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ABSTRACT

Modern techniques for distributed information retrieval use
a set of documents sampled from each server, but these sam-
ples have been underutilised in server selection. We describe
a new server selection algorithm, SUSHI, which unlike ear-
lier algorithms can make full use of the text of each sampled
document and which does not need training data. SUSHI
can directly optimise for many common cases, including high
precision retrieval, and by including a simple stopping con-
dition can do so while reducing network traffic.

Our experiments compare SUSHI with alternatives and
show it achieves the same effectiveness as the best current
methods while being substantially more efficient, selecting
as few as 20% as many servers.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—selection process; H.3.4 [Information

Storage and Retrieval]: Systems and Software—distrib-

uted systems

General Terms

Experimentation, Measurement

Keywords
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1. SAMPLES FOR SERVER SELECTION
Distributed information retrieval (DIR) systems present a

single search interface which can cover several independent
collections, exposed through several independent servers. A
broker forwards users’ queries to each server independently,
collates the results, and presents a single result set.

It is not always feasible to forward every query to every
server, as costs will be incurred both in network traffic and
potentially in fees for use. Brokers may therefore include a
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process of server selection, which identifies for each query
the most promising servers; only these servers receive the
forwarded query and contribute to the final result set. As
a general rule, we would like to forward queries to as few
servers as possible, to minimise cost and delay, and decrease
the chance of one or more servers being unavailable. As
well as minimising costs, there is some evidence that a suffi-
ciently accurate selection algorithm can improve the quality
of results even above that from a single large index (see for
example Abbaci et al. [1]).

A carefully-chosen sample of a server’s documents, or a
large enough sample chosen by a random process, can be
representative of the total holdings of a server. Brokers typ-
ically therefore use such a sample to characterise a server’s
holdings. A sample may be used to generate a language
model [5]; to classify a server’s subject matter [17]; to esti-
mate overlap with other servers [4]; to merge results from
multiple servers [7]; or repeated samples may be used to es-
timate the number of documents which a server indexes [15].
It is also possible to use samples to inform server selection.

This paper presents SUSHI: a server selection algorithm
which extrapolates scores for unseen documents from a sam-
ple, and which uses these extrapolated scores to optimise for
some desirable quality (such as precision) in the final result
set. Experiments indicate it is as effective as the state-of-
the-art ReDDE and CRCS algorithms while being substan-
tially more efficient.

2. SIMILAR SYSTEMS
A great many server selection techniques have been de-

scribed in the literature. Two recent techniques, ReDDE
and CRCS, have performed well in previous evaluations;
they are also the two methods most like SUSHI in that they
both make use of a central set of sampled documents.

2.1 ReDDE
The ReDDE (relevant document distribution estimation)

method of Si and Callan [23] attempts to estimate the dis-
tribution of relevant documents across servers; the intuition
is that if all documents were ranked by an effective method,
the top r documents would be relevant.1 Since this ranking
cannot be computed by a broker, the distribution is esti-
mated based on sampled documents.

For any sampled document d, let |c| be the number of
documents in the collection c which d was drawn from; and

1As originally presented, r is a proportion of the total num-
ber of documents in all collections rather than a fixed cut-off.
The two formulations are interchangable.



let |s| be the number of documents in the corresponding
sample s. Assuming that the sample is representative, d can
then stand for |c|/|s| documents from the original collection.

To score servers for a query, every sampled document is
scored and ranked. ReDDE starts with the highest-ranked
sampled document—call this d1—and allocates the associ-
ated server a score proportional to |c|/|s|. The process con-
tinues with d2, the second highest-ranked sampled docu-
ment, and so on down the list until the assumed number
of documents in the complete ranking,

P

d
|c|/|s|, is greater

than r. At this point, where any lower-ranked document it
not likely no be relevant, no more documents are considered,
and the server(s) with the highest scores are selected.

Evaluating ReDDE and several other methods and on
a TREC-based testbed, Si and Callan found ReDDE had
somewhat better recall in cases where collection sizes were
uniform and markedly better recall when sizes were more
variable [22, 23]. Other evaluations have shown ReDDE to
be one of the most effective selection techniques, although
subject to some bias towards larger collections [13].

ReDDE provides a score for each server, and so a ranking,
but does not indicate how many servers should be selected.
This is generally addressed simply by choosing a fixed cutoff
ahead of time—Si and Callan use five to twenty [23].

