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Abstract

Conventional approaches to analyze the behavior of software applications are black box
based, that is, the software application is treated as a whole and only its interactions with the
outside world are modeled. The black box approaches ignore information about the internal
structure of the application and the behavior of the individual parts. Hence they are inadequate
to model the behavior of a realistic software application which is likely to be made up of several
interacting parts. Architecture–based analysis, which seeks to assess the behavior of a software
application taking into consideration the behavior of its parts and the interactions among the
parts is thus essential. Most of the research in the area of architecture–based analysis has been
devoted to developing analytical models, with very little if any effort being devoted to how
these models might be applied to real software applications. In order to apply these models
to software applications, methodologies must be developedto extract the parameters of the
analytical models from information collected during the execution of the application. In this
paper we present an experimental methodology to extract theparameters of architecture–based
models from code coverage measurements obtained during theexecution of the application. To
facilitate this we use a coverage analysis tool called ATAC (Automatic Test Analyzer in C),
which is a part of Telcordia Software Visualization and Analysis Toolsuite (TSVAT) developed
at Telcordia Technologies. We demonstrate the methodologyby predicting the performance
and reliability of an application called SHARPE (Symbolic Hierarchical Automated Reliability
Predictor), which has been widely used to solve stochastic models of reliability, performance
and performability.
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1 Introduction

The size and complexity of computer systems has increased more rapidly in the past decade,
than our ability to design, test, implement and maintain them. Computer systems are being in-
creasingly used in various active (controlling), and passive (monitoring) applications, and the
trend will surely continue in the future. Computer system failures make newspaper headlines
because at best they inconvenience people (e.g., malfunctions of home appliances), cause eco-
nomic damage (e.g., interruptions of banking services), and in the extreme cases cause deaths
(e.g., failures of flight control systems or medical software). The computer industry has seen
uneven progress. With the steadily growing power and reliability of the hardware, software
reliability has been identified as a major stumbling block inthe realization of highly depend-
able computer systems. When lives and fortunes depend on software, assurance of its quality
becomes an issue of critical concern.

Conventional approaches to analyzing the performance and reliability of software applica-
tions treat the software application as a whole and only its interactions with the outside world
are modeled [11]. One of the most notable drawbacks of these approaches is that they ignore
the internal structure of the application and the performance and reliability behavior of the var-
ious parts of which the application is made up of [18, 24]. Even a moderate sized software
application is likely to be developed using a “divide and conquer” strategy and made up of
several interacting parts. As a result, conventional approaches which treat the application as a
whole are inadequate to model the behavior of even moderate sized applications. A recognition
of the inadequacy of conventional approaches is evident from the fact that a few research ef-
forts have addressed the issue of characterizing the behavior of modular software applications
since the 1970s [7, 31, 32, 33, 36, 38, 39, 40]. The advent of component technologies and
object–oriented programming holds the promise of realizing the vision of assembling software
applications from systematically developed reusable software components. This has generated
renewed interest in “architecture–based analysis” which aims to characterize the performance
and reliability behavior of software applications based onthe behavior of the “components”
and the “architecture” of the application [10, 15, 13, 17, 19, 25, 28, 29, 44]. We note that the
notion of “architecture” and “components” is well defined only in the context of applications
that are assembled from software components using one of thecomponent technologies such
as Microsoft’s COM/DCOM [1] or CORBA component model [2] or Sun Microsystems’ Jav-
aBeans [4] and Enterprise JavaBeans [3]. The notion of architecture and components is not
clearly defined in the context of applications which are built ground up. However, the use
of architecture–based analysis which essentially characterizes the behavior of a software ap-
plication in terms of the behavior of its parts and interactions among the parts is not limited
to applications developed using the component–based approach. In fact, architecture–based
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analysis is valuable towards analyzing how different pieces of the application interact and con-
tribute to the overall application reliability even for an application that is built ground up.

