 

The problem is obviously simplified by describing it with only a few number 
of statements using a binary relation whether certain statements are mutually re­
lated or not. Although this fictive problem is quite common and realistic, this small 
example shows that even in such simplified cases the context can be quite complic­
ated, yet concept analysis provides a powerful tool to analyze the problem'and to 
help in the decision making process. Like in the previous example, the concept lat­
tice can be generated by calculating all possible concepts, ordering the concepts, 
and finally drawing the concept lattice. Even though the context of this simple task 
is small, it provides 63 concepts and the resulting lattice, as Figure 10 shows, is 
quite complex. 

Obviously, there are infinitely many different drawings representing the same 
lattice. However, not all the diagrams represent the lattice 'nicely'. A 'nice' draw­
ing means that we can 'read' the diagram, i.e. obtain information (dependencies) 
easily. One trick we might want to use is to look for Boolean sublattices (or 'almost'­
Boolean sublattices, as mentioned earlier) and draw them as n-dimensional cubes 
with parallel edges. The search for Boolean sublattices is not difficult and can sys­
tematically be done. However, putting the entire diagram together requires some 
skill. Because of the difficulties in drawing Hasse-diagrams (especially 'nice' ones) 



FORMAL CONCEPT ANALYSIS IN DESIGN 199 

" 

'" .... C! 
2 ~ ~ '" 

t~ ~o> '" £1 
::I 

c: ~ 
Q. 

~ .~ 2~ il: § g§ Q. '" u 1:l 

~ ;~ §' c: c: 0 o u .s 4-< 0 "0 uS ,5·~ OIl 0 
'" fJ 

~ S 1A '1H c: 

~ '" c: '" S .~ ;§ ~~ 
O.t::: £.9 ..... ~ <.::: 
'" '" OIl u "OC: '" '" i!:l '" ·c 82 
.~ ~ '" fJ~ ~ ~ ::I <S 

~ 
c: I!l .... '" c: Q.:::: , o·~ .£~ 0.;3 .o~ tEi:S c: OIl ;.,'~ 

.~:9 

·1 
;gil: -c: ·s '" '" .S <= .-:= il: 

til S'S ~.~ § ~ C! ~ '" ~ '" '" OIl 0 '§ ~d , = 0.0 
'Ci} -= ~-Q "0'" 

u u a«l Q. > '" 'til ;.,'" 
",.~ 

.si§ 'g '2 S 
~~ .. > il: 

.~ ~ 
",.~ "'~ ~~ '0 .s .... -

~~ 0Il'~ '" '" c: ~ '" '" <= Q,I 

~~ c: I!l .;3 .;3", -= .S.~ '" .e; ~ 'il ~ OIl 
> S 'c ~ '" <= ","0 

§ 0> 0Il"O 
::I in o·~ u ;§ u S 8", .5 a Q.<= ::I :9::1 

Q.~ ",.;3 ","0 Q.::I "0 ~8 problems ~.s > '" 'S ,5", E9 .~ '~4-< E9£l ~.E '" 00 ~ co ~~ 

The number of students living in x x x x x 
dorms close to the camnus is limited 
Renting an apartment close to the 

I <'"",n,,;;;o "v-;""nd"" 
x x x x x x x x 2 

No new dormitory can be built 
on campus x x x x x 3 

The university has a building site x x x 
outside the citv in drivin!! distance 

4 

The university has resources (annual x x 
budget) for unspecified building activities 

5 

The university has resources for x x x x supporting a limited number of students 6 

There are government resources for x x 
buildin!! dormitories and parkin!! facilities 

7 

There are government resources for x x x x x 
unspecified/unrestricted student support 

8 

The university has not enough 
I narkinp' facilities 

x x x x x x x x 9 

The university has not enough busses x x x x x x x for transporting students 10 

There is a small number of students x x x x x x x x 
commuting between home and the univ. 

11 

The university's teaching capacity x x x x x x x x is overloaded 
12 

a b c d e f g h 

Figure 9. The context of the student accommodation problem. 

and because of this is a time consuming process, there is an ongoing research effort 
to generate lattices automatically by computer programs (Wille, 1989). This is im­
portant because the concept lattice describing a given task changes with each new 
data or modification of the context. Frequent - hypothetic or concrete - changes 
can only be analyzed if one can generate Hasse-diagrams quickly by computers. 

Analyzing a Hasse-diagram that represents a design context, means the search 
for concepts providing satisfactory solutions. Since what 'satisfactory solution' 
means is subjective, the diagram itself doesn't provide a solution. It supports, how­
ever, the decision making process by displaying all the concepts and their order-



200 MIHALY LENART 

Figure 10. The concept lattice of the student accommodation problem. 



FORMAL CONCEPT ANALYSIS IN DESIGN 201 

ing. For instance, if we choose a set of decisions of a concept Gi, let's say {a, b, i} 
then it changes the state of the 'objects' {2, 3, 9, 11} of the same concept. In other 
words, the decisions a, b and i (may) solve the problems 2, 3, 9 and 11. Any set of 
decisions of a concept Gj that is connected by a continuous, steadily downward 
sloping path to the concept Gi solves (or effects) just a (proper) subset of these 
tasks. 

Or we can do the reasoning in the other direction by choosing a set of 'objects' 
that are essential for solving this particular problem. Similarly, any concept in our 
lattice containing the chosen objects has a set of decision that will effect these ob­
jects. Moreover, any continuous, upward sloping path starting at such a concept 
leads to concepts with the same property. 

In both cases; starting the process with decisions or objects, we might choose 
a set that does not occur in the lattice. Thus, if we felt that the set 3, 9, 11 would 
have been the key to our context then we would look at the concepts containing 
these elements. The concept lattice tells us that there is no such set of decisions 
in our context that effects exactly these three objects and nothing else. The lattice 
also tells us that the smallest such concept is A = {2, 3, 9,11}, B = {a, b, i}, and 
there are exactly five other concepts on up-sloping paths starting at this concept 
which have the same property. 

The next step of the process is to decide which of these six concepts is the most 
satisfactory. This is a kind of optimization where we have to compare different sets 
of decisions, or rather their consequences. It is likely that the process involves both: 
searching for an 'optimal' design state and also for 'optimal' decisions. Optimality 
means that we want to improve the current situation as much as possible with the 
minimum amount of effort and sacrifice. It is obvious that design in general is far 
from being optimizable, and because of the complexity of design problems, it is 
important that concept lattices (in particular Hasse-diagrams) help us to describe 
design tasks in exact terms. This description, or model enables us to compare and 
evaluate decisions. In case ofteam or collaborative design, concept lattices provide 
a powerful argumentative tool for discussions and negotiations. 

S. Generating Lattices by Subdirect Products 

Although Hasse diagrams can help us to display and analyze complex design tasks, 
the generation of Hasse-diagrams becomes increasingly difficult - if not impossible 
- by the increase of the number of concepts. With increasing number of concepts 
the diagram becomes large, dense and cluttered and at some point it might fail to 
provide any help. Not just generating but also 'reading' such diagrams can be diffi­
cult. Additionally, not all of the hierarchical structures hidden in the original con­
text are equally significant for the design process. Hasse-diagrams so far do not 
allow us to make distinctions between different dependencies. 

All these problems can be resolved by means of suitable sublattices. Before 



202 MIHALY LENART 

going into the discussion of sublattices, however, let us look at again the Hasse­
diagram in Figure 10. It is not difficult to discover the Boolean sub lattices in the 
diagram having parallel edges. Moreover, we can easily discover that the entire 
diagram contains two similar looking sub lattices (one in the left upper part and 
the other in the right bottom part of the picture) that are connected by a bundle of 
parallel lines. By removing these lines the diagram becomes simpler and we still 
have all the informations of the original diagram. From the simplified diagram in 
Figure 11 we can obtain the original diagram by moving the 'boxed' diagrams of 
one sub lattice over the diagram of the other sublattice along the connection line 
of the two boxes. Two points are connected in the original diagram if they cover 
each other following this translation. Our claim is that we can apply this 'trick' 
to any concept lattice, and not only we will have a way to represent large lattices 
efficiently but also we will be able to organize the diagram so that certain structural 
dependencies become transparent. 

As the above described intuitive simplification indicates, sublattices are the key 
to representation problems. In fact, we are seeking methods to generate and repres­
ent lattices from smaller sublattices. There are a couple of methods for generating 
lattices from appropriate sublattices or decomposing concept lattices into sublat­
tices (Wille, 1983; Wille, 1985). Here we show how lattices can be obtained as the 
subdirect product of sublattices (Wille, 1987). 

Let us first consider contexts having certain structural properties. The aim is to 
have special cases in which the concept lattice can be generated easily by suitable 
subcontexts. In other words the idea is to find structural properties of a context 
which allow us to generate the concept lattice from sublattices. For this purpose, 
we introduce the following notations: Let us denote a lattice A by (X, ~A), where 
X is the underlying set of A and ~A its partial order. 

Definition 5.1 The direct product C = A x B = (X x Y, ~c) of two lattices 
A = (X, ~A) and B = (X, ~B) is defined such that (Xl, yt) ~c (X2' Y2) if and 
only if Xl ~A X2 and YI ~B Y2. A bounded lattice is a lattice with greatest and 
smallest element. 

Definition 5.2 The horizontal sum A EBh B of two bounded lattices A = (X, ~A) 
and B = (Y, ~B) is obtainedfromtheircardinalsum (XUY, ~A U ~B) (where u 
denotes disjoint union) by identifying the smallest and the greatest element of the 
two bounded lattices respectively. 

Definition 5.3 The vertical sum AEBv B is obtainedfrom their ordinal sum (XUY, ~A 
U ~ B U (X x Y)) by identifying the greatest element of A with the smallest ele­
mentofB. 

Definition 5.4 A subdirect product 1) = (8, ~1») of the lattices A = (X, ~A) 
and B = (X, ~B) is a subset 8 ~ X X Y closed under the operations V and 
/\ (sub lattice) such that for each element X E X (or Y E Y) there is an element 
s E 8 having x (or y) as its component. 



FORMAL CONCEPT ANALYSIS IN DESIGN 203 

11 

Figure 11. Simplifying the diagram of the lattice describing the student accommodation problem. 

The following theorem is applicable in cases where the context contains dis­
joint subcontexts whose polar sets are empty (Wille, 1987). 

TheoremS.1 LetCl = (X l ,Yl "dandC2 = (X2,Y2,,2)becontextswithXl n 
X2 = 0, Yl nY2 = 0,Xi = Xi = Yt = Y2* = 0and£c1 = £l(Xl , Yl"l) and 



204 MIHALY LENART 

£02 = £2(X2, Y2, /2) the lattices belonging to them. 
Then £0(X1 n X 2, Y1 n Y2, /1 n /2) is isomorphic to the horizontal sum of 

£1, and £2, £0(X1 n X 2, Y1 n Y2, /1 n/2 nX1 n Y2) is isomorphic to the vertical 
sum of £1, and £2, £0(X1 n X 2, Y1 n Y2, /1 n /2 n (Xl x Y2) n (X2 x Yr)) is 
isomorphic to the direct product of £1 and £2. 

If Theorem 5.1 can not be applied, i.e. we do not have the properties allowing 
the application of this theorem, then a larger concept lattice can be still generated 
by using the following general theorem: 

Theorem 5.2 Let C = (X, Y, /) be a context, let {Xi liE I} be a partition of 
X andlet{Yj I j E J} be a partition ofY. Then a V-embedding of .co (X, Y,/) 
into the direct product of the .co (Xi, Y, /n (Xi X Y) )iEI is given by (A, B)p(An 
Xi, (A n Xt)iEI), a A-embedding of .co (X, Y, /) into the direct product of the 
£o(X, Yj, / n (X X Yj))jEJ is given by the mapping (A, B)P(B n }j, (B n 
1j*)jEJ)· 

Conversely, each concept lattice can be represented as a subdirect product of sub­
lattices. We obtain sublattices by dissecting the set Y (or X) of a context C = 
(X, Y, /) into subsets Y1 , UY2 U ... U Yn = Y (or Xl, UX2 U ... U Xn = X) 
and generating the lattice .co) (X, Yj, /n (X X Yj) )jEJ (or .co, (Xi, Y, /) n (Xi X 

Y)iEI). 
Let us consider the simplest case of a dissection having Y = Y1 U Y2 of the 

context C = (X, Y, / ). In this case we obtain the two concepts C 1 = (X, Y1 , /1)' 
where /1 = / n (X X Yr) and C2 = (X, Y2, /2) where /2 = I n (X X Y2). 
From the concepts C1 and C2 we obtain the two sublattices £01 (X, YI , 11) and 
.co2 (X, Y2, 12)' The representation of the lattice £0 (X, Y, I) as the subdirect pro­
duct of .cOl and .co2 goes as follows: 

We draw the lattice .co2 as a diagram having 'boxes' (rectangles) instead of 
points. In each box we draw the Hasse-diagram of the lattice £01 identically such 
that moving one box to another along the edges the pictures of .cOl cover each 
other (i.e. the diagrams are congruent). Let {x} * n Y1 = A and {x} * n Y2 = B. 
Now the concept (A, B) of the lattice.co is in the box (B*, B) of the diagram of 
.co2 and at the point (A*, A) of the diagram of .cOl' Usually, some parts of the dia­
grams of the lattices £01 are omitted since not all of the depicted concepts exist. 
The resulting diagram is a unique representation of .co, i.e. from the 'box diagram' 
of the lattice one can easily reconstruct the lattice itself. However, it contains less 
edges than the Hasse-digram of the lattice since 'parallel' and 'complete' edges 
are replaced by single ones. Parallel edges connect two diagrams in adjacent boxes 
such that each pair of connected points would cover each other by moving the con­
gruent diagrams. Complete edges connect a single (top or bottom element of the 
diagram with all the points of a diagram in an adjacency box. (Because of the trans­
itivity of :s; and:?: we need to connect just the smallest or greatest elements in the 
box.) 



FORMAL CONCEPT ANALYSIS IN DESIGN 205 

Figure 12. The two sublattices generating the box diagram in Figure 11 

The dissection of the set Y = {a, b, c, d, e, j, g, h, i} of our example into the 
subsets Y1 = {a, b, c, d, e, g, h, i} and Y2 = {f} provides the two sublattices on 
Figure 12. The product of these sublattices provides the lattice on Figure 11. 

Another dissection ofY into Y1 = {a, b, c, d, e} and Y2 = {j, g, h, i} provides 
interestingly two very similar sublattices. Figure 13 shows both: the two sub lattices 
LC1 (X, Y1, 1'1) andLc2 (X, Y2, 1'2) and the box diagram of the lattice LC (X, Y, 1'). 

If the dissection is based on some structural properties then the box diagram 
displays the order structure according to these structural properties. We could for 
instance divide the statements about the current planning situation into financial 
statements Xl = {2, 5, 6, 7, 8} and object descriptive statements X 2 = {1, 3,4,9, 
10, 11, 12}. In this case the box diagram would display dependencies that are fin­
ancial and non-financial nature by having two different representation levels. 

By having a decomposition of the set Y (or X) into three, four, etc. subsets the 
depth of the structure grows. It becomes a three, four, etc. level box diagram. Even 
very large concept lattices become representable by using such higher level, nested 
structures. Besides the fact that nested, multilevel diagrams help us to reduce the 
number of edges further and make the diagram survey-able, they also provide us 
more structuring possibilities. In nested diagrams each level represents an aspect 
we want to emphasize or make transparent. 



206 

• • 
>,7 

• 

/ 

11 

MIHALY LENART 

~ . 

10 

2.11 

",(§) . • 1 
4 f 

• 
11 

3 

2.' 
9.12 

Figure 13. The two sublattice and the box diagram based on the dissection: Y1 = {a, b, c, d, e}, 
1'2 = if, g, h, i} 



FORMAL CONCEPT ANALYSIS IN DESIGN 207 

6. Conclusion 

The paper presents the fundamentals of concept analysis and how it can be used 
for analyzing design tasks. In particular, it shows how to apply Wille's analysis and 
representation method in design. By using results in lattice theory, we can generate, 
analyze concept lattices and draw their Hasse-diagrams. Since Hasse-diagrams 
provide easy access to and easy understanding of concept lattices (even for a lay­
man), the focus of the paper lies in the development and representation of Hasse­
diagrams. Hasse diagrams provide an insight of complex relations that are hidden 
in the context and usually difficult to obtain otherwise. Since design contexts have 
not been analyzed so far by these methods, there is a wide range of new applica­
tions for concept lattices in the design field. 

References 

Atkin, R H.: 1974, Mathematical Strcture in Human Affairs, Heinemann, London. 
Birkhoff, G.: 1967, Lattice Theory (3rd edn), Mathematical Society, Providence, RI. 
Gantner, B.: 1987, Algorithmen zur formalen begriffsanalyse, in K. E. Wolf, B. Ganter and R Wille 

(eds), Betraege zur Begriffsanalyse, B.I. Wissenschaftsverlag, Mannheim. 
Ho, Y-S.: 1982a, The planning process: fundamental issues, Environment and Planning B, 9, 387-

395. 
Ho, Y-S.: 1982b, The planning process: structure of verbal descriptions, Environment and Planning 

B, 9, 397-420. 
Ho, Y-S: 1982c, The planning process: a formal model, Environment and Planning B, 9, 377-386. 
Lenart, M.: 1988, Axiomatic approach to analyzing floor plan topology, 4th International Confer­

ence on System Research, Informatics and Cybernetics, Baden-Baden, Germany, pp. 63-71. 
Lenart, M.: 1990, Concept lattices as planning models, Design Methods and Theories, 24(1), 1136-

1163. 
Macgill, S. M.: 1983, A consideration of Johnson's Q-discrimination analysis, Environment and 

Planning B, 9, 315-330. 
March, L.: 1982, On Ho's methodological approach to design and planning, Environment and Plan­

ning B, 9, 421-427. 
Rival, I.: 1989, Graphical data structures for ordered sets, in I. Rival (ed.), Algorithms and Order, 

Kluwer, Dordrecht, pp. 3-31. 
Wille, R: 1981, Restructuring lattice theory: An approach based on hierarchies of concepts, in 

I. Rival (ed.), Proceedings of the Symposium on Ordered Sets, Banff, pp. 445-470. 
Wille, R: 1983, Subdirect decomposition of concept lattices, Algebra Universalis, 17(3), 275-283. 
Wille, R: 1984, Line diagrams of concept systems, International Classification, 11(2), 77-86. 
Wille, R: 1985, Tensorial decomposition of concept lattices, Order, 2,81-95. 
Wille, R: 1987, Subdirect product construction of concept lattices, Discrete Mathematics, 63, 305-

313. 
Wille, R: 1989, Lattices in data analysis: How to draw them with a computer, in I. Rival (ed.), Al­

gorithms and Order, Kluwer, Dordrecht, pp. 33-58. 
Wille, R: 1992, Concept lattices and conceptual knowledge systems, Computers Math. Applic., 

23(6-9),493-515. 



12 

SUPPORTING THE DESIGN PROCESS BY AN INTEGRA TED 
KNOWLEDGE BASED DESIGN SYSTEM 

HANS GRABOWSKI, RALF-STEFAN LOSSACK AND CLEMENS WEIS 
University of Karlsruhe, Germany 

Abstract. The German design methodology demonstrated its usefulness for solving 
design problems by being applied in the enterprises' design departments during the 
years. Design methodologists as Roth, Pahl, Beitz and Hubka developed an instrument 
for a methodological approach to design tasks. This approach is a strongly process 
oriented one and describes together with the fundamentals of design, general strategies 
for solving design problems. Another approach, which was followed by the researchers 
of design systems was an information oriented one. Here the main work was 
concentrated on the modeling of the information needed in design. There was n9 
approach which combined consequently these two different approaches. In this article we 
introduce in the first part the fundamental aspects of the German design methodology by 
describing the modeling space of design with the help of an example of mechanical 
engineering. In the second part we introduce design working spaces which help to 
structure and administer design solutions. Finally an approach to incorporate the process 
oriented aspect of design into a knowledge based CAD system is presented. 

1. Introduction and Overview of the Design Process 

Design methodology considers the design process in an idealized manner as 
a successive concretion of the description of the to-be characteristics of a 
technical object (Koller, 1985; Pahl and Beitz, 1994; Roth, 1994 and others). 
This concretion process takes place on the product modeling level. Koller, 
Pahl, Beitz, Roth and other design methodologists define this process to lead 
from 
• The incomplete to the complete, 
• The abstract to the concrete, 
• The rough to the precise, 
• The provisional to the definitive and 
• Possible alternatives to the optimal solution. 

An important characteristic of this process is the successive growth of the 
set of design characteristics with respect to the current state of the design. 
Here design characteristics are defined as the instantiated solution properties 
of a product to be developed. The sum of all these solution properties of a 



210 HANS GRABOWSKI, RALF-STEFAN LOSSACK AND CLEMENS WEIS 

product characterises in connection with the corresponding product model 
the properties and the overall behaviour of the product in real life. 

The description of the design characteristics mentioned above is the result 
of the design process. They can be assigned to the design phases known 
from the design methodology. The design phases consist of defining the 
requirements of a product, of the definition of the functional structure and 
the function flow within a product, the description of the physical effects 
which can be assigned to the respective functions in correspondence with the 
modeling of the product's effective geometry and the design of the 
product's shape. From the methodological point of view of design the origin 
for the phase orientation of the design process is found here. In accordance 
to these phases the logical modeling layers of a design system have been 
defined as follows: 

1.1. REQUIREMENTS MODELLING LAYER 

The requirements modeling layer serves for the computational projection of 
the results won by the clarification of the design task. This contains the 
preconditions of the design, the definition of product requirements, i.e. the 
to-be properties of the future product and the description of the product's 
immanent task structure as the transition to the functional modeling. 

1.2. FUNCTIONAL MODELLING LAYER 

Functional modeling serves for finding and describing the functions of a 
design solution to be developed, as well as the functional interrelationships 
within the future product. Functional modeling allows the definition and 
manipulation of functions on different levels of abstraction, as well as the 
description of their interrelations in functional structures. Another aspect 
which is of importance for the course of the design process is the functional 
flow within the product under development. The logical transition and by 
that the concretion (described later) of the functional model to the 
conceptual model is supported by the specification of the vectorial 
functional structure in accordance with defining the corresponding design 
working spaces. 

1.3. CONCEPTUAL DESIGN MODELING LAYER 

The conceptual design serves for the description of the solution concept of a 
design task. It covers all information fixed while describing the product's 
physical solution principles. These information contain the physical effects 
used for solving the problem in correspondence with the mathematical 
equations describing them. Geometrical information as e. g. effective lines, 
effective faces and effective spaces are also modeled within the conceptual 



SUPPORTING THE DESIGN PROCESS 211 

design. This phase is completed by assigning the concepts modeled to the 
functions of the functional structure and by grouping the concepts into the 
conceptual structure. 

