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Abstract— This paper presents a vehicular positioning system in 
which multiple vehicles cooperatively calibrate their positions 
and recognize surrounding vehicles with their GPS receivers and 
ranging sensors. The proposed system operates in a distributed 
manner and works even if all vehicles nearby do not or cannot 
participate in the system. Each vehicle acquires various pieces of 
positioning information with different degrees of accuracies 
depending on the sources and recency of information, and 
compiles them based on likelihood derived from estimated 
accuracies to minimize estimation errors. A simulation based 
performance evaluation given in the paper shows that the 
proposed system improves the estimation accuracy by 85% on 
average with respect to the standalone GPS receiver, and 
recognizes about 70% surrounding vehicles with an error of 1m. 

ITS; Vehicle positioning; Situation awareness; Cooperative 
distributed algorithm; V2V communications; 

I.  INTRODUCTION 
Improvement of driving safety is one of the most important 

aspects in the Intelligent Transportation System (ITS), as 
evidenced by activities of various industry and government 
agencies. They have studied a variety of safety applications and 
assumed that vehicles running those applications alarm the 
drivers for possible or potential dangers of hitting other vehicles 
or pedestrians by measuring their current positions, braking 
status, and/or their surrounding obstacles, and share such 
information by wireless communication devices. It is highly 
important to note that these safety applications rely heavily on 
vehicle positions. In [1], Vehicle Safety Communications 
Consortium (VSCC) of Vehicle Infrastructure Integration (VII) 
suggests that vehicle safety applications need to obtain realtime 
positions with errors of a few meters to avoid critical accidents. 
Also, it mentions that each vehicle needs to transmit the 
information including its position every 100 ms. 

One critical issue for the proper functioning of these 
applications is the accuracy of position information brought by 
GPS commonly-used as positioning technology. For instance, 
positioning errors introduced by GPS receivers can be several 
times larger than that in urban areas with many obstacles to GPS 
receivers [2]. Some methods assume additional hardware such 
as Differential GPS, gyroscopes and acceleration sensors, and 
fuse the information to improve the position accuracy [3-5]. 
Some other methods estimate relative positions of vehicles 
originating from position of a vehicle using information shared 
among vehicles via V2V communication [6-8]. In addition, 
some methods have been proposed to estimate driving lanes of 
vehicles by using onboard sensors and V2V communication 
[9-10]. These existing methods can achieve sufficient accuracy 
to some ITS applications such as car navigation systems. 
However, it is difficult to satisfy more severe requirements in 
vehicle safety applications. Moreover, we should also consider 
not all vehicles have DSRC/WAVE communication devices 
and GPS receivers. Recently, some automotive companies 
commercialize safety systems such as Volvo’s Collision 
Warning with Auto Brake and Toyota’s Pre-Collision System 
based on situation awareness. They utilize distances from 
surrounding obstacles obtained by ranging sensors such as 
millimeter wave radar and laser sensors. Some researches have 
also been proposed to improve situation awareness of vehicles 
using ranging sensors and V2V communications [11]. However, 
they do not consider how to share the information among 
vehicles to improve the recognition and position accuracy. In 
sensor networks, there are some methods to track mobile 
objects using static sensors [12], but the assumption of these 
methods is very different from ours. 

This paper proposes a cooperative distributed system which 
provides ITS safety applications with positions of surrounding 
vehicles. We assume that some vehicles hold GPS receivers and 



ranging sensors such as millimeter wave radar sensors and 
DSRC/WAVE communication devices. Each vehicle shares 
measurements from GPS and ranging sensors with surrounding 
vehicles, and updates positions using the measurements by 
different vehicles at different times. In order to mitigate the 
impact of the measurement with large error caused by decay 
with time, a vehicle estimates the “accuracy” for each 
measurement, and estimates the positions by reference to it. 
Also, a vehicle estimates the “accuracy” of estimated positions 
based on the Central Limit Theorem to share the most accurate 
positions with surrounding vehicles. From performance 
evaluation, we confirm that our system could reduce position 
error of vehicles by 85% on average from that of the standalone 
GPS receiver, and recognize about 70% of all surrounding 
vehicles with an error of 1m. 