The existing approaches to architecture–based analysis can be classified into three cate-
gories, namely, state–based [7, 27, 31], path–based [25, 47, 41] and additive [46] as proposed
by Goseva–Popstojanova [16]. Of the three types of approaches, state–based approaches have
received a maximum degree of attention. State–based modelsuse the control flow graph to
represent software architecture and evaluate software reliability analytically. They assume that
the transfer of control among the components follows a Markov property. Software architec-
ture is modeled using a discrete time Markov chain (DTMC) [7], continuous time Markov
chain (CTMC) [27, 31], or a semi–Markov process (SMP) [26]. Most of the research efforts in
the area of state–based models have focused on the development of theoretical models. Very
little energy has been devoted to the question of how to applythese models to real software
applications. In order to apply these models to real software applications, the parameters that
drive these models need to be obtained. These parameters describe the architectural behav-
ior of a application and the failure characteristics of its components. These parameters can
be obtained from a variety of sources. Unlike black box approaches which can be applied
only during the testing phase of the application (which is one of the drawbacks of the black
box approaches [18, 24]), architecture–based analysis canbe applied as early as the design
phase of the software application. A software application that is developed in an ideal manner
will go through a first round of architecture–based analysisduring the design phase. When
architecture–based analysis is conducted during the design phase, the architecture of the appli-
cation may be obtained from expert opinion, from prior experience with a similar product, from
the previous release of the same product, by simulation or may be “guestimated”. It is unlikely
that the failure behavior of the components is available during the design stage except for com-
ponents which are being reused or are picked off the shelf. Ifthe component is an off the shelf
component its reliability may be certified [19]. In the design phase, architecture–based analysis
can be used to answer questions such as: (i) which componentsare critical to the performance
and reliability of the application, and (ii) how is the application reliability influenced by the
performance and reliabilities of individual components? If the software application is going to
be assembled from a collection of components, then answers to such questions can help the de-
signers to make decisions such as which components should bepicked off the shelf, and which
components should be developed in house. If the software application is going to be developed
ground up, then such answers can help the designers in makingdecisions such as which com-
ponents should be developed by experienced developers. As the application progresses through
the development and integration phases, additional data may be available which could be used
to refine the parameters representing the architecture as well as the failure behavior. During
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the testing phase, measurements obtained during the execution of the application can be used
to refine the architecture–based models further. In order touse the execution information gen-
erated during the testing of the application to refine the architectural models, methodologies
must be developed to record and process the execution information. The methodology capa-
ble of using execution information for architecture–basedanalysis will not only be useful in
refining architectural models in the testing phase, but willalso be useful towards applying such
analysis to a software application that has already been deployed and is operational. Applying
architecture–based analysis to an operational software application will enable us to abstract
the current characteristics of its architecture as well as its components into a model. These
current characteristics may deviate significantly from thecharacteristics expected in the design
phase and also from the characteristics that existed just prior to deployment. These deviations
may be a result of the inevitable evolution of the software application. Abstracting the current
characteristics into a model can be used to answer questionssuch as: (i) what will be the im-
pact on application performance and reliability if component X is to be replaced by component
Y?, and (ii) in order to improve the application performanceand reliability which components
should be targeted? In addition, the analytical model can also be useful in analyzing the effect
of porting the application between different platforms. Ifthe application was not developed
using a component–based paradigm, but needs to be adapted tothe component world, then
model–based analysis can enable informed decisions about which pieces should be developed
in–house, and which pieces should be reused by pointing to those pieces that are critical to
application performance and reliability.

