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Secure Systems Department
IBM T.J. Watson Research

Center
Hawthorne, NY 10532 USA
caceres@us.ibm.com

Ron Perez
Secure Systems Department
IBM T.J. Watson Research

Center
Hawthorne, NY 10532 USA

ronpz@us.ibm.com

Wenke Lee
College of Computing

Georgia Institute of
Technology

Atlanta, GA 30332 USA
wenke@cc.gatech.edu

ABSTRACT
In this work, we show how the abstraction layer created by a
hypervisor, or virtual machine monitor, can be leveraged to
reduce the complexity of mandatory access control policies
throughout the system. Policies governing access control
decisions in today’s systems are complex and monolithic.
Achieving strong security guarantees often means restricting
usability across the entire system, which is a primary reason
why mandatory access controls are rarely deployed. Our ar-
chitecture uses a hypervisor and multiple virtual machines to
decompose policies into multiple layers. This simplifies the
policies and their enforcement, while minimizing the overall
impact of security on the system. We show that the over-
head of decomposing system policies into distinct policies
for each layer can be negligible. Our initial implementation
confirms that such layering leads to simpler security policies
and enforcement mechanisms as well as a more robust lay-
ered trusted computing base. We hope that this work serves
to start a dialog regarding the use of mandatory access con-
trols within a hypervisor for both increasing security and
improving manageability.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Design, Security

Keywords
Virtualization, mandatory access control, layering, informa-
tion flow, security, policy

1. INTRODUCTION
Virtualization is becoming ubiquitous. It is widely used in
corporate data centers to reduce the total cost of ownership
of computer systems, and has many useful applications in
other areas as well. Virtualization promises to improve sys-
tem security because it can provide strong confinement of
virtual machines (VMs). Since strong confinement is not a
default feature in most hypervisors, we believe that strong
confinement is best achieved by adding mandatory access
controls (MAC) to hypervisor systems in order to control
information flow between virtual machines.

However, unconditional confinement of virtual machines
introduces its own issues. One such issue arises because
many meaningful applications require communication be-
tween multiple entities [8]. For example, consider a web
browser and an email client. People expect to click on links
in their email client to open web pages and to click on email
addresses in their web browser to start new emails. This
interaction could not take place if each application was run
in completely confined virtual machines. Pure confinement
prevents applications from doing their jobs. Therefore, there
must be controlled sharing of resources between virtual ma-
chines that still enables flexible information flow [38].

A second issue is the complexity of MAC security policies.
Complexity makes it hard, if not impossible, to create a
secure policy while still having a usable system. This is-
sue is apparent in current systems such as Fedora Core 6,
where SELinux [31, 25] MAC security policies either cover
the whole system (strict policies) and break some system
applications, or cover only a small part of the system (tar-
geted policies) providing partial system security. In the case
of partial system security, some applications are not being
fully protected with MAC, potentially making it easier for
an attacker to break into the system. This vulnerability is
a result of the complexity involved in making a strict policy
that does not break the system functionality. In these types
of monolithic systems, complexity arises from the need to
control large numbers of relationships between fine-grained
subjects and objects, such as between processes and files,



even if only simple guarantees are demanded (for example,
do not leak social security numbers).

In this paper we propose a layered approach to MAC secu-
rity policies that addresses both of the above issues. We fol-
low the same layering inherent in virtualized systems: hyper-
visor, operating system kernel, and applications. The policy
at each layer – along with the related enforcement hooks –
controls information flow at the semantic level of that layer.
We disaggregate applications such that each virtual machine
runs one component of an application. For example, in a
web server application we run the HTTP front-end and the
database back-end in separate virtual machines. This orga-
nization allows us to benefit from the natural confinement
and communication paths within a virtualized environment.
We emphasize that the confinement enabled through vir-
tualization addresses storage and legitimate channels, but
does not address covert channels [23]. Techniques for prop-
erly addressing covert channels are known [21, 33], and are
beyond the scope of this paper.