II. PROPOSED SYSTEM OVERVIEW 

A. Preliminaries 
We assume that some vehicles are equipped with 

DSRC/WAVE communication devices. They are called 
equipped vehicles, and vehicles without those devices are called 
non-equipped vehicles. Each equipped vehicle has a unique 
48-bit MAC address according to the IEEE 802.11p standard. 
We call the vehicles which exist in the wireless range of vehicle 
i nearby vehicles of vehicle i. Since many safety applications 
require every vehicle to advertise its current position every 
100ms, our proposed system assumes 100ms as a time unit (i.e. 
time slot interval), and equipped vehicles update positions of 
nearby vehicles every time slot. 

The followings are assumed for each equipped vehicle. 
Firstly, it broadcasts a Basic Safety Message every Ts time slots. 
We follow the SAE J2735 standard to define the message 
format. Secondly, it measures its own position by GPS every Tg 
time slots. The measured position is called GPS position. 
Thirdly, it measures its own velocity by an accelerometer every 
Tz time slots. Fourthly, it has a ranging sensor (such as a 
millimeter wave radar sensor), and measures relative angles and 
distances to other vehicles which exist in the immediate sight 
every Tz time slots. Thus the relative positions of those vehicles 
from the equipped vehicle can be calculated. Additionally, each 
equipped vehicle can estimate their velocities using the 
sequences of two or more relative positions. The vehicles 
detected by the ranging sensor are called detected vehicles. We 
assume that the maximum sensing range is about 100m 
considering modern products. 

We conducted experiments to evaluate the spatial locality of 
GPS error using multiple GPS receivers and determine error 
distribution of GPS. From the results, errors from multiple GPS 
receivers which were close were uncorrelated. Thus, we assume 
that the errors of GPS positions follow normal distributions 
with a mean zero and variance σg

2. Also, we assume that the 
errors of relative positions and velocities follow normal 
distributions with a mean zero and with variances σr

2 and σv
2, 

respectively. Note that σg
2 is usually much larger than σr

2 and 
σv

2. This is because GPS positioning often incurs large errors by 
multipath and signal blocks, while ranging sensors and 
accelerometers are hardly susceptible to such factors. We 
consider that the default values of Tg and Tz are 10 and 1 time 

slots, respectively. They are based on the features of modern 
products, but our method is independent of those specific 
values. 

B. Cooperative positioning: principle and examples 
Each equipped vehicle holds positions of nearby vehicles, 

and updates them every time slot. In order to update the 
positions, each vehicle detects its surrounding vehicles as well 
as its own GPS position and velocity. This information is 
transmitted via a Basic Safety Message to its nearby vehicles. 
On receiving each other’s GPS positions and relative positions, 
each equipped vehicle estimates the current positions of its own 
nearby vehicles. 

It is worth noting that the goal of our method is to allow 
equipped vehicles (i) to recognize the presence of non-equipped 
vehicles, and (ii) to estimate the positions of equipped vehicles 
more accurately than GPS and those of non-equipped vehicles. 
To achieve the second goal, each equipped vehicle uses 
multilateral range measurements from different vehicles (i.e. 
relative position information brought by ranging sensors). This 
enables to use GPS positions of nearby vehicles as “anchors”, 
and multilateration mitigates the GPS errors that those 
“anchors” originally contain. In addition, such multilateration 
can be explored to detect non-equipped vehicles to accomplish 
the first goal. However, due to asynchronous and distributed 
execution of position estimation, the “vehicle map” recognized 
by each equipped vehicle may be different from others. 

Fig. 1 exemplifies our system’s behavior where equipped 
vehicle A updates the positions of its nearby vehicles. Vehicle A 
can measure its GPS position, and the relative positions of 
equipped vehicles B, D and non-equipped vehicle E (similar 
measurements are done by equipped vehicles B and D). Thus, 
vehicle A can explore the multilateral range measurements to 
estimate the positions of vehicles A, B, D and E.  

(i) A’s GPS position, and A’s relative positions from both B 
and D’s GPS positions are used to estimate the position of A.  