2.2 CRCS
Shokouhi’s central-rank-based collection selection (CRCS)

algorithms also make use of sampled documents as repre-
sentatives of each collection [19]. Again, the sampled doc-
uments are ranked for each query, and those servers which
contribute highly-ranked sampled documents are selected.

Using ReDDE, each highly-ranked sampled document is
worth the same fixed score. Shokouhi argues that this does
not properly reflect the likely utility of each collection, since
higher-ranked documents will generally be more useful than
those of lower ranks. Instead of allocating a fixed score
CRCS therefore allocates a score based on the rank of each
of the top γ sampled documents.

In the simple linear version, CRCS(l), the score is (|c|/|s|)γ
for the first document, (|c|/|s|)(γ−1) for the second, etc. In
the exponential version, CRCS(e), the score is (|c|/|s|)αe−β

for the first document, (|c|/|s|)αe−2β for the second, and so
on. α, β, and γ are all tunable parameters.

In experiments by Shokouhi [19], a simulated broker in-
cluding CRCS performed slightly better than one includ-
ing ReDDE (although on a precision measure, when Si and
Callan considered recall). Thomas [27] saw recall similar to
ReDDE, but with less bias toward large collections. CRCS(e)
appeared slightly better than CRCS(l) in both sets of exper-
iments, and we use this version here.

As with ReDDE, CRCS can only provide scores for servers;
the decision of how many to use must be tackled separately.

2.3 Other methods
The UUM and RUM methods of Si and Callan [25, 26],

like ReDDE and CRCS, use a central index of documents
which is ranked for each query. UUM extends the basic
model by learning, ahead of time, a function to map scores
from the central index to probabilities of relevance: this can
be used to select servers for either high precision or high
recall. This is similar to our SUSHI algorithm, described
below; UUM does however need training data, which may
not be available, and therefore is not applicable to brokers

in the most general case. RUM extends UUM by taking into
account the effectiveness of each server.

The decision-theoretic framework (DTF) of Fuhr [9] also
takes a similar approach, and aims to minimise the over-
all cost of retrieval including the cost of interrogating each
server and retrieving documents. Early versions used a lin-
ear, learned, approximation of a precision-recall curve for
each server; later versions used more complex variants [18].
In each case, however, a large amount of training data is
required as well as an estimate of the various costs involved.
As for UUM and RUM, we argue that this is not feasible in
the general case.

In our experiments we use three further selection methods
for comparison. CORI [6] adapts the INQUERY document-
scoring formula to score servers according to their vocab-
ulary and term frequencies. This is commonly estimated
based on sampled documents, but for CORI only aggregate
data is used and document boundaries are not retained.
CORI has been used as a baseline in much previous work
[e.g. 13, 19, 23, 25].

We also consider a relevance-based ranking (RBR)—an
oracular method which ranks servers according to the num-
ber of relevant documents they hold—and a central-index
model. The former allows us to compare performance with
a “perfect” broker, and the latter allows us to determine the
performance loss due to the DIR model.

3. SCORING SCALED SAMPLES
SUSHI incorporates three key ideas. First, where ReDDE

rewards servers based on the presence of a sampled docu-
ment in the top ranks, and CRCS rewards servers based
on these ranks, SUSHI uses the score assigned to the docu-
ments themselves. Second, SUSHI uses curve fitting to map
scores from sampled documents to estimate scores from un-
seen documents. Third, SUSHI uses these fitted curves to
directly maximise for the metric of interest. Figure 1 illus-
trates the process.

Scoring and ranking. First, we score each sampled doc-
ument with regard to the query and the (estimated) term
statistics across all collections; this is the same as for ReDDE
and CRCS. (Figure 1(a).) Second, we can then extract for
each server just the documents sampled from that server’s
collection (Figure 1(b)).

Adjusting ranks. Third, we adjust the rank of each sam-
pled document. Since each document in the sample is as-
sumed to stand for some number of documents from the
server, we use adjusted ranks (x + 0.5)(|c|/|s|) for x ∈ N0.
For example, in Figure 1(b), the sample is 1/20th the size
of the server, so each sampled document stands for 20 and
the ranks in Figure 1(c) are adjusted to (10, 30, 50, · · · ).

Occasionally, only very few documents from a server score
above zero. If there are fewer than Z non-zero scores, SUSHI
assumes that these are the only relevant documents from the
collection and does not adjust ranks or attempt to fit a curve
(see following). In principle Z could depend on sample and
collection sizes, but in this work we subsitute a fixed value.
Early experiments suggested that Z = 5 documents was a
fair cutoff: higher values resulted in too few curves being
fitted and lower values resulted in inaccurate fitting.
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Figure 1: SUSHI scoring four servers.