Our approach is designed to reduce the complexity of secu-
rity policies by reducing the number of subject-object rela-
tionships. By running application components in separate
virtual machines, MAC at the hypervisor level focuses on
controlling information flows between virtual machines. At
the same time, MAC at the operating system level focuses
on controlling information flows within a component. We
feel that the different levels of policy acting in combination
yield the same expressiveness as previous monolithic policy
approaches.

This paper describes our work on the architecture and the
key challenges in this space. We believe that virtualization
will quickly become an indispensable component in modern
systems and that our architecture offers a great opportu-
nity to include strong security into virtualized environments
from the beginning. Our initial implementation works with
the Xen [5] and PHYP [3] hypervisors and shows the prac-
ticality and viability of this architecture. Throughout this
paper, we identify the open problems and implementation
questions with the goal of starting a dialog regarding the
best approaches to these problems.

The rest of this paper is organized as follows. Section 2
presents our layered security architecture. Section 3 de-
scribes the role of each layer in more detail, including some
sample applications of our architecture. Section 4 discusses
how our approach could be evaluated relative to previous
approaches. Finally, Section 5 puts our proposal in the con-
text of related work.

2. ARCHITECTURE
To motivate our architecture, consider the web application
shown at the top of Figure 1. Two web servers (labeled
A and B) share a common corporate database (labeled C).
Imagine that each web server provides information at dif-
ferent sensitivity levels. For example, one could serve the
Human Resources Department and one could serve the rest
of a company. To ensure that data intended only for Hu-
man Resources (for example, social security numbers) is not
leaked through the other server, a guard [18] is placed be-
tween the web servers and database. This guard is a simple

application that, in this example, validates requests to the
database along with the data passed back to the web server.

A variety of techniques could be used to enable this appli-
cation scenario. The critical point is to ensure that infor-
mation flow is restricted such that the web servers can only
communicate with the database by going through the guard.
Besides virtualization, some other techniques available in-
clude using a chroot environment combined with MAC to
confine each process, using a microkernel with MAC to
control interprocess communication (IPC), or using physi-
cally separate machines with some technique to authenticate
inter-machine communication.

Chroot environments would not be ideal for this situation.
While it is possible to enable communication between pro-
cesses in a chroot environment [9], the resulting trusted
computing base (TCB) would encompass the entire oper-
ating system and there would only be a minimal reduction
in MAC policy complexity. Microkernels offer an interest-
ing alternative. The microkernel and its supporting pro-
cesses would all be part of the TCB [40], and analogous to
the hypervisor in our architecture. In addition, the software
components (for example, web servers, database, and guard)
would need to communicate using IPC. This would require
MAC within the IPC mechanism and strong confinement be-
tween the processes address space. Our architecture could
be implemented using a microkernel, but we choose to use a
hypervisor for the stronger native isolation features and the
readily available MAC within the hypervisor.

The most commonly deployed option today are architec-
tures built using physically separate systems: one for each
web server, one for the database, and one for the guard.
This configuration has several drawbacks when compared
to using a virtualized approach. On the one hand, virtual-
ization provides a mechanism for validating MAC labels as-
sociated with communication paths between the VMs. This
can be done in a trusted fashion, at bind time, without re-
quiring a MAC implementation in the OS kernel. Separate
systems can only securely label their communication paths
(that is, networking) using IPSec and MAC in each OS ker-
nel [20]. Alternative techniques such as firewalls and IP fil-
tering are specific to low-level network architectures, suscep-
tible to compromise when a service is attacked, and difficult
to manage in a dynamic environment. On the other hand,
virtualization provides more traditional benefits including
increased system utilization, server consolidation, and flex-
ibility in terms of system provisioning and migration. Our
approach uses virtualization to decompose the architecture
into layers to achieve a considerable simplification in man-
ageability and policy, as well as a cost effectiveness that
enables such architectures to be deployed broadly in open
business environments.