1.4. SHAPE MODELLING LAYER 

The shape modeling is the most concrete of the product modeling layers. 
For that it completes the product modeling process by the geometrical 
definition of all design features and design working spaces to completely 
defined three dimensional parts with assigned material and their combination 
to groups and group structures. 

2. The Modeling Space of Design 

By representing the design process as a process of concretion performed on 
different levels of abstraction (which we called in the paragraph above "the 
modeling layers") it may be misunderstood as a strongly forward oriented 
process. This is only the case in an idealized manner. In practice design 
evolves as a highly iterative process where, based on a solution state SS°j, 
different solution directions can be followed in order to reach a following 
solution state SSOj+l' In the following we understand by the term solution 
state of an object SSo j the instantiation of an object demarcated by the 
corresponding design working space belonging to the intended product after 
the i-th design step. Figure 1 gives an idea of this procedure. Starting at any 
solution state of a design task the solution directions showed can be 
followed. These solution directions which are derived by Birkhofer (1980), 
Krumhauer (1975) and Rude (1991) from the modeling space of design 
describe a possible way to transform a solution state SSOj into a following 
SSoi+l' In general this means to be one step closer to the intended solution. 

Before stepping into more detail of the fundamentals of the design 
process we direct some interest on the design shown in Figure 2. It shows the 
presentation of a robot gripper whose design serves as example for 
explaining our abstract model of the design proc.ess. The robot gripper 
serves for the handling of small parts. It is designed for durability and for. 
low maintenance costs. A standard connection to the robot arm was given as 
well as the space in which the gripper has to fit. The working method of the 
gripper is as follows: The force with which the handled part is gripped 
originates from the application of a pressure that is foreseen by. the robot. 
The resulting force then is transmitted through a bar to a wedge at the end of 
the bar. The wedge splits the force into two resulting forces which are 
applied to the jaws of the gripper. The applied pressure causes a movement 
of the piston towards the jaws. The wedge at the end of the piston then 



212 HANS GRABOWSKI, RALF-STEFAN LOSSACK AND CLEMENS WEIS 

causes a turning motion of the jaws which results in the gripping force of the 
robot gripper. 

modelling requirements 
(-> structure of requirements) 

modelling product 
functions 
(->AFS) 

modelling physical 
principles 
(-> SFS, GFS, VFS) 

embodiment 
(-> parts, assembly) 

o solutions of different state 
of solution concreteness 

abstract 

detail solution 
directions to 
the next 
solution state I 

~l~ 
concrete 

Figure 1. Elementary solution steps in the design process. 

The detachment of the handled product is started by reducing the 
pressure applied on the piston. So a spring which is mounted in the front of 
the piston pushes it back to its original position. So the gripper's jaws can 
also be opened by a spring. 

Figure 2. Product example: Robot gripper, which serves as the intended design. 

In the following, the solution directions mentioned above are explained 
with the help of some examples from the design of a robot gripper (for a 
short description of the symbols used in the example please see section 3). 



SUPPORTING THE DESIGN PROCESS 213 

2.1. CONCRETION 

The transformation of a solution state Ssoi into a following, more concrete' 
one SSOi+l is called "concretion". Here we understand by the term "more 
concrete solution state" the instantiation of the product model with 
information belonging to a more concrete modeling layer (see Figure 3). By 
this, new solution properties are added to the solution state SSi. The example 
shows the concretion of the structure of physical principles of a robot 
gripper on the functional modeling layer to a conceptual design sketch on 
the conceptual design level. 

Figure 3. Example for the solution direction "concretion", 

p: 
pressure 
F: force 

In our example the structure of physical principles (SPP) is concreted 
onto the effective structure of the intended robot gripper. The physical 
principle which describes the transformation of a pressure into a force (F I = 
pA) is mapped to the effective structure of a pressure cylinder with a piston 
inside. The transmittance of the force (F2 = F1) is realized by a bar which is 
attached to the piston. A wedge at the end of the piston splits the force into 
two effective forces and changes their directions (F3 = (112 tan (a)) F2- 1). F4 , 

which is the force responsible for the gripping action, is obtained by leading 
F3 into a lever. With that a rough sketch of the effective structure is obtained. 
This sketch is the basis for the next design steps . 

2.2. ABSTRACTION 

The solution direction "abstraction" is opposite to the direction concretion. 
This means the solution state SSoi is transformed with respect to the intended 



214 HANS GRABOWSKI, RALF-STEFAN LOSSACK AND CLEMENS WEIS 

design solution into a more abstract solution state SSOj+l. Abstraction serves 
for the recognition of essential product properties. In consequence the more 
abstract solution state SSOj+l is one step further away from the intended 
design solution (see Figure 4). This step can be used for starting from 
known designs to reach new until then not known solutions. In this context 
Figure 4 shows the abstraction of the shape of a robot gripper's jaw onto its 
effective structure. 

abstract 

effective s~ S2 

Figure 4. Example for the solution direction "abstraction". 

Starting from the shape of the robot gripper's jaw, the essential features 
of the design are extracted. These are the two effective surfaces S 1 and S2 
where Sl is responsible for the transmittance of a force onto the lever, which 
can also be extracted from the shape. S2 is the effective surface which can be 
recognized as being responsible for applying the gripping force onto the 
handled part. The function of the hole in the middle of the jaw's body acts 
as a bearing which also finds its counterpart in the effective structure. By that 
the shape description of the robot gripper's jaw is abstracted toits effective 
structure. The effective structure can serve as the basis for a variation of the 
shape or it can be abstracted by itself in order to obtain another effective 
structure with other design properties. 

2.3. DETAILING 

Adding more information to a design object within the same modeling layer 
is called detailing. When detailing a solution state SSOj to a following SSOj+J, 
the modeled design information remains on the same level of abstraction as 
it was in state SSOj. The solution direction detailing is used in order to solve a 
design problem by dividing it into sub-problems. Figure 5 shows an 
example for the solution direction detailing. The rough effective structure 
sketch is detailed by adding two bearings to the two levers and to the bar 
with the function "to channel force", by adding a sealing to the piston and 
by designing the effective surfaces which are responsible for applying the 
gripping force to the part to be handled. So the effective structure of the 



SUPPORTING THE DESIGN PROCESS 215 

robot gripper now contains more information than in the solution state 
before but the information contained in the model is still remaining on the 
same level of abstraction (effective structure). With all the information 
contained in the detailed sketch it is easier to concrete (maybe after 
performing other detailing steps) the effective structure to the robot 
gripper's shape model. 

Figure 5. Example for the solution direction "detailing". 

2.4. COMBINATION 

This direction in the model space of design is opposite to detailing . It 
transforms a solution state SSoi into a more general one Ssoi+!' Ssoi+! in this 
case describes a summary of solution properties of the preceding solution 
state. One example for combination is to summarize different sub-functions 
into an overall function or, as shown in Figure 6, to omit different design 
objects in a conceptual design sketch in order to find the basis for a better 
variant of the intended product. Combination is also the basis for the 
"abstraction" direction in the modeling space of design. A design on a 
certain level of abstraction is combined until only the information which is 
essential for the next design step (abstraction or variation) is left. In our 
example the combined effective structure of the robot gripper's body may 
serve as a basis for abstracting it to its functional structure (e. g. structure of 
physical principles). 

effective structu re 
combine 

effective structure 

> 
Figure 6. Example for the solution direction "combination". 



216 HANS GRABOWSKI, RALF-STEFAN LOSSACK AND CLEMENS WEIS 

2.5. VARIATION 

Variation means to find to a corresponding solution, in state SSoi of the 
intended design, other eventually better alternatives (solution state SSoi+I)' 
Variation steps back to the preceding solution state SSoi_1 and concretes this 
solution state to SSOi+l' SSOj+l contains design properties different from the 
one's of SSoi' Variation keeps the intended design's degree of concretion 
unchanged. What changes, is the spectrum of possible solutions on the same 
level of abstraction where the design is in state SSOj. As an example for the 
here described solution direction, the variation of a physical effect corres­
ponding to a certain sub-function, can be mentioned. Figure 7 shows the 
variation of the function "to generate an energy" into two variants. One is 
to obtain a force by applying a pressure p (Fl = fl(p)), the other variant is to 
obtain the force by inserting a spring (F I' = t" (D)), where D is the elasticity 
constant of the spring. 

GFS 

vary 

SFS 

SFS 

Figure 7. Example for the solution direction "variation". 

2.6. GENERAL PROBLEM SOLVING CYCLE 

Above we discussed the basic and elementary solution steps in the design 
process. Proceeding in the discussed directions after each step a problem­
solving cycle has to be performed. This approach has been derived by the 
design methodology from the psychology of problem solving. 

Figure 8 shows the basic scheme of this general problem-solving cycle 
(Rutz, 1985). First the designer (for reasons of better readability in the 
following we call the person who performs the design process "the 
designer" even if the term "designer/designeress" would be the more 
correct one) is confronted with the problem. Afterwards the definition of the 



SUPPORTING THE DESIGN PROCESS 217 

essential problems is performed by fixing the objectives, main constraints 
and the environment for the intended solution. The next step is finding and 
representing a solution for the defined problem (this is the creative part of 
design). After that the solution has to be evaluated followed by making a 
decision. For one found alternative on the basis of the found solution's 
evaluation result. Finally as the following step of the design process, the 
problem-solving cycle is reiterated. So the established solution serves as a 
definition for the next problem. In this way, we proceed from the qualitative 
to the quantitative, from the abstraction to the concretion, from the 
incomplete to the complete etc . This general problem solving cycle is 
together with the design methodology, which was described above, the basis 
for the development of our process model of design . 

• T he s oiuti':)l1 selVing as supposition for t he next step in the 
desIgn space 

Figure 8. General problem-solving cycle. 

3. Fundamentals of the Design Process for Technical Systems 

With the three fundamental magnitudes of design, matter, energy and infor­
mation every technical system or artifact can be described on an abstract 
physical level (Roth, 1994, Pahl and Beitz, 1994). Matter, energy and 
information are basic concepts (Weizsacker, 1971). Information determines 
what has to be done to fulfill a certain purpose. Only with energy technical 
systems are able to perform any change in nature or in itself. Matter is the 
stuff, a technical system consists of. It is also the medium in which every 
process takes place. The human himself is the best example for a technical 
system. In the first instance he used tools to integrate it in his own technical 
system, later on he created tools themselves (that means he controlled the 
matter), in the last centuries he learned to control the energy and in our 
century, he ruled over the information processes (cybernetics). With respect 
to being that fundamental every design theory has to be based on this three 
categorical magnitudes, matter, energy and information. 

Technical artifacts are connected to the environment by means of inputs 
and outputs and can be treated like a system. A system can be divided into 
sub-systems. What belongs to a particular sub-system is determined by the 
system boundary. With this approach it is possible to describe every 



218 HANS GRABOWSKI, RALF-STEFAN LOSSACK AND CLEMENS WEIS 

technical system at every stage of abstraction. Describing a proposed 
technical artifact by means of a system consisting of elements, which are 
grouped by the system boundary related with each other by input and 
output, we use the term "function" or "product function". If the product 
function is described on the basis of matter, energy and information as 
inputs and outputs then we use the term "general function" (GF). If the 
inputs and outputs represent physical magnitudes like force or torque and 
the relationship between input and output is described by a physical law, 
then we use the term "special function" (SF). In the case of a GF the 
relationship between the input and output is expressed by a limited number 
of so called function verbs. The function verbs describe the proposed 
transformation between the input and output. With reference to Roth (1994) 
we use the set of function verbs "Change, Connect, Channel and Store" for 
the GF. All technical artifacts are complex constructions, so every artifact 
can be described by a "general function structure and a special function 
structure" (GFS, SFS). Because of introducing the above function types and 
their particular structure the fundamental working principle of abstraction is 
applicable and therefore a top down approach to the design process is 
possible. 

GFS 

SFS 

Spp ~L.._F_-'_=_PA--IHL....,.-F_' =_F_, .....IHL.._FJ_=_2_ta_~_a_) _P,_, .... ~ I F4 =t F3 

SFS: Special Functionstructur 

GFS: General Functionstructur 

SPP: Structure of Physical Principles 

Figure 9. Established general function structure, its derived special function structure and 
structure of physical principles. 

Figure 9 shows the established General Function Structure (GFS) of the 
robot gripper of Figure 2, its derived Special Function Structure (SFS) and 
Structure of Physical Principles (SPP). At the source of the force flow within 
the intended product there is stored energy depicted by the symbol of a 
circle containing the character "E". This energy will be changed into 
another form of energy. On the SFS level there is shown that the energy type 



SUPPORTING THE DESIGN PROCESS 219 

of pressure will be changed in the energy type of force. After that the 
energy will be channeled, distributed and amplified. At the bottom of the 
figure the physical principles which perform this process are shown. 

The knowledge about the general functions and special functions and the 
interrelationship between the different levels of abstraction (or design stages) 
is modeled in a conceptual object model (Figure 10). Figure 10 is intended 
to give an idea about the relationships between the objects of the conceptual 
model In this object model the design knowledge is instantiated. This means 
the model contains all information which the designer described for the 
intended product. For that reason the model contains information belonging 
to all design stages. If all the information described above is contained in the 
product model on which a design system is based, any technical product can 
be modeled in this system. But in the product model there is still a lack of 
information belonging to a mechanism which helps to structure the designed 
product in order to reduce the complexity of the subtasks. With respect to 
this problem and also focusing on the administration problem of the 
subtasks and the corresponding parts of the design we developed the tool of 
"design working spaces" which is described in the next paragraph. 

Figure 10. Conceptual object model of general functions. special functions and 
structures. 

4. Modelling in Design Working Spaces 

A design working space is a Euclidean space (on geometric level, Figure 11) 
which is available for the designer to solve his design task. The design 
working space is defined by an envelope (geometric system boundary) and 
its constraints (inputs/outputs). The fundamental idea of modeling design 
working spaces comes from system theory and therefore design working 
spaces are not limited to the geometry. The main purpose of design working 



220 HANS GRABOWSKI, RALF-STEFAN LOSSACK AND CLEMENS WEIS 

spaces in this context of modeling design processes is to fix a special design 
state. If a special design state has been fixed it is possible to derive new 
design states getting stepwise to the intended solution. 

Design working spaces are defined and will be built up by the following 
rules: 
• A design working space consists of a set of elements and of a set of 

relationships between the elements. 
• Elements are a set of information of the design stages, like requirements, 

product functions or physical principles. Relationships between the 
elements are general or special magnitudes like energy, information, 
matter or force, torque etc. 

• Every design working space can be subdivided in sub-design working 
spaces. 

• Every element, every design working space and every overall system are 
inside a given system boundary. 

e A system boundary has one or more inputs/outputs and a function which 
describes the system. 

o If a design working space has no inputs/outputs then we talk about a 
closes design working space on the other hand about an open design 
working space. 

'L 
X 

fimCfiolJ: 
CI ·('llt~ force 

fUIlClioll: 
amplifY force 

Design Wol1dng Space 
(overall system) 

F vector of 10"'" ~n·/oulpUt special lunctiorlj 

o vedor of torque (in.foutpul speciallunclion) 
E energy fon·/output {J6neral funcfi04 

Figure 11. Basic idea of design working spaces. 

(geometrie) 

In Figure 11 there are three design working spaces which have to fulfill a 
special product function, like create force or amplify force. The design 
working spaces are clearly defined by their maximum envelope and effective 
geometry; the envelope and effective geometry is represented by free form 
surfaces. The envelope describes the maximum space inside which a special 



SUPPORTING THE DESIGN PROCESS 221 

problem must be solved. The effective geometry is described by effective 
spaces and effective surfaces which transmit for example forces. The 
relationship between the design working spaces in Figure 11 is established 
exemplarily by the general magnitude energy and the special magnitudes 
force and torque. 

As mentioned above in this context the main purpose of design working 
spaces is to fix a special design state so that new design states can be derived 
to reach stepwise the intended solution. To derive new design states it is 
necessary to represent this knowledge in an appropriate model. For this the 
dynamic model of the design process which is described in the next para­
graph, is appropriate. After that in the paragraph of a system architecture the 
process control model is introduced which represents special state transitions. 

5. An Architecture of a Knowledge Based CAD System Based on the 
Dynamic Design Process 

The architecture of the knowledge based design system DIICADI provides 
four basic components. The purpose of this architecture is oriented towards 
the mapping of the design methodology described by Pahl/Beitz, Roth, 
Koller, Hubka and others onto a CAD system. 

The first component is the "object model component". It is responsible 
for the description of the design task as well as for its solutions. All the 
information describing the intended product is contained in DIICAD's 
object model (see also paragraph 3). First the requirements, which the 
product has to fulfil are modeled. This so called "requirement model" then 
serves as the basis for the following design process (KHiger, 1993). The most 
abstract level of design is the functional modeling. Herein the functions, a 
product has to perform, are modeled in a very abstract way. The design 
methodology provides as the next level of modeling the conceptual design. 
In conceptual design there are two different views on the product. The first 
assigns the physical effects to the respective functions of the functional level. 
The other maps the functions onto the principle structures of the product. 
The product's effective structure is the result of the conceptual design phase. 
The functional model of a product in connection with the physical effects 
and the principle structures form together with the requirements model the 
basis for the shape design. So all design information needed is stored in the 
object model. 

The second component of the system architecture is the "task solution 
component". Within this component there are processes defined which 
transform one solution state SSOj of the design into a following solution state 

1 DnCAD: Qialog oriented Integrated Intelligent CAD System 



222 HANS GRABOWSKI, RALF-STEFAN LOSSACK AND CLEMENS WEIS 

SSOi+l' Currently there is a case based approach to the task solution com­
ponent. A learning and self-controlling approach has not yet been attacked. 
Until now this learning and hopefully self-controllIng "component" is the 
designer himself. 

process control knowlegde (strategy model) 

process model , 
( FSi ) decompose ( FSi+l ) fu nct ion sta te F S 

I -
I 

( PSi ) ! -c PSi+l ) principle state PS 
Insert (principle) '. 

~ ..&'<l~ 

task solution component object model component 

~ 
requirement ! 

( search ... ) '" .l '0 
<: 
co 

! I E function 
E 
0 

I 0 

C> 
( ) 

~ 'J. ~ 
a; 

--4 ! 
'0 

( create, delete, modify ... ) sbape 0 
E 

Figure 12. Architecture of the knowledge based CAD systems. 

The third component of our system architecture is the "process model 
component". It contains a dynamic model of the design process. This 
dynamic model contains the objects of the object model. It contains also the 
different states in which the objects can find themselves. The dynamic aspect 
now describes the possible transitions between the different states of the 
objects and, as a very important point, by which actions these transitions are 
caused. The dynamic model is used by the process model component in 
order to compute the path of design steps leading to a description of the 
intended product. 

Finally the fourth component of the system is the "process control com­
ponent" which is responsible for the design path leading from the 
requirements specification of an intended product to its shape modeling. 



SUPPORTING THE DESIGN PROCESS 223 

The process control component evaluates the status of the current design and 
computes on the basis of the process model the next design step which 
should be performed in order to transform a solution state SSOj into a 
following state Ssoi+l' The information computed here contains on the one 
side the design object which should be manipulated in the next step, on the 
other side it contains the solution direction in which the design process 
should step forward. The process control component contains different 
general strategies which lead through the design process. The most 
important strategies which are modeled is on the one side the course through 
the design along the main functions of the intended product and on the 
other side the strategy "design along the functional flow" can be applied. 
In each case the process control component causes the modeling of the 
requirements of the intended product. After finishing the requirements 
specification, the functional modeling is initiated. When the functional 
structure of the system has been modeled, the designer chooses one strategy 
which seems to him to be an appropriate way for coursing through the 
design process. By the help of the chosen strategy, which is modeled in the 
system and together with the process model, the system calculates the design 
object which should be manipulated in the next step. Also the solution 
direction (see section 2) to be applied is chosen. So the process control 
component passes the reference to the design object and the solution 
direction to the task solution component which is responsible for 
manipulating the instantiated object model of the design. 

It is understood that the general strategies currently contained in the 
process control component are not sufficient for completely controlling the 
design process. For that reason the research work is directed towards a 
learning design process controlling system. This additional approach takes 
the task dependent knowledge into account. This means the system has to 
learn the design steps for a specific task from the designer. Those steps have 
to be stored in combination with the respective solution states of the intended 
design in order to retrieve them when a design with similar requirements and 
functional structure has to be performed. 

5.1. THE DESIGN PROCESS MODEL 

Depending on the experience and skill, a designer chooses the appropriate 
path for the particular steps at different design stages. One important point 
for the development of an intelligent design system is to develop a model 
which describes this design process knowledge in a computable form. This 
means that an intelligent design system must support the designer in finding 
the right way through the design by navigating through the modeling space 
of design. For that reason the possible solution directions, applied to the 
objects of the respective modeling layers, described in section 2, have to be 



224 HANS GRABOWSKI, RALF-STEFAN LOSSACK AND CLEMENS WEIS 

modeled in a so called dynamic model of the design process. This model 
shows the dynamic behaviour of the design objects over time. 

5.2. THE DYNAMIC DESIGN OBJECT MODEL 

The design process model consists of two components. One is the dynamic 
model which describes exactly, thus in a computable form, the dynamic 
behaviour of the design objects during the design process. This means the 
states which an object can assume are modeled as well as the state tratlsitions 
of the object. The second is the process control model, described after the 
dynamic model. The contents of a dynamic model are shown in Figure 13 
and are described in the following. 

( ) state 

L 
state transition 

• start state alternative state transition 

(i final state - -P- message 

[<boolean expression> 1 condition 

Figure 13. Symbols used in dynamic modeling. 

Figure 13 shows the different symbols used in a dynamic model. The 
symbol "state" stands for the state which the modeled object can assume. 
An instantiation of the state, for example, can be detailed or varied. In the 
dynamic model this means, the object is in the state detailed or varied, 
respectively. 

There are two other special states in the modeling method. These are the 
start state and the final state. The start state characterizes the object in its 
starting point before its first instantiation, whereas the object is in its final 
state when all attributes are defined and consolidated so that in this design 
step no further work will be done again on this object. 

The arrows connecting two states symbolize the state transitions. A state 
transition is always caused by an action which designates this transition. 

A special kind of state transition is the alternative state transition. This 
means that if the main action which designates the respective transition 
cannot be performed, the alternative transition caused by the corresponding 
alternative action is performed. 

The last type of items which are used in dynamic modeling is the 
message. When an object reaches a state, which was specified in the model, a 
message can be sent in order to start an action. For that reason the dashed 



SUPPORTING THE DESIGN PROCESS 225 

arrow which is the symbol for the message type always points from a state 
type to a state transition type. 

In the case when two transitions which start from the same state are 
possible, the specification of conditions (symbolized by a rule enclosed in 
brackets) is necessary. So with the help of conditions it is possible to specify 
the transition which is only followed in the case in which the respective 
condition is fulfilled. 