Curve fitting. In order to estimate the scores of documents
we have not seen, SUSHI fits a curve to the re-ranked sam-
pled documents (Figure 1(d)). We try a linear, logarithmic,
and exponential curve at query time and choose the one
which fits best; this follows earlier work by Shokouhi and
Zobel [20] but excludes the SQRT curve. Fit is measured
with R2.

It is generally recognised that scores from a matching func-
tion are best modelled not by one but by two curves: often
a Gaussian (for the scores from relevant documents) mixed
with an exponential (for irrelevant documents) [12, 16]. In
this work we only fit one curve, since we expect there to be
very few relevant documents in our small samples and this
would make any more sophisticated fitting error-prone.

Re-ranking and optimising. The interpolated scores from
the first steps are, by assumption, representative of the top
few documents from this server for this query. By repeat-
ing for each server, and sorting the interpolated scores, it is
possible to estimate the top scores across all servers (Fig-
ure 1(e)). Note that up to this point document scores have
been calculated and manipulated at the broker without pass-
ing any queries to servers; and that the estimated scores are
comparable across servers since they are produced with ref-
erence to the same index.

Finally, again on the assumption that these interpolated
and re-ranked scores represent the best documents from each

server, we can optimise for whichever characteristic we pre-
fer. In the experiments here we are concerned mainly with
precision: we optimise for P@10 since studies suggest users
only consider the first few results [14]. If document scores are
proportional to probability of relevance—and some scoring
functions expressly calculate this—then a server’s expected
contribution to P@10 is proportional to the sum of the scores
of its documents in the top ten. We rank servers according
to this expected contribution. Servers with no documents in
the top ten are not selected.

SUSHI may choose fewer than n servers when optimising
for P@n, and in fact could even choose only one if that server
is likely to provide the n top-scoring documents. This con-
trasts with ReDDE, CRCS, CORI, and many other selection
techniques where the number of servers to include must be
fixed ahead of time.

Although we are mainly concerned here with precision,
SUSHI can in principle optimise for some other desirable
feature. For example, it is easy to rank servers according to
the estimated number of relevant documents at each, which
optimises for recall. Other alternatives including MRR are
discussed in Section 5 following.

4. SIMULATIONS
We have tested SUSHI, ReDDE, CRCS, and CORI in sev-

eral simulated DIR environments. Our experiments address
three questions:



1. How does SUSHI’s selection performance compare with
other methods?

2. Does SUSHI’s ability to select fewer servers result in
improved efficiency?

3. On our testbeds, how do realistic server selection tech-
niques compare with an (impossible) oracle; and with
a central index of the same documents?

4.1 Testbeds
Our experiments use six testbeds. By dividing the docu-

ments between artificial “collections”, each represents a DIR
system with a different distribution of collection sizes and a
different distribution of relevant documents.2

The first five testbeds are based on documents from the
TREC ad-hoc track [11]. None of the five models a real DIR
system, where documents will be arranged strictly by source
but most likely with a much wider range of sizes, document
types, and densities of relevant documents. There is still
however enough difference in these characteristics that we
can spot trends.

Uniform. In the uniform testbed (also called trec123-100col-
bysource), documents from TREC CDs 1, 2, and 3 are dis-
tributed across 100 collections according to their publica-
tion source and date [28]. No collection contains documents
from two different publication sources, and collection sizes
are very homogeneous.

Relevant. Also called trec123-AP-WSJ-60col [22]. In this
testbed documents in the 24 Associated Press collections
from the uniform testbed are merged in a single collection
(AP), and documents in the 16 Wall Street Journal collec-
tions from the uniform are collapsed into a separate collec-
tion (WSJ). The other collections in the uniform testbed
remain as before; AP and WSJ are therefore an order of
magnitude larger than the remainder. When TREC ad-hoc
topics are used, AP and WSJ have a higher density of rele-
vant documents than the other collections in this testbed.

Nonrelevant. The nonrelevant testbed (“trec123-FR-DOE-
81col” [22]) combines all documents from the Federal Regis-
ter in a single collection (FR), and those from the Depart-
ment of Energy into another (DOE). In this testbed, the FR
and DOE collections are relatively large but have the lowest
density of relevant documents.

