
TECHNIQUES FOR THE GRAPH REPRESENTATION OF SPECTRAL IMAGERY

Ryan A. Mercovich (ram4238@cis.rit.edu), James Albano, David Messinger

Center for Imaging Science, Rochester Institute of Technology

ABSTRACT

Many techniques from graph theory and network theory

have been applied to traditional images, and some

techniques are now being applied to spectral imagery.

Contrary to the typical approaches of utilizing the first order

statistics, mixture models, and linear subspaces, the methods

described in this paper utilize the spectral data structure to

generate a graph representation of the image. By ignoring

any reliance on the shape of the data, graph based methods

can succeed where typical methods break down, such as in

high resolution scenes with very high clutter. Before graph

theory techniques can be utilized on an image, it must be

represented as a graph. Because images contain only

measured nodes (pixels) and no edges, edges are drawn

between pixels based on some similarity measure. With a

specific focus on creating graphs for clustering, several

graph creation techniques are compared with two novel

methods described: the locally weighted k-nearest neighbor

approach and the density weighted k-nearest neighbor

approach. By applying two different clustering techniques to

the resulting graphs, the various graph creation techniques

are compared using real world data.

Index Terms— graph theory, data representation,

spectral clustering, hyperspectral

1. INTRODUCTION

Recently techniques from graph theory have been applied to

spectral image processing [1,2,3,4]. Additionally, similar

techniques have been used in traditional image processing

[5, 6, 7]. To utilize graph theory, the image data must be

represented as a graph. Graph representation is most

effective when traditional data models, such as first and

second order statistics, linear mixture models, or linear

subspaces, do not represent the data at hand. This separation

between traditional data models and spectral image data

increases for high resolution aerial and satellite imagery that

generally contains more clutter than lower resolution

sensors.

A graph, consisting of a set of and a set of ,

is a labeling of data points and connections between those

points. To represent an image with a graph, the image must

be examined in the n-dimensional space spectral space.

Each pixel becomes a node, and edges can be drawn

between pixels with a certain similarity or connectedness.

Once the pairwise adjacencies are defined, the graph can be

represented as an , and many techniques

can be applied to this matrix to help identify community

structure [5, 8], define the dimensionality of the data[4,7], or

even for anomaly and target detection[1,4].

Graphs are well studied in the mathematics world, and

are widely applied to network theory problems [9]. For

imaging, it is important to know that the graph is not a part

of the measured data, it is created based on observed

similarity between pixels. However, once created, the graph

can be treated just like it is for other disciplines. The graph

for a set of pixels in dimensions is represented by an

 adjacency matrix. Each pixel has a certain ,

defined by the number of edges incident with it, and each

edge can have a weight.

Fig. 1. An image and its associated graph. Each pixel is

represented by a node. Every node is connected to its two nearest

neighbors (2-NN) in a Euclidean sense.

Graphs are a useful way to represent image data because

of the large amount of information that can be gleaned from

them. Rather than the identification of the middle of (mean

or median) and measuring the spread of (covariance) the

distribution, a graph provides a much more detailed model

for the data. In addition, the graph can be recursively split

for automatic clustering [2,3,5]. Many techniques for

identifying community structure in a graph exist in the

literature [10,11,12]. The key to applying these techniques

to imaging is the proper creation of the graph. Images are

represented as graphs to improve the description of the data

structure, and the process of creating the graph must be

undertaken carefully to avoid injecting data structure that is

not truly present.

As stated previously, graphs are utilized when traditional

models insufficiently characterize the data. In some imaging

regimes, traditional models break down [13]. The amount of

image clutter, a small ground sample distance, and other

characteristics can be used to determine if a graph

representation will be useful for a specific situation.

2. METHODS

2.1 Background

The process of representing an image as a graph can be

quite straightforward. The most simple technique, and one

used often for high resolution gray scale or RGB imagery, is

to connect pixels based on their spatial proximity. This is

known as a simple grid graph [6] and is shown in Figure 2.

Fig. 2. An example construction for a grid graph for the three

pixels highlighted. Adjacency is assigned based on spatial

relationship instead of spectra (here adjacencies are made with the

right and lower neighbors).