Our architecture is comprised of three layers as shown in
the bottom of Figure 1: the hypervisor, the OS kernels,
and the applications. Each layer can have its own policy
and each layer is protected from all higher layers. Therefore
each layer has its own security labels such that the labels of
higher layers refine access control information delivered by
lower layers. This enables finer-grained yet more abstract
access control decisions in higher layers. In this context, we
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Figure 1: In this example, the guard controls SQL requests and responses passing between different web
servers and a shared database. The architecture is divided into multiple layers. The lowest layer provides
coarse-grained isolation of workload types A, B, and C, stored in sHype labels. Higher layers provide fine-
grained filtering of requests and responses from A, B, and C inside the guard OS.

assign the following granularity to each layer:

• The hypervisor layer is responsible for securely mul-
tiplexing the hardware resources and controlling the
information flow between VMs. Information flow is
controlled by assigning labels to resources and VMs.
The administrator can create simple type enforcement
and Chinese Wall policies to express valid information
flows and resource sharing [35]. The hypervisor is pro-
tected from higher layers using the hardware isolation
capabilities in modern processors. In addition, multi-
ple hypervisors can work together to enable distributed
workload isolation [28].

• Any of the OS kernels may implement MAC (for ex-
ample, SELinux). In the example above, the guard
would require MAC to confine data received from the
other virtual machines. The kernel is protected by the
hypervisor layer from other OSs on the same platform
and from its applications through hardware isolation
capabilities in today’s processors.

• When MAC is extended into an OS kernel, distinct
processes at the application layer filter requests and
responses. For example, the guard in Figure 1 pro-
vides filtering between processes handling OS labels
A* and C* respectively. This filtering controls infor-
mation flow on the granularity of SQL clauses in re-
quests, and database records in responses.

These layers follow the traditional layers in a virtualized
system. This allows for a natural one-to-one relationship
between policies and layers. One policy is written for the
hypervisor, one policy may be written for each OS kernel,
and one policy may be written for each application. Each
policy is able to stay with its respective layer during events
that disrupt the static layered relationship (for example, VM
migration). In this way, there is a significant benefit to main-
taining separate policies for each layer. While the individual
policies for each layer could be compiled into one large policy

for the entire system, this would only increase the amount
of code in the TCB (that is, the policy compiler) and would
result in a single policy that is more difficult to audit and
verify.

Leveraging layers of increasing abstraction is not a new con-
cept and has proven beneficial in yielding manageable and
efficient systems by dividing system tasks into different lev-
els of abstraction (for example, the THE system [12] and
the Venus system [24]). Here we use layering to manage the
MAC policy complexity while limiting and compartmental-
izing the code needed to ensure security.

Orthogonal to the layering, virtualization enables disaggre-
gation of the applications by moving them into different vir-
tual machines. This results in reduced policy complexity
and maintains the ability to control the information flow
using the hypervisor layer. Previous approaches would ei-
ther put all the applications in one OS (resulting in higher
policy complexity) or put them on different physical systems
(limiting the ability to control information flow throughout
the entire application between those systems).

Combining layering and disaggregation, our architecture can
greatly simplify MAC. Furthermore, our architecture uses
MAC to facilitate simple and meaningful information flow
policies. This simplification comes from confining informa-
tion flow between the applications where possible, and con-
trolling the remaining information flows. Finally, a guard
OS is used where fine-grained control is required.

3. MANAGING INFORMATION FLOW
Our approach is based on the realization that controlling
inter-application communication within a single OS is dif-
ferent from controlling inter-VM communication. Consider
the case of two applications running in a single OS. There are
numerous ways these applications can communicate includ-
ing IPC, networking, file access, shared memory, and more.
Each of these communication paths must be controlled to
protect the applications from each other and to control the



information flow between them. Looking at inter-VM com-
munication, there are only two communication paths be-
tween VMs in Xen: event channels and shared memory. By
working with a significant reduction in the number of com-
munication paths, we can create an equivalent access control
policy with greatly reduced complexity.