Representative. The representative testbed (“trec123-2ldb-
60col” [23]) is also based on the uniform testbed, with some
collections aggregated into two larger ones. In this case col-
lections are sorted by their names; every fifth collection
starting from the first collection is merged into a single
collection (COL1), and every fifth collection starting from
the second collection is merged into a separate collection
(COL2). These large collections are again an order of mag-
nitude larger than the other 60, which remain unchanged,
but should have the same density of relevant documents.

2Previous research has shown that the effectiveness of col-
lection selection methods may vary according to the distri-
bution of relevant documents in collections [8, 23].

k-means. Around 568,000 documents from the TREC 4
data set are clustered via the k-means algorithm, to obtain
100 collections of approximately equal size and which are
assumed to be topically coherent [28].

Web. Our sixth testbed is derived from the WT10g corpus
used by the TREC web track [3]. We divide the corpus so
that documents from each host appear as a separate collec-
tion: we suggest that this more accurately represents a real
DIR application, in particular matching web search portals
offered by for example FedLemur [2].

Queries. Experiments on the uniform, relevant, nonrele-
vant, and representative testbeds used queries from the ti-
tles of TREC topics 51–100, and associated relevance judge-
ments. The k-means testbed used the description fields of
TREC topics 201–250; the web testbed used titles from
TREC web track topics 451–500.

4.2 Metrics
We use two effectiveness metrics for each testbed and se-

lection method. To estimate final system performance as
seen by a user, we simulate a full broker by retrieving doc-
uments from each selected server, merging these with the
SSL algorithm [24], and using the standard precision metric
P@10 on the merged list. This approximates a real instal-
lation: SSL is a state-of-the-art merging technique, and we
assume a user will look at the first ten results. P@10 ranges
from 0 to 1, although (since there may be fewer than ten
relevant documents, and since merging is subject to error)
the best possible selection may not score 1.

P@10 gives a measure of overall performance. We also use
Rk, which is a rough analogue of classical recall and consid-
ers the effectiveness of the selection method alone [10]. If k
servers are selected, Rk is the ratio of relevant documents
held by these servers to relevant documents held by the k
servers in a relevance-based ranking. Rk ranges from 0—
meaning there are no relevant documents in the k selected
servers—to 1—meaning the k selected servers are those with
the highest number of relevant documents.3 The cutoff k is
an upper bound, not a fixed parameter, for SUSHI since it
may select fewer servers if this seems appropriate.

We evaluate the efficiency of a selection method by consid-
ering the number of interactions with servers—in this case,
the number of servers selected.

4.3 Configuration
We have tested SUSHI and alternatives in two scenar-

ios. A “cooperative” scenario assumes that servers cooper-
ate with a broker and make full information available on
documents and scores; an “uncooperative” scenario assumes
brokers must instead estimate this information using sam-
pling techniques.

It seems unlikely that a web-scale broker would ever have
full information, so we consider our web testbed in the un-
cooperative scenario only.

Cooperative scenario. The first scenario provides a best
case for comparison. Each method was run inside the lemur

3This metric is normally called Rn. We use k for the num-
ber of servers selected and n for the number of documents
considered in evaluation; hence Rk and P@n.



toolkit4 with parameters set as originally described.

• ReDDE assumed that the top r = 50 documents were
relevant.

• CRCS used α = 1.2, β = 0.28, and considered the top
γ = 20 documents.

• CORI used default belief b = 0.4, df base = 50, and
df factor = 150 (after Callan et al.[6]).

• SUSHI fitted three curves to each set of samples—
linear, logarithmic, and exponential—and took the best-
fitting of the three. The fittest curve was allowed to
vary for each query and server.

All simulated servers used lemur’s implementation of IN-
QUERY scoring, and returned 100 documents for each query.

“Samples” of each collection had 100% coverage, and re-
sulting models were completely accurate; ReDDE, CRCS,
and SUSHI used a “sample” index of all documents and
scored them with INQUERY. Size “estimates”were also cor-
rect. In each case the SSL “single model” algorithm was
used, and document scores were reported by each server.

Uncooperative scenario. The cooperative scenario ass-
umes perfect knowledge of each collection, which is not fea-
sible in a real broker. We expect that any real-world imple-
mentation must make use of partial samples and imperfect
estimates, so each method was re-run to estimate its perfor-
mance under these conditions. Samples of 300 documents
per server were drawn using query-based sampling [5], with
uniform term selection and four documents at a time down-
loaded. Although this is known to produce significantly bi-
ased samples, it is commonly used in DIR applications. In
this scenario, simulated “servers” were evenly divided be-
tween language modelling, Okapi BM25, or INQUERY scor-
ing, and returned only ten documents per query.