(ii) B’s GPS position, and B’s relative positions from both A 
and D’s GPS positions are used to estimate the position of B. 

(iii) D’s GPS position, and D’s relative positions from both 
A and B’s GPS positions are used to estimate the position of D. 

(iv) E’s relative positions from A, B and D’s GPS positions 
are used to estimate the position of E.  

We note that vehicle C is first recognized by vehicle B (by 
ranging sensor) and afterward by vehicles A and D via a 
message from vehicle B. Also, we mention measurement-target 
association problem later. 

As explained, equipped vehicles can provide relative 
positions originating from their GPS positions. Composition of 
a relative position and its origin generates a position 
measurement, which we call position candidate hereafter. We 
employ the following approach toward better accuracy of V2V 
positioning and reasonable design of protocol and algorithm. 

• Based on the principle of multilateration, more position 
candidates can achieve higher position accuracy. 
Therefore, position candidates originating from 



time-different GPS positions of a single vehicle may be 
used. We can easily imagine that position candidates 
generated from those past measurements may have 
larger errors than recent ones due to information decay. 
Hence, each position candidate is weighted by the 
freshness of its information source in estimating 
position by multilateration. 

• Vehicles also share range measurements with each 
other. However, since ranging sensors only detect 
“objects” and tell their relative positions, it is necessary 
to identify whether two relative positions indicate the 
same vehicle or not. For this identification, each vehicle 
compares the relative positions that compose the 
position candidates to see the degree of conformance. 

• Since a vehicle’s position may be calculated by 
different vehicles independently, these vehicles may 
have different estimation results with different 
accuracy. In order to choose the “most accurate” one 
from those sent by different vehicles, vehicles expect 
the “likelihood” of each estimated position by the 
Central Limit Theorem. 

III. DESIGN DETAILS 
The positioning consists of the following three steps: (1) 

obtaining observations (GPS and range measurement), (2) 
updating estimation from observations and (3) exchanging 
messages. These steps are explained in the followings. 

A.  Obtaining observation (GPS and range measurement) 
As we mentioned in Section II-A, each equipped vehicle i 

measures its own GPS position and velocity, and the relative 
positions and velocities of its nearby vehicles periodically. For 
position estimation, each vehicle sends these measurements via 
Basic Safety Messages every Ts time slots, and holds the GPS 
positions and velocities of other equipped vehicles and the 
relative positions and velocities of their nearby vehicles. We let 
Oi(a) denote the information about vehicle “a”, which is a 
detected vehicle by equipped vehicle i. This information is 
called observation of the vehicle with ID “a” measured (i.e. 
observed) by vehicle i, and consists of the tuple (g, r, v) where g 
is a GPS position of vehicle “a”, r is a relative position of 
vehicle “a” measured by vehicle i (it is a zero vector in case of a 
= i) and v is a velocity of vehicle “a” measured by vehicle i. 
Since Oi(a) is generated every time slot, we distinguish Oi(a) by 
their generated time slots. 

B. Updating estimation from observations 
Each equipped vehicle i holds “estimation” of nearby 

vehicles that includes estimated positions and the confidence on 
estimation accuracy. This information is simply called 
estimation. Estimation of vehicle “a” is denoted by E(a), where 
“a” is a vehicle ID. We note that estimation is defined for every 
vehicle and vehicle i assigns a temporal ID for a non-equipped 
vehicle. E(a) consists of the tuple (p, l, v, r) where p is an 
estimated position, l is “likelihood” (i.e. confidence of 
estimation) of p, v is a velocity vector, and r is a relative 
position of vehicle a originating from vehicle i. Likelihood l is 
defined as inverse of estimated standard deviation of p. We note 
that r is included for vehicle identification purpose explained 
later. 