The key to refining architecture–based models in the testingphase or to apply the analysis
in the operational phase is in generating and processing execution information to extract the
parameters of architecture–based models. The generation and processing of execution infor-
mation will be influenced by several factors such as: (i) whether the application was developed
ground up, or assembled using a component–based approach, and (ii) whether the source code
of the application is completely or partially available. The current paper presents an exper-
imental approach to generate and process the execution information in order to extract the
parameters of architecture–based models for applicationsdeveloped ground up and with com-
plete access to the source code. This methodology needs to beadapted in order to be applied to
applications assembled using software components, since such applications tend to differ from
the applications developed ground up. In Section 3 we brieflydescribe how the methodology
may be adapted to apply to component–based software applications. For applications devel-
oped ground up, the notion of a component is not very well–defined and is largely a matter of
tradeoff between number of components, their size and how easily the necessary information
can be extracted. We designate a single source file as an individual component of the appli-
cation. This designation was motivated by the hope that a filewould host a group of related
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functions which are likely to be placed in a single componentin the componentized version of
the application. This assumption holds reasonably well forthe application we have used for the
demonstration of our experimental approach. However, we would like to note that our experi-
mental methodology is not limited by this designation. In fact, our experimental methodology
can extract parameters, even if an individual component is assumed to consist of a collection
of a small number of source statements. We elaborate on this issue further in the paper (See
Section 3.2). We parameterize the analytical model of the application using coverage measure-
ments generated during the execution of the application. The novelty of the approach lies in its
integration of two distinct yet important areas, namely, state–based software performance and
reliability models and coverage analysis. The experimental approach thus presents an initial
step towards addressing the important issue of how one mightapply analytical architecture–
based software reliability and performance analysis to a real software application.

The state–space approach used to model the architecture of the application is a discrete time
Markov chain (DTMC). Coverage measurements generated during the execution of the ap-
plication are used to determine the failure behavior of the components via the enhanced non
homogeneous Poisson process model [14]. Coverage measurements are also used to extract the
intercomponent transition probabilities of the architecture of the application. Our experimental
approach is facilitated by a coverage analysis tool called ATAC (Automatic Test Analyzer in C)
which is a part of the Telcordia Software Visualization and Analysis Tool Suite (TSVAT) [22].
We demonstrate the methodology by predicting the reliability and performance of an applica-
tion called SHARPE (Symbolic Hierarchical Automated Reliability Predictor). SHARPE has
been used to solve stochastic models of reliability, performance and performability [37].

The layout of the paper is as follows: Section 2 outlines the description and analyses meth-
ods of state–based models and provides a brief overview of the various architectural models,
failure behavior of the components and the methodology to predict reliability and performance.
Section 3 describes the experimental set up. Section 4 presents results and the subsequent anal-
yses. Section 5 concludes the paper and presents directionsfor future research.

2 Description and analyses of state-based models

The description of state–based models to predict the performance and reliability of an appli-
cation based on its architecture requires knowledge about:

• Architecture of the application: This is the manner in which the different components1

of the software interact, and is given by the intermodular transition probabilities. The

1Components, modules and subsystems are used interchangeably in this paper.
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architecture may also include information about the execution time (mean, variance,
distribution) of each component. The architecture of the application can be modeled ei-
ther as a DTMC (Discrete Time Markov Chain) [7], CTMC (Continuous Time Markov
Chain) [27], SMP (Semi-Markov Process) [26], DAG (DirectedAcyclic Graph) [45] or
a SPN (Stochastic Petri Net). The state of the application atany time is given by the
component executing at that time, and the state transitionsrepresent the transfer of con-
trol among the components. DTMC, CTMC, SMP and SPN can be further classified into
irreducible and absorbing categories, where the former represents an infinitely running
application, and the latter a terminating one. The architecture of the application provides
the performance model of the application. Analysis of the performance model can be
used to obtain performance predictions such as time to completion of the application,
and identify performance bottlenecks. Performance modelscan also be used to analyze
the effect of porting the application to a different platform, or porting it from a sequential
platform to a distributed one.

• Failure behavior of the components/interfaces: Failure may occur during the execu-
tion of any component or during the control transfer betweentwo components. The
failure behavior of the components may be specified in terms of the probability of fail-
ure (or reliability), time–independent failure rate or time–dependent failure intensity. It
is a widely known fact that interface failures or failures that occur during the transfer
of control between two components should be considered separately from individual
component failures. However, very little information is available on how the parame-
ters representing the failure behavior of the interfaces may be estimated. The failure
behavior of the interfaces may also be specified in terms of the probability of failure,
time–independent failure rate or time–dependent failure intensity.

The information about the architecture of the application and the failure behavior of its
components and the interfaces between the components can becombined in the following two
different ways to predict application performance and reliability.

• Composite method: The architecture of the application can be combined with thefailure
behavior of the components and the interfaces into a composite model which can then
be analyzed to predict the performance and reliability of anapplication. We will refer to
this method of performance and reliability prediction as “Composite Method”.