Server sizes were estimated by capture history [21], using
140 queries. The SSL “multi model” technique, with pseu-
doscores, is used for merging.

This scenario includes common DIR algorithms and re-
strictions, and more closely represents a working broker.

4.4 Results

Cooperative scenario. SUSHI should select fewer servers
than other methods, but if it is behaving correctly we would
expect it to be choose collections with enough relevant docu-
ments that overall system performance is not affected. This
is in fact the case: overall system performance is remarkably
similar across all methods and testbeds (see Figures 2(a)
and (b)). All selection methods perform about as well as
each other and about as well as a central index; the only
exception is CORI, which generally performs poorer and
which is significantly worse than others on the representa-
tive testbed when k < 7. (Significance tests in this section
are Wilcoxon matched-pairs signed-rank tests, α = 0.05.)

These experiments also allow us to compare a central in-
dex with our oracular relevance-based ranking (RBR). There
is no significant difference between P@10 scores in any of the
uniform, relevant, nonrelevant, and representative testbeds;
and precision scores improve significantly (although only

4http://www.lemurproject.org/

slightly) when selection is used on the k-means testbed and
five or more servers are selected. We can conclude that—
given a good enough selection algorithm—the DIR model
need not be less precise than a complete index.

Figures 2(c) to (e) plot Rk for each testbed and each
method as k, the number of servers selected, varies. (Re-
call that a selection method which ranks according to the
number of relevant documents will score Rk = 1 for all k.)

There are some differences apparent. ReDDE performs
well on the representative testbed. Since the density of rele-
vant documents is more or less uniform across all collections
in this testbed, and since we assume an effective ranking
technique at each server, it is worthwhile selecting the two
larger collections since they will have a higher number of
relevant results. ReDDE’s selection is biased towards large
collections, which in this case improves performance.

Unlike the other methods, Rk for SUSHI starts somewhat
low and levels out or even drops as the cutoff k is increased
on any testbed. (This is also true for ReDDE and CRCS on
the representative testbed.) This indicates that SUSHI is
not selecting further servers with relevant documents: this
is because in many cases there appear to be enough relevant
documents before k = 10, and SUSHI will therefore not
select further servers. The decrease is less marked in the
relevant testbed, where collections after the large two add
relatively little merit.

Since Rk does not vary with peformance as seen by a user,
we suggest it may not be a useful metric in most cases and
should be used with caution.

Uncooperative scenario. Figure 3 summarises selection
and overall performance. All selection methods tend to per-
form worse with poorer samples, which is consistent with
earlier work, and SUSHI’s performance is again comparable
to other methods. Although precision scores for the oracu-
lar relevance-based ranking (RBR) vary somewhat—the SSL
merging method uses 300-document samples here instead of
full collection information—they are still not significantly
worse than those from a central index (with the sole excep-
tion of k = 10 on the k-means testbed). On the web testbed,
RBR selection with SSL merging is substantially and signif-
icantly better than retrieval from a cental index. Again,
with good enough server selection a broker need not be less
effective than a centralised tool.

On the web testbed, which we believe is most like a real-
world installation, SUSHI is again as effective as other meth-
ods although scores are lower across the board (Figure 3(c)).

As before, Rk scores from SUSHI level out or drop as k
increases and SUSHI does not select more servers, but again
final precision is not affected and the only significant dif-
ference is with ReDDE on the relevant testbed. We can
conclude that SUSHI is able to pick an appropriate cutoff.
ReDDE continues to produce high Rk on the representative
testbed as well as the relevant testbed; again, this obser-
vation can be explained by ReDDE’s bias toward selecting
large collections, and the characteristics of the two testbeds.

4.5 Efficiency
By design, SUSHI selects fewer than k servers when pos-

sible. Table 1 summarises the number of servers actually se-
lected in the cooperative and uncooperative cases, for each
testbed: recall that ReDDE, CRCS, and CORI must select
a fixed number of servers for each query. For similar values
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Figure 3: Precision and Rk as cutoff varies, uncooperative scenario.



SUSHI

Testbed Coop. Uncoop Others

uniform 2.3±2.2 4.5±3.0 10
relevant 1.4±0.8 3.9±2.5 10

nonrelevant 2.2±2.0 4.9±3.3 10
representative 1.6±0.8 3.6±2.6 10

k-means 1.8±0.8 2.1±1.4 10
web — 6.0±2.3 10

Table 1: Mean number of servers selected when opti-

mising for P@10, k = 10. ReDDE, CRCS, and CORI

select a fixed number of servers.
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Figure 4: Servers selected as cutoff varies, uncoop-

erative scenario.

of P@10, SUSHI is able to select as few as 14% as many
servers and typically around 40% as many.