Our architecture could be implemented with any hypervi-
sor and OS(s) that support MAC, but here we focus on the
Xen hypervisor, with the Access Control Module (sHype)
enabled to provide MAC in the hypervisor, and SELinux to
provide MAC in the OS kernel. We are using these soft-
ware components to build a prototype implementation of
our architecture. While our implementation does not yet
include all the features discussed in this paper, it is suffi-
cient to highlight the challenges faced when implementing
an application within our architecture. These challenges,
along with our experiences from the implementation, are
discussed throughout the remainder of this section.

For this discussion, we focus on the hypervisor layer and the
OS kernel layer, and how they interact. We first define a few
terms to simplify the following discussion. VMs providing
confinement with OS-MAC are typically performing the role
of a guard so we refer to these as guard VMs. We denote the
labels assigned by the hypervisor as hlabels and the labels
assigned by a guard VM as glabels.

Our implementation allows a hypervisor to assign an hlabel

and one or more workload types to each VM and to each re-
source (for example, disk or network interface). VMs with
more than one workload type in their hlabel are trusted
by the hypervisor to provide data confinement between the
workload types. This confinement may be provided using
MAC or, when the VM is trusted, discretionary access con-
trol (DAC). These VMs may also be configured to allow
controlled information flow between labels after comparing
the information against a predefined policy. In this way, we
use access control to define an information flow policy, as
shown in Figure 2.

Using MAC with hlabels, our current implementation
shows how resources can be safely shared between multi-
ple workloads. Our configuration is similar to Figure 2,
except the guard application provides disk access for mul-
tiple differently labeled VMs (for example, the web server
and the database). The guard verifies that a given VM can
access a disk resource at bind time by checking the VM and
resource hlabels against the hypervisor policy. Once this
access is permitted, no further checks are required within
the guard. Our implementation uses similar techniques to
control network communication between VMs.

Since guard VMs perform a single purpose, they can usu-
ally be designed to run from a small OS image (that is, no
more than a few MB) such that the code can be evaluated,
if desired [15]. Code evaluation [13, 1] in the guard VM
would be required for high assurance applications, but is
beyond the scope of this work. VMs with only one work-
load type in their hlabel do not require mandatory access
control because that is only needed to provide confinement
between different workload types. By reducing the necessity
of OS-level confinement to a few, limited locations, this ar-
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1) hlabel is 'DB'
2) glabel is 'DB.sqlreply'
3) Guard inspects data;
    relabels for recipient.
4) glabel is 'WebSrv.reply'
5) hlabel is 'WebSrv'

Figure 3: Labels are specific to a given policy, which
is defined for each layer. Here we see the label
transition as a SQL reply travels through a guard
domain. The guard application can consider both
the content in the message and its label in deciding
whether to permit relabeling.

chitecture reduces the administrative overhead required to
properly set up and run these types of systems.

Hlabels and glabels are only meaningful in terms of the
policy that defines them. Since we have different labels at
each layer, we must also have different policies at each layer.
For example, consider a system running sHype in the hyper-
visor and SELinux in a guard VM. Each of these mandatory
access control systems has its own policy, its own labels, and
its own subjects and objects. In other words, the semantics
of the labels at each layer are different. Therefore, when
data is passed between layers, special consideration must be
given to ensure that the label is properly propagated across
the layer boundaries.

When moving between layers, data can either go up (that
is, hypervisor to VM) or down (that is, VM to hypervisor).
When data moves up, it will need to be relabeled and the
policy may require updating (for example, if a new label
is created for the data). For example, our implementation
converts a VM’s hlabel to a glabel that is used to deter-
mine if the VM can connect to a given resource. In general,
the data must be associated with a glabel in order for the
OS-layer to properly protect it from higher layers. Since the
OS layer trusts the hypervisor layer, it trusts the hlabel

associated with the data. Therefore, the OS must maintain
a mapping such that each hlabel can be mapped to exactly
one glabel. When it receives the data, it changes the la-
bel according to the mapping so the data can be properly
confined by the OS. The first time data associated with a
particular hlabel moves up, no mapping will exist. In this
case, a new glabel is created at run time. Figure 3 shows
hows the label associated with a single message changes as
it travels through a guard domain.

