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ABSTRACT 

 

Many techniques from graph theory and network theory 

have been applied to traditional images, and some 

techniques are now being applied to spectral imagery. 

Contrary to the typical approaches of utilizing the first order 

statistics, mixture models, and linear subspaces, the methods 

described in this paper utilize the spectral data structure to 

generate a graph representation of the image. By ignoring 

any reliance on the shape of the data, graph based methods 

can succeed where typical methods break down, such as in 

high resolution scenes with very high clutter. Before graph 

theory techniques can be utilized on an image, it must be 

represented as a graph. Because images contain only 

measured nodes (pixels) and no edges, edges are drawn 

between pixels based on some similarity measure. With a 

specific focus on creating graphs for clustering, several 

graph creation techniques are compared with two novel 

methods described: the locally weighted k-nearest neighbor 

approach and the density weighted k-nearest neighbor 

approach. By applying two different clustering techniques to 

the resulting graphs, the various graph creation techniques 

are compared using real world data. 

 

Index Terms— graph theory, data representation, 

spectral clustering, hyperspectral 

 

1. INTRODUCTION 

 

Recently techniques from graph theory have been applied to 

spectral image processing [1,2,3,4]. Additionally, similar 

techniques have been used in traditional image processing 

[5, 6, 7]. To utilize graph theory, the image data must be 

represented as a graph. Graph representation is most 

effective when traditional data models, such as first and 

second order statistics, linear mixture models, or linear 

subspaces, do not represent the data at hand. This separation 

between traditional data models and spectral image data 

increases for high resolution aerial and satellite imagery that 

generally contains more clutter than lower resolution 

sensors. 

A graph, consisting of a set of       and a set of      , 

is a labeling of data points and connections between those 

points. To represent an image with a graph, the image must 

be examined in the n-dimensional space spectral space. 

Each pixel becomes a node, and edges can be drawn 

between pixels with a certain similarity or connectedness. 

Once the pairwise adjacencies are defined, the graph can be 

represented as an                 , and many techniques 

can be applied to this matrix to help identify community 

structure [5, 8], define the dimensionality of the data[4,7], or 

even for anomaly and target detection[1,4]. 

Graphs are well studied in the mathematics world, and 

are widely applied to network theory problems [9]. For 

imaging, it is important to know that the graph is not a part 

of the measured data, it is created based on observed 

similarity between pixels. However, once created, the graph 

can be treated just like it is for other disciplines. The graph 

for a set of   pixels in   dimensions is represented by an 

    adjacency matrix. Each pixel has a certain       , 

defined by the number of edges incident with it, and each 

edge can have a weight.  

 
Fig. 1. An image and its associated graph. Each pixel is 

represented by a node. Every node is connected to its two nearest 

neighbors (2-NN) in a Euclidean sense. 

Graphs are a useful way to represent image data because 

of the large amount of information that can be gleaned from 

them. Rather than the identification of the middle of (mean 

or median) and measuring the spread of (covariance) the 

distribution, a graph provides a much more detailed model 

for the data. In addition, the graph can be recursively split 

for automatic clustering [2,3,5]. Many techniques for 

identifying community structure in a graph exist in the 

literature [10,11,12]. The key to applying these techniques 

to imaging is the proper creation of the graph. Images are 

represented as graphs to improve the description of the data 

structure, and the process of creating the graph must be 

undertaken carefully to avoid injecting data structure that is 

not truly present. 

As stated previously, graphs are utilized when traditional 

models insufficiently characterize the data. In some imaging 

regimes, traditional models break down [13]. The amount of 

image clutter, a small ground sample distance, and other 

characteristics can be used to determine if a graph 

representation will be useful for a specific situation. 



2. METHODS 

2.1 Background 

The process of representing an image as a graph can be 

quite straightforward.  The most simple technique, and one 

used often for high resolution gray scale or RGB imagery, is 

to connect pixels based on their spatial proximity. This is 

known as a simple grid graph [6] and is shown in Figure 2. 

 
Fig. 2. An example construction for a grid graph for the three 

pixels highlighted. Adjacency is assigned based on spatial 

relationship instead of spectra (here adjacencies are made with the 

right and lower neighbors). 

A more advanced but still straightforward method is to 

use a distance metric, such as the Euclidean distance, in the 

spectral space to connect a pixel to its   nearest neighbors 

(kNN, as seen in Fig. 1.). Another distance based technique 

would involve connecting all pixels within a certain 

distance,   [6]. Of many possible distance metrics, the 

Euclidean distance and spectral angle are used here and in 

the following techniques. 