• Hierarchical method: The other possibility is to solve the architectural model and su-
perimpose the failure behavior of the components and the interfaces on to the solution
of the architectural model, to predict reliability. Solution of the architectural model pro-
vides the performance metrics for the application. We referto this method as “Hierar-
chical Method”.
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Figure 1: Description and analyses of architecture–based models

The information required for the description of state–based models, and the different ways
in which this information can be analyzed in order to predictperformance and reliability are
depicted in Figure 1. An exhaustive discussion of the composite and hierarchical approaches
to predict the reliability of an application is presented in[15].

The specific analytical model we use has the following features:

• Architecture: The architecture of the application is assumed to be modeled by a discrete
time Markov chain (DTMC).

• Failure behavior: Failure behavior of the components is assumed to be characterized
by time–dependent failure intensity. Time–dependent failure intensity was chosen to
characterize the failure behavior of the components because of its ability to express the
dependence of the failure behavior on the code characteristics and how the code is being
used. In addition, time–dependent failure intensity can also capture intra–component
dependence via cumulative execution time. We elaborate on these issues in Section 2.2
and Section 2.3 respectively. We assume that the interfacesdo not fail. We note that this
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assumption is not necessary to ensure model tractability. The model can be extended to
accommodate unreliable interfaces. However, it is not clear how the parameters repre-
senting the failure behavior of the interfaces may be estimated when an interface consists
of items such as global variables, parameters and files. Integration testing proposed in
[8, 9] may hold a lot of promise for estimating interface reliabilities and is the topic of
our future research.

• Solution method: We use the hierarchical method of solution. As explained in Sec-
tion 2.3, analysis using the composite method is not feasible for this particular combina-
tion of architectural model and failure behavior.

2.1 Architecture of the application

The architecture of the application is modeled using a DTMC and we present a brief overview
of DTMCs in this section. A DTMC is characterized by its one–step transition probability ma-
trix, P = [pij]. The state probability vector of the DTMC at time stepn is denoted byπ(n).

π = π.P (1)

π.e = 1 (2)

wheree = (1, 1, . . . , 1)T and the superscriptT denotes the transpose.

From the point of view of modeling the architecture of software applications, DTMCs can
be classified into the following two categories:

• Irreducible: A DTMC is said to be irreducible if every state can be reached from every
other state. An irreducible DTMC can be used to model the architecture of an infinitely
running application.

• Absorbing: A DTMC is said to be absorbing, if there is at leastone statei, from which
there is no outgoing transition. Starting from the start state, a DTMC upon reaching an
absorbing state is destined to remain there forever. An absorbing DTMC can be used to
model the architecture of a terminating application or the one that operates on demand.

In the case of a DTMC with one or more absorbing states, the expected number of times
the process visits statej, denoted byVj, can be computed by solving the following system of
linear equations:

Vj =
∑

Vipij + πj(0) (3)
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whereπ(0) denotes the initial state probability vector.

We can use the DTMC analysis presented in this section to obtain performance measures
such as time to completion of the application, identify performance bottlenecks, determine the
effect of changes in the workload, and determine the effect of changes to a particular module,
as follows:

• Time to completion: If tj, the expected time spent by the application in componentj

per visit is known (tj can either be obtained experimentally or may be knowna priori),
thenVjtj is the expected total time spent in the componentj in a typical execution of
the application. For an application withn components, the expected completion timet̄

of the application is given by [42]:

t̄ =
n∑

j=1

Vjtj (4)

• Performance bottlenecks: argmax{Vjtj} is the performance bottleneck of the applica-
tion. Thus, we note that neitherVj , which is the expected number of visits to component
j during a single execution of the application, nortj, which is the expected time spent by
the application in componentj per visit, are individually sufficient to determine the per-
formance bottleneck, but their productVjtj is. This definition of performance bottleneck
is applicable only in the context of a terminating application.