Dynamic label creation implies that the policy is also dy-
namic, which poses an interesting challenge in this space
that we view as an open problem. Specifically, how does
one provide the same security guarantees as today in a sys-
tem such as SELinux, while allowing for dynamic label cre-
ation? We are developing a solution to this problem, which
will allow our layered architecture to be deployed without
requiring a priori coordination between the hypervisor-level
and OS-level policies, therefore easing the administrative
burden.
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     and permits direct communication with guard OS
2) OS assigns glabel from arriving data's interface
3) Guard application changes glabel if permitted as a
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Figure 2: Information flow through the layered architecture for example communication from a web server
to a database. Note that each step is very simple, but the end result is a fine-grained security policy.

Considering the other direction. When data passes from an
OS into the hypervisor, it is the responsibility of the OS to
associate the correct hlabel with this data. Using the same
hlabel to glabel mapping described above, the OS will
lookup the proper hlabel and pass the data to the hypervi-
sor through a labeled path (e.g, a virtual network or virtual
block device hypervisor interface that has the correct hlabel
assigned). Since the VM will likely have finer-grained labels
than the hypervisor, multiple glabels may map into a sin-
gle hlabel. Since no new labels are created for data moving
in this direction, there is no need to update the hypervisor
policy as we did for the VM above.

This section described how MAC can be layered to reduce
the overall policy complexity and manage information flows.
We can use similar techniques to extend MAC into the ap-
plication level to provide finer-grained control. Next, we
describe four classes of applications that benefit from our
architecture:

0-way Guard VM: A zero-way guard provides strict iso-
lation of data. This is useful when you want to share a re-
source (for example, hard drive) between two or more VMs
with different hlabels. While the hypervisor can securely
share different disk partitions or disks between VMs, using a
guard VM allows for safe sharing within a disk partition. In
addition, a guard VM could be used to dynamically allocate
disk space to each VM as needed, while properly scrubbing
the disk when reallocating blocks between VMs.

1-way Guard VM: A 1-way guard only allows data to
pass in one direction. This type of guard is useful for multi-
level security (MLS) systems [7]. In MLS systems, data
is implicitly allowed to pass from a lower level to a higher
level without any checking. This could be setup directly
with shared memory pages, ensuring that each VM has the
appropriate privileges (that is, write-only for the low VM
and read-only for the high VM). Alternatively, data passing
from high to low must be inspected or sanitized to ensure
that no sensitive data is leaked. This sanitization setup
could take place within a guard VM.

2-way Guard VM: A 2-way guard is described as the ex-
ample in Figure 1.

n-way Guard VM: An n-way guard contains groups of
VMs with different hlabels. For example, consider a host-
ing service that manages computers from three competing
companies. VMs for each company would be permitted un-
restricted communication with other VMs from the same

company (that is, with the same workload type in their
hlabel). Communication with VMs from other companies
could be restricted by the guard VM to a very narrow set
of actions such as a subset of the HTTP protocol on TCP
port 80.

4. DISCUSSION
The ultimate goal of our layered approach is to provide
sound security protection. This, in turn, requires that our
security architecture embodies sound security design deci-
sions. While, in general, it is not possible to automatically
generate a sound security architecture or mathematically
verify the soundness of a security architecture, prior work
has provided important design and evaluation criteria [36,
13, 1].

We argue that our layered approach measures very well with
respect to the well-established design principles for protec-
tion mechanisms, which include economy of mechanism, fail-
safe defaults, complete mediation, open design, separation
of privilege, least privilege, least common mechanism, and
psychological acceptability. For example, our architecture
facilitates open design by allowing one to add a layer or VM
with its own security policy. And it facilitates separation of
privilege by disaggregating the application components and
controlling the inter-VM communication.