A more advanced but still straightforward method is to

use a distance metric, such as the Euclidean distance, in the

spectral space to connect a pixel to its nearest neighbors

(kNN, as seen in Fig. 1.). Another distance based technique

would involve connecting all pixels within a certain

distance, [6]. Of many possible distance metrics, the

Euclidean distance and spectral angle are used here and in

the following techniques.

The process of exhaustively searching for neighbors

based on distance becomes increasingly time-consuming as

the dataset increases in size. To perform this search more

efficiently, methods have been developed for fast nearest

neighbor search [14]. One such method, developed to utilize

several different distance metrics is known as ATRIA. The

fast nearest neighbor search using the ATRIA tree structure

is well known and straightforward to implement. The

nearest neighbor search is accelerated by utilizing a tree

structure to limit the search for neighbors.

2.2 Locally weighted nearest neighbors

One problem with the kNN techniques is that the graphs

produced are often not fully connected. Connected graphs

are those in which a path (along edges) exists from any

point to any other point and are desirable for many

graph theory clustering methods [5, 7, 10]. Grid graphs are

fully connected by design. One way to ensure a connected

graph is to create a in the data in addition to

the edges defining the community structure. The spanning

tree is a graph where every node is connected, but no cycles

(or loops) exist. This process can be computationally

expensive if done in a way that does not alter the graph’s

community structure (i.e. the minimum spanning tree).

To combat the connectivity problem without adding

additional compute time, a new method combining the kNN

and grid techniques is proposed. For each pixel the first
neighbors can be forced to come from the same spatial

region as that pixel. For example, when 25 neighbors are

desired for a pixel , the first 5 () might come from the 30

nearest pixels in a spatial sense, while the remaining 20

come from the global dataset.

Fig. 3. The locally weighted method takes spectrally similar pixels

from the local neighborhood and the global data. Forcing some

pixels from the local neighborhood improves graph connectivity.

In addition to forcing the local neighbors to improve

connectivity, the distance metric can be adjusted to improve

adjacencies. The local neighbors can be identified using the

spectral angle. The spectral angle can be a poor metric for

finding global neighbors because of its performance when

applied to very dark spectra. However, for pixels in the

same small spatial region the spectral angle can help to find

adjacencies for pixels in and out of shadow. The local

weighting can also be applied to the following techniques.

2.3 Mutual k-nearest neighbors

The mutual kNN method is similar to the kNN method but

instead creates an edge only if is one of the kNN of

and is one of the kNN of . This method produces a

variable number of neighbors for each pixel, based on their

local (in the spectral space) groupings. This method puts an

emphasis on mutual neighbors and therefore clusters of

similar pixels.

One problem with this method is that outliers often

remain disconnected from the graph. Additionally, the

selected has an impact on the size of clusters that are

represented as background. A large can falsely treat many

small clusters as part of the same background and a small

can leave small groups (but too big to be anomalies)

disconnected from the graph. To maintain connectivity a

minimum number of neighbors (which ignores the mutual

neighbor requirement) can be implemented.

2.4 Density weighted k-nearest neighbors

For the proposed density weighted approach, the goal is to

minimize the impact of pixels outside clusters. Each pixel is

assigned a co-density score using nearest neighbors.

The co-density score is proportional to the sum of the

distances to neighbors divided by . Threshold

conditions are then applied to the distribution of co-density

to provide several different values of for the graph

creation. Those pixels with the lowest density have few

neighbors, while those with the highest use closer to

neighbors. From practical testing it appears that the

threshold values, , should increase non-linearly. Pixels

with lowest density should have few neighbors, those with

average density should be near

, and those with high

density should be nearly

Fig. 4. A typical distribution of co-density. Although usually very

Gaussian, co-density distributions can take other forms depending

on scene content.

The best graph creation results in practice were obtained

with six different values based on the distribution of co-

density. Because it is generally well represented by a normal

distribution, the six density thresholds were selected based

on the standard z-scores of the co-density histogram. The

lowest of the size thresholds was z-score -2, followed by -1,

0, 1 and 2.

