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ABSTRACT
Motivation: The application of Next-Generation Sequencing (NGS)
technologies to RNAs directly extracted from a community of
organisms yields a mixture of fragments characterizing both
coding and non-coding types of RNAs. The tasks to distinguish
among these and to further categorize the families of messenger
RNAs and ribosomal RNAs is an important step for examining
gene expression patterns of an interactive environment and the
phylogenetic classification of the constituting species.
Results: We present SortMeRNA, a new software designed to rapidly
filter ribosomal RNA fragments from metatranscriptomic data. It is
capable of handling large sets of reads and sorting out all fragments
matching to the rRNA database with high sensitivity and low running
time.
Availability: http://bioinfo.lifl.fr/RNA/sortmerna
Contact: evguenia.kopylova@lifl.fr
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The application of NGS technologies for metatranscriptomic
profiling has been a successful venture in practice. Scientists
may now gain access to the full set of coding and non-coding
RNA in a community of organisms, which becomes particularly
important for samples which cannot be cultivated outside their
native environment (Stewart et al., 2011; Bomar et al., 2011; Shi
et al., 2009). The initial challenge of metatranscriptomic sequenced
data analysis is to sort apart the RNA fragments based on their
biological significance. Messenger RNAs (mRNA) cast a universal
glimpse on the gene expression patterns between interactive species.
Likewise, the ribosomal RNAs (rRNA) disclose information on the
community’s structure, evolution and biodiversity, and prevail in
classification and phylogenetic analyses. The rRNA can comprise
up to 90% of total RNA. Various prior-to-sequencing procedures,
such as mRNA amplification kits, can help to enrich the yield of
mRNA (Gilbert and Hughes, 2011). However, these kits are not
fully satisfactory since secondary steps may be required to verify
if the resulting material is an accurate representative of the initial
samples (Nygaard et al., 2005). New software have been recently
developed to address this issue, they identify and isolate rRNA
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fragments from a set of sequenced reads. The first set of programs,
Meta-RNA 3 (Huang et al., 2009), SSUALIGN (Nawrocki et al.,
2009) and rRNASelector (Lee et al., 2011) share a common
algorithmic approach, to represent an rRNA family database using
a probabilistic model. Both Meta-RNA and rRNASelector use
prebuilt Hidden Markov Models (HMM) and consequently sort
reads against the database with the HMMER3 package (Eddy,
1998) whereas SSU-ALIGN uses Convariance Models to support
secondary structure information. An alternative algorithm outside
the domain of probabilistic models is riboPicker (Schmieder et al.,
2012) which uses a modified version of the Burrows-Wheeler
Aligner (Li and Durbin, 2009). Lastly, BLASTN (Altschul et al.,
1990) is used in numerous home-made workflows for this problem.
With BLASTN however, reads should be compared against all
sequences of an rRNA database to achieve a good sensitivity level.
In all cases, computational time is still an issue to handle large
collections of reads.

In this paper we describe SortMeRNA, an efficient filter requiring
only a representative set for an rRNA database and rapidly sorting
through millions of reads. The underlying algorithm is analogous
to the seeding strategy, focusing on finding many short regions
of similarity between an rRNA database and a read. SortMeRNA
also takes advantage of redundancy between homolog sequences, as
HMMs do, and builds a compressed model of all rRNA sequences.
The generated results adhere to the accuracy of the HMM-based
programs and are computed in a fraction of the time.

2 SYSTEM AND METHODS
2.1 Algorithm overview
We assume having a collection of unassembled reads and a database
of rRNA sequences, and we want to sort out reads that match
to the database. The general principle behind our algorithm is to
search for many short similarity regions between each read and the
rRNA database. We scan each read with a sliding window, and the
accepted reads are those which have more than a threshold number
of windows present in the database. For a given read and a given
window on the read, we authorize one error (substitution, insertion
or deletion) between the window and the rRNA database.