• Changes in the workload: A workload pattern is determined by a set of intercomponent
transition probabilities. For a software application the set of intercomponent transition
probabilities will be affected by the operational profile [35]. Upgrades to the software
may introduce new features in an application which may lead to a change in how the ex-
isting features are used. This may render an existing estimate of the operational profile
invalid. When the operational profile changes, a new set of intercomponent transition
probabilities may be obtained by executing the applicationagainst the sample test cases
drawn from the new operational profile. An estimate of the performance of the applica-
tion could also be obtained during the process of estimatingintercomponent transition
probabilities. However, the process of testing and estimation will have to be repeated
every time the operational profile changes. In a well–designed application where the
interactions among the components is limited it may be possible to determine which in-
teractions are impacted by a change in the operational profile by consulting the experts.
Model–based analysis may then be used to determine the sensitivity of the performance
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and reliability estimates to the changes in the intercomponent transition probabilities
among the components which are likely to be impacted by the change in the operational
profile. An analytical model will enable us to obtain the performance and reliability esti-
mates for various values of intercomponent transition probabilities among the impacted
components without actually having to estimate the values of the probabilities. Estima-
tion of the intercomponent transition probabilities and performance metrics by extensive
testing can be lengthy both in terms of computation time and resources.

• Changes to a module: If a single module changes while preserving its interactionwith
the other modules (as determined by the intercomponent transition probabilities), and all
the other modules remain unchanged, the overall performance can be predicted by simply
measuring the execution time per visit of a changed component. Thus, if componentc
changes, the time to completion of the application is given by:

t̄∗ = (
n∑

j=1,j 6=c

Vjtj) + Vct
∗
c (5)

In Equation (5),t∗c is the new execution time per visit for componentc. We note that
the expected number of visits to the component, denoted byVc, which depends on the
intercomponent transition probabilities remains unchanged. Model–based analysis can
thus provide the capability to assess the impact of a change to a module by estimating
the values of the parameters only for the changed module. If the performance of the
application had been determined empirically by running test cases against the application
and averaging over all the runs, then assessing the impact ofa change to a module would
require us to repeat the empirical procedure. Repetition ofthe empirical procedure is
likely to be more costly than estimating the values of the parameters for the changed
module.

2.2 Failure behavior of the components

Intuitively, the failure behavior of a component will depend on the code characteristics of
the component and how the component is being used. Empiricalevidence has supported the
conjecture that the failure behavior is highly correlated with code coverage [5, 6, 12, 34]. Code
coverage can thus be a useful measure to capture how the component is being used. Hence
we use time–dependent code coverage as a parameter in a statistical model to estimate the fail-
ure intensity of the component. The characteristics of the code can be captured by estimating
the number of faults in the component based on software metrics. We estimate the number of
faults in each component based on the number of lines of code in the component using the fault
density approach [30].
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The enhanced non homogeneous Poisson process (ENHPP) model[14] relates the failure
intensity of a component to the expected number of faults residing in the component and its
time–dependent coverage behavior. This relationship is exemplified by the following expres-
sion:

λ(t) = ac
′

(t) (6)

wherea is the expected number of faults present in the component andc
′

(t) is the first
derivative of the expected coverage behaviorc(t) of the component.

The reliability of a componentj, denoted byRj, given the failure intensity of the component,
and the expected time spent in the moduleγj (whereγj = Vjtj), is:

Rj = e

∫ γj

0
λj(θ)dθ (7)

From Equation (6), Equation (7), can be written as:

Rj = e
−

∫ γj

0
ajcj

′

(θ)dθ = e−ajcj(γj) (8)
2.3 Method of analyses

In this section, we motivate the choice of the hierarchical method of analyses for an ap-
plication with architecture modeled by a DTMC, and the failure behavior modeled by the
time–dependent failure intensity with the help of an example. When the architecture of the
application is modeled by a discrete time Markov chain (DTMC) and the failure behavior of
the components are characterized by their reliabilities a composite method of analyses is pos-
sible as discussed by Cheung [7]. However, characterizing the failure behavior of a component
by its reliability cannot take into consideration how the component is being used. As discussed
earlier, time–dependent failure intensity expressed as a composition of the number of faults
in the component and time–dependent coverage behavior can take into consideration both the
factors that affect component failures, namely, the code characteristics and the how the code is
being used. As a result, we characterize the failure behavior of the individual components by
their time–dependent failure intensities.