Figure 14 shows the dynamic model of the object general function. As 
the general function specification layer after the design methodology 
described in paragraph 2, is the lowest layer in the concretion hierarchy, the 
design starts with the description of the general function of the intended 
product. When the requirements which the intended product has to fulfill are 
specified, the object General Function (GF) is in its initial state. Here the 
action initiate is performed. By initiation the object GF changes its state from 
the start state to the state defined. The two transitions starting at the state 
defined, symbolize that there are two possibilities for the next transitions. 
One is the transition to the state varied, the other is the transition to the state 
defined. The transition to the state varied is marked with the condition 
[GF.detailed ;f:. NULL]. This means, this transition is only then followed if 
the instantiation of the object General Function has already been detailed 
before. 

General Function (GF) 

check_requirements 
concrete Special Function (SF) 

r 
IGF.detailed" NULLI I 

I 
Requirements 

evaluate 

Figure 14. Dynamic model of the object "General Function". 

In consequence, if General Function has not yet been detailed before, the 
transition to the state "detailed" is accomplished. The new state, detailed, is 
then reached by the action "detail". After detailing, the results of the action 



226 HANS GRABOWSKI, RALF-STEFAN LOSSACK AND CLEMENS WEIS 

must be evaluated (how the evaluation is performed will be described in the 
following). By this the state "evaluated" is reached. The evaluation 
calculates a result (evaluation. result) which describes the quality of the found 
solution which was gained by the design step currently performed. The 
result of the evaluation is then compared with a certain limit. If the result is 
better than the limit, the final state the object general function is reached. 
This means the design for the general function is accepted. Here a message 
is sent in order to cause the sending of the message "concrete" to the object 
Special Function (SF). This means, the general function object is concreted 
to the corresponding special function. 

If the result is worse than the limit, a message is sent to the transition vary. 
This message causes the execution of the variation of the general function 
object. In our model, the transition "vary" is modeled as an alternative 
transition. This means, if the intended variation can be performed, the state 
"varied" will be reached. Then the properties of the object will be evaluated 
in analogy to the object in the state detailed. If the variation cannot be 
executed (symbolized by the condition [noCpossible(variation]), the 
alternative transition is started. This alternative causes the combination of the 
object so thavthe object will reach the state "combined". 

When the object is in the state "combined", the transition vary is 
performed. In the case when a variation is not possible, no useable result has 
been reached in this design step. In consequence, the object general function 
returns into its start state, while the corresponding transition sends the 
message "check_ requirements" to the object requirements. 

Similar to the dynamic behaviour of the general function object is the 
behaviour of the other objects which belong to the different modeling layers 
(see also Figure 15). 

Figure 15 shows on overview of the dynamic behaviour of the objects 
which classify the different modeling layers in design. The internal dynamic 
behaviour of the objects shown (special function, physical principle, effective 
structure and embodiment) is very similar to the general function. The 
difference is that if no solution for the specified problem is found, the 
objects are abstracted to each next higher level of abstraction. This 
abstraction can be executed until the highest level, the general function 
modeling, is reached. Here an abstraction is no more possible. If no solution 
is found, as shown in Figure 14 the requirements have to be checked for 
correctness. If the intended design solution has to fulfill all the specified 
requirements, and no appropriate solution can be found, in consequence, the 
design project has to be stopped. 

The process model represents all states, state transitions etc. which are 
described in the modeling space of design being fundamental for navigating 
through the design process. A special "path" for particular steps is not 



SUPPORTING THE DESIGN PROCESS 227 

described in the dynamic design model but in the process control model in 
which knowledge of designers, their experience and skill is described. This 
process control model controls special state transitions and messages of the 
dynamic design model. 

Enbodlmenl I 

-­ICOnCrell 

ElaotivISlrudurll(ES) 

L=1=:;====;;:-:::::::::::1 
__ ~c~ 

evaua!e 

Figure 15: Overview of the dynamic model of the objects which describe the abstract 
modeling layers in design. 

5.3 THE PROCESS CONTROL MODEL 

The dynamic design model, described above, is responsible for the selec­
tion of the solution directions i. e. the modeling commands applied next to 
a given design object in a given design working space. This procedure can 
be called a "tactic" which is subordinated to a superior design strategy 
embodied by the process control model. So the process control model 
contains several design strategies which describe the design process on a 
higher level than the dynamic design model. These process control 
strategies are heuristics which describe a path leading to the solution of a 
design task. The way resulting by the strategies usually is not optimal and by 
that it does not lead directly to the intended design solution. Partially 
iteration cycles are necessary in order to improve already found solutions or 
to correct directions followed by mistake. Because of their task-



228 HANS GRABOWSKI, RALF-STEFAN LOSSACK AND CLEMENS WEIS 

independencies, process control strategies form the basis for a process 
control of an intelligent CAD system. This means they describe 
independently from the specific design task a path through the design 
leading to the intended task solution. The knowledge which is necessary for 
this task is based on the general design methodology. As example for such 
strategies "design along the flow of force, begin at the source" or "design 
along the main functions" can be mentioned. It is easy to see that these 
general, task independent strategies can show any path leading to the 
solution of the design task. But this path usually will not be optimal. In this 
context the term optimal means to design a product which fits optimally to 
the requirements specified applying possibly few design steps. Finding such 
an optimal path needs knowledge about optimal design processes depending 
on the respective design task. For that reason in our research work we try to 
develop a concept to acquire task dependent process knowledge from the 
designer in order to reuse it when a similar task appears. 

6. Conclusions and Future Work 

We have modeled and verified the dynamic model in a small application on 
the DnCAD product model. Modeling design solutions in design working 
spaces and saving these design solutions as solution patterns in the product 
model is possible. With design working spaces we find similar solution 
patterns for a given problem. This is realized by using a case-based­
reasoning approach which is implemented on KEE and ACIS. At the 
moment we are able to do this for the requirements modeling (KHiger, 1993) 
and the functional (Huber, 1994) design stages in a top down approach and 
for solution patterns (Suhm, 1993) described in the mentioned PhD theses of 
Klager (1993), Suhm (1993) and Huber (1994). 

Modeling the design process in the described way is a promising 
approach. We have modeled the product life cycle and verified the approach 
in a small prototype. In the SFB346 (this is a special research area which is 
set up at the University of Karlsruhe by the German Research Community) a 
language has been developed to describe dynamic models. We consider it an 
important point that in the future basic research has to be done in develo­
ping a methodology to build dynamic models. Our next step will be to 
implement the process model as a whole (dynamic design model and process 
control model) which will be controlled by the process control model. 
Another step is to develop a methodology to gain design process knowledge 
from the designer by configuring so called process patterns which are 
analogously the same on the dynamic level as solution patterns (Suhm, 
1993) on the static level. 



SUPPORTING THE DESIGN PROCESS 229 

References 

Benz, T.: 1990, Funktionsmodellierung als Basis zur Losungsfindung in CAD-Systemen 
(Functional Modeling as a Basis for the Solution Finding in CAD Systems) Universitat 
Karlsruhe (TH). 

Birkhofer, H.: 1980, Analyse und Synthese del' Funktion technischer Produkte (Analysis and 
Synthesis of the Function of Technical Products), Dissertation, TU Braunschweig. 

Huber, R.: 1994, Wissensbasierte Funktionsmodellierung als Grundiage zur Gestaltsfindung 
in Konstruktionssystemen /( Knowledge based functional Modeling as Basis for the Shape 
Computing in Design Systems), Aachen: Shaker (Reihe Konstruktionstechnik), Zugl.: 
Karlsruhe, Univ., Diss., Institut flir Rechneranwendung in Planung und Konstruktion 
(RPK). 

Klager, R.: 1993, Modellierung von Produktanforderungen ais Basis fur ProblemlOsungs­
prozesse in intelligenten Konstruktionssystemen (Modeling of Product Requirements as 
Basis for Problem Solving Processes in intelligent Design Systems) Aachen: Shaker, 
(Rei he Konstruktiostechnik), Zugl.: Karlsruhe, Univ., Diss., Institut fur 
Rechneranwendung in Planung und Konstruktion (RPK). 

Koller, R.: 1985, Konstruktionslehre fur den Maschinenbau (Design Theory for the 
Mechanical Engineering), Springer-Verlag, Berlin. 

Krumhauer, P.: 1974, Rechnerunterstutzung fur die Konzeptphase del' Konstruktion (Computer 
Support for the Conceptual Phase of Design), Dissertation, TU Berlin. 

Pahl, G. and Beitz, W.: 1994, Engineering Design, Springer-Verlag, Berlin. 
Roth, K.-H.: 1994, Konstruieren mit Konstruktionskatatogen, Springer-Verlag Berlin. 
Rutz, A.: 1985, Konstruieren als gesdanklicher ProzeJ3 (Design as Intellectual Process) KM 

Lehrstuhl fUr Konstruktion im Maschinenbau TU Munchen, Dissertation. 
Suhm, A.: 1993, Produktmodellierung in wissensbasierten Konstruktionssystemen auf del' 

Basis von Losungsmustern (Product Modelling in Knowledge Based Design Systems 011 

the Basis of Solution Patterns) Aachen: Shaker, (Rei he Konstruktionstechnik), Zugl.: 
Karlsruhe, Univ., Diss., Institut fUr Rechneranwendung in Planung und Konstruktion 
(RPK). 

von Weizacker, C. F.: 1971, Die Einheit del' Natur-Studien. (The Unity of the Nature -
Studies), Hanser, Munich. 

Wallace, K., Ball, B. and Tang, M-X.: 1995, AI in mechanical engineering design, in 1. S. 
Gero and F. Sudweeks (eds.), Fourth Workshop on Research Directions for Artificial 
Intelligence in Design, University of Twente, Enschede, The Netherlands. 



13 

FORMAL SUPPORT METHODS IN DESIGN: DISCUSSION 

STEPHAN RUDOLPH 

Stuttgart University, Germany 

1. General Considerations 

Computers have affected many areas of our lives since their first appearance. The 
changes induced by computers have not only affected our way of doing things or 
monitoring and controlling processes. Computers have also changed our percep­
tion of the world and the way we think. For this reason the existence of computers 
as modem production means has had a significant influence on our way of do­
ing science and design research as well. The modem paradigm "design is search" 
versus the paradigm of the former century "design is composition" accounts for 
this change of views and methods of many engineering design researchers. Com­
puters have become the medium of choice of many. 

However, despite the widespread applications of computers in virtually every 
area of engineering and design, little importance has been attached to fundamental, 
not so obvious but nevertheless important, implications of computer usage. A clos­
er look at these fundamental implications of computer usage in general and espe­
cially in the area of engineering design reveals the following three main issues. 

1. Representation. In order to write a useful program, a set of operands and op­
erators needs to be specified. They are intended to be representations of real 
objects and the permissible manipulations on these. As with any represent­
ation, the question occurs as to what extent this representation is complete, 
and, since all operations occur on these operands and are thus limited to these, 
whether the underlying closed-world assumption is valid. 

2. Mapping. Computer programs generally compute a certain set of output data 
o from a certain set of input data I. Mathematically speaking, a computer 
program represents an algorithm P which maps the input data onto the output 
data, thus P : I ---+ O. However, the set of all algorithms P is a true subset 
of all mathematically imaginable mappings M, thus P C M. Computers can 
therefore in general only deal with problems which are algorithmically solv-



232 STEPHAN RUDOLPH 

able. This is a major restriction on the kinds of problems that computers are 
capable of dealing with. 

3. Reasoning. Formal models oflogic rely heavily on certain characteristic prop­
erties such as proofs of consistency, completeness or correctness. However, 
any extension of theoretical models is only feasible when through comparison 
of the natural world with the model predictions discrepancies are identified 
by observations or experiments. Because of the continuing lack of devices 
serving as computer interfaces suited for such needs, these inconsistencies 
cannot be detected and conceptualized automatically. This seems, at least for 
the near future, to remain a domain for the problem identification and problem 
solving capabilities of humans. 

The first and second of these three main issues are today more or less well iden­
tified and understood. They have been encountered and tackled since the appear­
ance of the first implementations of numerical algorithms in computer programs. 
Take, for example, the consequences of the finiteness of the representation of nu­
merical values of program objects, i.e. of the program variables, are all kinds of 
stability and convergence problems in numerical algorithms and originated much 
research devoted especially to the solution of these problems. Today it is gener­
ally accepted that the fact of doing computation on machines with finite precision, 
i.e. incomplete representation, lies at the heart of many problems and the trend to 
symbolic computation can be interpreted as one way to try to circumvent this prob­
lem at the expense of the introduction of other difficulties. 

The third major issue is of a more difficult nature and not so obvious. For this 
reason it is investigated here in some more detail. The continuing and correct exe­
cution of a set of two operations is studied in Figure 1. In this figure, the outcome 
of a surface walk of a person (the object) to which two different operations can be 
applied (walking infinitesimally 'straight' for a certain amount of time and then 
making a ninety degree left turn), is drawn. As shown in the left hand part of Fig­
ure 1, going 'straight' on the surface of some (flat) plane from a point A to a point 
B, making a ninety-degree turn at B, going then 'straight' from point B to a point 
C~ making a ninety degree turn at C, going on the surface a third time 'straight' 

C.__----__ B B 

D A C.---------------~A,D 

Figure 1. Two walks on a 2-dimensional flat surface 



FORMAL SUPPORT METHODS IN DESIGN: DISCUSSION 233 

from point C leads finally to point D, which is (expected to be) quite distinct from 
the point A of departure. If however the point D turned out to be identical to A, 
one realizes that there is something wrong - this can only happen when the angles 
are sixty and not ninety degrees, as shown in the right hand side of Figure 1. 

However, it is also imaginable that another reason lies at the origin of the dif­
ference in the expected outcome of the surface walk. This is shown in Figure 2, 
where the surface walk happens to take place not on a 2-dimensional plane, but on 
the surface of a 3-dimensional sphere. There it is easily possible to arrive at point A 
again, after walking 'straight' three times and making ninety degree turns at B and 
C respectively. Contrary to humans, computers cannot 'experience' such discrep­
ancies in computer program simulations, since the concept of the dimensionality of 
the surface has to be a part of the a priori chosen representation defined by the pro­
grammer. Since experience is inseparably tied to reality, while simulation depends 

B 

A,D 

Figure 2. A walk on a 3-dimensional sphere 

on a representation of the latter, it is important to realize that both the experience 
of 'inconsistency' as a result after executing a set of 'correct' operations, as well as 
an attempt to formalize the occurrence of such an inconsistency into an extension 
of the currently valid (geometrical) theory to a more general theory, seems very 
hard if not even impossible to automate. A general theory, which does explain the 
new experiences, has to contain and explain all former experimental knowledge 
as special cases as well. It is strongly questioned whether computers are generally 
capable of doing such truly conceptual generalizations. If computers were able to, 
then one could argue that one could create a program which could become mono­
tonically 'smarter', just by executing itself. Since all the operations inside a pro­
gram rely on the inbuilt representations provided a priori by the programmer, in 
reality the underlying metric of the space does change automatically and without 
notice, since it depends only on the individual problem area under consideration. 

While these considerations might seem pointless or even superficial to many, 
the strong connection of these thoughts to the superior capabilities of humans over 
computers to form novel theories and to be innovative in an engineering sense 



234 STEPHAN RUDOLPH 

should be evident. These are capabilities which do heavily rely on a personal ex­
perience of 'inconsistency', which can be strongly subjective and does not even 
animate two different humans necessarily to come to the same conclusions. Ex­
perience shows that 'inconsistency' can pass unperceived and it is possibly just 
this which makes true innovation such a rare event. 

While keeping these principles and fairly general implications of the use of 
computers in mind, the next section investigates in more detail the various specific 
effects of the use of computers in engineering design today. 

2. Computers in Engineering Design 

Besides the general theoretical implications of computer usage discussed in the 
previous section, the existence of computers has also affected the practice of do­
ing science and engineering design research. In former times science seemed to be 
in principle an iterative sequence of empirical and careful observation of natural 
phenomena, its modeling and then a continuing comparison of the model predic­
tions with further observations. Today, the focus is often shifted to a methodolo­
gical sequence of the definition of axioms and the specification of a set of permitted 
operands and operations (Le. a formal logic based on the axioms), which is then 
used to derive a set of statements as formally derivable consequences of a certain 
sequence of operations. 

While on the one hand this approach offers the advantage of being formal and 
thus able to be objectified and programmable, there is on the other hand also the 
danger oflosing the vital link between the formal (design) model axioms and the 
reality of the real (design) world. At the worst this may even lead to clean, nice and 
powerful formal (design) models and methods, which have nothing to do anymore 
with the real (design) world. 

This motivates the question how the usefulness of newly suggested design mod­
els or methods can be evaluated. Two possibilities were discussed without agreed 
conclusions. 

1. Benchmarking. Arguments in favor of benchmaking included the transpar­
ency of the evaluation process through a clear statement of the performance 
criteria, and the need for such a procedure for comparison of newer design 
methodologies with older ones. Arguments against benchmarking included 
the impossibility of stating generally valid performance criteria. It was argued 
that a particular design solution may not be determined so much by the choice 
of a certain design procedure (Le. the design methodology). as by the exist­
ence of problem specific boundary conditions. By their nature, these bound­
ary conditions do largely differ from case to case. Additionally, there might 
be an unconscious tendency of humans to evaluate and compare the outcome 
only, i.e. the design solutions, and not the differences in the design process 



FORMAL SUPPORT METHODS IN DESIGN: DISCUSSION 235 

itself as a consequence of another axiomatic foundation of the used design 
methodology. 

2. Problem Collections. As an alternative to the preceding point, where it turned 
out that benchmarking of design methods seems difficult to carry out, the use 
of design cases as case studies was suggested to help the comparison of the 
different aspects and procedural steps of the various design methods with one 
another. However, it was argued that it would be very difficult, if not imposs­
ible, to establish such a required reference collection of meaningful design 
examples. 

While the discussers felt that benchmarking and case studies are valid tests in many 
other areas of engineering, its application to engineering design would be advant­
ageous to increase transparency and objectivity in the field, if the above mentioned 
difficulties could be overcome. As a first step in this direction, it was suggested to 
look at the collection of the different design methods as a toolbox, where each tool 
might be ideally suited for its specific purpose. On the other hand, the very same 
tool, ideally suited for a specific purpose, may perform only adequately or even 
badly for other purposes outside its original scope. 

The previous arguments show that it is important to characterize the precise 
scope and applicability of any newly developed design theory or method. The vari­
ous theoretical and practical limitations of the method used should also be clearly 
identified. The set of all critical underlying assumptions of the method should also 
be explicitly stated. A thorough treatment of these theoretical and practical issues is 
not only a question of individual scientific honesty and the personal working style 
of any researcher, but is essential for any true scientific advancement in the field 
of engineering design. It also assists the necessary characterization of the various 
design methods and methodologies by stressing their individual differences versus 
their commonalities in the above sense. 

The other important point in the establishment of computational theories of 
design seems to be the nature and the choice of a set of appropriate axioms. Since 
any statement formally deduced in such a logical framework can be shown to be 
based on the previously chosen set of axioms, the question arises how much valid­
ity and unforseeable consequences are inherent to the choice of a certain set of 
axioms. Is their choice really free and arbitrary? From a purely theoretical point 
of view the answer is: Yes, of course! The main concern of theory building is the 
formal deduction of statements using some sort of established logic. 

On the contrary, from an epistemological viewpoint, the answer to the very 
same question is: No, of course not! In thermodynamics for example, it is always 
observed that the heat flows from the hotter object to the colder one, and never in 
the reverse direction. If the empirical observation of such a unique behavior had 
not been made, this principle could not have been established. Thus, the second 
principle of thermodynamics is not arbitrarily 'defined', but is in fact completely 
epistemologically based and justified. It is just this epistemological basis of the 



236 STEPHAN RUDOLPH 

axioms which is the vital link of the established theoretical model to reality and 
provides in large part the validity of all the subsequent formal deductions by means 
of this theory. 

What, then, are the observations in every day design reality which could be 
used as an epistemological basis of design and formulated as its axiomatic found­
ation? This is a tough question to answer. For the moment, there seems to exist no 
common agreement in the engineering design community on such an axiomatic 
foundation in the area of engineering design. There are many existing paradigms 
in the form of Designfor 'X', i.e. 

Design for Manufacturing, 
Design for Assembly, 
Design for Disassembly, 
Design for Recycling, etc., 

which do summarize and characterize some basic observations about the design 
process. However, the above paradigms are by no means formal necessities in a 
mathematical sense. For this reason, they may never qualify for a true axiomatic 
foundation of engineering design from an epistemological viewpoint. It seems that 
this fact of a still unidentified epistemological foundation of engineering design 
represents one of the most important current bottlenecks of design research. Any 
significant contribution in this respect would be an important theoretical contribu­
tions to the development of a future science of engineering design sought by many. 

If the identification of an epistemologically justified axiomatic foundation of 
a theory is such a difficult thing to do, what general heuristics do mathematicians 
and scientists use when they have d~weloped a new theory and try to judge its use­
fulness? In such a case one may resort to one or more of the following criteria: Is 
the theory 

- powerful? 
- simple? 
- elegant? 
- beautiful? 

In fact, these criteria reflect the formal embedding of logic in aesthetic and of aes­
thetic in ethic. This means that the existence and the outcome of the former can 
be explained and justified by the latter. This philosophical view refers to ancient 
Greek philosophy and dates back to Aristotle. A sketch of this mutual embedding 
of logic in aesthetics and of aesthetics in ethics is shown in Figure 3. 

So why are computers, despite the drawbacks discussed, such attractive re­
search and application tools? The answer seems to be obvious. Once a software 
program exists, the program and its data can easily be duplicated, distributed and 
shared with others. Once programmed, the high execution speed of relatively simple 
operations provides an alternate way to explore possibilities and simulate the beha­
vior of objects which have never existed in reality. Search techniques, the paradigm 



FORMAL SUPPORT METHODS IN DESIGN: DISCUSSION 237 

Figure 3. Aristotlean philosophy 

"design is search" and simulation program packages using finite element techniques 
are well known and accepted examples of this. 

The following two papers of this workshop session show besides their indi­
vidual attempts to contribute to the advancement of the field, examples of indi­
vidual compromises in terms of the above issues as well. The discussion of the two 
papers after their presentation during the workshop session is summarised below. 

3. Paper Discussion 

The paper Formal Concept Analysis in Design by Mihaly Lenart describes the use 
of Hasse diagrams for the analysis of complex situations in order to facilitate de­
cision making in design. Based on a matrix containing the relations between the 
design objects and their properties, a Hasse diagram is constructed founded on the 
theoretical concept of lattices. 

Possible benefits of such a purely formal approach are the apparent generality 
of the method and its independence of a particular problem area. The Hasse dia­
grams provide a transparency of the coupling between objects and properties. The 
representation of this coupling also allows the identification of a hierarchical or­
der. The representation form can be nested to hide details and to deal with a large 
number of edges and vertices. In terms of computational complexity, an exponen­
tial growth is expected on average, but nesting can be used to reduce the number 
of displayed edges and vertices. 