The process of exhaustively searching for neighbors 

based on distance becomes increasingly time-consuming as 

the dataset increases in size. To perform this search more 

efficiently, methods have been developed for fast nearest 

neighbor search [14]. One such method, developed to utilize 

several different distance metrics is known as ATRIA. The 

fast nearest neighbor search using the ATRIA tree structure 

is well known and straightforward to implement. The 

nearest neighbor search is accelerated by utilizing a tree 

structure to limit the search for neighbors.  

2.2 Locally weighted nearest neighbors 

One problem with the kNN techniques is that the graphs 

produced are often not fully connected. Connected graphs 

are those in which a path (along edges) exists from any 

point   to any other point   and are desirable for many 

graph theory clustering methods [5, 7, 10]. Grid graphs are 

fully connected by design. One way to ensure a connected 

graph is to create a               in the data in addition to 

the edges defining the community structure. The spanning 

tree is a graph where every node is connected, but no cycles 

(or loops) exist. This process can be computationally 

expensive if done in a way that does not alter the graph’s 

community structure (i.e. the minimum spanning tree). 

To combat the connectivity problem without adding 

additional compute time, a new method combining the kNN 

and grid techniques is proposed. For each pixel the first   
neighbors can be forced to come from the same spatial 

region as that pixel. For example, when 25 neighbors are 

desired for a pixel  , the first 5 (  ) might come from the 30 

nearest pixels in a spatial sense, while the remaining 20 

come from the global dataset. 

 
Fig. 3. The locally weighted method takes spectrally similar pixels 

from the local neighborhood and the global data. Forcing some 

pixels from the local neighborhood improves graph connectivity. 

In addition to forcing the local neighbors to improve 

connectivity, the distance metric can be adjusted to improve 

adjacencies. The local neighbors can be identified using the 

spectral angle. The spectral angle can be a poor metric for 

finding global neighbors because of its performance when 

applied to very dark spectra. However, for pixels in the 

same small spatial region the spectral angle can help to find 

adjacencies for pixels in and out of shadow. The local 

weighting can also be applied to the following techniques. 

2.3 Mutual k-nearest neighbors 

The mutual kNN method is similar to the kNN method but 

instead creates an edge    only if   is one of the kNN of   

and   is one of the kNN of  . This method produces a 

variable number of neighbors for each pixel, based on their 

local (in the spectral space) groupings. This method puts an 

emphasis on mutual neighbors and therefore clusters of 

similar pixels.  

One problem with this method is that outliers often 

remain disconnected from the graph. Additionally, the   

selected has an impact on the size of clusters that are 

represented as background. A large   can falsely treat many 

small clusters as part of the same background and a small   

can leave small groups (but too big to be anomalies) 

disconnected from the graph. To maintain connectivity a 

minimum number of neighbors (which ignores the mutual 

neighbor requirement) can be implemented. 

2.4 Density weighted k-nearest neighbors 

For the proposed density weighted approach, the goal is to 

minimize the impact of pixels outside clusters. Each pixel is 

assigned a co-density score using      nearest neighbors. 

The co-density score is proportional to the sum of the 

distances to      neighbors divided by     .  Threshold 

conditions are then applied to the distribution of co-density 

to provide several different values of   for the graph 

creation. Those pixels with the lowest density have few 

neighbors, while those with the highest use closer to      

neighbors. From practical testing it appears that the 

threshold values,   , should increase non-linearly. Pixels 

with lowest density should have few neighbors, those with 



average density should be near 
    

 
, and those with high 

density should be nearly        

 
Fig. 4. A typical distribution of co-density. Although usually very 

Gaussian, co-density distributions can take other forms depending 

on scene content. 

The best graph creation results in practice were obtained 

with six different   values based on the distribution of co-

density. Because it is generally well represented by a normal 

distribution, the six density thresholds were selected based 

on the standard z-scores of the co-density histogram. The 

lowest of the size thresholds was z-score -2, followed by -1, 

0, 1 and 2. 

3. EXPERIMENTAL RESULTS 

To test the four methods described above (kNN, locally 

weighted kNN, density weighted kNN, and mutual kNN) an 

experiment is performed utilizing two different graph 

segmentation techniques. Each edge creation method will be 

tested with normalized cuts segmentation [5] and modularity 

based segmentation [2, 3]. Both n-cuts and modularity 

clustering work on the same recursive splitting principle. 

For n-cuts, the graph is split based on the eigenvector 

associated with the second smallest eigenvalue of the 

                ; for modularity the largest eigenvector 

of the                   is used [10].  