Consider an application with three components. The architecture of the application is de-
scribed by the DTMC shown on the left in Figure 2. Let the failure intensity of componentj be
denoted byλj(t), andγj be the cumulative time spent by the application in componentj from
the beginning of system operation. Combining the architecture and the failure behavior of the
application, gives rise to a composite reliability model asshown on the right in Figure 2, where
the stateF indicates the failure of the application. However, since successive sojourns in a
given state are not in general contiguous, the reliability model shown on the right in Figure 2
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is a complex stochastic process (it is not a non–homogeneousCTMC nor is it a semi–Markov
process) that cannot be analyzed using composite methods.
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Figure 2: Composite reliability model

The analysis is much simpler using hierarchical method of analyses, by which the reliability
of the application, denoted byR is given by:

R =
3∏

j=1

Rj (9)

whereRj is the reliability of modulej.

Thus, the reliability of the overall application is given by:

R =
3∏

j=1

e
−

∫ γj

0
λ(θ)dθ (10)

Equation (10) can be generalized to compute the reliabilityof an application withn compo-
nents, and is given by:

R =
n∏

j=1

e
−

∫ γj

0
λ(θ)dθ (11)

From Equation (8), Equation (11) can be written as:

R =
n∏

j=1

e−ajcj(Vjtj) (12)
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Equation (10) assumes inter–component independence [25],that is, the execution of one
component does not in any way affect the failure behavior of any other component, an as-
sumption which underlies most state–based software reliability and performance models. The
execution of one component could affect the failure behavior of another component due to er-
ror propagation via data flow. Hence error propagation via data flow could be an important
factor influencing application reliability. The path–based model proposed by Singpurwallaet.
al. [41] considers error propagation via data flow along with thecontrol flow of the applica-
tion. However, path–based models are unable to account for the infinite number of paths that
might exist due to the existence of loops in the control flow graph. State–based models can
analytically account for the infinite number of paths. Developing state–based models which
account for error propagation via data flow is a subject of ourfuture research. The effects of
error propagation due to data flow can be quantified using fault insertion testing [21, 43].

Modeling the failure behavior of a component using time–dependent failure intensity en-
ables us to capture intra–component dependence [25] as explained below. Intra–component
dependence can arise for example, when a component is invoked more than once in a loop. Re-
liability values assuming intra–component independence are in general pessimistic as pointed
out by Krishnamurthyet. al. [25]. They resolve the issue by collapsing multiple executions of
the same component intok occurrences wherek is defined as the degree of independence.

If the failure behavior of the individual components is modeled by a time–dependent failure
intensity then it is possible to capture intra–component dependence via cumulative execution
time spent in a component. The reliability value obtained assuming intra–component inde-
pendence is in general pessimistic as compared to the reliability value which is based on the
cumulative time spent in the component. We illustrate this with the help of an example as
follows: Consider a component whose failure behavior is captured by the failure intensity
function λ(t) = 34.05 ∗ 0.0057 ∗ e(−0.0057∗t). We assume that during a particular run, the
component is visited twice, and50 time units are spent in the component per visit. Thus a total
of 100 time units is spent in the component during this particular execution. The failure in-
tensities assuming intra–component independence, and intra–component dependence captured
via the cumulative execution time approach are as shown in the Figure 3. The reliability of
the component assuming intra–component independence is0.84, and intra–component depen-
dence captured via the cumulative time approach is0.86. Time–dependent failure intensity
thus provides an ability to capture intra–component dependence.

Equation (11) indicates that the reliability of the application R → 1.0 asγj ’s → 0, for all
j. This is consistent with the software reliability model proposed by Singpurwallaet. al. [41]
which can be expressed as the following:
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Figure 3: Failure intensity – independent execution and cumulative time

P (ε|H) = P (ε|Θ)P (Θ|H) (13)

In Equation (13)P (ε|H) is the reliability model of the software conditional to the back-
ground informationH. Θ is known as the parameter space of the reliability model and is inter-
preted as a device for summarizing the background information H. In the context of Equation
(11), the background information of the application can be viewed to have two possibilities:
(i) the application is executed, (ii) the application is notexecuted. Thus, the parameter spaceΘ

intended to capture the background information in this caseconsists ofγj ’s. Thus,γj is equal
to zero for allj if the application is not executed at all resulting in a reliability of 1. At least
oneγj will be greater than zero if the application is executed resulting in a reliability value of
less than or equal to1.0.