Each estimation E(a) is updated every time slot using 
observations that observe vehicle “a”. In order to solve such 
association problem, we need to identify such observations. 
These are called corresponding observations. Vehicle i finds 
corresponding observations generated by another vehicle j for 
each estimation E(a) by topological comparison of detected 
vehicles in receiving Basic Safety Messages as will be 
mentioned in Section III-C. A velocity v and a relative position 
r of the current estimation E(a) are updated by assigning those 
of corresponding observations Oj(b). Also, if vehicle i does not 
measure a GPS position in the current time slot, estimated 
position p is updated from the last estimated position p’ by 
linear prediction. In this case, likelihood l is updated from the 
last likelihood l’ by (1), where a smaller variance of velocity or 
a larger likelihood yields a larger likelihood. 

 (1) (1) 

If vehicle i measures a GPS position, p is updated by the 
weighted average of position candidates generated from GPS 
positions and relative positions of corresponding observations 
E(a). In this case, vehicle i generates position candidates q1, …, 
qn from GPS positions and relative positions included in the 
corresponding observations generated in the current time slot. 
Then it calculates likelihood lx for each position candidate qx. In 
case of a GPS position of vehicle a which is measured k time 
slots before, vehicle i generates a position candidate using k 
velocities of vehicle a measured every time slot in [t − k, t] 
where t is the current time slot. In this case, it calculates 
likelihood of the position candidate by (2) to consider the 
accumulated errors of velocities in k time slots plus GPS error. 

 λ_ξ =  (2) 

 
Figure 1.  System overview. 

 

 



We show an example to generate position candidates in Fig. 
2. For the situation illustrated in Fig. 2(a), Fig. 2(b) shows two 
position candidates of vehicle i at time slot t4. One is generated 
from the direct measurement of GPS position at t4, but the other 
is calculated by the GPS position of vehicle i at t1 plus linear 
prediction of movement between t1 and t4. Fig. 2(c) shows 
another case. This position candidate is generated in a more 
complex way where the GPS position of vehicle j at t2 is the 
origin, and the expected position of vehicle j at t3 is calculated 
by linear movement prediction, and using the range 
measurement from vehicle j to vehicle i at t3, the expected 
position of vehicle i at t3 is derived. Finally, we again conduct 
linear movement prediction to obtain the candidate at t4. 

We note that the likelihood of a position candidate 
originating from a GPS position with a relative position and 
k-slot movement prediction is calculated as follows, where 
those errors are accumulated. 

   (3) 

Then, vehicle i calculates new position p as the weighted 
average of position candidates qx giving likelihood of position 
candidates lx as the weights (x = 1,…, n) as defined by (4). Also, 
it calculates likelihood of p defined as follows based on the 
Central Limit Theorem as defined by (5). 

  (4) 

  (5) 

C. Message exchange 
Every Ts time slots, equipped vehicle i sends a Basic Safety 

Message. Equipped vehicle i generates message contents using 
the estimation of vehicle i itself and some detected vehicles. For 
each detected vehicle (including vehicle i itself) recognized by 
vehicle i as vehicle “a”, S(a) denotes the information that 
vehicle i sends in the message. S(a) consists of the tuple 
(E(a),Oi(b)) where Oi(b) denotes the corresponding observation. 
When vehicle i receives a Basic Safety Message from vehicle j, 
it creates observation Oj(d) from message structure S(c) = 
(E(c),Oj(d)). Then, vehicle i compares relative positions of all 
received observations with those in estimation it holds, and 
determines corresponding estimation for each received 
observation Oj(d). In the case of Fig.1, vehicle A determines that 
OB(B) , OB(d) , OB(f) and OB(g) are related with E(a), E(A), E(b) 

and E(c), respectively,  when it receives a Basic Safety Message 
from vehicle B. If vehicle i cannot find corresponding 
estimation, it creates new estimation E(e) based on E(c) in S(c). 
Also, vehicle i updates estimation E(a) which corresponds to 
Oj(d) using E(c) when likelihood of estimation E(c) is larger 
than that of estimation E(a).  