To achieve this task in an efficient manner, the rRNA database
is stored in a Burst trie coupled with a lookup table that speeds
up the access to the Burst trie and takes advantage of conserved
regions in the rRNA sequences. For a given read and a given window
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Fig. 1. SortMeRNA Algorithm Overview. The set of representative rRNA sequences is preprocessed in the following way: (1a) The lookup table stores all
of the s

2
-mers and their number of occurrences which exist in the rRNA database. (1b) The Burst trie is a data structure which stores the rRNA database. (2a)

The algorithm takes as input a collection of reads provided by the user, and for each read, a sliding window w of even length s ∈ [14, 20] moves across the
read. (2b) For each window w, the prefix w[1.. s

2
] and suffix w[s.. s

2
+1] are translated into a decimal value between 0 and 2s−1. (3) If the value exists in the

lookup table with a high frequency (see Section 1.1 of the supplementary file), the remaining part of the window is searched in the Burst trie. This is done with
a cyclic traversal between the universal Levenshtein automaton and the Burst trie that determines whether the subpattern is present in the rRNA database with
at most 1 error. For every letter traversed in the Burst trie, a bitvector is passed to the universal Levenshtein automaton to verify if the number of encountered
errors remains less or equal to 1. (4) After all windows have been traversed, if the number of accepted windows exceeds a certain threshold (see in Section 2.5)
then the read is accepted and classified as rRNA.
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3. Question: Does the window exist in the Burst trie?
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on the read, we find the set of windows present in Burst trie using
the universal Levenshtein automaton. This comparison is done by
performing a parallel traversal between the Levenshtein automaton
and the Burst trie.

Figure 1 globally illustrates this framework. The length s of the
sliding window is a parameter of the algorithm, further discussed in
Section 2.5. The acceptance of a read depends also on the ratio of
matched windows. Let r be this parameter. This choice will also be
discussed in Section 2.5.

2.2 The Burst trie to store an rRNA database
The Burst trie (Heinz et al., 2002) is a fast and versatile data
structure which effectively stores a large number of strings such
as an rRNA database. Unlike the standard trie, the binary search
tree or other variants, which often adopt an equal rate of memory
access among the cache or main memory, the Burst trie can exploit
the modern cache architecture by addressing memory closest to the
CPU. It is capable of reducing the number of trie nodes by 80%
while maintaining performance similar to a hash table (Askitis and
Zobel, 2010). Given a sequence vz, the Burst trie can store the
prefix v as a link of trie nodes and the suffix z as an array of
characters appended to the last trie node. Normally, subtrees become
more sparse in the depth of a trie and representing them as reduced
‘buckets’ of contiguous memory preserves space and boosts cache-
efficiency. When the number of sequences sharing a common prefix
v reaches a fixed threshold, the appended bucket of suffixes bursts to
form a new trie node and smaller sub-buckets. To optimize memory
access during subtree traversal, the threshold size of a bucket should
be less than the lower level cache. A systematic use of this trie can
be observed in the fastest sorting algorithm for large sets of strings,
the Burstsort (Sinha and Zobel, 2004).

Following a similar method of an array-structured trie as
described in (Sinha et al., 2006), our Burst trie is assembled exactly
on the nucleotide alphabet {a, c, g, u}. As illustrated in Figure 2, the
trie stores every unique (s+1)-mer substring in an rRNA database,
since we look at windows of length s with at most 1 error between
any two words. The information on whether the (s+1)-mer belongs
to a forward strand, the reverse-complement or both (strand), and
its origin (hashid) follows each entry in a bucket. When the exact
location of the (s+ 1)-mer needs to be found in an rRNA database,
the hashid value serves as an index in a complementary table storing
this information. Nearly one-quarter of the 16S rRNA positions are
99−100% conserved (Cannone et al., 2002; Mears et al., 2002) and
this moderates the size of the trie since many identical or closely
similar substrings are shared between sequences.