3. EXPERIMENTAL RESULTS

To test the four methods described above (kNN, locally

weighted kNN, density weighted kNN, and mutual kNN) an

experiment is performed utilizing two different graph

segmentation techniques. Each edge creation method will be

tested with normalized cuts segmentation [5] and modularity

based segmentation [2, 3]. Both n-cuts and modularity

clustering work on the same recursive splitting principle.

For n-cuts, the graph is split based on the eigenvector

associated with the second smallest eigenvalue of the

 ; for modularity the largest eigenvector

of the is used [10].

 Because each of these methods splits recursively from

one large group to many small groups, the first split is of

critical importance and any error there is maintained

throughout the clustering. To test the various edge creation

techniques, the first split alone will be analyzed. In addition

to a variety of visual comparisons of the two class cluster

map, the “optimal” first split was determined from manual

analysis of the data structure for error comparison. The

methods of modularity and n-cuts are not under examination

here, instead only the methods used to create the graphs

used in each technique are compared.

The data used to compare the methods are from the well-

characterized HYDICE Forest Radiance scene [15]. The

section of the image used for this analysis is a small region

containing several man-made and natural features. The

relatively small and simple scene was selected to make

manual classification of specific features possible using

traditional methods, specifically the Gaussian maximum

likelihood (GML). The manually identified features provide

“truth” data to compare the graph creation techniques.

3.1 Visual results

 The first graph created utilized the simple kNN method

with 60 neighbors for each pixel identified as edges. The

number of neighbors chosen was a compromise between

quality (many neighbors) and speed (few neighbors). This

methodology does not account for the length of the edges in

any way and places excess weight on outliers in the data.

Fig. 6. The graph and first modularity split with cluster map

overlay for the simple kNN method with k=60. Blue nodes are

black pixels.

In Figure 6, the plot and the accompanying cluster map

indicate that this method produces a “noisy” split, with

many errors. From the plot of the graph, it is easy to see the

over connectivity of the pixels that do not seem to belong to

large groups. Although the graph is only plotted in two

dimensions (750nm vs. 430nm), it is easy to see that some

anomalous pixels are too well connected to the clusters with

many long edges. This over connectivity of anomalies

negatively impacts clustering. However, the results that

follow show that the clustering improves with other

techniques for edge creation. Although not obvious in the

compressed few (in a spatial and spectral sense), the graph

from the density weighted method in Figure 7 shows far

fewer over-connected nodes and total edges used.

Fig. 7. This plot of the graph using the density weighted kNN

technique () can be contrasted with the simple kNN

method shown in Figure 6.

Fig. 5. The data used for analysis comes from the HYDICE forest

radiance scene. For this comparison a small pixel tile

containing a variety of features was selected.

Fig. 8. Three 2-class cluster maps for modularity (right) and n-cuts

(left) using: a. local , b. mutual ,

and c. density kNN (

).

Figure 8 shows the cluster map result for the locally

weighted, mutual, and density weighted kNN methods from

left to right for both modularity and n-cuts. The

segmentation clearly improves compared to the simple kNN

type and allows the use of fewer total neighbors. To better

visualize the result compared to the manual “truth” map,

error images are created using exclusive image differences.

The “truth” was defined based on selecting training data for

GML by visually examining the features found with

modularity, therefore the shadows region and the tents

which are part of the other group for the first n-cuts split

appear to increase the error incorrectly.

Fig. 9. Here the error images are shown for the simple and density

weighted methods for modularity and n-cuts. From left to right:

original image, GML derived “truth” map, error image modularity

simple kNN, error modularity density kNN, error n-cuts simple,

error n-cuts density (error pixels are white).

It is clear that compared to simple kNN, the more

advanced methods for graph construction (specifically the

density weighted kNN) introduced here drastically improve

clustering techniques for hyperspectral imagery. These

results also apply to multispectral imagery, where graph

based techniques can offer even greater improvement over

traditional methods. An additional impact of the advanced

methods is the decrease in total neighbors searched and in

edges used (i.e. less computing resources).