Since for all testbeds P@10 does not change greatly with k
(Figures 2 and 3), it may seem reasonable to simply choose
a lower cutoff—say k = 4 or 5—and use an existing selection
method. We make two observations. First, this cutoff must
be chosen in advance of selection, ideally taking into account
the query type (informational or navigational); it is not clear
how to do this, and there is scope for error. Our method
subsumes this decision. Second, while the cutoff k is fixed
for most methods it is only a ceiling for SUSHI and (as long
as k > 1) it is always possible to choose still fewer servers.

This second observation is illustrated in Figure 4, which
plots the actual number of servers selected against k for
the uncooperative case. SUSHI will always select at most
k servers, and can select substantially fewer without losing
final performance. The effect is most pronounced on the
topically coherent collections of the k-means testbed.

4.6 Further observations: P@5, R
SUSHI’s scoring can easily be adapted to metrics other

than P@10. We have considered two further alternatives.
To optimise for early precision—here P@5—we used the

same technique as for P@10, but ranked servers according to
their expected number of relevant documents in the global
top five. Figure 5 illustrates this. Again, SUSHI is as effec-
tive as other methods, but substantially more efficient: for
example, it selects between 1.6±0.9 servers (on the k-means
testbed) and 3.1 ± 1.7 (on the nonrelevant testbed).

We have also adapted SUSHI to select servers according
to their estimated contribution to recall, by considering the
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operative scenario, with SUSHI selecting for recall.

Other testbeds are similar.

sum of all non-zero document scores. Since there are typi-
cally many more then ten servers with at least one relevant
document, we would expect SUSHI to keep selecting servers
and for the reported Rk scores to increase with k, instead of
flattening out as before. This is indeed the case, and SUSHI
is once again competitive with other methods (Figure 6).

5. SUPPLEMENTARY SUGGESTIONS
There are several opportunities to further improve SUSHI.
At present, SUSHI’s curve fitting is fairly crude (although

the fitted curves did match the data fairly closely in ear-
lier work [20]). It would be worthwhile investigating more
sophisticated fitting.

In particular, SUSHI fits only one curve to the full set of
scores from sampled documents. Fitting two curves to the
scores, in the manner suggested especially by Manmatha
[16], would allow us to consider the probably-relevant and
probably-irrelevant sampled documents separately and op-
timise accordingly: for example, by taking into account the
point where the probability densities for each type of docu-
ment intersect we could disregard documents which are high-
scoring but more likely irrelevant than relevant.

SUSHI can also be used to select servers for qualities other
than precision or recall. For example, it is possible to select
servers according to their expected contribution to MRR—if



document scores can be interpreted as probabilities of rele-
vance (as for example from INQUERY), the expected MRR
score is d1 + 1/2 (1−d1)d2 + 1/3 (1−d1)(1−d2)d3 + · · · ,
where d1, d2, . . . are document scores from the global inter-
polated list. A server’s contribution is then just that from
its own documents—some subset of d1, d2, . . . —in the above.
Similar scoring is possible for DCG, if binary gains are used:
the expected score is

P

i
f(i)di, where f(i) is the discount

function, and servers can be scored according to their docu-
ments as for MRR.

Finally, it is possible to use SUSHI to suggest not just
which servers to select but how many documents to request
from each. This would introduce further approximation and
hence further chance for error, but may be worthwhile in
cases where (for example) per-document or per-download
fees are charged.

6. SUMMARY
Although sets of sampled documents are generally avail-

able to DIR brokers, they have been relatively under-utilised
for server selection despite being in principle good repre-
sentatives of each server’s holdings. The SUSHI algorithm
makes use of document scores to inform selection, rather
than the ranks used by ReDDE and CRCS, and directly es-
timates the contribution each server would make to a desired
metric. Unlike similar algorithms, it does not need training
and is therefore more generally applicable; it can also select
servers for a variety of tasks.

We have experimented with SUSHI on a variety of testbeds,
using three different metrics, and it appears as effective al-
ternatives while its built-in stopping condition makes it sub-
stantially more efficient. We expect it could be further im-
proved, and that it could be used to select servers for further
metrics as well as to suggest how many documents to retrieve
from each server.
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