We use an additional optimization to improve access into the
Burst trie. Since we consider at most one error between the window
and the database, we have this simple property: For every two words
such that the edit distance between them is bounded by 1, there
exists a common substring of length s

2
which is either a prefix

or a suffix of the two words. We apply this property to construct
a lookup table storing all s

2
-mers existing in the rRNA database.

Note that for s in [14, 20], transposing the nucleotide alphabet onto
a binary equivalent, such that {a, c, g, u} = {00, 01, 10, 11}, we
can represent each s

2
-mer in s bits which maps to a unique integer

value. Upon completion of the forward and reverse Burst tries, a
scan of each trie is performed to record the existence of all s

2
-mers

and, if present, associated pointers to the trie node representing the

Fig. 2. Let s = 16, the Burst trie below is constructed on the first six 17-
mers of an rRNA sequence. The ‘char flag’ describes whether a pointer
is set to a trie node ‘1’, a bucket ‘2’ or neither ‘0’. Additional information
on the origin of the 17-mer directly follows each element, as shown in the
dashed bucket.
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immediate letter following the prefix. The precomputed lookup table
quickly determines whether an exact match of the prefix or suffix
exists in the Burst tries and furthermore it provides us with direct
access to the remaining part of the word in the Burst trie.

The lookup table also allows us to take into account distribution
of s

2
-mers in the rRNA database. A multiple sequence alignment

of an rRNA database can clearly define areas of high nucleotide
conservation and emphasize the evolutionary origins shared
between organisms. In a similar manner, the lookup table defines
highly conserved areas by keeping only frequent s

2
-mer occurrences

in the rRNA database. Before a window is traversed in the Burst
trie, its prefix or suffix must exist in the lookup table. This notion
enforces that a read matches closely to one region in a database
rather than multiple scattered ones leading to a false alignment (see
Section 1.1 of the supplementary file).

2.3 The universal Levenshtein automaton
The classical nondeterministic Levenshtein automaton for a pattern
p and a number of errors k recognizes the set of strings which
are at most edit distance k to p (see Figure 3). This automaton is
not suitable for computation because of the presence of multiple
active states and epsilon transitions. This may be overcome by
transforming the automaton into an equivalent deterministic form.
However, the resulting automaton may be exponential in the length
of p and likewise dependent on it. In (Schulz and Mihov, 2002)
and (Mihov and Schulz, 2004), a universal Levenshtein automaton
was characterized based upon insightful observations of the classical
one. The term universal conveys its one-time construction and
independency of p. The intuition arises from the symmetry of
the nondeterministic automaton, which applies the same set of
transition rules to every new input character and each new set of
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Fig. 3. The nondeterministic Levenshtein automaton for p = acgu and k =
1. The s#e notation for each state corresponds to s number of characters
read in the pattern p and e number of errors recorded. The initial state is
0#0 and the three final states are 3#0, 4#0 and 4#1. Each non-final state
has three outgoing arcs, one for each type of edit operation.

0#1 1#1 2#1 3#1 4#1
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ε ε ε ε

deletion
ε

substitution insertion

Σ

match

active states is a subset of a known bounded superset. A set of
bitvectors symbolizing the homology of p and a candidate string
serve as input to the automaton. In full generality, the size of the
automaton is exponential in a function of k (Mitankin, 2005). In our
case, since k = 1, it remains sufficiently small. The set of bitvectors
representing the similarity of two strings are precomputed using the
following definition.

Definition 2.1. (Mihov and Schulz, 2004) The characteristic
vector ~χ(w, V ) of a symbol w ∈

∑
in a word V = v1 . . . vn ∈∑∗ is the bitvector of length n where the ith bit is set to 1 iff

w = vi.

The technical details of n ≤ 2k + 2 and the prefix of k symbols
of ‘$’ appended to the pattern p can be found in the (2004) paper
cited above.