IV. PERFORMANCE EVALUATION 

A. Simulation settings 
As a simulation map, we used an intersection with lane 

width 5m and length 1km shown in Fig. 3. We generated 
vehicle mobility using the traffic simulator VISSIM [13]. The 
average speeds of vehicles was 60km/h. Vehicle density of 
major road and minor road were 1,800 vehicles and 1,200 
vehicles per hour, respectively. The time slot was 100ms. We 
set the standard deviation of GPS position errors σg to 5m, the 
standard deviation of relative position errors σr to 0.25m, and 
the standard deviation of velocity errors σv to 0.08m/ms. Also, 
we set the maximum sensing range to 100m, the interval of GPS 
measurement Tg to 10 time slots, and the interval of sensor 
measurement Tz to 1 time slot. Moreover, the default value of 
the sending interval of Basic Safety Messages Ts is 1 time slot. 
We used the two-ray ground reflection model as a radio 
propagation model, and set the transmission power to 23 dBm. 
Also, the communication protocol is DSRC/WAVE with data 
transmission rate 6Mbps. In the above settings, we conducted 
simulations using the network simulator Scenargie [14]. 

B. Simulation results 
First, we evaluated how much equipped vehicles can 

improve the accuracy of their GPS positions. In general, 
applications such as navigation systems use GPS positions 
corrected by estimation from past measurement and map 
information. We compared the proposed method with “GPS 
with self calibration”, which estimates positions by 
multilateration of accumulated GPS positions. The ratio of 
equipped vehicles was 100%.We show the average position 
error in estimation E(i) for all equipped vehicles i in the whole 

           
 
 

Figure 2.  Generation of position candidates.

(a) Situation 

 
Figure 3.   Simulation map. 

(c) Generation of a position candidate 
from a relative position 

 

 

(b) Generation of position candidates 
from GPS positions



target area. The position error is defined as Euclidean distance 
to the true position. The result shows that the average error of 
positions at 10sec after the  system started was 0.6m. Hence, our 
proposed system can achieve sufficient accuracy in short time 
for vehicle safety applications, which need realtime positions 
with errors of a few meters. The position error was improved 
about 85% to native GPS positions, and about 60% to GPS with 
self calibration. The results mean that our system improves the 
accuracy of positions by using the information generated by 
different vehicles at different time. 

Second, we evaluated the impact of the ratio of equipped 
vehicles on performance. Fig. 5(a) shows the average position 
errors of positions in estimation E(i) of each equipped vehicle i 
after 10sec when the ratio of equipped vehicles varies from 10% 
to 100%. From the result, the lower ratio makes the position 
accuracy because the position candidates decrease. However, in 
case of the low ratio of equipped vehicles, the average position 
error was less than a half of error of GPS positions.  

Third, we evaluated the impact of the ratio of equipped 
vehicles on recognition ratio. The recognition ratio R(d) is 
defined as the average ratio of the vehicles whose positions are 
estimated uniquely within dm error to all vehicles in the whole 
target area for all equipped vehicles.  Fig. 5(b) shows the 
average recognition ratio of all equipped vehicles after 10sec 
when the ratio of equipped vehicles varies from 10% to 100%. 
From the result, the higher ratio makes the recognition ratio 
better. Especially, in the case of 100%, the proposed system 
could recognize about 70% of all nearby vehicles with an error 
of 1m. Though all vehicles equipped with DSRC/WAVE 
communication devices and GPS receivers, R(2.5) could not 
reach 100%. This is because some vehicles in the edge of target 
area started estimation just before 10sec and could not be 
estimated accurately enough. On the other hand, even in the 
case of 40%, about 50% of all nearby vehicles could be 
estimated with an error of 1m. 

V. CONCLUSION 
This paper has proposed a cooperative vehicle positioning 

system which provides accurate positions for ITS applications 
in real-time under the situation where some vehicles have GPS 
receivers and ranging sensors such as millimeter wave radar 
sensors and DSRC/WAVE communication devices. From 
performance evaluation, we confirmed that our system could 
reduce position errors of vehicles for average 85% and 
recognize 70% of all nearby vehicles with an error of less 1m. 
As our future work, we are planning to evaluate the 
performance of our system by using realistic scenarios. 
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Figure 4.   Average position errors of equipped vehicles. 

 
(a)   Average position errors. 

 
(b)   Recognition ratio 

Figure 5.    Impact of the ratio of equipped vehicles. 