Possible disadvantages of the method are the missing representation of design 
contexts in this context free method. Also, due to the lack of familiarity of most 
designers with theoretical concepts such as lattices and Hasse diagrams, the two 
questions of the adequacy of the method concerning the requirements in engineer­
ing design and of the demonstration of the practical usefulness of the theoretical 
approach, could not be answered. 

As a future perspective, the author was encouraged to demonstrate the sug­
gested technique using more realistic engineering design examples and to clarify 



238 STEPHAN RUDOLPH 

the discussion of the usefulness and limitations of his approach to design analysis 
and/or design synthesis. 

It was interesting to see that strong formal methods can sometimes also suffer 
from their formality when applied. Abstract concepts, like the theoretical concept 
of lattices, make it sometimes more difficult to convince prospective users to make 
the required extra effort to become familiar with a particular mathematical tech­
nique. Due to the 'inertia' inherent in many humans, new techniques are often only 
adopted when they can handle tough cases and solve important problems other 
techniques have been shown repeatedly to be incapable of solving. This seems to 
be one of the major obstacles for many new methods and represents one of the 
more important factors slowing down the adoption of methodological change and 
innovation. 

In contrast to the formal theoretical concept of lattices, the second paper of this 
session relied on the known and already well established systematic German en­
gineering design approach developed by Beitz, Ehrlenspiel, Hubka, Koller, Pahl, 
Roth and others. 

The paper Supporting the Design Process by an Integrated Knowledge-Based 
Design System by Hans Grabowski, Ralf-Stefan Lossack and Clemens Weis de­
scribes the embedding of the German design methodology into a framework of a 
knowledge-based CAD system. German design methodology considers the design 
process as an iterative process of concretization performed at different levels of ab­
straction. These different levels of abstraction are classified into the following. 

1. Requirements modeling layer, containing the preconditions of the design, the 
definition of the product requirements and the description of the product's im­
manent task structure. 

2. Functional modeling layer, serving to represent the functions and the func­
tional interrelationships of the design objects to be developed. 

3. Conceptual modeling layer, containing all the information to describe the solu­
tion concept of a design, such as physical solution principles, effective spaces 
and the grouping of the functional structure into a conceptual structure. 

4. Shape modeling layer, completing the above product modeling layers by the 
geometrical definitions to fully define the 3-dimensional parts with assigned 
material properties and their combination into a part group structure. 

In each of the above modeling layers, the following activities can be performed to 
advance the current solution to the next solution state. These are the steps to 

- detail 
- vary 
- concretize 
- combine or 
- abstract 

the solution state. 



FORMAL SUPPORT METHODS IN DESIGN: DISCUSSION 239 

Starting with this description of the major elements of the German design meth­
odology and the classification into the above modeling layers, the possible future 
integration and support of this phase oriented view of the design process by means 
of a knowledge-based CAD system was described. It was suggested this meth­
odology be provided with a conceptual specification of how to navigate through 
the design process using a dynamic process model. The complete envisioned ap­
proach, including the still missing knowledge based modules for some of the four 
modeling layers, was demonstrated using the example of a more and more detailed 
design of a robot gripper. A prototype of this system is already partially implemen­
ted as a working software tool. 

Possible benefits of such a systematic design method lie in the systematic de­
composition of the complex design process, which helps to suppress hidden as­
sumptions. Further, the systematic investigation and use of physical principles mi­
ght help to guide the search for novel design solutions. This is a similar procedure 
to the morphological box approach, where physical principles are systematically 
combined to create new conceptual design solutions. Finally, the idea to support 
the designer by means of case-based knowledge to help the navigation through a 
dynamic design process model seems to be promising. 

Possible limitations of the method might be its restriction to specific problem 
areas where functional modeling using physical principles is applicable. Also, the 
necessity to specify the definition of the input/output properties of the future design 
object might be difficult in some complex design cases. 

4. General Outlook 

Design objects are a part of our daily environment. In this respect, design objects 
have many consequences for humans. One could even say that design objects and 
thus design affects society: the invention of the automobile has transformed our 
society in the last one hundred years significantly. The existence of cars has created 
the need for roads, highways and parking lots. This affected cities as well as the 
shape of our countrysides. Even the organization of our cities is affected by the 
consequences of the ability to be readily mobile with personal cars. 

Since most events are more likely to be coupled than isolated events from one 
another, one can say that society affects design at least as much as design affects 
society. The creation of design 'styles' and the existence oflaws, design norms and 
expressions like 'political correctness' show the closure of this feed-back loop. 

Additionally, the growing competition in world wide consumer markets in­
creases the pressure on virtually every company towards new, modem and more 
innovative products. Besides the two aspects of innovation in engineering designs, 
e.g. product-driven designs and technology-driven designs, what is the true source 
of innovation? Is there one common concept of it? Can innovation be algorith­
mically formulated or enforced? These are some of the fundamental and driving 



240 S1EPHAN RUDOLPH 

questions of engineering design research today which make it such a challenging 
field with possible benefits to many other scientific disciplines. Determining the 
theoretical issues of the possibilities and the impossibilities of computer support 
in engineering design has therefore been one of the many interesting topics of this 
workshop session. However, remarkably many final answers to this problem ofhu­
mankind still have to be searched for. 



PART FIVE 

Design Process Methods 



14 

A LOGICAL THEORY OF DESIGN 

FRANCES BRAZIER, PIETER V AN LANGEN AND JAN TREUR 
Vrije Universiteit Amsterdam, The Netherlands 

Abstract. Design tasks typically deal with incomplete information and involve 
flexible reasoning patterns for which sophisticated control strategies are needed. As a 
result, the reasoning patterns are highly dynamic and non-monotonic. The logical 
framework introduced provides formal semantics of state descriptions of design processes 
based on (compositional) partial models and formal semantics of the reasoning 
behaviour based on (compositional) partial temporal models. 

1. Introduction 

In the area of diagnosis, a number of well-established logical theories have 
been developed and are acknowledged as valuable contributions to the field, 
such as Reiter (1987), and Console and Torasso (1990). For design (e.g., 
Brown and Chandrasekaran, 1989; French and Mostow, 1985; Logan, Come, 
and Smithers, 1992; Takeda, Veerkamp, Tomiyama, and Yoshikawa, 1990) 
the situation differs. Although models for design have been proposed using 
logic as a vehicle (e.g., Coyne, 1988), and general design theories have been 
proposed (e.g., Tomiyama and Yoshikawa, 1987), formal semantics of both 
static aspects (Le., characteristics of an individual state) of the design process 
and dynamic aspects (i.e., the reasoning behaviour) have yet to be defined. 
Design tasks typically reason with incomplete and inconsistent knowledge of 
requirements and design object descriptions: they reason non-monotonically 
with and about, for example, (default) assumptions, contradictory 
information, and new design knowledge. To handle such dynamic reasoning 
patterns, knowledge of tactics and strategies is needed. The formulation of 
the logical foundations (including formal semantics) of these patterns goes 
beyond classical logic. 

In the current paper, a logical foundation is introduced in which formal 
semantics for both static and dynamic aspects of design are based on partial 
models (e.g., Langholm, 1988; Blarney, 1986). Partial models are a means to 
formalise information states, representing incomplete world descriptions 
(e.g., Langen and Treur, 1989); types of world descriptions relevant for 
design are design object descriptions and requirement sets. To obtain formal 



244 FRANCES BRAZIER, PIETER V AN LANGEN AND JAN TREUR 

semantics of reasoning behaviour in design tasks, a recently developed 
approach based on partial temporal models is adopted, which has shown to 
be applicable to different types of (non-monotonic) reasoning (see Engel­
friet and Treur, 1994; Gavrila and Treur, 1994; Treur, 1994). Semantics of a 
reasoning process is formalised by a set of (alternative) reasoning traces, 
represented by a partial temporal model, i.e., a sequence of partial models. 
As the partial models representing information states are used to provide 
semantics of the static aspects, a structural connection between the semantics 
of static aspects and of dynamic aspects is obtained. In Brazier, Langen, 
Ruttkay, and Treur (1994), the static aspects of design have been formalised; 
this paper elaborates upon that work with a formalisation of the dynamic 
aspects. Since a design task is complex (involving integration of different 
views and perspectives, and often different agents) and consists of a number 
of subtasks, the information states also have a compositional structure. 

In Brazier, Langen, Ruttkay, and Treur (1994), an approach is presented 
to the development of intelligent design support systems based on a high­
level formal specification language, as well as a generic task model of design 
specified in this formal specification language. This generic task model has 
been developed on the basis of the analysis of task models for the develop­
ment of design support systems (e.g., Brumsen, Pannekeet and Treur, 1992; 
Geelen and Kowalczyk, 1992) and has been employed for the development 
of new design support systems (e.g., Brazier, Langen, Treur, Willems and 
Wijngaards, 1994). The logical foundations presented in this paper provide 
formal semantics for both the static and dynamic aspects of design tasks 
modelled by the generic task model. Moreover, the logical foundations can 
be used to establish (and prove) properties of design support systems, such 
as consistency, correctness, and completeness (see Treur and Willems, 1994a; 
1994b), and to develop automated tools to support verification and 
validation of these properties. In most current frameworks such properties 
are basically static: they do not refer to the behaviour of the system. 
However, in interactive systems dynamic properties are also important (e.g., 
if under certain circumstances a particular type of behaviour of the system 
has been rejected by the user in the past, it should not be repeated in the 
present). Expressing dynamic properties requires a logical foundation for 
reasoning behaviour of a system (in interaction with the user)-this paper 
proposes a framework for this purpose. 

In Section 2 of this paper, the notions of design process and design space 
are explained. In Sections 3 and 4, static and dynamic aspects of design 
processes are presented, respectively. In Section 5, an example of a design 
process is given. In Section 6, the logical theory of design is discussed and 
conclusions are drawn. 



A LOGICAL THEORY OF DESIGN 245 

2. Design Processes and the Design Space 

In design, requirement qualification sets and design object descriptions are 
manipulated. Requirement qualifications are qualitative expressions of the 
extent to which (individual or groups of) requirements must be met, either in 
isolation or in relation to each other.· A design object description is a 
specification of the object to be created. A design process is described by a 
sequence of design decisions (and their rationale) concerning modifications 
to sets of requirements and their qualifications and to (partial) design object 
descriptions. 

Figure 1 shows an example of a design process in the two-dimensional 
design space spanned by requirement qualification sets and design object 
descriptions. Note that the notions of space and dimension are used inform­
ally here: the choice of metric on the design space is left open. (A possibility 
would be to measure the distance between two points in a dimension by the 
number of differences between the descriptions denoted by these points.) 

t 
requirement 
qualification 

sets 

2 

8 

5 

design object 
descriptions 

6 

7 

Figure 1. Example of a design process in the design space. 

Figure 1 shows a nine-step sequence of modifications to requirement 
qualification set and design object description. The first step in the sequence, 
depicted by the arrow labelled '1', represents a modification to the initial 
requirement qualification set only. The initial design object description is 
modified in steps 2 and 3. After step 3 (i.e., at the point in which the arrow 
labelled '3' ends), modification of the design object description halts for 
some reason: maybe the design object description satisfies all requirements 



246 FRANCES BRAZIER, PIETER VAN LANGEN AND JAN TREUR 

of the current requirement qualification set, or maybe there is reason to 
believe that no design object description can be made that satisfies all 
requirements. In each case, the requirement qualification set is modified in 
step 4, taking into account the reason why modification of the design object 
description stopped. After the modifications in steps 5 to 8, the design 
process reaches an interesting state: the sequence of modifications has led to 
a requirement qualification set and a design object description that in 
combination are equivalent to the result of step 2. Therefore another 
direction is sought, which differs from the one chosen in step 3, leading in 
step 9 to a modification to the requirement qualification set. In summary, 
there are five requirement qualification set modifications (steps 1, 4, 6, 8 and 
9) and four design object description modifications (steps 2, 3, 5 and 7). 

In general, a large (and possibly infinite) number of new points in the 
design space could be generated by modification to either the requirement 
qualification set or the design object description that correspond to a given 
point. In practice, only a few of these new points are of interest, because they 
are the ones that 'make sense' -these are the possible alternative choices for 
the next step in the design process. To describe the dynamics of the design 
process, knowledge of tactics and strategies, needed to guide the design 
process, must be made explicit. 

3. Static Aspects of Design Processes 

In design, manipulation of requirement sets, of their qualifications, and of 
design object descriptions plays a crucial role. A design process can be 
regarded as a sequence of design decisions concerning requirements, their 
qualifications and (partial) design object descriptions. The current state of 
the design process changes continually: requirements can be added or 
withdrawn, requirement qualifications can be changed, and partial design 
object descriptions can be added or retracted. During design, often different 
(alternative) requirement sets (and their qualifications) and design object 
descriptions are considered. 

Steps in the design process can be represented by transitions of two types: 
transitions modifying design object descriptions and those modifying 
requirement qualification sets. Note that no commitment is made to model 
design as a search process. Steps in the design process can be controlled 
completely, depending on the strategic knowledge used. 

The logical analysis of the static aspects of design processes is discussed 
below in Sections 3.2, 3.3, and 3.4. In Section 3.1, the basic terminology 
employed is introduced. Throughout Section 3 and Section 4, the example 
of designing a house will be used to illustrate the logical analysis. 



A LOGICAL THEORY OF DESIGN 247 

3.1. BASIC APPROACH AND TERMINOLOGY ON STATIC ASPECTS 

It is assumed that the reader is familiar with many-sorted first-order 
predicate logic, an essential element in our approach. In Langen and Treur, 
(1989), formal definitions of semantics fo~ many-sorted partial models are 
presented. For an overview of partial logic, see Blamey (1986) and 
Langholm (1988). 

Definition. A signature for many-sorted first-order predicate logic is a tuple 
!: = (S, C, F, P) with sorts S, constants C, functions F and predicates P. 

In the sequel, !: denotes a signature, At(!:) the set of all ground atoms 
of !: and Wff(!:) the set of all closed well-formed formulae over !:. 

Definition. A partial model for !: is a mapping M: At(!:) ~ { 0, 1, u }. An 
atom a E At(!:) is true in M if M(a) = 1,false in M if M(a) = 0, and 
undefined or unknown in M if M(a) = u. A partial model M is complete if 
for all a E At(!:), either M(a) = 0 or M(a) = 1. 

Definition. The model space Mod(!:)is the set of all partial models for !:. 

Definition. The satisfaction relation t= on Mod(!:) x Wff(!:) is defined for 
all atomic well-formed formulae a E At(!:) as: 

M t=+ a iff M(a) = 1 
M t=- a iff M(a) = 0 
M~+a iff M(a) * 1 
M ~- a iff M(a) *0. 

For the logical connectives "A, V, ~ and ¢::>, the strong Kleene 
semantics is adopted (Blamey, 1986; LaIigholm, 1988), of which the truth 
tables are shown in Figure 2. 

Definition. The refinement relation :s; on Mod(!:) x Mod(!:) is such that for 
all M, M' E Mod(!:), M :s; M' holds if for all a E At(!:), M(a):S; M'(a) (with 
o :s; 0, u :s; 0, 1 :s; 1, U :s; 1, U :s; u). 

Definition. A theory for!: is a set T c Wff(!:). 

Definition. Let M be a partial model for Land T a theory for L. The 
class of models defined by M with T is the set { N E Mod(L) I N is 
complete, M:S; N, and N t= T }. 



248 FRANCES BRAZIER, PIETER VAN LANGEN AND JAN TREUR 

-,A 

o 
o 1 

u u 

o u 

o u 

o 0 0 0 

u u 0 u 

A:::::}B 1 0 u 

o u 

o 1 

u u u 

AvB 1 d u 

1 

o 1 0 u 

u u u 

A <=>B o u 

1 0 u 

o 0 u 

u u u u 

Figure 2. Kleene's strong three-valued connectives. 

3.2. STATIC ASPECTS OF DESIGN OBJECT DESCRIPTIONS 

To describe a design object, a language is needed in which properties and 
their values can be named and relations between properties can be expressed. 

Definition. A design object description lexicon is a signature LOOO = (5, C, 
F, P), where {Parameters, Values} ~ 5 and {eq c Parameters x Values} ~ 
P. 

In other words, the signature should at least contain the sorts Parameters 
and Values for denoting design parameters and values, respectively, and 
should contain a relation eq on Parameters x Values for denoting the fact 
that a certain design parameter has a certain value. Common relations used 
in design object ontologies, such as the 'part-of' relation by means of which 
the components and parts of a design object can be described, can also be 
included. 

During design, not all properties of a design object are considered simul­
taneously: the description of a design object is often partial. In the sequel, 
LOOO denotes a design object description lexicon. 

Definition. A design object description based on LOoo is a partial model 
for LOOO. 

Example. Suppose the designer has placed the living-room and the kitchen 
on the ground-floor (floor 0) and one bedroom (bedroom 1) on the first 
floor (floor 1). Whether the first bathroom (bathroom 1) and the second 



A LOGICAL THEORY OF DESIGN 249 

bedroom (bedroom 2) should be placed on the ground-floor or on the first 
floor is, as yet, undecided. This can be expressed by means of the following 
design object description DOD1: 

DOD1 (eq(floor-of(living-room(1 », 0» = 1 
DOD1(eq(floor-of(kitchen(1», 0» = 1 
DOD1 (eq(floor-of(bedroom(1 », 1» = 1 
DOD1(eq(floor-of(bedroom(2», 1» = U 

DOD1 (eq(floor-of(bathroom(1 », 0» = U 

DOD1(eq(floor-of(bathroom(1», 1» = u. 

An abbreviated notation for DOD1 is: 

{ eq(floor-of(living-room(1», 0), 
eq(floor-of(kitchen(1 », 0), 
eq(floor-of(bedroom(1», 1) }. 

A design object description can be seen as one element of the set of all 
partial or complete design object descriptions. 

Definition. The design object description space DOD based on LOoo is the 
set of tuples of models from MOd(LoOO). 

During design the number of properties of the design object that have 
been determined may increase or decrease. Both types of modification can 
be described by means of the following refinement relation. 

Definition. The design object refinement relation based on LOOO is the 
refinement relation ::;; on Mod(LOOO) x Mod(LOOO). Furthermore, for any 
two tuples Sand T that are elements of DOD, the combined design object 
refinement relation S::;; T holds if for all M E S there is an NET with 
M ::;; N and for all NET there is an ME S with M::;; N. 

Example. Suppose the designer, after allocating rooms as in the previous 
example, designs a kitchen with an area of 9 m2. This can be expressed by 
means of the design object description DOD2: 

{ eq(floor-of(living-room(1 », 0), eq(floor-of(kitchen(1 », 0), 
eq(floor-of(bedroom(1 », 1), eq(area(kitchen(1), m2), 9) }. 



250 FRANCES BRAZIER, PIETER VAN LANGEN AND JAN TREUR 

To design an object, knowledge of the properties and the relations 
between the properties is essential. In practice, not all knowledge is available 
and has to be acquired during the design process. 

Definition. A design object theory based on l:DOD is a theory TDOD for 
l:DOD· 

Example. Assume that general house design knowledge is that the area of a 
floor equals the sum of the areas of the rooms on that floor, and that a room 
can be allocated to one floor only. This can be expressed by means of the 
design object theory TDOD: 

'v'f E Floors 'v'u E AreaUnits: 
eq(area(f, u», 

La E Areas: :3r E Rooms (eq(floor-of(r), f) 1\ eq(area(r, u), a» 

'v'r E Rooms 'v'f1, f2 E Floors: 
(eq(floor-of(r), f1) 1\ eq(floor-of(r), f2» ~ f1 = f2. 

(L k: <p(k) is the sum over each k satisfying <p, such that if k satisfies exactly 

N quantifier-free instances of <p, then k appears exactly N times in the sum. 
The symbol '=' is the symmetric, reflexive and transitive equality relation 
on values.) 

3.3. STATIC ASPECTS OF REQUIREMENT QUALIFICATION SETS 

Before and during the process of design, knowledge of necessary and 
desired properties of the object to be designed (within a given context) is of 
importance. These necessary and desired properties are the requirements 
placed upon a design. 

Definition. Let l:DOD be a design object description lexicon. A requirement 
is a well-formed formula over l:DOD. 

To describe requirements, a language is needed in which requirements, 
qualifications and relations between qualifications can be expressed. 

Definition. A requirement qualification lexicon is an extension of the 
signature l:RQS = (5, C, F, P), where 

5: Sorts, 
Vars, 

/* sorts in l:DOD */ 
/* variables over l:DOD */ 



A LOGICAL THEORY OF DESIGN 251 

VarSets, 1* variable sets over l:DOD *1 
Wffs, 1* well-formed formulae over l:DOD *1 
WffTuples, 
QualificationNames, 
Parameters, 
Values; 

1* well-formed formula tuples over l:DOD *1 
1* names for qualifications *1 
1* design parameters *1 
1* values of design parameters *1 

C : A: WffTuples; 
0: VarSets; 

1* the empty tuple *1 
1* the empty set *1 

F : ( , ): Wffs x WffTuples ~ WffTuples; 
{ , }: Vars x VarSets ~ VarSets; 
eq: Parameters x Values ~ Wffs; 
and, or, implies: Wffs x Wffs ~ Wffs; 
not: Wffs ~ Wffs; 
for-all, exists: VarSets x Sorts x Wffs ~ Wffs; 

1* written as ( , ... , ) *1 
1* written as { , ... , } *1 

P: rq c WffTuples x QualificationNames; 1* requirement qualification *1. 

The meaning of the above functions representing logical connectives is 
intuitive; see (Langen and Treur, 1989) for a definition. In the sequel, l:RQS 
denotes a requirement qualification lexicon. 

Definition. A requirement qualification set based on l:RQS is a partial 
model for l:RQS. 

Example. The customer's requirements for the design of the house are that: 
(1) there must always be a bathroom on the same floor as a bedroom, (2) the 
house has one kitchen, one living-room, three bedrooms of which one is on 
the ground-floor, and one bathroom and (3) the ground-floor area is at most 
36 m2. These are all hard requirements, i.e., a design must satisfy them all. 
This can be expressed by means of the requirement qualification set RQS1: 

{ rq( (for-all( {f}, Floors, for-all( {n}, RoomNrs, 
implies( eq(floor-of(bedroom(n», f), 
exists({m}, RoomNrs, eq(floor-of(bathroom(m», f))), hard), 

rq( (exists( {f}, Floors, eq(floor-of(kitchen(1», fn), hard), 
rq( (for-all( {n }, RoomNrs, 

implies(exists( {f}, Floors, eq(floor-of(kitchen(n», f), n=1»), hard), 
rq«exists({f}, Floors, eq(floor-of(living-room(1», f)), hard), 



252 FRANCES BRAZIER, PIETER VAN LANGEN AND JAN TREUR 

rq( (for-all( {n}, RoomNrs, 
implies( exists( {f}, Floors, eq(floor-of(living-room(n», f)), n=1) », 

hard), 
rq«eq(floor-of(bedroom(1», 0», hard), 
rq«exists( {f}, Floors, eq(floor-of(bedroom(2», f)), hard), 
rq«exists( {f}, Floors, eq(floor-of(bedroom(3», f)), hard), 
rq( (for-all( {n}, RoomNrs, 

implies(exists({f}, Floors, eq(floor-of(bedroom(n», f», 
and(1:::;n, n:::;3»», 

hard), 
rq( (exists( {f}, Floors, eq(floor-of(bathroom(1», f)), hard), 
rq( (for-all( {n}, RoomNrs, 

implies(exists( {f}, Floors, eq(floor-of(bathroom(n», f», n=1 »), hard), 
rq( (for-all( {a}, Areas, 

implies(eq(area(floor(O), m2), a), ge(36, a»»), hard) } 

(where ge denotes the relation 'greater than or equal to'). 