Example 2.1. Let k = 1, the input word W = acaga and the
pattern p = $acuaga, then χ1(a, $acu) = 0100, χ2(c, acua) =
0100, χ3(a, cuag) = 0010, χ4(g, uaga) = 0010, χ5(a, aga) =
101 are the computed characteristic bitvectors. It follows that
{χ1, . . . , χ5} is the characteristic bitvector array carrying the
similarity information of x and p .

Beginning from χ1 to χ|s|, the bitvectors are sequentially passed
into the universal Levenshtein automaton. Each bitvector leads to
a transition between states (in constant time) corresponding to the
number of errors encountered thus far. If some χi reaches a failure
state, greater than k errors exist between s and p, and the strings are
rejected. The automaton only recognizes two strings if the input of
the last bitvector χ|s| leads to a final state.

2.4 Match of a read with the dynamic bitvector table
At this point, matching a window w of length s on the read against
the rRNA database amounts to first checking whether the prefix
or the suffix of length s

2
of w is present in the lookup table,

then determining if the universal Levenshtein automaton for w
recognizes some word in the Burst trie. For the second step, we have
to implement a rapid traversal of the Levenshtein automaton which
relies upon the precomputation of bitvectors for w. At every depth
of the Burst trie, we assume that the symbol q in χi(q, V ) appears
as one of {a, c, g, u} with equal probability. Ultimately during
traversal, the bitvector of the actual residing nucleotide is chosen.
Figure 4 shows the precomputation of bitvectors for p = $acuaga
in Example 2.1. If the string x = acaga existed in the trie, then the

highlighted set of bitvectors {0100, 0100, 0010, 0010, 101} would
form the bitvector array (see Section 1.2 of the supplementary file
for a graphic example).

Fig. 4. The precomputed bitvector table for pattern p = $acuaga covering
all possibilities of q for k = 1. The first bit in each entry of column i = 0

represents the $ symbol and is always set to ‘0’.
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When the window is shifted by one position, the subsequent
pattern p changes simply by the removal of the first character in
the prefix and the addition of a new character in the suffix. Hence,
rather than recomputing the bitvector table for each new window, a
series of bitwise operations are taken to modify it, as demonstrated
in Figure 5.

Fig. 5. The modification of the bitvector table from pattern p1 = $acuaga
to p2 = $cuagaa for k = 1. Columns 0-2 of p2 are equal to columns 1-3
of p1, except for column 0, where the most significant bit (MSB) of every
bitvector represents the symbol $ and is set to ‘0’. Column 3 of p2 equals to
column 4 of p1 with an additional bit appended. The appended bit is set to
‘1’ in the bitvector correspoding to the newly appended character, otherwise
it is set to 0. Column 4 of p2 is equal to column 3 of p2, although the MSB
is not considered. The same rule applies to column 5 of p2, where the two
MSBs of the column 3 bitvectors are not considered.
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Following a pre-order path, the traversal of the Burst trie begins
at the root node. Through knowledge of the nucleotide letter and the
depth of the node being visited, the coinciding bitvector is accessed
in the precomputed bitvector table, indifferent to whether the node
is a trie node or a character in the bucket. Subsequently, the bitvector
is passed to the universal Levenshtein automaton which decides
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whether to continue traversal of the current subtree or backtrack to
the first branching point with a non-failure Levenshtein state and
recommence traversal of a new substree. In this manner, a complete
traversal of the Burst trie remains unlikely as backtracking occurs
each time the edit distance between the pattern and a traversed
branch exceeds k. To further speed up Burst trie traversal for every
window, a ‘backwards dictionary’ approach as described in (Mihov
and Schulz, 2004) was implemented. The original algorithm builds
two dictionaries, one for the forward strings and the second for
their reverse equivalents. In this manner, the same window can be
traversed quickly from both ends.

2.5 Parameter setting
The algorithm depends on two parameters: The length s of the
sliding window, and the minimal proportion r of accepted windows
in a read. To find a robust choice for s and r, we ran the algorithm for
several values of s and r on several rRNA databases and for several
sets of reads.