4. CONCLUSIONS

The success of graph theory metrics and methods applied to

imagery are dependent on the successful representation of

an image as a graph. Turning an image into a graph is not a

straightforward endeavor. Careful consideration must be

taken when deciding which type of graph will work best.

Especially for clustering, it is clear that a graph

representation that puts emphasis on representing the

inherent community structure is desirable. The density

weighted technique for generating a graph appears to put the

most emphasis on the data’s underlying community

structure. Conversely, anomaly detection and potentially

target detection methods may require less emphasis on

community structure and number of connections and more

emphasis on the weight of the connections. The methods

described in this paper all assume that an edge is binary, but

clearly the distance or similarity between the end points can

be applied to create weighted graphs. While similar,

weighted graphs may have different properties and exhibit

different phenomenologies for clustering.

5. REFERENCES

[1] B. Basener, E. Ientilucci, and D.W. Messinger, “Anomaly

detection using topology,” in Algorithms and Technologies for

Multispectral, Hyperspectral, and Uultraspectral Imagery XIII, S.

Shen, Ed. SPIE, vol. 6565, April 2007

[2] R. Mercovich, T. Harkin, D.W. Messinger, “Utilizing the graph

modularity to blind cluster multispectral satellite imagery,” in 2010

WNYIPW, IEEE, November 2010.

[3] R. Mercovich, A. Harkin, D. W. Messinger, and B. Basener,

“Automatic clustering of multispectral imagery by maximization of

the graph modularity,” in Algorithms and Technologies for

Multispectral, Hyperspectral, and Uultraspectral Imagery XVII, S.

Shen, Ed. SPIE, vol. 8048, April 2011.

 [4] J. Albano, D. W. Messinger, A. Schlamm, and B. Basener,

“Graph theoretic metrics for spectral imagery with application to

change detection,” in Algorithms and Technologies for

Multispectral, Hyperspectral, and Uultraspectral Imagery XVII, S.

Shen, Ed. SPIE, vol. 8048, April 2011.

[5] J. Shi and J. Malik, “Normalized Cuts and Image

Segmentation,’ IEEE Trans. on Pattern Analysis and Machine

Intelligence, vol. 22, no. 8, August 2000.

[6] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient Graph-

Based Image Segmentation,” Inter. Journal of Computer Vision,

vol. 59, no. 2, 2004.

[7] M. Belkin and P. Niyogi, “Laplacian Eigenmaps for

Dimensionality Reduction and Data Representation,” Neural

computation, Vol. 15, No. 6, pp. 1373=1396, March 2006.

[8] A. Pothen, H. D. Simon, and L. Kan-Pu, “Partitioning sparse

matrices with eigenvectors of graphs,” SIAM Journal on Matrix

Analysis and Applications, vol. 11 issue 3, Jul. 1990.

[9] Stanley Wasserman, Katherine Faust. Social Network Analysis:

Methods and Applications, Cambridge University Press, 1994.

[10] M. E. J. Newman, “Modularity and community structure in

networks,” PNAS, Vol. 103, pp. 8577-82, June, 2006

[11] Mark Newman, Albert-Laszlo Barabasi, Duncan J. Watts, The

Structure and Dynamics of Networks, Princeton Univ. Press, 2006.

[12] M. T. Gastner and M. E. J. Newman, “The spatial structure of

networks,” Eur. Phys. J. B, Vol. 49, 2006.

[13] A. Ziemann, D. W. Messinger, B. Basener, A. Schlamm,

“Iterative convex hull volume estimation in hyperspectral imagery

for change detection,” in Algorithms and Technologies for

Multispectral, Hyperspectral, and Uultraspectral Imagery XVI, S.

Shen, Ed. SPIE vol. 7695, April 2010.

[14] Merwith, C., Parlitz, U., and Lauterbom, W., “Fast nearest-

neighbor searching for nonlinear signal processing,” Phys. Rev. E,

vol. 62, pp. 2089-97, 2000.

 [15] Manolakis, D., Marden, D., and Shaw, G.A., “Hyperspectral

image processing for automatic target detection applications,” MIT

Lincoln Laboratory Journal, vol. 14, no. 1, pp. 79–116, 2003