Equation (12) expresses the overall reliability of an application in terms of the failure be-
havior of its individual components and architectural characteristics. This approach is very
valuable to identify reliability bottlenecks, as well as the effect of changes in a single module,
as discussed below:

• Reliability bottlenecks: Reliability bottleneck is given byargmax{ajcj(Vjtj)}. Thus,
the code characteristics of the component and the coverage behavior which captures how
the component is being used, together determine the reliability bottleneck. This defini-
tion of reliability bottleneck is applicable only in the context of terminating applications.

• Changes to a module: If a single module is changed while preserving all the other as-
pects of the application, namely, the intercomponent transition probabilities, and failure
behavior of the other unchanged components, the reliability of the application is given
by:
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R∗ = (
n∏

j=1,j 6=c

e−ajcj(Vjtj)) e−a∗

cc∗c(V ∗

c t∗c) (14)

wherea∗cc
∗
c(V

∗
c t∗c), is the mean value function of the changed component. We notethat

model–based analysis renders itself well to evaluate the impact of a change to a module
by estimating the parameters of the changed module. If the reliability of the application
were to be determined empirically, then a change to a module would require the repetition
of the empirical procedure in order to evaluate the impact ofthe change in a module.

3 Experimental methodology

In this section we describe the experimental methodology toobtain the information nec-
essary for architecture–based analysis. In particular, the experimental methodology seeks to
obtain:

• Architecture of the application as characterized by its intercomponent transition proba-
bilities.

• Time–dependent coverage behavior of each component.

3.1 Selecting the application

The Symbolic Hierarchical Automated Reliability and Performance Evaluator (SHARPE) [37]
that solves stochastic models of reliability, performance, and performability was selected. This
application was first developed in 1986 for three groups of users: practicing engineers, re-
searchers in performance and reliability modeling, and students in science and engineering
courses. Since then several revisions have been made to fix bugs and adopt new requirements.
The current release of SHARPE is almost bug free. It contains35,412 lines of C code in 30
files and has a total of 373 functions. The number of lines of code in each file of SHARPE is
summarized in Table 1. Each of these files is regarded as a single component for SHARPE.
The choice of designating a file as a component was based on a tradeoff between the number
of components, their size and the ease with which the necessary data can be collected. It was
also due to the fact that each file hosts a group of related functions which would be placed in a
single component, had the original design of SHARPE been component–based.

3.2 Executing the application

A suite of 735 test cases created by developers and testers for testing modifications to the
existing functionality as well as new enhancements in previous releases of SHARPE was iden-
tified to execute the application. ATAC, which is a part of Telcordia Software Visualization
and Analysis Tool Suite (TSVAT) [22] was used to measure coverage during the execution of
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Table 1: Lines of code for components of SHARPE
Comp. LOC Comp. LOC Comp. LOC
analyze.c 946 inshare.c 1592 maketree.c 554
multpath.c 387 results.c 1322 in qn pn.c 1246
share.c 1977 cg.c 910 inchain.c 1203
pfqn.c 1155 bind.c 2358 bitlib.c 383
reachgraph.c 1791 sor.c 820 newcg.c 704
mpfqn.c 1142 phase.c 1957 newphase.c 1271
util.c 1119 newlinear.c 1376 cexpo.c 1267
inspade.c 880 expo.c 621 read1.c 1292
indist.c 680 symbol.c 1490 ftree.c 3560
debug.c 259 uniform.c 819 mtta.c 315

the application with these test cases. Coverage measurements also enabled us to assess how
well the code of SHARPE could be covered by this suite. The useof ATAC focuses on three
main activities: instrumenting the software, executing software tests, and measuring coverage
to determine how well the code has been covered. Instrumentation of the software occurs at
compile–time, and ATAC allows large systems to be instrumented a piece at a time. Once
instrumentation is complete and an executable has been built, test cases can be executed and
ATAC to generate reports or display uncovered source code. The reports reveal the current cov-
erage measures with respect to selected criteria2, indicating how adequate the existing test set
is. In our experiments, we used block coverage, since this isthe most basic form of coverage
that can be measured using ATAC.