We purposely designed four databases with distinctive features:
Small 16S and large 23S subunit, varying identity percentage and
from distinct phylogeny tree subparts,

Set 1: 16S, 80% identity (2262 rRNA)
Set 2: 16S, 80% identity, truncated phylogeny tree (2187 rRNA)
Set 3: 23S, 95% identity (1969 rRNA)
Set 4: 23S, 95% identity, truncated phylogeny tree (1906 rRNA)

These databases were constructed by applying the ARB package
(Ludwig et al., 2004) and UCLUST (Edgar, 2010) to sequences
from SILVA (Pruesse et al., 2007) (see Section 2.1 in the
supplementary file). Next, we constructed datasets of simulated
rRNA and non-rRNA reads using the software MetaSim (Richter
et al., 2008). We used two sequencing error models, Roche 454
and Illumina, because the errors for Roche 454 mainly originate
as indels and for Illumina as substitutions. The length of the reads
differs as well: ≥ 200nt for Roche 454 and 100nt for Illumina
technology. To test the sensitivity on Set 1 and Set 3, we constructed
300,000 Roche 454 reads and 1,000,000 Illumina reads on the entire
SILVA database minus the sequences used for the representative
rRNA database. To measure the sensitivity for discovering new
species with Set 2 and Set 4, the same number of reads was
simulated only on the truncated sections of the Bacteria phylogeny
tree. To test the selectivity, the non-rRNA reads were simulated
using the NCBI bacterial genomes library with rRNAs masked (see
Section 2.2 in the supplementary file).

The parameter values were varied as: s ∈ [14, 20] and r ∈ (0, 1).
The main conclusion is that s = 18, r = 0.15 for Roche
454 reads and s = 18, r = 0.25 for Illumina reads give best
sensitivy/selectivity balance for all rRNA databases. Moreover,
varying r within short ranges does not significantly affect the results
(see Section 2.3 of the supplementary file). We use these values as
default settings in all subsequent analyses.

3 IMPLEMENTATION
SortMeRNA is implemented in C++ and freely distributed under
the GNU general public license (GPL). It can be downloaded
from http://bioinfo.lifl.fr/RNA/sortmerna. The

software uses OpenMP functions to parallelize filtering of the reads.
The input criteria are a fasta/fastq file of letter space reads produced
by Roche 454 or Illumina technologies, and a fasta file of rRNA
sequences. There are eight rRNA databases included in the software
package covering the small (16S/18S), large (23S/28S) and 5/5.8S
ribosomal subunit rRNAs, which were all derived from the SILVA
and RFAM databases. Additionally, the user can work with their
own RNA databases.

4 EXPERIMENTAL EVALUATION
The performance of SortMeRNA was measured in terms of
sensitivity, selectivity and real-data analysis compared to the
software SSU-ALIGN (Nawrocki et al. (2009)), Meta-RNA (Huang
et al. (2009)), rRNASelector (Lee et al. (2011)), riboPicker
(Schmieder et al. (2012)) and BLASTN (Altschul et al. (1990)). All
tests were performed on an Intel(R) Xeon(R) CPU W3520 2.67GHz
machine with 8GB RAM, L1 cache size of 32 KB, L2 cache size of
256 KB and L3 cache size of 8192 KB. Since riboPicker and SSU-
ALIGN do not provide a direct option for multi-threading, all tests
were carried out using one thread.

4.1 rRNA databases
We created two new representative databases: 16S rRNA with 85%
identity (7,659 sequences) and 23S rRNA with 98% identity (2,811
sequences) (see Section 3.2 of the supplementary file). The 16S
rRNA database was used by SortMeRNA, riboPicker, BLASTN
and SSU-ALIGN, and the 23S rRNA database by SortMeRNA,
riboPicker and BLASTN. SSU-ALIGN was written for aligning
small ribosomal subunits and does not provide models for 23S
rRNA. riboPicker was also tested with a more comprehensive
database made available from their website: All 16S and 23S
rRNA sequences taken from SILVA, RDP-II, Greengenes, NCBI
archaeal and bacterial genomes, and HMP (3,232,371 16S and
19,602 23S unique sequences). The results for this larger database
are indicated by riboPicker∗ in the subsequent tables. For Meta-
RNA and rRNASelector, we used the HMMs provided with the
software.