One key benefit of our architecture is reduced complexity.
Consider an access control policy for n subjects and m ob-
jects. If the applications (subjects) run in the same VM,
then the security mechanism must control O(nm) poten-
tial interactions between subjects and objects. Figure 4(a)
shows an example of this scenario, with three subjects (cir-
cles) and five objects (squares) in one operating system. By
comparison, if we run each application in its own VM, and
the hypervisor controls the information flow between the ap-
plications, then there are only O(n + m) relationships that
require control. This is derived by adding the connections
from each VM to the hypervisor, n + 1, plus the layering
overhead, λ(n + 1), plus the connections to the OS objects,
m. Note that λ is a constant that specifies the number of
inter-VM communication mechanisms available within the
hypervisor, which is 2 for Xen: event channels and shared
memory. These connections are shown in Figure 4(b), where
the VM to hypervisor connections are shown as vertical lines
and the λ inter-VM communication mechanisms are shown
as horizontal lines in the hypervisor. Reasonably sized ap-
plications would quickly benefit from the smaller number
of overall connections even after accounting for the layer-
ing overhead. Complexity is reduced, in part, because the



(a)  O(nm) complexity in a single OS.

(b)  O(n+m) complexity, including 
layering overhead, using VMs.

Figure 4: Our architecture (b) reduces the number
of subject – object relationships, compared to a sin-
gle OS (a).

application VMs leverage VM isolation and do not require
MAC. Furthermore, we plan to formally verify that an ac-
cess control model on our layered security architecture is at
least as expressive as one on a single operating system [10,
41].

Reduced complexity leads to economy of mechanism, and
more subtly but perhaps more importantly, better usabil-
ity and, therefore, psychological acceptability. This follows
from the fact that, when running an application on our lay-
ered architecture, an application programmer or a system
administrator needs to specify a simpler security policy (for
example, fewer number of entries in an access control ma-
trix).

Another important factor in psychological acceptability is
the overall system performance when a new security mecha-
nism is incorporated. Any implementation of an application
using our architecture should be evaluated for performance
against the same type of system in a traditional single OS
architecture. To this end, we need to first evaluate both se-
tups without any security enabled. This would allow us to
identify the overhead from security independently from the
overhead from virtualization. While we do not have the full
implementation and evaluation, our performance numbers
for the Xen hypervisor are very encouraging. Our initial
experience is that the overhead due to virtualization, while
currently still varying widely, will be small (5-10%) when
virtualization hardware support is fully leveraged. Using
our architecture will introduce next to no (<1%) additional
overhead on Xen. The security overhead performance num-
bers reported here are from sHype on Xen measuring inter-
VM communication overhead using Xen-Oprofiling (Xeno-
prof [29]) and Flexible File System benchmarks (FFSB [2]).

Our initial experiences suggest that this architecture pro-
vides a viable technique for reducing the complexity of MAC
policies with minimal performance impact. However, a com-
plete performance and security evaluation is still needed to
fully understand how this approach compares with existing

techniques. As discussed above, the performance impact of
virtualization is generally understood and adding MAC to
the hypervisor has a minimal impact on performance. The
open questions with regards to performance include measur-
ing the overhead from disaggregation and the overhead from
sending data through the guard. Each of these overheads
should be compared against a system without any security
and a comparable system that uses a single, monolithic MAC
policy. For the security evaluation, the critical question is
if our architecture is as expressive as an architecture that
uses a monolithic MAC policy. We designed our architec-
ture to maintain the MAC policy expressiveness by allowing
MAC at each layer. We can still perform fine-grained control
within a single VM while performing corse-grained control
on information flow between VMs. Evaluating the expres-
siveness of this setup will require building a formal model
of the types of control that are possible with both mono-
lithic and layered MAC policies, and then showing that each
model is equally expressive.

5. RELATED WORK
The primary motivation for this work is to reduce the com-
plexity associated with controlling information flow between
two or more software components. Existing techniques could
implement such a system using multiple, physically separate
machines. However, these architectures would rely heavily
on the general use of MAC in each operating system (for
example, SELinux). A side effect of providing this type of
fine-grained access control entirely at the OS layer is that the
associated policies are very complex [19]. Policy complex-
ity has become an important topic within the MAC research
community because this complexity has slowed the adoption
of MAC-based systems [32, 4].