Definition. The requirement qualifications space RQS based on LRQS is 
the set of tuples from Mod(LRQS). 

Comparison of requirement qualification sets is necessary to guide the 
design process: knowledge is required of how qualifications are related and 
what the implications of the relations are. 

Definition. A requirement qualification theory based on LRQS is a theory 
TRQS for LRQS. 

Example. Suppose that general building requirements require that there 
must be a hall on the ground-floor and that the minimum area of (1) a hall 
is 2 m2, (2) a kitchen is 4 m2, (3) a living-room is 16 m2, (4) a bathroom is 3 
m2, and (5) a bedroom is 6 m2. Furthermore, in general if the customer 
wants the kitchen on the ground-floor, then an additional requirement is that 
the living-room also be on the ground-floor. These hard requirements can 
be expressed by means of the requirement qualification theory T' RQS: 

rq«exists( {n}, RoomNrs, eq(floor-of(hall(n», 0»), hard) 
rq( (for-all( {n}, RoomNrs, for-all( {a}, Areas, 

implies(eq(area(hall(n), m2), a), ge(a, 2»)))), hard) 
rq( (for-all( {n}, RoomNrs, for-all( {a}, Areas, 

implies(eq(area(kitchen(n), m2), a), ge(a, 4»»), hard) 



A LOGICAL THEORY OF DESIGN 

rq( (for-all( {n}, RoomNrs, for-all( {a}, Areas, 
implies(eq(area(living-room(n), m2), a), ge(a, 16)))), hard) 

rq( (for-all( {n}, RoomNrs, for-all( { a}, Areas, 
implies(eq(area(bathroom(n), m2), a), ge(a, 3))))), hard) 

rq( (for-all( {n}, RoomNrs, for-all( {a}, Areas, 
implies(eq(area(bedroom(n), m2), a), ge(a, 6»)))), hard) 

'lim,n E RoomNrs: 
rq(eq(floor-of(kitchen(m», 0», hard) :::::} 
rq( (eq(floor-of(living-room(n», 0», hard). 

3.4. STATIC ASPECTS OF THE DESIGN PROCESS AS A WHOLE 

253 

Given a number of requirement qualifications, specific tactics and strategies 
can be chosen to guide the overall design process (when to reason about 
requirements and their qualifications and when to reason about design object 
descriptions). These tactics and strategies determine on which requirements 
the design process is to (possibly temporarily) focus: a commitment is made 
to satisfy these requirements. In the sequel, LOOO denotes a design object 
description lexicon and LROS a requirement qualification lexicon. 

Definition. A commitment mapping from LROS to LOoo is a mapping of 
partial models in Mod(LROS) onto sets of well-formed formulae in 
Wff(LOOO)· 

The qualifications placed on requirements may be comparable. If one set 
of requirement qualifications specifies precisely the same as another, but in 
addition specifies extra requirement qualifications, the first is seen as a 
specialisation of the second. 

Definition. Let TOOO be a design object theory based on LOOO and 
commit a commitment mapping from LROS to LOOO. The requirement 
qualification specialisation relation based on LROS with TOOO and 
commit is a relation ~ on Mod(LROS) X Mod(LROS) such that for all rqs 1, 
rqs2 E Mod(LROS): 

rqs1 ~ rqs2 if for all dod E Mod(Looo) such that dod F T 000, 
dod F commit(rqs2) implies dod F commit(rqs1). 

As in the design object description space, this refinement relation can be 
extended to the requirements qualification space RQS, consisting of tuples. 

Example. Suppose the requirement qualification set RQS1 is refined to 
RQS2 by applying the requirement qualification theory T'ROS to RQS1. 



254 FRANCES BRAZIER, PIETER VAN LANGEN AND JAN TREUR 

Suppose further that for the design only hard requirements are taken into 
account. This commitment can be expressed by means of the following 
mapping Commit': 

Vrqs E Mod(1:RQS) Vwff E Wffs: 
rq«wff), hard) E rqs ~ Commit'(rqs) 1= wff. 

Then ROS1 ~ ROS2 with Tooo and Commit'. 
A design problem can be seen as a problem of generating a description 

or modifying an existing description of a design object, given a number of 
requirement qualifications. 

Definition. A design problem description is a pair (dod, rqs) with dod E 

Mod(1:ooo) and rqs E Mod(1:RQS). 

The solution to a design problem is a design object description which 
fulfils the requirements chosen and which complies with the knowledge of 
the domain. 

Definition. Let dodO and dod be design object descriptions based on 
1:000, Tooo a design object theory based on 1:000, rqs a requirement 
qualification set based on 1:RQS and commit a commitment mapping from 
1:RQS to 1:000. dod is a design solution of the design problem description 
(dodO, rqs) with TOOO and commit if (1) dodO ~ dod, (2) the class of 
models defined by dod with Tooo is non-empty, and (3) for each element 
dod' of that class, dod' 1= commit(rqs). 

Example. The design object description 0002 is not a design solution of 
the design problem description (0001, ROS2) with Tooo and Commit'. 

4. Dynamic Aspects of Design Processes 

To describe the dynamic aspects of a design process, the circumstances 
under which specific choices are to be made must be specified in relation to 
the alternatives. Strategic and tactical knowledge is required to steer the 
design process: that is, to determine along which of the two dimensions of 
the design space the design process should continue, and to determine how 
to proceed. 

Section 4.1 defines the general basic concepts underlying the formal­
isation of the dynamic aspects of design: information states, transitions 
between information states and traces generated by these transitions. In 
Section 4.2 the notion of information state is more specifically defined for 



A LOGICAL THEORY OF DESIGN 255 

the information states relevant for design: design object (description) states, 
requirement qualification (set) states and overall control states. In Section 
4.3 the related transitions are defined and in Section 4.4 the reasoning traces 
(temporal models of design process behaviour) based on the transitions are 
presented. 

4.1. BASIC APPROACH AND TERMINOLOGY ON DYNAMIC ASPECTS 

To define the dynamic aspects of a design process, a notion of state is 
required. In our logical approach, a state is the current state of the 
information acquired or derived so far, including information about in­
completeness or partiality of the design process information. 

Definition. An information state for signature l: is a (partial) model M for 
l:. The set of all information states for signature l: is denoted by IS(l:). 

An information state formalised as a partial model reflects all ground 
literal conclusions that have been derived at a certain moment in time. This 
approach can also be used to model inference relations such as SLD 
resolution or chaining. 

Definition. A transition between information states for signature l: is a pair 
of partial models for l:; i.e., an element (5, 5') of IS(l:) x IS(l:). A transit­
ion relation is defined as a set of transitions, i.e. a relation on IS(l:) x IS(l:). 
If this relation is defined as a mapping from IS(l:) into IS(l:), it is called a 
transition function. 

Definition. A trace or partial temporal model for signature l: is a sequence 
of information states (Mt)t E I'T in IS(l:). The set of all partial temporal 
models is denoted by IS(l:)i'T, or Traces(l:). 

Traces generated by repeatedly applying a tranSItion function on the 
current information state can be interpreted as partial temporal models. 
These partial temporal models provide a declarative description of the 
semantics of the behaviour of the design process; the set of these models can 
be viewed as the required behaviour of the design process. 

If a design process is modelled as a compositional structure, then the 
information state is a combination of information (sub-)states of each of the 
components of the structure. Transitions from one information state to 
another are specified in a similar way by their effect on the different 
information sub states. The overall partial temporal model, that models the 
behaviour of the design process, can be constructed as a composition of 
partial temporal models of each of the components. 



256 FRANCES BRAZIER, PIETER VAN LANGEN AND JAN TREUR 

4.2. STATES IN A DESIGN PROCESS 

An information state of the design process comprises information on a 
design object description and a requirement qualification set. The 
abbreviations used below are DOD for design object description space and 
RQS for requirement qualification set space. 

Definition. (design object states and requirement qualification states) 
a) A design object state is an element of ISOOO = ISoooobject x ISOOometa, 
where ISoooobject = IS(~oOoobject) and ISOOometa = IS(~OOometa), with 
~oooobject and ~OOometa signatures for the object-information and meta­
information about design object descriptions, respectively. 
b) A requirement qualification state is an element of ISRQS = ISRQSobject x 
ISRQSmeta, where ISRQSobject = IS(~RQSobject) and ISRQSmeta = 
IS(~RQSmeta), with ~RQSobject and ~RQSmeta signatures for the object 
information and meta-information about requirement qualification sets, 
respectively. 

Example. The designer often needs to reason at a meta-level about a partial 
design object description, for instance with respect to completeness. For 
example (cf. 0001), the designer knows that the living-room and the kitchen 
are on the ground-floor and not on the first floor and that the first bedroom 
is on the first floor and not on the ground-floor. In addition, he/she knows 
that the floor for a second bedroom has not yet been decided. This can be 
expressed by means of the following design object state IS'OOO: 

( { eq(floor-of(living-room), 0), 
eq(floor-of(kitchen), 0), 
eq(floor-of(bedroom(1 », 1) }, 

{ true(eq(floor-of(living-room), 0», 
false( eq(floor-of(living-room), 1», 
true(eq(floor-of(kitchen), 0», 
false( eq(floor-of(kitchen), 1», 
true( eq(floor-of(bedroom(1 », 1 », 
false( eq(floor-of(bedroom(1», 0», 
-, known( eq(floor-of(bedroom(2», 0», 
-, known(eq(floor-of(bedroom(2», 1»} ). 

In a similar way, a requirement qualification state IS'RQS can be defined as a 
pair (Sobject. Smeta), where Sobject equals, for example, the requirement 
qualification set RQS1 (cf. Section 2.3) and Smeta comprises the meta­
information about RQS1 that all requirement qualifications in RQS1 are 
known to be true. 



A LOGICAL THEORY OF DESIGN 257 

As can been seen in the above example, one part of the meta-information 
about a design object description or a requirement qualification set concerns 
epistemic information (i.e., information about what is known). The full 
epistemic information ISe associated with an object information state ISo is: 

ISo(a) = 1 ~ ( ISe(true(a» = 1 A ISe(false(a)) = 0 A ISe(known(a)) = 1 ) 
ISo(a) = 0 ~ ( ISe(true(a» = 0 A ISe(false(a» = 1 A ISe(known(a» = 1 ) 
ISo(a) = u ~ ( ISe(true(a)) = 0 A ISe(false(a» = 0 A ISe(known(a» = 0 ). 

Besides epistemic information, the meta-information also includes local 
control information, which directs the design process within either the design 
object description space or the requirement qualifications space. 

Overall design process coordination is needed to determine in which of 
these two spaces the design process is to continue. Therefore, a third state of 
design process coordination information is defined, expressed in terms taken 
from an overall control lexicon ~oScontrol. For the design system, the 
abbreviation OS is used. 

Definition. (states of a design process) 
a) A basic state of a design process is a pair consisting of a design object 
state and a requirement qualification state, i.e., an element of ISoSbasic = 
ISooo x ISRQS. 
b) An overall state of a design process is a pair consisting of a basic state of 
the design process and an overall control state, i.e., an element of 
ISoSoverall = ISosbasic x ISoScontrol, where ISoScontrol = IS(~OScontrol). 

4.3. DESIGN STEPS 

Having defined states, design steps can be defined by transitions from one 
state to another. This can be described in the following compositional 
manner. 

Definition. (transitions in the two spaces) 
a) A transition in the design object space is a pair of design object states, 
i.e., an element of ISOOO x ISOOO. 
b) A transition in the requirement qualification space is a pair of 
requirement qualification states, i.e., an element of ISRQS x ISRQS. 

Definition. (basic and overall design transitions) 
a) A basic design transition is a pair of basic design states, i.e., an element 
of ISOSbasic x ISOSbasic that is induced by a transition in either the design 
object space or the requirement qualification space. 



258 FRANCES BRAZIER, PIETER VAN LANGEN AND JAN TREUR 

b) An overall control transition is a pair of control states, i.e., an element of 
ISoscontrol x ISoscontrol. 
c) An upward control interaction transition is a pair consisting of a basic 
design state and a control state, i.e., an element of ISOSbasic x ISOSoverall 
that is induced by a transition in either the design object space or the 
requirement qualification space. 
d) A downward control interaction transition is a pair consisting of a 
control state and a basic design state, i.e., an element of ISOSoverall x 
ISOSbasic that is induced by a transition in either the design object space or 
the requirement qualification space. 
e) An overall transition is a pair consisting of two overall design states, i.e., 
an element of ISOSoverall x ISOSoverall that is induced by one of the above 
transition types. 

For each of these types of transitions, it holds that if an individual 
transition is element of S x S', a transition relation of that type is defined as 
a subset of S x S'. Furthermore, if this relation is defined as a mapping from 
S into S', it is called a transition function. It will be assumed that in upward 
and downward control interactions, only the meta-level information of the 
basic design states is involved. Examples of basic design transitions are 
shown in Section 5. 

4.4. TRACES AND TEMPORAL MODELS OF A DESIGN PROCESS 

Having defined states and transitions in a compositional manner, traces can 
be defined. 

Definition. (overall temporal model) Let Tracesos = (lSosoverall)Ii. An 
overall trace is an element (Mt>. E IT E TracesoS. Such a trace (Mt>. E II 

is a temporal model of a design system if for all time points t the step from 
Mt to Mt+1 is defined in accordance with an overall transition. The set 
BehMod of temporal models forms a subset of Tracesos. 

A trace defines a complete design history. In most systems only part of 
the design history is actually represented (see for instance (Brazier, Langen, 
Treur, Willems, and Wijngaards, 1994), where it was sufficient for devising an 
elevator configuration to remember the previous state of the configuration). 
An overall temporal model describes a trace representing possible (intended) 
behaviour of the design process. From every initial information setting, 
traces can be generated by the transitions. All generated traces together form 
the set BehMod. The transition functions in fact define a set of (temporal) 
axioms BehTheory on temporal models in TracesoS. The possible 
behavioural alternatives are given by the set of the temporal models 



A LOGICAL THEORY OF DESIGN 259 

satisfying these temporal axioms. A design process is correct with respect to 
the specified transitions if each generated trace (from BehMod) satisfies the 
theory BehTheory. This can be used for purposes of verification or proving 
properties of a specification. For example, proof techniques in temporal 
logic can be used to derive whether a design system is able to generate a 
given design object description on the basis of a given set of requirement 
qualifications. For more details on verification, see (Treur and Willems, 
1994a; 1994b). 

5. Example of a Design Process 

In this section, the example of designing a house is pursued to show an 
overall trace of a design process. In this example, a customer and a designer 
cooperate in the design: the customer by stating his/her wishes with regards 
to rooms, floors and room areas, and the designer by allocating rooms to 
floors and determining the areas of rooms. 

The sample process proceeds as follows. First, the customer states his/her 
wishes, which are then translated into requirements and qualifications (cf. the 
set ROS1 in Section 3.3). After this, the designer tries to design a bungalow 
that fulfils the requirements. This, however, results in a design with too large 
a ground-floor area. The designer cannot remedy this problem: adding one 
storey to the house and putting a bedroom on the first floor also entails put­
ting a bathroom on that floor, but that would mean there would be more 
bathrooms than the customer wanted. To resolve this problem, the customer 
decides to allow for more than one bathroom. The designer then designs a 
two-storey house that pleases the customer. 

A (partial) overall trace of this process is shown below. Of each element 
(Mt)t E H from this trace, the contents of its five components, ISoooobject, 
ISOOometa, ISRQSobject, ISRQSmeta, and ISOScontrol, are shown. Together, 
these states (in chronological order) form the design history. 

The requirement qualification sets that are generated during the design 
process are written as ROSj E I'J, and similarly, the design object descriptions 
as DODj E I+ Note that initially, ROSo = 0 and 0000 = 0. For the sake of 
convenience, the meta-information in states of ISooometa and ISRQSmeta 
is restricted to the (partial) results of analysis of the corresponding object­
information and the chosen method of modification. Similarly, the overall 
control information in states of ISoScontrol is restricted to information 
about which description to be manipulated next and how. 

Step 1. The customer states his/her wishes, which are translated into a set of 
requirements for the design of the house ('u' is the set union operation): 



260 FRANCES BRAZIER, PIETER VAN LANGEN AND JAN TREUR 

ROS1 = ROSa u 
{ /* there must always be a bathroom on the same floor as a bedroom */ 
rq( (for-all( {f}, Floors, for-all( {n}, RoomNrs, . 

implies( eq(floor-of(bedroom(n», f), 
exists( {m}, RoomNrs, eq(floor-of(bathroom(m», f»»», hard), 

1* the house has one kitchen */ 
rq«exists({f}, Floors, eq(floor-of(kitchen(1», f»), hard), 
rq( (for-all( {n}, RoomNrs, 

implies( exists( {f}, Floors, eq(floor-of(kitchen(n», f», n=1 »), hard), 

/* the house has one living-room *1 
rq«exists( {f}, Floors, eq(floor-of(living-room(1 », f»), hard), 
rq( (for-all( {n}, RoomNrs, 

implies( exists( {f}, Floors, eq(floor-of(living-room(n», f», n=1»), 
hard), 

/* the house has three bedrooms of which one is on the ground-floor */ 
rq«eq(floor-of(bedroom(1 », 0», hard), 
rq( (exists( {f}, Floors, eq(floor-of(bedroom(2», f»), hard), 
rq«exists({f}, Floors, eq(floor-of(bedroom(3», f»), hard), 
rq«for-all({n}, RoomNrs, 

implies(exists( {f}, Floors, eq(floor-of(bedroom(n», f», 
and(1::;;n, n::;;3»», 

hard), 

/* the house has one bathroom */ 
rq«exists({f}, Floors, eq(floor-of(bathroom(1», f»), hard), 
rq( (for-all( {n }, RoomNrs, 

implies( exists( {f}, Floors, eq(floor-of(bathroom(n», f», n=1 »), hard), 

1* the ground-floor area is at most 36 m2 */ 
rq( (for-all( {a}, Areas, 

implies(eq(area(floor(O), m2), a), ge(36, a»»), hard) }. 

Step 2. The current requirement qualification set is analysed, and it is found 
that it can be further refined by extending it with all logical consequences 
that follow from the available theory of the domain (T'RQS, Section 3.3): 

{ analysis( current-description-can-be-refined), 
methode deductive-refinement) }. 



A LOGICAL THEORY OF DESIGN 261 

Step 3. The current requirement qualification set is deductively refined by 
means of TROS: 

ROS2 = ROS1 U 

{ 1* there must be a hall on the ground-floor *1 
rq«exists({n}, RoomNrs, eq(floor-of(hall(n)), 0), hard), 

1* the minimum area of a hall is 2 m2 *1 
rq«for-all({n}, RoomNrs, for-all({a}, Areas, 

implies(eq(area(hall(n), m2), a), ge(a, 2))))), hard), 

1* the minimum area of a kitchen is 4 m2 *1 
rq( (for-all( {n}, RoomNrs, for-all( {a}, Areas, 

implies(eq(area(kitchen(n), m2), a), ge(a, 4))))), hard), 

1* the minimum area of a living-room is 16 m2 *1 
rq( (for-all( {n}, RoomNrs, for-all ( {a}, Areas, 

implies(eq(area(living-room(n), m2), a), ge(a, 16))))), hard), 

1* the minimum area of a bathroom is 3 m2 *1 
rq( (for-all( {n}, RoomNrs, for-all( {a}, Areas, 

implies(eq(area(bathroom(n), m2), a), ge(a, 3))))), hard), 

1* the minimum area of a bedroom is 6 m2 *1 
rq( (for-all( {n}, RoomNrs, for-all( {a}, Areas, 

implies(eq(area(bedroom(n), m2), a), ge(a, 6))))), hard). 

Step 4. The current requirement qualification set is analysed and no further 
problems can be found: 

{ -, analysis(current-description-can-be-refined), 
-, analysis( current-description-is-too-restrictive) }. 

Step 5. The current design process is analysed, and it is determined that it is 
now time to refine the current design object description: 

{ to-manipulate-next(current-design-object-description), 
manipulation-type(refinement) }. 

Step 6. The current design object description is analysed, and it is found that 
it is incomplete and should be refined by making assumptions about useful 
extensions to the current description: 



262 FRANCES BRAZIER, PIETER VAN LANGEN AND JAN TREUR 

{ analysis( cu rrent-description-is-incomplete), 
method(refinement-by-assumptions) }. 

Step 7. The designer's first idea is to design a bungalow, with a kitchen of 4 
m2, a living-room of 16 m2, a hall of 2 m2, a bathroom of 3 m2, and three 
bedrooms, each of 6 m2: 

0001 = 0000 u 
{ eq(floor-of(kitchen(1 », 0), 
eq(area(kitchen(1), m2), 4), 
eq(floor-of(living-room(1 », 0), 
eq(area(living-room(1), m2), 16), 
eq(floor-of(hall(1 », 0), 
eq(area(hall(1), m2), 2), 
eq(floor-of(bathroom(1 », 0), 
eq(area(bathroom(1), m2), 3), 
eq(floor-of(bedroom(1 », 0), 
eq(area(bedroom(1), m2), 6), 
eq(floor-of(bedroom(2», 0), 
eq(area(bedroom(2), m2), 6), 
eq(floor-of(bedroom(3», 0), 
eq(area(bedroom(3), m2), 6) }. 

Step 8. The current design object description is analysed, and it is found that 
it can be further refined by extending it with all logical consequences that 
follow from the available theory of the domain (Tooo, Section 3.2): 

{ analysis( current-description-can-be-refined), 
methode deductive-refinement) }. 

Step 9. The current design object description is deductively refined by 
means ofT'ooo: 

0002 = 0001 U { eq(area(floor(O), m2), 43) }. 

Step 10. The current design object description is analysed, and it is found 
that it is incorrect, because of a violation of requirements, in particular the 
requirement on the maximum floor area, and should therefore be revised: 

{ analysis( cu rrent-description-is-incorrect), 
method(revision) }. 