4.2 Simulated reads
Sensitivity for 16S rRNA. 300,000 Roche 454 and 1,000,000
Illumina 16S rRNA reads were simulated in the same manner as
described in Section 2.5. The performance results can be viewed in
Table 1. All software programs except riboPicker and SSU-ALIGN
have a sensitivity level higher than 97%, and even higher than 99%
for BLASTN and SortMeRNA. The sensitivity for riboPicker is
very low (56%) because BWA-SW works well with error rates 2%-
3% for 100-200nt reads, and loses sensitivity for new species. As
expected, the sensitivity increases with a larger database (indicated
riboPicker∗). Considering the computation time, SortMeRNA runs
in less than 2 minutes, or 72x faster than the next fastest tool
with proportionate sensitivity (Meta-RNA). Note also that BLASTN
executes at a very slow speed (several hours), because reads should
be compared against all of sequences in the representative database.

Selectivity for 16S rRNA. 1,000,000 Roche 454 and 1,000,000
Illumina non-16S rRNA reads were simulated in the same manner
as described in Section 2.5. The performance results can be viewed
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in Table 2. All programs have a selectivity level higher than 99.98%.
The number of false positives for the HMM-based programs
remains comparable to SortMeRNA for both Illumina and Roche
454 reads. The difference in the simulated data results between
Meta-RNA and rRNASelector can be attributed to the number of
bacteria vs. archaea rRNA sequences used in the construction of the
HMMs, as well as additional parameter settings in rRNASelector.
riboPicker∗ and BLASTN show the lowest selectivity. Concerning
the running time, the order of the fastest programs is rRNASelector,
Meta-RNA and SortMeRNA. Both rRNASelector and Meta-RNA
use the HMMER3 package, which applies a pre-filter to quickly
reject sequences which would score very low in the HMM. This
acceleration heuristic gives these programs a competitive advantage
on the artificial dataset for selectivity where all of the sequences are
negative.

Results for 23S rRNAs are analogous in terms of accuracy and
running time. They can be found in Table A and Table B under
Section 3.3 of the supplementary file.

4.3 Real data
The metatranscriptomic datasets SRR106861 of a photosynthetic
microbial community and SRR013513 of a tidal salt marsh creek
from 454 sequencing were downloaded from the NCBI Sequence
Read Archive. The results for 16S and 23S can be viewed in
Table 3 and Table 4 respectively, and the overlap of the results
between tools in Figure 6 and Figure 7. The results obtained with
SortMeRNA are very close to the ones obtained with HMM-based
methods. riboPicker finds only a fraction of all potential rRNAs,
which confirms its low sensitivity for small databases. The majority
of 16S reads found only by riboPicker∗ (1,298) map to mRNA.
For 23S analysis in Table 4 and Figure 7, approximately 99% of
the excess reads of Meta-RNA (12,112) and rRNASelector likewise
map to 28S, along with 83% of the (624) reads found only by
BLASTN and Meta-RNA. The (537) reads found only by BLASTN
map to 16S rRNA, ncRNA and mRNA.

5 DISCUSSION
SortMeRNA has shown to be a rapid and efficient filter which can
sort a large set of metatranscriptomic reads with high accuracy
comparable to the HMM-based programs. SortMeRNA implements
seeds with errors (substitution and indel) and this important
characteristic renders the algorithm robust to errors of different
types of sequencers while providing the ability to discover new
rRNA sequences from unknown species.