Our work represents a combination of related work from a
variety of research areas including layered system architec-
tures, the integration of virtualization and security, and the
relationship between software complexity and security. Our
architecture shares some goals with other efforts aimed at
reducing overall system complexity and reducing the size of
the TCB. The remainder of this section will provide details
on these related areas of work.

Security and complexity are clearly at odds with each other.
Saltzer and Schroeder identified several design principles for
secure systems including economy of mechanism which they
describe as “keep the design as simple and small as possible”
[36]. Confirming the importance of this design principle,
Basili and Perricone performed an empirical study showing
that software has about 9.7 errors per 1000 lines of exe-
cutable code [6]. Complex and large software architectures
will lead to more errors, and each error is another possible
security problem. More recently, Schneier has argued that
“the future of computers is complexity, and complexity is
anathema to security” [39]. Given the conflict between se-
curity and complexity, and given the complexity of MAC
policies in systems such as SELinux, there is clearly a need
to explore new architectures that will enable the benefits of
MAC with reduced complexity.

Layering is a common technique used to reduce complexity.
Layering allows one to divide a large and complex system
into manageable components that each depend only on lower



level components. Layering was initially seen in systems
such as THE [12] and Venus [24]. Today, it is a fundamen-
tal design principle for operating systems and any complex
software architectures. Introducing layering to MAC poli-
cies is a logical next step so that the policies can enjoy the
same reduced complexity seen by the system software.

The recent resurgence of virtualization can be attributed, in
part, to the additional layer it provides and how this can be
leveraged to reduce the complexity of systems management.
However, one obstacle to the adoption of virtualization is the
requirement to retain a level of isolation similar to what has
been achieved via discrete physical systems. Achieving this
level of isolation through logical separation in a virtualized
environment has been studied and documented in the litera-
ture for over three decades. Madnick and Donovan showed in
the early 1970’s that virtualized platforms provide distinct
security benefits [27]. Similarly, layered systems architec-
tures and security models have an even longer lineage [12,
24, 26]. As virtualization has become more accessible in re-
cent years, secure systems solutions have increasingly relied
on these benefits [17, 16, 11, 30]. In addition, the protec-
tion offered by a virtualized environment has been used to
protect malicious software [22, 34].

Significant research has been done in order to make virtu-
alization platforms more suitable for security-oriented ap-
plications. Research efforts to integrate security into the
hypervisor arguably reached a zenith with the KVM / 370
high assurance hypervisor project [37], and the VAX VMM
Security Kernel [21], and is beginning to see a resurgence
with efforts such as the sHype architecture [35], which is
now integrated into the Xen open source hypervisor [5].

Virtualization is not the only construct available for reduc-
ing complexity and reducing the TCB size. Singaravelu and
colleagues used the Nizza architecture as a TCB, which is
based on the L4 microkernel [40]. In this system, secure
applications are created by extracting a small component,
referred to as an AppCore, that contains all the security-
critical functionality. Legacy applications can communicate
with an AppCore using L4’s IPC mechanisms. The primary
focus of the Nizza / AppCore architecture work is to isolate
the trusted components in an effort to reduce the TCB size,
and there is no discussion of how such a system could be
made to work with MAC. The Asbestos Operating System
by Efstathopoulos and colleagues takes a different approach
by providing a new construct that controls information flow
using dynamic labels and fine-grained isolation contexts [14].
While these projects do share similarities with our architec-
ture, the goals and end results are different. Our focus is on
reducing the MAC policy complexity using readily available
virtualization software. Singaravelu and colleagues are fo-
cused on reducing the TCB size and Asbestos is an entirely
new system with a much broader scope.

6. CONCLUSIONS
We introduced a layered access control architecture and
showed how it simplifies the construction of mandatory ac-
cess control policies. Our examples illustrate how these
policies can be layered to provide information flow protec-
tions in diverse classes of applications. Our experiences
with the initial implementation verified many of our claims.

Continuing this research, the next steps are to extend our
implementation to support strong confinement and fine-
grained sharing for the multi-tier web-service application
and perform a thorough evaluation of the architecture using
this software.
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