A LOGICAL THEORY OF DESIGN 263 

Step 11. The designer understands that the idea of designing a bungalow is 
not so good, because the floor area will always remain a problem. Therefore, 
he/she now tries a two-storey house. The only difference with the bungalow 
design is that the two-storey house has two of the three bedrooms on the first 
floor rather than on the ground floor ('\' is the set difference operation): 

0003 = 0001 U 

{ eq(floor-of(bedroom(2)), 1), 
eq(floor-of(bedroom(3)), 1) } 

\ 
{ eq(floor-of(bedroom(2)), 0), 
eq(floor-of(bedroom(3)), 0) }. 

Step 12. The current design object description is analysed, and it is found 
that it is still incorrect, because of a violation of requirements, in particular 
the requirement on the number of bathrooms in the house, and should 
therefore be revised: 

{ analysis( current -description-is-incorrect), 
method(revision) }. 

Step 13. The designer does not know how to proceed: whatever he/she does, 
a violation of requirements seems unavoidable. Bedrooms on two floors also 
requires bathrooms on two floors, but there may only be one bathroom. 

Step 14. The current design process is analysed, and it is determined that it is 
now time to manipulate the current requirement qualification set: 

{ to-man i pu late-next( cu rrent -requi rement -q ualification-set), 
manipulation-type(revision) }. 

Step 15. The current requirement qualification set is analysed, and it is 
found that it is too restrictive to permit any design solution, which can be 
resolved by deleting one or more requirement qualifications: 

{ analysis( current-description-is-too-restrictive), 
method( deletion)}. 

Step 16. The customer, knowing the reason why the preliminary design of 
the two-storey house failed, drops the hard single-bathroom requirement: 

ROS3 = ROS2 \ 
{ rq( (for-all( {n}, RoomNrs, 



264 FRANCES BRAZIER, PIETER VAN LANGEN AND JAN TREUR 

implies(exists({f}, Floors, eq(floor-of(bathroom(n», f», n=1»), 
hard) }. 

Step 17. The current requirement qualification set is analysed and no further 
problems can be found: 

{ -, analysis(current-description-can-be-refined), 
-, analysis( current-description-is-too-restrictive) }. 

Step 18. The current design process is analysed, and it is determined that it is 
now time to revise the current design object description: 

{ to-manipulate-next( cu rrent-design-object-description), 
manipulation-type(revision) }. 

Step 19. The current design object description is analysed, and it is found 
that it is (still) incorrect and should be revised: 

{ analysis( current -description-is-incomplete), 
method(revision) }. 

Step 20. The designer proceeds with the design of the two-storey house and 
need not throw any parts away. The only thing he/she does is to place a bath­
room on the first floor, with an area of 3 m2: 

DOD4= DOD3U 
{ eq(floor-of(bathroom(2), 1), eq(area(bathroom(2), m2), 3) }. 

Step 21. The current design object description is analysed, and it is found 
that it can be further refined by extending it with all logical consequences 
that follow from the available theory of the domain (ToOO, Section 3.2): 

{ analysis( current-description-can-be-refined), 
methode deductive-refinement) }. 

Step 22. The current design object description is deductively refined by 
means of Tooo: 

DODS: DOD4U 
{ eq(area(floor(O), m2), 31), eq(area(floor(1), m2), 15) }. 

Step 23. The current design object description is analysed and, since it is 
complete and satisfies all requirements, no more problems are found: 



A LOGICAL THEORY OF DESIGN 265 

{ -, analysis(current-description-is-incorrect), 
-, analysis(current-description-is-incomplete) }. 

6. Discussion and Conclusions 

A logical framework, capturing both static and dynamic aspects of design 
has been presented in this paper. It constitutes a logical theory of design 
which can be (and has been) instantiated for different types of design tasks 
(cf. Geelen and Kowalczyk, 1992; Brumsen, Pannekeet, and Treur, 1992). 

The formal analysis of the dynamic aspects of design processes provides 
an explicit means to model design strategies. Declarative specifications of 
strategies provide a basis for interaction between autonomous systems on, for 
example, the strategy employed during design. As expert designers often 
wish to determine the design strategy employed, flexibility is mandatory. By 
formally defining the strategies involved, design support systems can be 
designed within which the user is given the freedom to determine how a task 
is to be approached. Formal specifications, together with well-defined 
semantics, provide a basis for such flexibility and a basis for the verification 
and validation of design support systems' behaviour. 

Current research focusses on fundamental issues with respect to the 
formalisation of design strategies, (non-monotonic) reasoning patterns, 
verification, validation and knowledge acquisition. 

Acknowledgements 

This research has been partially supported by the Dutch Foundation for 
Knowledge-Based Systems (SKBS) within the A3 project "An environment 
for modular knowledge-based systems (based on meta-knowledge) for 
design tasks." The constructive comments and suggestions for improve­
ments provided by Tim Smithers have been much appreciated. 

References 

Blarney, S.: 1986, Partial logic, in D. Gabbay and F. Giinthner (eds). Handbook of 
Philosophical Logic, Reidel, Dordrecht, III, pp. 1-70. 

Brazier, F. M. T., Langen, P. H. G. van, Ruttkay, Zs., and Treur, J.: 1994, On formal 
specification of design tasks, in J. S. Gero and F. Sudweeks (eds), Proceedings Artificial 
Intelligence in Design '94, K1uwer, Dordrecht, pp. 535-552. 

Brazier, F. M. T., Langen, P. H. G. van, Treur, J., Wijngaards, N. 1. E., and Willems, M.: 
1994, Modelling a design task in DESIRE: The VT example, Technical Report IR-377. 
Artificial Intelligence Group, Department of Mathematics and Computer Science, Vrije 
Universiteit, Amsterdam. Also in A. Th. Schreiber and W. Birmingham (eds) (1995), 
International Journal on Human-Computer Studies, Special Issue on Sisyphus. 

Brown, D. C. and Chandrasekaran, B.: 1989, Design Problem Solving: Knowledge Structures 
and Control Strategies, Pitman, London. 



266 FRANCES BRAZIER, PIETER V AN LANGEN AND JAN TREUR 

Brumsen, H. A., Pannekeet, 1. H. M., and Treur, 1.: 1992, A compositional knowledge-based 
architecture modelling process aspects of design tasks, Proceedings of the Twelfth 
International Conference on Artificial Intelligence, Expert Systems and Natural Language 
(Avignon-92), EC2, Nanterre, Vol. 1, pp. 283-294. 

Console, L., and Torasso, P.: 1990, Hypothetical reasoning in causal models, International 
lournal of Intelligent Systems, 5(1), 83-124. 

Coyne, R. D.: 1988, Logic Models of Design, Pitman, London. 
Engelfriet, 1. and Treur, J.: 1994, Temporal theories of reasoning, Proceedings of the Fourth 

European Workshop on Logics in Artificial Intelligence (lELIA '94), Springer-Verlag, 
Berlin. 

French, R. and Mostow, J.: 1985, Toward better models of the design process, Al Magazine, 
6(1), 44-57. 

Gavrila, 1. S. and Treur, J.: 1994, A formal model for the dynamics of compositional 
reasoning systems, in A. G. Cohn (ed.), Proceedings of the Eleventh European 
Conference on Artificial Intelligence (ECA! '94), John Wiley, Chichester, pp. 307-311. 

Geelen, P. A. and Kowalczyk, W.: 1992, A knowledge-based system for the routing of 
international blank payment orders, Proceedings Twelfth International Conference on 
Artificial Intelligence, Expert Systems and Natural Language (Avignon-92), EC2, 
Nanterre, Vol. 2, pp. 669-677. 

Langen, P. H. G. van, and Treur, J.: 1989, Representing World Situations and Information 
States by Many-Sorted Partial Models, Technical Report PE8904, Programming Research 
Group, Department of Mathematics and Computer Science, University of Amsterdam, 
Amsterdam. 

Langholm, T.: 1988, Partiality, Truth and Persistence, CSLI Lecture Notes No. 15, Stanford 
University, Stanford, CA. 

Logan, B. S., Corne, D. W., and Smithers, T.: 1992, Enduring support: on defeasible 
reasoning in design support systems, in J. S. Gero (ed.), Artificial Intelligence in Design 
'92, Kluwer, Dordrecht, pp. 433-454. 

Reiter, R.: 1987, A theory of diagnosis from first principles, Artificial Intelligence, 32, 57-
95. 

Takeda, H., Veerkamp, P. J., Tomiyama, T. and Yoshikawa, H.: 1990, Modelling design 
processes, A! Magazine, 11(4), 37-48. 

Tomiyama, T. and Yoshikawa, H.: 1987, Extended general design theory, in H. Yoshikawa 
and E. A. Warman (eds), Proceedings IFfP WG 5.2 Working Conference on Design Theory 
for CAD, North-Holland, Amsterdam, pp. 95-125. 

Treur, J.: 1991, A logical framework for design processes, in P. J. W. ten Hagen and P. J. 
Veerkamp (eds), Intelligent CAD Systems Ill, Proceedings of the Third Eurographics 
Workshop on Intelligent CAD Systems, Springer-Verlag, Berlin, pp. 3-20. 

Treur, J.: 1994, Temporal semantics of meta-level architectures for dynamic control of 
reasoning, Proceedings of the Fourth International Workshop on Meta-Programming in 
Logic (META '94), Springer-Verlag, Berlin, Lecture Notes in Computer Science 883. 

Treur, J., and Willems, M.: 1994a, A logical foundation for verification, in A. G. Cohn (ed.), 
Proceedings of the Eleventh European Conference on Artificial Intelligence (ECA! '94), 
John Wiley, Chichester, pp. 745-749. 

Treur, J., and Willems, M.: 1994b, On verification in compositional knowledge-based 
systems, in A. Preece (ed.), Proceedings of the ECA! '94 Workshop on Validation of 
Knowledge-Based Systems, Amsterdam, pp. 4-20. Also: Formal notions for verification 
of dynamics of knowledge-based systems, in M.-C. Rousset and M. Ayel (eds.) (1995), 
Proceedings of the European Symposium on Validation and Verification of KBSs 
(EUROVAV '95), Chambery. 



15 

REPRESENTING THE COLLABORATIVE DESIGN PROCESS: 
A PRODUCT MODEL-ORIENTED APPROACH 

BANGYU LEI, TOSHIHARU TAURA 
The University of Tokyo, Japan 

AND 

JUNNUMATA 
SONY Systems Design Co., Ltd, Japan 

Abstract. The collaborative design process can be viewed essentially as the evolution 
of product data, which is the results of a series of decisions. Contemporary product data 
representations in describing design deliberations are either informal with plain text or 
insufficient using some simple data structures. Explicit modeling of the evolution, 
alternatives and constraints of the product data in a large design space is crucial for 
capturing the process information at any a state of its recorded history. This paper 
develops a product data model on the basis of the integrated generic resources from 
STEpl, which is used to formally describe the objective of a task, assignments and 
alternatives etc. of a decision, and in particulars, the constraints among decisions. A 
product model-oriented representation of the collaborative design process is proposed to 
develop a database which addresses the archiving of design history. The proposed 
representation focuses on the formal specifications of the process ingredients and the 
dependencies among these ingredients, such as product-data-model, assignment, activity, 
task, negotiation, and agent. Accordingly, a data model is developed in EXPRESS2. An 
object-oriented database is under development to implement the data model. 

1. Introduction 

The attitude of designers describing a design process is similar to that of 
mathematicians describing a theorem-proving process. In the formal design 
documentation such as drawings and design reports, the painstaking 
processes of trial and error, revision and conflict adjustment are all invisible. 
Designs are revamped and polished until all traces of how they were 
developed are completely hidden (Banares-Alcantara, 1991). For this reason, 
it may be more productive to focus on the results of the designer's thinking 
process rather than to address the thinking process itself. In other words, it is 

lStandard for the Exchange of Product Model Data, -- ISO 10303. 
2 A formal data specification language, specified in ISO 10303-11. 



268 BANGYU LEI, TOSHIHARU TAURA AND JUN NUMATA 

much easier to observe the events that transpired during the process. The 
design activities which take place when a state transition of the artifact being 
designed is made will provide important information. Recording all possible 
solutions and the argumentation for each decision-making provides access to 
the alternatives that were identified and the reasons for selecting or rejecting 
them. By making this information and its evolution explicit, other designers 
can avoid considering the same unfruitful areas or find some new chances 
when modification, redesign, or new design in the future. A number of 
researchers have hypothesized that capture and reuse of this evolving 
information has the potential for improving the design process and reusing 
of design information (Ullman, 1994). 

On the other hand, the complexity of modem designing often demands 
integrated design teams. In industry, frequently, the domain knowledge 
required to develop a product is available; the requirements, constraints and 
primitive design components are usually established over decades of 
practices; however, the limiting factor determining the speed of product 
development is the efficiency with which the information environment can 
be coordinated to develop the product. This results in growing demands on 
capture and representation of not only the rationale behind design decisions 
of individual designers for a shared understanding, but also the coordination 
activities of multiple members of a design team within multiple tasks, which 
bind the information accessed, shared and generated, during the 
collaborative design process. 

Recently, there is increasing interest in capturing information about 
design processes and recording the rationale behind the decisions affecting 
the evolution of the information. Published work has used the terms "design 
history", "design rationale", and "design intent" that manage the capture, 
storage and query of the evolving information (Ullman, 1994; Brown, 1994; 
Ganeshan et aI., 1994; Chung and Goodwin, 1994). However, this effort is 
still in its infancy and gives rise to many questions on modeling and 
controlling design information in the design process, especially in the 
collaborative design process. 

From the viewpoint of the artificial intelligence community, design has 
the following properties. (l) Design is an opportunistic activity. It is not 
performed using a fixed set of operators applied in an ordered way. Design 
is a process wherein various design activities occur in an opportunistic 
manner, either top-down or bottom-up. (2) Design is an exploration activity. 
It is classified as exploration (Smithers et aI., 1989) rather than search, 
because knowledge about the space of possible solutions has to be obtained 
before goals can be well formulated. Typically, the initial description of the 
solution is incomplete and/or ambiguous and/or inconsistent. Design has a 
large space of possible solutions. Complexity arises from the very large 



REPRESENTING THE COLLABORATIVE DESIGN PROCESS 269 

number of alternatives of intermediate and final designs. (3) Problems of 
consistency are inevitable. Since design is an incremental activity, it is certain 
to reverse some of the previous decisions either for refinement, or for 
resolution of conflicts with other decisions self-made or made by other team 
members. Maintaining consistency among multiple decisions is one of the 
characteristics of the collaborative design process. 

Taking these properties into full account, we present a product model­
oriented representation of the collaborative design process, to build a data 
model for a database which addresses the archiving of design history and 
serves as the information infrastructure of a concurrent design environment 
in the context of an industry project at Sony Corporation. The proposed 
representation regards the collaborative design process as the evolution of 
product data. The product evolution can be viewed as the result of a series of 
decisions, i.e., activities and negotiations, each of which is one step in the 
transformation of the product, made by multiple design agents. A STEP­
based (ISO, 1993a) product data model is developed to support the 
description of objectives of a task, assignments and alternatives of a decision, 
and so on. Design activities and negotiations are organized into tasks which 
are charged by agents. The product data model plays a key role in task 
decomposition and the interactions between the agents by providing a 
common ontology on product data access and consistency maintenance. 

In the next section, previous approaches taken for design history 
representation are reviewed. The third section introduces a product data 
model on the basis of the integrated generic resources from STEP. Then, 
ingredients representing the collaborative design process are formalized and 
specified in EXPRESS (ISO, 1993b) using the product data model. The 
discussion of the current application state and desired future developments 
of the proposed approach, and conclusions follow. 

2. Related Work 

Since Mostow (1985) stated that there is a growing consensus in the artificial 
intelligence community that "An idealized design history is a useful 
abstraction of the design process," both the artificial intelligence and design 
science communities have been active in developing the concept of the 
design history as records of the rationale behind design decisions and of the 
intent of the designers. The root of most of the previous work lies in the 
IBIS3 method (Rittel et aI., 1973) for policy decision-making in the domain 
of government administration and planning where the deliberation process 
for complex problems is viewed as a process of negotiation among different 
groups with different stakes in the problem in terms of issues (tasks, 

3Issue Based Information System. 



270 BANGYU LEI, TOSHIHARU TAURA AND JUN NUMATA 

questions or problems), alternatives (proposals or concepts), arguments 
(evaluations) and decisions. 

In the artificial intelligence community, previous work focused on the 
development of IBIS-based tools, e.g., gIBIS, Potts and Brun model, DRL 4, 

and DRCS. gIBIS is a computer tool to capture design histories and support 
computer-mediated teamwork (Conklin and Begeman, 1988). Potts and 
Brun (1988) distinguish between two types of design information: the 
process of design and the product of design. Designers work from an initial 
design problem to the final design by identifying alternatives, exploring 
them and then selecting one that satisfies or moves towards satisfying the 
design objectives. Lee (1991) extended Potts and Brun's model to develop 
DRL. In most embodiments of IBIS, artifact information such as goals, 
alternatives and specifications has been left informal. Plain textual 
representations are used for describing design deliberations. These efforts 
provide a means of organizing these deliberations in the form of nodes and 
links within the computer. In contrast to the natural language text 
representation for the contents of the network's nodes, a structured language, 
DRCS,. attempts to represent the product and the process (Klein 1993). 
However, it is quite general and still under development and untested 
(Ullman, 1994). 

The design science community has introduced the IBIS method to 
address the capture of design histories in different fields such as mechanical 
design (Ullman, 1994; Brown, 1994; Nagy and Ullman, 1992; Thompson 
and Lu, 1990; Chen et aI., 1990), civil design (Ganeshan et aI., 1994; 
Rosenman et aI., 1994) and chemical plant design (Chung and Goodwin, 
1994). Researchers in this community observe the limitations of IBIS-based 
approaches developed by the artificial intelligence people, that is, informal 
plain text representation for product, and implicit description of the 
constraints among decisions. To overcome these shortcomings, researchers at 
Oregon State University (Nagy and Ullman, 1992: Chen et aI., 1990) used 
the decision network to index the changing state of the evolving artifacts, so 
that the sequence, composition and dependence between decisions are 
described. It further describes the constraint development and propagation 
and the dependence on the design specifications. Information on the 
product is represented using two basic structures, the features of objects i.e., 
"object-attribute-value", and features of relations between objects, that is, 
"objectl-object2-relationship-attribute-value", (Ullman et aI., 1994). Here 
an "object" is defined as an assembly, a component, a feature, a human or 
other identifiable physical thing that is used to describe some physical aspect 
of the product being designed. Around the same time, Ganeshan et ai. 
(1994) proposed a framework to capture design history of a design process, 

4Decision Representation Language. 



REPRESENTING THE COLLABORATIVE DESIGN PROCESS 271 

taking an example in the domain of spatial layout of small buildings. They 
represented the product being designed with an "objective-variable-value" 
structure over the design space. In their approach, the 'objective' is used to 
define design problems and to represent intermediate stages leading to the 
final solution; the decision-making process is an iteration of "focus-refine­
evaluate-select-resolve" with an explicit linkage to each state (objective, 
variable, alternative) of the product. The design reasons are represented 
implicitly in the iteration. 

Both of the above efforts have resulted in their significant progress in 
introducing the formal product data into the IBIS-based representation of 
design processes. However, as pointed out earlier, design has a large state 
space, where each state corresponds to a possible solution, either intermediate 
or final. The design process can be seen as a navigation from an initial state, 
the specification of the problem, to a final state, the proposed solution. 
Neither the "objective-variable-value" nor the "object-attribute-value" 
structure is sufficient for representing all product data in the whole state 
space explicitly. This results in the mappings between product data and 
process information not explicit and even a design process that is ephemeral 
and difficult to manage. Therefore, we attempt to capture the design history 
by introducing the concept of the product data model to represent the 
product data. Few related work records the histories of information on 
design teams. By contrast, we introduce the concept agent and task from the 
research (Jin and Levitt, 1993) on distributed artificial intelligence and 
organization theory to represent the negotiation activities in the collaborative 
design process. 

3. Product Data Model 

Product modeling technologies attempt to generate an information reservoir 
of complete product data to support various activities at different product 
development phases (Krause et aI., 1993). The term product model can be 
interpreted as the logical accumulation of all relevant information 
concerning a given product during the product life cycle. Although a clear 
trend toward a wider usage of product models and a strong emphasis on 
product modeling processes is observed, no definite and commonly agreed 
product modeling approaches exist to date. To be effective and efficient, we 
focus on the modeling of product information on a smaller scale, namely, we 
address only a formal description of the issues, alternatives, and assignments 
in the design decisions concerning a product. 

First, let us distinguish two basic concepts: product data and product data 
model. The term product data in this paper refers to the facts, concepts, or 
instructions about a product or set of products in a formal manner suitable 



272 BANGYU LEI, TOSHIHARU TAURA AND JUN NUMATA 

for communication, interpretation, or processing by a human being or by 
automatic means (ISO, 1993a); product data model is an information model 
which provides an abstract description of the product data. The evolution of 
product data usually begins with an ill-defined need for a product and ends 
with exact specifications for production, use and retirement or recycling. 
Designers need to make decisions about product data at different levels of 
abstraction. The consequences of the presence of different levels of 
abstraction on product data must be explored. The product data are 
evaluated and changed through the different stages of a design process. The 
forward and feedback links among the various stages of the design process 
imply certain mappings and feedback among various parts of product data. 
Constraints play a crucial role in this regard. Product data must keep all 
constraints and differentiate between constructed versus derived geometric 
and non-geometric features. In addition, several design activities may have 
concurrence of accesses to product data. It is necessary that all activities 
performed during different phases of a process chain have identical data 
available to them concerning a particular subject. In this sense, this paper 
represents the design process on the basis of two assumptions, that is, each 
product datum, once it is created by any a design activity, is the same to all 
the design activities in which it is present; the constraints among various 
design activities imply the constraints among various elements of the product 
data. 

The above requirements on product data for representing design 
processes and recording design histories lead to challenges in the 
development of the product data model in this paper. The most useful basis 
for developing the product data model is the resource constructs from STEP 
(ISO, 1993a), an international standard for the computer-interpretable 
representation and exchange of product data. Its objective is to provide a 
neutral mechanism capable of describing product data throughout the life 
cycle of a product, independent of any particular system. The nature of this 
description makes it suitable not only for neutral file exchange, but also as a 
basis for implementing and sharing product databases, and archiving. To 
specify and develop the STEP information models, a variety of tools for 
information modeling have been used. One of the tools, the data 
specification language EXPRESS (ISO, 1993b), focuses on the definition of 
entities, which are the objects of interest. The definition of an entity is in 
terms of its properties (attributes), which are characterized by specification 
of a domain and the constraints on that domain. The term resource construct 
refers to the collection of EXPRESS language entities, types, functions, rules 
and references that together define a valid description of product data. In 
this paper, all the text descriptions on data modeling are based on the 
terminology of EXPRESS. 