The method used by the algorithm is universal and flexible. The
database can be constructed on any family of sequences provided
by the user. Moreover, the algorithm does not require a multiple
sequence alignment file to build the database, as HMM-based
programs do, and this is an advantage when sequences are hard to
align or only partial sequences are available. Another advantage of
SortMeRNA is the small number of parameter settings required by
the program (see Section 2 of the supplementary data).

Table 3. Runtime for the SRR106861 metatranscriptome of 105,873 reads
against a 16S rRNA database of 7,659 sequences.

rRNA run time latency memory (%)

SortMeRNA 27046 34s 1x 4.8
riboP icker 11389 4m10s 7x 2.3
riboP icker ∗ 27195 39m3s 69x 30.8
BLASTN 27061 1h29m 157x 0.6
Meta-RNA 27111 10m33s 18x 1.8
rRNASelector 27085 10m40s 18x 0.8

Fig. 6. Venn diagram for reads classified as 16S rRNA by BLASTN, Meta-
RNA, SortMeRNA and riboPicker∗ in the SRR106861 metatranscriptome.
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Table 4. Runtime for the SRR013513 metatranscriptome of 207,368 reads
against a 23S rRNA database of 2,811 sequences.

rRNA run time latency memory (%)

SortMeRNA 94395 51s 1x 3.8
riboP icker 71937 10m2s 12x 3.9
riboP icker ∗ 84152 36m27s 43x 5.5
BLASTN 94439 3h42m 261x 0.9
Meta-RNA 106698 1h33m 109x 4.8
rRNASelector 107900 1h36m 113x 3

Fig. 7. Venn diagram for reads classified as 23S rRNA by BLASTN, Meta-
RNA, SortMeRNA and riboPicker∗ in the SRR013513 metatranscriptome.
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Table 1. SENSITIVITY. 1,000,000 of MetaSim simulated Illumina (100nt) and 300,000 Roche 454 (≥ 200nt) rRNA reads against a representative 16S
rRNA database of 7,659 sequences.

Illumina Roche 454
rRNA run time latency memory (%) sensitivity (%) rRNA run time latency memory (%) sensitivity (%)

SortMeRNA 998615 1m39s 1x 8.5 99.861 299979 1m43s 1x 6.3 99.993
riboP icker 558607 18m45s 11x 6.8 55.860 123024 18m36s 11x 5.6 41.008
riboP icker ∗ 999941 6h33m 238x 35.3 99.994 299999 9h 314x 34 99.999
BLASTN 995322 23h52m 868x 3.0 99.532 299978 18h35m 649x 1.4 99.992
Meta-RNA 983332 2h 72x 33.3 98.333 299980 1h57m 68x 12.9 99.993
rRNASelector 974118 1h47m 64x 17.4 97.411 299976 2h 70x 7 99.992
SSU -ALIGN 971221 6h49m 248x 0.1 97.122 299902 5h50m 204x 0.1 99.967

Table 2. SELECTIVITY. 1,000,000 of MetaSim simulated Illumina (100nt) and 1,000,000 Roche 454 (≥ 200nt) non-rRNA reads against a representative
16S rRNA database of 7,659 sequences.

Illumina Roche 454
rRNA run time latency memory (%) selectivity (%) rRNA run time latency memory (%) selectivity (%)

SortMeRNA 17 2m9s 2x 7.6 99.9983 13 3m42s 1x 10.2 99.9987
riboP icker 7 10m22s 8x 6.7 99.9993 3 29m45s 9x 16.8 99.9997
riboP icker ∗ 158 56m37s 42x 35.1 99.9842 53 2h43m 49x 45.2 99.9947
BLASTN 33 14m22s 11x 0.3 99.9967 33 16m12s 5x 0.3 99.9967
Meta-RNA 11 1m33s 1x 0.1 99.9989 11 3m41s 1x 0.2 99.9989
rRNASelector 10 1m20s 1x 0.1 99.9990 11 3m21s 1x 0.2 99.9989
SSU -ALIGN 8 3h51m 173x 0.1 99.9992 11 10h30m 188x 0.1 99.9989
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