 Because each of these methods splits recursively from 

one large group to many small groups, the first split is of 

critical importance and any error there is maintained 

throughout the clustering. To test the various edge creation 

techniques, the first split alone will be analyzed. In addition 

to a variety of visual comparisons of the two class cluster 

map, the “optimal” first split was determined from manual 

analysis of the data structure for error comparison. The 

methods of modularity and n-cuts are not under examination 

here, instead only the methods used to create the graphs 

used in each technique are compared. 

The data used to compare the methods are from the well-

characterized HYDICE Forest Radiance scene [15]. The 

section of the image used for this analysis is a small region 

containing several man-made and natural features. The 

relatively small and simple scene was selected to make 

manual classification of specific features possible using 

traditional methods, specifically the Gaussian maximum 

likelihood (GML). The manually identified features provide 

“truth” data to compare the graph creation techniques. 

3.1 Visual results 

 The first graph created utilized the simple kNN method 

with 60 neighbors for each pixel identified as edges. The 

number of neighbors chosen was a compromise between 

quality (many neighbors) and speed (few neighbors). This 

methodology does not account for the length of the edges in 

any way and places excess weight on outliers in the data. 

 
Fig. 6. The graph and first modularity split with cluster map 

overlay for the simple kNN method with k=60. Blue nodes are 

black pixels. 

In Figure 6, the plot and the accompanying cluster map 

indicate that this method produces a “noisy” split, with 

many errors. From the plot of the graph, it is easy to see the 

over connectivity of the pixels that do not seem to belong to 

large groups. Although the graph is only plotted in two 

dimensions (750nm vs. 430nm), it is easy to see that some 

anomalous pixels are too well connected to the clusters with 

many long edges. This over connectivity of anomalies 

negatively impacts clustering. However, the results that 

follow show that the clustering improves with other 

techniques for edge creation. Although not obvious in the 

compressed few (in a spatial and spectral sense), the graph 

from the density weighted method in Figure 7 shows far 

fewer over-connected nodes and total edges used.  

 
Fig. 7. This plot of the graph using the density weighted kNN 

technique (         ) can be contrasted with the simple kNN 

method shown in Figure 6. 

 
Fig. 5. The data used for analysis comes from the HYDICE forest 

radiance scene. For this comparison a small         pixel tile 

containing a variety of features was selected. 



Fig. 8. Three 2-class cluster maps for modularity (right) and n-cuts 

(left) using: a. local             , b. mutual            , 

and c. density kNN (               
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Figure 8 shows the cluster map result for the locally 

weighted, mutual, and density weighted kNN methods from 

left to right for both modularity and n-cuts. The 

segmentation clearly improves compared to the simple kNN 

type and allows the use of fewer total neighbors. To better 

visualize the result compared to the manual “truth” map, 

error images are created using exclusive image differences. 

The “truth” was defined based on selecting training data for 

GML by visually examining the features found with 

modularity, therefore the shadows region and the tents 

which are part of the other group for the first n-cuts split 

appear to increase the error incorrectly. 

Fig. 9. Here the error images are shown for the simple and density 

weighted methods for modularity and n-cuts. From left to right: 

original image, GML derived “truth” map, error image modularity 

simple kNN, error modularity density kNN, error n-cuts simple, 

error n-cuts density (error pixels are white). 

It is clear that compared to simple kNN, the more 

advanced methods for graph construction (specifically the 

density weighted kNN) introduced here drastically improve 

clustering techniques for hyperspectral imagery. These 

results also apply to multispectral imagery, where graph 

based techniques can offer even greater improvement over 

traditional methods. An additional impact of the advanced 

methods is the decrease in total neighbors searched and in 

edges used (i.e. less computing resources).  

4. CONCLUSIONS 

The success of graph theory metrics and methods applied to 

imagery are dependent on the successful representation of 

an image as a graph. Turning an image into a graph is not a 

straightforward endeavor. Careful consideration must be 

taken when deciding which type of graph will work best.  

Especially for clustering, it is clear that a graph 

representation that puts emphasis on representing the 

inherent community structure is desirable. The density 

weighted technique for generating a graph appears to put the 

most emphasis on the data’s underlying community 

structure. Conversely, anomaly detection and potentially 

target detection methods may require less emphasis on 

community structure and number of connections and more 

emphasis on the weight of the connections. The methods 

described in this paper all assume that an edge is binary, but 

clearly the distance or similarity between the end points can 

be applied to create weighted graphs. While similar, 

weighted graphs may have different properties and exhibit 

different phenomenologies for clustering. 
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