REPRESENTING THE COLLABORATIVE DESIGN PROCESS 273 

As shown in Figure 1, the developed product data model includes five 
partial models. The requirement model supports the specifications of a 
product derived from an analysis of customer needs for the product. The 
entity product-concept from STEP part 44 is used in this model. A product­
concept is a set of product features identified by the customers or derived 
from customers' needs. The product-concept is customer-oriented, while the 
product is engineering-design or manufacturing-design oriented. A product 
concept is essentially a marketing idea and includes customer-driven inputs. 
Therefore, the market-context is also defined as an attribute of the entity 
product-concept. 

The function model defines the function structure of a product. No entity 
from STEP can be interpreted into this model. The function specifications 
are expressed in plain text in the description attribute of the Junction entity. 
The entity Junction-relationship defines the hierarchy between Junctions, 
while the entity alternative-Junction-relationship defines the relationship 
between base function and its alternatives. More detailed discussion about 
function analysis can be found in another paper (Taura, 1995) by one of the 
authors. In the solution principle model, the entities such as physical-law, 
physical-phenomenon, physical-quantity, and working-domain, have been 
formalized to represent physical effects, for example, the friction effect 
described by Coulomb's law (FF = !l FN ). The entity physical-principle 
defines the relationship between a Junction and the corresponding physical­
law selected to fulfill the Junction, e.g., the friction effect used to fulfill the 
function 'transfer torque'. The entity solution-principle can then be 
specified by associated parts selected to fulfill the function and the parts' key 
features selected to define the working-domain of the corresponding 
physical-law. The entity alternative-principle-relationship is formalized to 
describe the alternatives of a solution-principle. However, the relationships 
between solution-principles are not defined explicitly, since the Junction­
relationship and/or product-structure imply them. 

The development of the product structure model is based on the resource 
constructs from STEP part 44: 'product structure configuration' and STEP 
part 41: 'product description and support.' The product structure defines 
the different methods by which a product can be represented, as being made 
up of constituents. Product structure relationships are established among the 
assemblies and constituents that make up a product. The product structure 
(i.e., composition relationships) may be modeled mathematically by nodes 
representing assembly products and by directed links representing the 
"composed-of' relationship. Usually, two major data structures are used to 
represent product structure: bill-of-material and parts list. The bill-of­
material structure is a structural description of a product in terms of its 
nested constituents, while the parts list structure is a structural description of 



274 BANGYULEI, TOSHIHARUTAURAANDJUNNUMATA 

a product in terms of a hierarchy of all distinct usages of its constituents. 
The product structure model in this paper supports both. The entities 
product-definition, assembly-component-usage and alternative-product­
relationship are selected from STEP part 41 or part 44. 

product data model 
product description 

and support (part 41) 
is applied to 

I 1 1 I 1 requirement function solution principle product structure part 
model model model model model T-21 ~I is based on is based on 

product structure 

Iii'!!I integrated generic resource from STEP 

Figure 1,' An overview of the product data model. 

Figure 2 shows an IDEFlx graphic (NIST, 1992) of the main compo­
nents for modeling the product data of a part. The resource constructs from 
STEP concerning the representation of material, tolerances, geometric 
model, and form features are interpreted into this model. This model 
supports the detailed design phase of a part. For an exact description of all 
the individual modules except the "parametric shape model," the readers 
are referred to the literature (Lei, 1994) written by one of the authors. 

Contemporary shape representations are either geometric by CSG/B-reps 
or incompletely parametric by implicit form feature representations. A 
parametric shape model is desirable for the definition of all shape aspects 
into which the shape is divided, their configurations, and the constraints 
among them. Therefore, a generalized topology schema for parametric 
shape modeling has been developed. The proposed approach addresses the 
shape definition only with finite primitives and in a completely parametric 
manner. Introducing a new topological entity standing for the relationships 



REPRESENTING THE COLLABORATIVE DESIGN PROCESS 275 

among entities at different lower topological levels makes available a concise 
schema for the parametrization of both the shape aspects sharable for design 
and manufacture features and their dimensional relations rather than only 
dependency relations . It also ensures the universality of the schema for the 
parametrization of all shapes with or without free surfaces and makes the 
evaluation of such a parametric shape model into a B-rep model easy and 
unique. We have submitted a paper (Lei and Taura, 1995) about this 
parametric shape modeling to CAD Journal. 

part model is applied to material 

~--~--~~~~~--~~I 

I I 
manufacturing design tolerances 

feature feature (part 47) 

L. ___ ---:J--is-b-as-e-d-o-n-et~J'__~..J1 is described b~ . I 

It 

is applied 
to 

process plan 

11 _ __ --' 

I 
geometry 
(part42) 

( I 

is described by 

o 
parametric shape model 

is described by ~ J 

I 

is represented by 

It 
representation items (part 43) 

I I 

t::I integrated generic resource from STEP 

Figure 2. An IDEFlx graphic of the main components in the part model. 



276 BANGYULEI, TOSHIHARUTAURAANDJUNNUMATA 

3. Formal Process Ingredients 

To abstract and formalize the basic process ingredients, a collaborative 
design is generally regarded as an opportunistic process with a network of 
tasks. Each task records, in a temporal order, all the decision-making and 
conflict-resolution activities that fulfill itself. For the design deliberations of 
one decision, a process ingredient activity will be abstracted to accumulate 
the assertion, alternatives and assumptions of the decisions made on product 
data, the agent that made them, and the rationale used to make them. The 
mappings between process ingredients and product data take place only 
through three channels, that is, generations of the objectives of tasks via the 
ingredient task, determinations of the attribute values of a task's objectives 
via the ingredient assignment, and detection of conflict sources and 
constraints among tasks or among activities via the ingredient negotiation. 
All three channels use the product data model directly. Let us make an exact 
distinction between these ingredients. 

3.1. ASSIGNMENT 

Assignments are decisions on product data. As mentioned earlier, the 
collaborative design process is viewed here as the evolution of product data, 
which is the result of a series of decisions. Each decision is one step in the 
transformation of the product. In an assignment, the value of a single 
attribute, or values of coherent pieces of attributes if necessary, of an entity 
in the product-data-model is determined and recorded as assigned-data. 
These assigned data may be used as a proposed solution, an alternatives, an 
assumption, or a preference. In this sense, the ingredient assignment is the 
major channel through which process information interrelates and interacts 
with product data. The rationale behind these value determinations can be 
expressed formally by the entity physical-law defined in the above section, 
or PROCEDUREs specified in EXPRESS (ISO, 1993b) or informally by 
STRINGs, i.e., plain text. The rationale illustrates how and why the values are 
derived or determined. Once assignments are committed, all assigned data 
will be recorded as product data that can be shared by other activities and by 
other agents. The EXPRESS specifications of the entity assignment are as 
follows. 

ENTITY assignment; 
assigned-data 
rationale 
created-by 
maker 
status 

END_ENTITY; 

: product-data-model; 
: SET [1 :?) OF rational; 
: (INV) activity; 
: agent; 
: role; 



REPRESENTING THE COLLABORATIVE DESIGN PROCESS 277 

ENTITY product-data-model; 
SUPERTYPE OF (requirement-model, function-model, 

solution-principle, product-structure, 
part-model): 

TYPE rational = SELECT (physical-law, PROCEDURE, STRING) ; 
END_TYPE; 

TYPE role = ENUMERATION OF (proposed, ready-for-altemative, 
assumed, expected) ; 

END_TYPE; 

3.2. ACTIVITY 

Activities are efforts that take place during a process. An activity aggregates 
the information generated by a single action during a process, including its 
objective, the decision, alternatives, and argument. There are different levels 
of granularity to aggregate the action information. On the finest level, 
information on micro decisions made at the rate of about one per minute is 
tracked. This shows that the fineness is necessary for completeness of 
information capture but is very difficult to implement and is even unrealistic 
for an operational system (Ullman, 1994). On the coarser project/program 
level of granularity, projects are defined as design activities performed by 
single-discipline teams whereas programs require team members from 
diverse disciplines. The design effort is normally seen in corporate product 
development plans. This is the level of information often handled by 
commercial systems such as IBM's Product ManagerTM/6000 and SDRC's 
DMCS5. Such systems may miss much important information concerning 
the alternatives considered, evaluations completed, and assumptions made. In 
this paper, action information is aggregated as activity at the attribute level of 
granularity. That means an activity is defined here as the design effort of a 
single agent on a single attribute, or coherent pieces of attributes of an entity 
in the product-data-model. Concretely, the EXPRESS specification of the 
entity activity is given below. 

TYPE criteria = ENUMERATION OF (cost, lime, behavior, trade-off) ; 
END_TYPE; 

TYPE state = ENUMERATION OF (admissible, optimal, rejected, 
committed, retracted) ; 

5Data Management and Control System. 



278 BANGYU LEI, TOSHIHARU TAURA AND JUN NUMATA 

ENTITY activity; 
identification 
name 
goal 
assertion 
alternative 
argument 
maker 
opportunity 
assumption 
status 

END_ENTITY; 

: INTEGER; 
: STRING; 
: task; 
: assignment; 
: OPTIONAL SET [1 :?] OF assignment; 
: criteria; 
: agent; 
: OPTIONAL SET [1 :?] OF assignment; 
: OPTIONAL SET [1 :?] OF assignment; 
: state; 

In the above specification, the attribute goal refers to the task whose 
objective is to be designed or determined in current activity. The task's 
objective will be defined in the next sub-section using any sub entity of the 
product-data-model. The assertion slot records the proposed assignment on 
focused attributes of the current task's objective. The alte rnative slot 
corresponds to all the possible solutions to replace the assignment stored in 
the assertion slot. The attribute argument is described by the criteria, which 
explains why the assignment in the assertion slot is selected from all 
alternatives. The opportunity slot refers to the preference decision and the 
associated conflicts that make it unavailable. The attribute assumption 
assigns virtually all product data needed by executing current activity but 
which do not exist. The status of an activity can be one of the following: 
admissible, optimal, rejected, committed, or retracted. 

3.3. TASK 

A task is a set of pre-determined actions such as activities, negotiations, 
subtasks, and assignment-committing. Obviously, a collaborative design is 
not carried out by one designer in one session as a single task. In other 
words, collaborative design activities may occur in parallel. In this sense, the 
collaborative design scenario can be described by a network of tasks. 
Activities do not stand alone but are grouped into tasks. The task is 
determined both by the temporal ordering of activities and the interaction 
between grouped activities. The entity task in EXPRESS is specified below. 

ENTITY task; 
identification 
name 
super-task 
objective 
working-activity 
charged·by 
conflict-resolution 
subtask 
committed-activity 

END_ENTITY; 

: INTEGER; 
: STRING; 
: OPTIONAL SET [1 :?] OF task; 
: product·data-model; 
: LIST [1 :?] OF activity; 
: agent; 
: OPTIONAL SET [1 :?] OF negotiation; 
: OPTIONAL SET [1:?] OF task; 
: SET [1 :?] OF activity; 



REPRESENTING THE COLLABORATIVE DESIGN PROCESS 279 

It has been pointed out in the discussion of the level of granularity that the 
objective of a task is to instantiate an entity in the product-data-model. 
Hence, here is the second channel through which a process ingredient 
interrelates with the product data model. The attributes of the instantiated 
object will be determined by a list of activities which are recorded in the 
working-activity slot as LIST instead of SET, since the temporal order of the 
activities is also useful information for the design history. A task consists of 
at least one working activity. If multiple working activities exist in a task, the 
conflict-resolution slot can optionally store all possible actions to resolve the 
possible conflicts among the working activities using the entity negotiation 
formalized in the next section. After conflict resolutions, the resulting new 
set of consistent activities can be recorded in the committed-activity slot. All 
assigned data created in each assignment of the committed activities, either as 
assertion or as alternatives, can be committed into product data for further 
common sharing by the responsible agent of the current task, who is 
appointed in the charged-by slot. Only this agent has access to commit 
assignments into product data in the task level, although multiple agents can 
submit different assignments in the activity level to fulfill the objective of the 
current task. 

3.4. NEGOTIATION 

Negotiations here refer to the actions initiated to resolve conflicting 
activities. There are three kinds of conflicts. The simplest one is the serial 
collaboration between activities, that is, one activity can take place only after 
the decision of another activity is ascertained. In such a case, if both activities 
are within the same task, they can be arranged in a corresponding serial 
manner by the responsible agent. Otherwise, either assumptions or 
negotiations can be raised by the suspended activity. The second one is the 
conflict assignments for the same attribute from different perspectives, i.e., a 
single attribute of the objective of a task may be determined by multiple 
agents in different disciplines in multiple distinct activities. The last and most 
complex one is the dependent assignments, viz., some constraints 
representing the relationship among the attributes of different task objectives 
are invalid according to the current assignments by all corresponding 
activities. Once the identity of the conflicting perspectives is known, the 
negotiation process must be initiated to resolve conflicts. 

The product data model plays a key role in such situations. As pointed 
out earlier, we represent the design process on the basis of two assumptions, 
that is, each product datum, once created by any design activity, is the same 
to all design activities in which it is present; and the constraints among 
various design activities imply the same constraints among various objects of 
the product data. If the data assigned by an activity are committed into a 



280 BANGYU LEI, TOSHIHARU TAURA AND JUN NUMATA 

shared product database supported by the product data model described 
above, the two assumptions are admissible. The product data model written 
in EXPRESS is certainly object-oriented and EXPRESS supports the 
definition of constraints among the attributes of different entities by RULEs 
and PROCEDUREs. Therefore, the first assumption, together with the 
uniqueness of an object, assure the detection of the first and second kinds of 
conflicts. Usually, the dependence among the attributes in the same entity is 
defined by defining 'DERIVE' attributes in an entity of the product-data­
model, while the attribute dependencies among multiple entities are defined 
as associated constraints in the form of RULEs including PROCEDUREs. This 
assures the detection of the third kind of conflict. In a word, conflict 
detection and constraints propagation can be controlled through product 
data, because conflict sources and/or constraints can be formally and 
explicitly expressed by the product-data -model. 

ENTITY negotiation; 
identification 
name 
conflict-source 
conflict-activity 
conflict-resolution 
negotiator 
note 

END_ENTITY; 

: INTEGER; 
: STRING; 
: SET [1 :7] OF product-data-model; 
: SET [2:7] OF activity; 
: SET [1 :7] OF activity; 
: SET [2:7] OF agent; 
: OPTIONAL STRING; 

As shown in the above specification, at least two agents recorded in the 
negotiator slot take part in negotiation. In addition, at least two conflicting 
activities are involved to be resolved in a negotiation and can be stored in the 
conflict-activity slot. The conflict-source slot records either invalid constraints 
or conflicting attributes of an object defined by the product-data-model. 
The result of a negotiation for conflicting activities may be one or a set of 
new assignments accepted by all of the negotiators and can be represented 
explicitly by a set of activities in the conflict-resolution slot, since the new 
assignments in these situations also involves the same properties of an 
activity such as alternatives, and assumptions. The note slot is ready as an 
optional property to record some other information that must be recorded 
but cannot be formally represented in the above-mentioned slots, because 
negotiations may consist of some very complex deliberations. 

3.5. AGENT 

An agent here refers to a combination of human and software information 
storage and processing. The combination ranges from an agent that is 
human with a software interface to interact with other agents, or an agent 



REPRESENTING THE COLLABORATIVE DESIGN PROCESS 281 

completely implemented in software. The agent description includes role 
characteristics such as position in the team hierarchy; authority for design, 
approval, and coordination tasks. A concrete description of the ingredient 
agent is shown in the following EXPRESS specifications. 

ENTITY agent; 
identification 
name 
role 
in-charge-of 
proposed-activity 

END_ENTITY; 

: INTEGER; 
: STRING; 
: organization-role; 
: OPTIONAL SET [1 :?] OF task; 
: OPTIONAL SET [1 :?] OF activity; 

Here, the role characteristics are expressed by the entity organization­
role, which is selected from the managemencresources_schema in STEP 
part 41. The other two attributes define the related tasks and activities 
charged by the current agent. 

4. Example 

The above-mentioned product data model is developed in EXPRESS as a 
STEP application protocol. It includes the detailed specifications of 
schemata of the five partial models discussed above. The normative 
references for these schemata are as follows: STEP part 41, 42, 44, 45, 47 
and 48. The data model is implemented on an object-oriented database 
called ONTOS in c++. All product data concerning an example shaft are 
instantiated on the corresponding database schema (Lei, 1994). 

Based on the above-mentioned formal process ingredients, a design 
history base, as an extension of the product database, is under development 
to record the design history of Sony's color video printer UP-5000. Two of 
the authors have analyzed in detail the Sony's current product planning and 
design process, taking the development of this printer as an example 
(Numata and Taura, 1995). The first assembly selected to be implemented is 
the paper-handling system of the printer. We have focused on one particular 
kind of paper transport, namely, that which uses pinch rolls to isolate one 
sheet from the other sheets piled at the paper entrance. Figure 3 shows the 
example instances of the process ingredients. 

The design of the isolation mechanism in the paper-handing system 
involves six tasks: the design of pinch roller, belt, rubber roller, gate roller, 
press plate and floor guide. Within the task for pinch roller design, taskl (#4 
in Figure 3), three independent activities are planning for the inner-diameter, 
for the outer-diameter, and for the width. Its objective is to instantiate the 
entity pinch-roller in product data model with an empty instance, pinch-



282 BANGYU LEI, TOSHIHARU TAURA AND JUN NUMATA 

roller! (#10 in Figure 3). Within the activity for determining the width of the 
roller (#3), two assignments, assignmentl and assignment2, are possible. 

#3 = activity1 product data model 
name: 'set roller width'; 
goal: #4; 
assertion: #1 ; 
alternatives: (#2); 
cr~eria: cost; 
opportunity: 0; 
assumption: 0; 
status: admissible; 
maker: #8; IfTaroh; 

#4= task1 
name: 'design pinch-roller'; 

ENTITY pinCh-roller; 
d : REAl; 
d1 : REAL; 
b : REAl; 

END_ENTITY; 

#10 = pinch-roller1 
d: (NULL); 
d1: (NULL); 
b: (NULL); 

super-task: #1000; /I paper handling mechanism 
objective: #10 ; 
working-activity: (#3, #300, #301) 
conflict-resolution: #5; 
subtask: 0; 
charged-by: #1100; /I agent3= Tom 
committed-activity: (#7, #300, #301) 

#5=negotiation1 

#1 = assignment1 
assign-data: (#1 O:b )=200 
rationale: 'catalog' 
maker: Taroh 

#2 = assignment2 
assign-data: (#1 O:b )=240 
rationale: 'experience' 
maker: T aroh 

#6 = assignment3 
assign-data : (#10:b) = 160; 
rationale: (#100: W )+ 11; 

/I belt width 
maker: #9; I/Hanako; name: conflicts about pinch-rolle~s width; 

conflict-source: #10 
conflict-activity: (# 3, #600); 

/I #6oo's assertion is #6 
conflict-resolution: (#700); 

#7 = assignment4 
assign-data : (#1 O:b ) = 180; 
rationale: 'trade-off' 

/I assertion is #7 
negotiator: (#1100, #8, #9) 

#8 = agent1 
name: Taroh; 
role: engineer 
in-charge-of: (#4); /Idesign pinch-roller 
proposed-activity: (#3); 

maker: (#8, #9); /I Taroh, Hanako 

#9 = agent2 
name: Hanako; 
role: engineer 
in-charge-of: (#1000); 

/Idesign belt 
proposed-a~tivity : (#600); 

Figure 3. Example instances of the process ingredients. 

The agent responsible for roller design, Taroh, asserts assignment 1 in 
consideration of the cost criteria. However, the agent in charge of belt 



REPRESENTING THE COLLABORATIVE DESIGN PROCESS 283 

design, Hanako, suggests another assignment3 (#6), because of the constraint 
between the roller width and belt width. Then negotiation I (#5) occurs 
between Taroh and Hanako and assignment4 (#7) is decided as a "trade­
off'. The product data model in Figure 3 is provided only for easier 
understanding of the design process entities. The real product data model in 
the database is more abstract. 

5. Conclusions 

A product model-oriented approach for formal representation of the 
collaborative design processes has been proposed to capture design histories. 
One of the important features of this proposed approach is introduction of 
the product data model to control the explicit mappings between process 
ingredients and product data. To be more precise, the product data model 
supports the generation, exploration and navigation of the objective in each 
task/activity in a formal manner; the product data model also explicitly 
represents the evolution and alternatives of product data from objectives 
focused through all intermediate assignments to final specifications at any 
state of its recorded history, beginning with the general definition of 
customer's requirements for a product and ending with the exact 
specifications for production, use, and retirement or recycling; in particular, 
constraints among product data defined by the product data model imply 
constraints among tasks , and the product data model facilitates the detection 
of conflict sources and propagation of the constraints among activities. 

In addition, the proposed representation regards a collaborative design as 
an opportunistic process with a network of tasks. In each task the temporal 
order of the decision-making and conflict-resolution activities has been 
recorded. For the design deliberations on one decision, the process 
ingredient activity has been specified to record the assertion, alternatives and 
assumptions of the decisions made on product data, the agent that made 
them, and the rationale used to make them. 

However, all the data models are assumed to be statically defined. There 
are no STEP mechanisms for modifying a product model while it is in use. 
Further research will focus on dynamic definition of the data model to 
reflect the dynamic nature of design. Another future work will be a more 
formal representation of the design rationale in the framework of the 
proposed approach by means of a formal description of the agent's 
knowledge and communication patterns. A concurrent design environment 
will be developed taking the developed data model and database as the 
information infrastructure. 



284 BANGYU LEI, TOSHIHARU TAURA AND JUN NUMATA 

Acknowledgments 

The work reported in this paper is supported partly by Japan Society for 
Promotion of Science. Any opinions, findings, conclusions and recommen­
dations expressed are those of the authors, and do not necessarily reflect the 
views of the sponsoring agencies. 

References 

Banares-Alcantara, R.: 1991, Representing the engineering design process: two hypotheses, 
Computer-Aided Design, 23 (9), 595-603. 

Brown, D. c.: 1994, Rationale in design, in P. W. H Chung and R. Banares-Alcantara (eds), 
AID'94Workshop on Representing and Using Design Rationale, pp. 1-3. 

Chen, A., McGinnis, B. and Ullman, D. G.: 1990, Design history knowledge representation 
and its basic computer implementation, Proceedings of the Second International ASME 
Conference on Design Theory and Methodology, ASME DE, 27, pp. 157-184. 

Chung, P. W. H. and Goodwin, R.: 1994, Representing design history, in J. S. Gero, and F. 
Sudweeks (eds), Artificial Intelligence in Design '94, Kluwer, Dordrecht, pp. 735-752. 

Conklin, J. and Begeman M. L.: 1988, gIBIS: a hypertext tool for exploratory policy 
discussion. ACM Transactions on Office Information Systems, 6(4), 303-33l. 

Ganeshan, R., Garrett, J. and Finger, S.: 1994, A frramework for representing design intent, 
Design Studies, 15(1), 59-84. 

ISO: 1993a, Standard for the Exchange of Product Model Data, ISO DIS 10303, International 
Standards Organization. 

ISO: 1993b, Description Methods: the EXPRESS Language Reference Manual, ISO DIS 
10303 Part 11 International Standards Organization. 

Jin, Y. and Levitt R.: 1993, i-AGENTS: modeling organizational problem solving in multi­
agent teams, Intelligent System in Accounting, Finance and Management, 2, 247-270. 

Klein, M.: 1993, Capture design rationale in concurrent engineering, IEEE Computer, 1, 39-
47. 

Krause, F-L., Kimura, F., Kjellberg, T. and Lu, S.: 1993, Product modeling, Annals of the 
CIRP, 42. 

Lee, J.: 1991, Extending the Potts and Burn model for recording design rationale, 
Proceedings of the 13th International Conference on Software Engineering. 

Lei, B.: 1994, A data model for the integration of CAD/CAPP/NC, Technical Report, 
Laboratory for Machine Tools and Production Engineering (WZL), Aachen University of 
Technology, Germany. 

Lei, B. and Taura, T.: 1995, Parametric shape modeling of mechanical parts: A generalized 
topology approach, CAD (submitted). 

Mostow, J.: 1985, Toward better models of the design process, AI Magazine, 6(1), 44-57. 
Nagy, G. L. and Ullman D. G.: 1992, A data representation for collaborative mechanical 

design, Research in Engineering Design, 3(4), 595-603. 
NIST: 1992, DEFIX (ICAM Definition Language 1 Extended) Integration Definition for 

Information modeling, FIPS PUB XXX, NIST. 
Numata, J. and Taura, T.: 1995, A network system for knowledge amplification in the product 

development process, IEEE Engineering Management (submitted). 
Potts, C. and Brun, G.: 1988, Recording the reasons for design decisions, Proceedings of the 

10th International Conference on Software Engineering, CS Press, pp. 418-427. 
Rittel, H. W. J. and Webber M. M. J.: 1973, Dilemmas in a general theory of planning, 

Policy Sciences, 4, 155-169. 
Rosenman, M. A., Gero, J. S. and Maher, M. L.: 1994, Design intent and multiple 

abstraction, Knowledge-Based Research at the Key Centre of Design Computing, 



REPRESENTING THE COLLABORATIVE DESIGN PROCESS 285 

University of Sydney, Working Paper, Key Centre of Design Computing, University of 
Sydney, pp. 20-24. 

Smithers, T., Conkie, A., Doheny, J., Logan, B., Mollington, K. and Tang, M. x.: 1989, 
Design as intelligent behavior: An AI in design research programme, Research Paper DAI 
426, University of Edinburgh, UK. 

Taura, T.: 1995, Design science for functional design process modeling, Proceedings of the 
International Conference on Engineering Design, ICED'95 . 

Thompson, J. and Lu, S.: 1990, Design evolution management: a methodology for 
representing and using design rationale, Proceedings of Second International ASME 
Conference on Design Theory and Methodology 

Ullman, D. G.: 1994, Issues critical to the development of design history, design rationale 
and design intent systems, in T. K. Night and F. Mistree (eds), Proceedings of the Sixth 
International ASME Conference on Design Theory and Methodology, pp. 249-258. 

Ullman, D. G., Herling D. and Sinton, A.: 1994, Analysis of protocol data to identify product 
information evolution and decision making process, Analyzing Design Activity Delft 
Protocol Workshop, pp. 67-82. 



16 

DESIGN PROCESS METHODS: DISCUSSION 

Research Paradigms 

LEO JOSKOWICZ 

IBM T. J. Watson Research Center, USA 

1. Introduction 

Engineering design is a complex, evolving activity, involving many kinds of pro­
cesses aimed at turning requirements and ideas into products. Concept develop­
ment, concept evaluation, system-level integration, detailed design, prototyping, 
manufacturing, production, and marketing, are all part of an increasingly demand­
ing iterative design cycle. Global competition requires shorter and more efficient 
design cycles, more systematic evaluation of possible solutions, and a better un­
derstanding of the relations between the many factors affecting the final product. 
Faced with these demands, research in computer-aided design has rapidly expan­
ded its scope from traditional drafting programs to systems capable of supporting 
many of the diverse activities associated with product design. 

Understanding and characterizing the different aspects of the design process is 
the key to the development of a new generation of computer-based design tools. 
While design methodology has been the subject of study for more than half a cen­
tury, only recently have formal design process methods emerged from research in 
CAD. As is the case in other fields, such as finance, communications, and manu­
facturing, the focus on computational methods has not only provided a better and 
more systematic foundation to the field, but it has contributed to its evolution, and 
is likely to give rise to new paradigms. 

The goal of this chapter is to briefly reflect on the state of the art of recent re­
search in formal design process methods, identify trends and paradigms, and dis­
cuss key technical issues. Most of the background material for this paper is drawn 
from presentations and discussions at this workshop, although it reflects only the 
author's opinions and views. 



288 LEO JOSKOWICZ 

2. Research Methodology 

Most researchers and practitioners view design as a series of interrelated processes 
that must be studied and characterized to develop adequate CAD tools to support or 
automate significant aspects of the design activity. These design processes cover a 
wide spectrum, ranging from the well-defined and highly structured to the poorly 
understood and difficult to isolate. These processes and the interactions between 
them are highly dynamic, drawing on different sources of knowledge at different 
levels of abstraction. 

The three major components that have been identified are the design know­
ledge, the domain knowledge, and the derivation process. The design knowledge 
is generic, domain-independent, and includes techniques for identifying customer 
needs, methods for product concept generation, and mathematical optimization, 
to name a few. The domain knowledge is specific to the type of product being de­
veloped and its application domain; it includes part catalogs, physical equations 
of behavior, and previous designs. The derivation process includes the methods 
by which new or improved designs are produced, such as transformation and re­
finement operators, deduction, and induction. 

There is a broad consensus about the importance of each of these compon­
ents. Design methods for the better understood aspects of the design process, such 
as part catalog selection, collaborative design information exchange, and multi­
objective optimization, have been developed and are constantly improving. The 
current research emphasizes collaborative design methods, conceptual design sup­
port, and design rationale capture, among others. Know ledge representation issues 
related to the context of the design and the explicit representation of form, func­
tion, and behavior have also been recently investigated. 

A major area of disagreement, addressed explicitly or implicitly in the papers, 
relates to the nature of the design process itself and the best way to formally rep­
resent it. Some researchers propose to use formal logic and postulate induction, 
deduction, and abduction as the basic design derivation and modification mechan­
isms. Others take a more empirical stance and attempt to follow established design 
methodologies as much as possible. Some propose an evolutionary approach and 
try to reproduce as closely as possible human decision-making. Depending on the 
approach, deriving properties of the design process can be seen as deriving prag­
matic, rule-of-thumb observations, or proving properties of formal systems. These 
considerations yield very different formalizations. 

A related issue is the degree of specificity of the theory with respect to the 
design domain and process. The question is to determine what is common and what 
is distinct in architectural design, mechanical design, and VLSI design, to name a 
few examples. In other words, in what sense is the design of a house similar or 
different to the design of a car or a household electric appliance? Some fields and 
design activities are more generative, some emphasize enumeration and selection, 



DESIGN PROCESS METHODS: DISCUSSION 289 

while others rely heavily on adaptation of previous designs. Some must follow 
a highly structured set of rules, while others rely on unquantifiable judgements, 
such as aesthetics. Yet another difference is whether the design is product-driven 
(products designed to meet specific consumer needs), technology-driven (products 
designed to push a new technology), or process-driven (products whose charac­
teristics rely heavily in a production process). These differences are not merely a 
question of the degree of creative, innovative, detailed, or routine design involved: 
they are at the base of the discipline and the design process itself. 

These issues have a major impact on how researchers develop formal and com­
putational theories of the design process. The definition, systematization, and ex­
ploration of the design space, its focus and representation, and the derivation pro­
cesses heavily depend on the genericity and domain-independent assumptions that 
are made. This helps to explain why some works emphasize mathematical form­
alization (logic, optimization, etc.), while others take a procedural or behavioral 
approach, focusing on reproducing the input/output behavior of the human design 
process. Approaches that attempt to mimic human designers are based on empir­
ical studies of the design process through user interviews and design protocols. 

This diversity in assumptions, emphasis, and focus makes comparing and eval­
uating the proposed methods very difficult. Some researchers have proposed to use 
benchmarks as an objective means to compare different approaches. Benchmark 
studies are indeed useful to understand the scope, coverage, and efficiency of a set 
of methods with respect to a task. However, they are only suited to relatively ma­
ture fields, with well-defined and well-understood problems, such as comparing 
the performance of two computers. For design process methods, we cannot even 
begin to agree on what the problem is, let alone define what criteria should be used 
to compare them. 

3. Design Process Paradigms 

In reviewing current work on design process methods, it is interesting to note that 
most of the proposed methods are build around a single paradigm, with the assump­
tions, simplifications, and specific focus (not always explicitly stated) that this en­
tails. I will briefly review the two papers presented on design process methods. The 
goal is to identify the paradigm upon which they are based and make their assump­
tions explicit. 

Brazier, Van Langen, and Treur present a logical theory of design based on 
formal semantics for both the static (knowledge) and dynamic (reasoning) aspects 
of design. The theory, which is based on many-sorted first order predicate logic, 
partial temporal models, and non-monotonic reasoning, is generic and domain in­
dependent. The authors justify their approach with the paradigmatic observation: 

"Design tasks typically reason with incomplete and inconsistent knowledge of 
requirements and design object descriptions; they reason non-monotonically 



290 LEO JOSKOWICZ 

with and about, for example, (default) assumptions, contradictory information, 
and new design knowledge." 

Interestingly, the authors directly go on to describe the technical details of the form­
al semantics, which they claim provides a means to model design strategies, without 
explaining why such a formal semantics is desirable. 

Lei, Taura, and Numata present a product model-oriented approach, where the 
data associated with the product at the different stages of the product life cycle 
serves as the key organizing principle. The model supports the generation, explor­
ation and navigation of the design objective in each task or activity, and the evol­
ution and alternatives in the design history. This paradigm is summarized by the 
following observation: 

"The collaborative design process can be viewed essentially as the evolution 
of product data, which is the result of a series of decisions." 

The central role of explicit modeling of the evolution alternatives and constraints 
of the product data justifies the emphasis on the product data model. The com­
puter implementation, based on the language STEP (Standard for the Exchange 
of Product Model Data) targets electro-mechanical product design. 

4. Conclusion 

As the reader can appreciate, it is difficult to compare or even put these theories 
in perspective with respect to each other. In my opinion, there should be a greater 
effort to precisely characterize the scope and domain of application of each theory, 
and identify both their theoretical and pragmatic limitations, which are not always 
the same. For example, a theory can be very expressive but practically very difficult 
to compute with, or vice-versa. The critical assumptions must be stated explicitly, 
and greater effort should be put in clearly stating the paradigm upon which it is 
based, the domain where it is most likely to be useful, and the domain or type of 
design where it is not useful. 

Following this methodology will allow us to begin assembling a "toolbox" of 
design methods, while the ''ultimate'' theory (if such a theory indeed exists) is be­
ing worked on. It will allow us to identify areas that require more research, and 
problems that deserve more attention. It will provide practitioners with an under­
standing of what is and is not presently possible, and useful approaches, if not pro­
grams, to address their problems. 

Conversely, and on a more pragmatic level, we should also examine existing 
needs and identify the current bottlenecks in the design of a particular class of 
products and domains. This will help us identify what developments would yield 
the maximum benefit, and help motivate research both in the short and the long 
term. 



Closing Discussion 



ADVANCES IN FORMAL DESIGN METHODS FOR COMPUTER· 
AIDED DESIGN 

JOHNGERO 
University of Sydney, Australia 

1. Introduction 

The introduction to the closing chapter of the proceedings of the workshop 
on Formal Design Methods for Computer-Aided Design (Gero, 1994) 
commences with the following paragraphs, which are still applicable. 

The primary axiom of formal design methods is that design is a process, 
ie, it is temporally based and various distinguishable activities can be 
ascribed as occurring during the process. The use of formal design methods 
does not imply that design, when carried out by humans, is based on these 
formal methods. Rather, the use of formal methods initially provides a 
framework for our notions about design. Just as the use of scientific methods 
to study emotion does not make emotion a scientific process, so the use of 
scientific methods to study design does not make design a scientific process. 
However, once we have formal design methods we can conceive of uses for 
them other than as simple descriptive devices. 

What are the possible roles that formal methods can play in design and in 
computer-aided design in particular? Formal methods in other disciplines 
have been found to be useful in a variety of ways and, by analogy, we are 
able to enunciate roles for formal methods in design. An incomplete list of 
potential roles includes: 

1 informing us about design as a process; 
2. providing a framework for comparisons amongst alternate design 

processes; and 
3. providing a basis for the development of design tools. 

To this list we can add the following: 

4. provide a basis for distinguishing different kinds of design 
processes. 



294 JOHNGERO 

2. Informing Us About Design As a Process 

Design is considered to amongst the most complex and most intellectual of 
human activities. It is the basis for the change of the physical world we 
inhabit. As such it is surprising that it is neither well understood nor well 
characterised. 

Design is widely regarded as a process during which the designer carries 
out distinguishable activities. These activities can be characterised through a 
formal structure which can be used to provide a framework to assist in the 
understanding of what design is. Introspection, retrospection and protocol 
(Gero and McNeill, 1996) studies provide a basis for this use of formal 
methods. A formal method is proposed as a structure capable of providing a 
framework for our ideas about design. That structure is often found to be 
satisfactory in providing a framework for some aspects only of our 
understanding of design. However, other aspects may not be accounted for, 
hence other structures are needed to augment or replace the existing ones. 

Formal design methods provide the opportunity to characterise design as 
a process in a uniform manner using concepts and terminology which 
transcend the individual designer and gives primacy to the processes of 
designing. Formal design methods are often taught as part of either a design 
theory course or in a design course as a process of designing. There appears 
to be a divide between the technology-oriented design courses such as in 
engineering and those in the human-oriented design courses such as in 
industrial design and to a lesser extent architecture. The former courses are 
beginning to embrace formal design methods whilst the latter less so. 

Early formal methods proposed the analysis-synthesis-evaluation model 
of design. Whilst today this is considered to be an inadequate model it has 
provided the framework for the development of many other process models. 
Other characterisations, such as that of function-behaviour-structure, of 
routine/non-routine design, and of case-based/compiled knowledge design 
have all added to our armory to aid our understanding of design. What these 
formal characterisations have shown is that design is a highly complex 
activity which needs many characterisations for its understanding. 

3. Framework For Comparisons Amongst Alternate Design Processes 

The field of design research is populated by researchers who come from 
very varied backgrounds. They come from the design disciplines themselves: 
architects, engineers, industrial designers, and so on. They also come from 
such disciplines as psychology, computer science, history and philosophy. 
Given this variegated background one role of formal methods is to provide a 
framework which allows comparisons to be made amongst alternate design 



ADVANCES IN FORMAL DESIGN METHODS FOR CAD 295 

processes or alternate descriptions of the same design processes. It is not 
intended here to provide a framework which allows for the comparison of 
alternate design processes. A few examples will suffice to illustrate the ideas 
involved. Whilst a model of design based on concepts from optimization 
appears to bear little relation to one based on constraint satisfaction, they can 
both be categorised under a formal approach based on search. The notion of 
search, itself, carries with it concepts associated with a space to be searched. 
This introduces the need to characterise design spaces and provides the 
opportunity to extend our understanding of what design spaces are and how 
they may be created and examined. 

Whilst there are well-defined frameworks derived from both within and 
without design research, none appears to be able to provide both the breadth 
of abstractions and the depth of process structure needed to be all 
encompassing. The function-behavior-structure framework (Gero, 1990; 
Umeda et aI., 1990) has proven to be both useful and durable as a means of 
articulating fundamental differences in the characterizations of design 
activity unrelated to individual processes which execute that activity. 

The other common framework which is process-oriented is the search­
exploration framework. Here search is considered to be that set of design 
processes which assumes that design can be treated as operating within a 
fixed space of possible designs and any design process can be characterized 
as searching for appropriate solutions. From a computational viewpoint this 
is a very attractive approach since it readily maps onto various standard 
algorithms such as numerical optimization in the numerical world and 
constraint-based reasoning in the symbolic world. On the other hand, 
exploration is that set of design processes which manipulate design spaces 
which are then subsequently searched. 

Both these frameworks are suitable at an abstract level for providing a 
structure for alternate design processes but are not concrete enough to allow 
any form of detailed comparison. . .The function-behavior-structure 
framework is useful in determining the locus of a process within a design 
activity since it articulates the six, common different design activities: 

1. design formulation 
2. design synthesis 
3. design analysis 
4. design evaluation 
5. design reformulation 
6. design documentation. 

The primary advance in this area has been the increasing recognition that the 
search-exploration framework provides a means of distinguishing design 
from many other activities which it appears to look like; activities such as 
problem solving and planning. The effect of this has been to allow such 



296 JOHNGERO 

design processes as case-based design and a variety of 'creative' design 
processes to fit into this framework in order to make comparisons between 
them at this level of abstraction. This comparison is not via benchmarking 
but in terms of locus in the design process and in terms of the capability of 
the process to produce the stated output. 

4. Basis for the Development of Design Tools 

There are two complementary views taken about formal design processes. 
The first is that formalizing such processes helps us understand design as a 
series of processes better. The second is that formal design processes are the 
basis for the development of design tools. A design tool is a computer 
program which takes a specified design task and provides one of three levels 
of design aid: 

1. provides active support in the form of a complete solution to that 
design task, for example synthesising or selecting a particular 
component which satisfies a set of constraints; 

2. provides active support in the form of the beginnings of a solution to 
that design task, for example a conjecture about a possible direction 
or path to follow; or 

3. provides passive support for a design task, for example an analysis or 
evaluation related to that design task. 

This workshop has demonstrated that a variety of novel processes can be 
introduced into design. 

5. Distinguishing Different Kinds of Design Processes 

For many computer-aided design simply refers to the process of 
documenting a design, thus for most practitioners today CAD stands for 
either computer-aided drafting or computer-aided analysis although there is 
an increasing realization that there is more. Formal approaches allow us to 
distinguish different kinds of design processes according to both their locus 
in an overall view of design and their methodology. 

There appear to be three bases of design methods: 

1. those based on empirical results; 
2. those based on axioms; and 
3. those based on conjectures. 

This third category can be further subdivided into: 

3.1 those where the conjecture is founded on an analogy with human 
design processes, and 



ADVANCES IN FORMAL DESIGN METHODS FOR CAD 297 

3.2 those where the conjecture is founded on concepts other than 
human design processes. 

Surprisingly, there are very few empirical results derived from human 
designers on which to base a design method. As a consequence there are 
very few formal design methods which are directly based on human design 
processes. Just as there very few design theories to explain the phenomena of 
human designing. The closest example of this class of design methods is that 
presented by Rodgers et aI. in this volume although it is not strictly based on 
direct empirical evidence. 

Formal design methods based on axioms are more common than those 
based on empirical results but even here there are remarkably few and the 
discussion by Rudolph in this volume examines some of the reasons why 
there are so few. Such axiom-based formal methods include those presented 
by Rudolph and by Brazier et aI. in this volume. 

By are the most common basis for current formal design methods are 
conjectures, conjectures of both kinds listed above. Design by combination 
is a good example of a formal design method based on a conjecture which is 
itself founded on an analogy with a human design process which is claimed 
to be of that kind. This class of design methods is the most common even 
though not all the conjectures are well-founded. Amongst this class is found 
the formal methods of: design by generate-and-test, design by refinement, 
design by analogy, case-based design, top-down methods, etc. Examples of 
this class of formal design methods in this volume include those presented 
by Kalay and Carrara, and Grabowski et aI. 

The second class of conjecture-based design methods include the 
mathematically-based methods and the large corpus of design systems which 
use a heuristically derived system architecture as the framework. Examples 
of this class of formal design methods in this volume include those presented 
by Maher et aI., Gero and Kazakov, Brown and Cagan, Zozaya-Goristiza 
and Estrada, Lenart, and Lei et aI. 

6. Conclusions 

Formalizing design methods allows them to be better understood before they 
are used. It provides the basis for any mode of comparison between methods 
whether these comparisons be based on the methods' complexity, ontology, 
epistemology, teleology or applicability. It becomes possible to examine the 
method separately from the results it produces and to determine its behavior. 
It becomes possible to consider a method's expressive power and to 
determine whether it is a strong but specialised method or a weak but general 
method. 



298 JOHNGERO 

Perhaps the most significant aspect of formalizing design methods is that 
it then becomes possible to implement them as computer programs which 
radically changes both their character, their testability and their applicability. 
Without such formalization computerization becomes extremely difficult if 
not impossible. Computer implementations also allow for methods to be 
tested empirically on a wide variety of design problems. 

The eleven contributions found in this volume provide a guide to the 
state-of-the-art of formal design methods for computer-aided design. They 
demonstrate both the range and depth of such methods. They also 
demonstrate that formalizing design methods is still in its early stages and 
more needs to be done to derive all the benefits from such formalizing. 

References 

Gero, J. S.: 1990, Design prototypes: A knowledge representation schema for design, Al 
Magazine 11 «4): 26-36. 

Gero, J. S.; 1994, Formal design methods for computer-aided design, in J. S. Gero and E. 
Tyugu (eds), Formal Design Methods for Computer-Aided Design, North-Holland, 
Amsterdam, pp. 353-359. 

Gero, J. S. and McNeill, T.: 1996, An approach to the analysis of design protocols, Research 
in Engineering Design (submitted). 

Umeda, Y., Takeda, H., Tomiyama, T. and Yoshikawa, H.: 1990, Function, behavior and 
structure, in 1. S. Gero (ed.), Applications of Artificial Intelligence in Engineering V: 
Design, Springer-Verlag, Berlin, pp. 177-193. 



Boulanger, S. 3 
Brazier, F. M. T 243 
Brown, K. N. 59,97 

Cagan, J. 59 
Carrara, G. 107 

Estrada, L. F. 75 

Gero, J. S. 31, 293 
Grabowski, H. 181, 209 

Joskowicz, L. 287 

Kalay, Y. E. 107 
Kazakov, V. A. 31 

Lei, B. 267 
Lenart, M. 51, 189 
Lossack, R.-S. 209 

AUTHOR INDEX 

Maher, M. L. 3, 51 

Numata, J. 267 

Patterson, A. 137 
Poon, J. 3 

Rodgers, P. A. 137 
Rudolph, S. 165,231 

Taura, T. 267 
Treur, J. 243 

van Langen, P. H. G. 243 

Weis, C. 209 
Wilson, D. R. 137 

Zozaya-Gorosiza, C. 75 