A basic block, or simply a block, is a sequence of instructions that, except for the last in-
struction, is free of branches and function calls. The instructions in any basic block are either
executed all together, or not at all.3 A block may contain more than one statement if no branch-
ing occurs between statements; a statement may contain multiple blocks if branching occurs
inside the statement; an expression may contain multiple blocks if branching is implied within
the expression. Given a program and a test set, the block coverage is the percentage of the total
number of blocks in the program exercised by the test set. In our case, the overall block cover-
age for all 735 test cases on SHARPE is93.5%. The individual coverage for each component
is listed in Table 2.

Block–level coverage measurements obtained during the execution of the application are
used to obtain the time–dependent coverage behavior for each component as described in Sec-
tion 3.3. They are also aggregated to determine interactions among the functions, and subse-
quently among the files of the application as described in Section 3.4. We would like to note

2TSVAT can report coverage with respect to the function entry, block, decision, c–uses and p–uses criteria [23].
3This definition assumes that the underlying hardware does not fail during the execution of a block.
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Table 2: Block coverage for components of SHARPE
Comp. Cov. Comp. Cov. Comp. Cov.
analyze.c 96.7 indist.c 98.4 pfqn.c 97.8
bind.c 98.0 inshare.c 97.5 phase.c 90.6
bitlib.c 96.0 inspade.c 99.3 reachgraph.c 75.8
cexpo.c 87.9 maketree.c 99.4 read1.c 97.9
cg.c 76.2 mpfqn.c 99.5 results.c 99.2
debug.c 69.1 mtta.c 95.5 share.c 93.2
expo.c 98.9 multpath.c 96.9 sor.c 92.6
ftree.c 93.4 newcg.c 85.2 symbol.c 97.5
in qn pn.c 87.8 newlinear.c 93.0 uniform.c 91.6
inchain.c 99.5 newphase.c 95.4 util.c 85.7

that the proposed methodology uses block–level coverage measurements since they are readily
available from the coverage analysis tool. However, block–level coverage measurements are
not imperative to the use of this methodology. Since the block–level coverage information is
subsequently condensed to obtain the time–dependent coverage behavior for the whole com-
ponent, any profiling tool which reports coverage information on a per function basis would
also provide necessary information. Similarly, since block–level coverage information is ag-
gregated to determine the interactions between functions and files, any profiler which records
similar execution information for individual functions could also provide the information nec-
essary for determining the interactions. For applicationsdeveloped using component–based
software engineering paradigm, monitoring the componentsat their boundaries by recording
the events originating from the components could also provide the necessary information to
determine the architecture of the application. If the source code of the component is available
then instrumenting the source code and collecting execution profiles will provide the coverage
information necessary for determining coverage behavior.In the event that the source code
is not available, then instrumentation of the object code could provide the necessary coverage
data.

3.3 Determining failure behavior of the components

As explained in Section 2.2, to determine the failure behavior of the components, we need to
obtain the expected coverage as a function of time and the expected number of faults for each
component (see Equation (6)). We first describe how to obtainthe expected coverage behavior
for each component:

The execution time for each test is the difference between its starting and ending time which
can be obtained from the ATAC trace file. The expected coverage is computed by running the
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application multiple times with the same suite of test casesbut in different ordering and aver-
aging coverages over all these runs. Stated differently, each single run gives one realization of
block coverage over time; an average over a number of such runs was computed to give the
expected coverage as a function of time. To avoid any possible bias, the test ordering for each
run was generated randomly.

We now use an example to explain the steps outlined above. Given an application with two
tests,t1 andt2, suppose there are 20 blocks in the application: 10 of them are covered byt1,
5 by t2, and 3 by both. Assume also the execution time fort1 andt2 is 2 sec and 3 sec, re-
spectively. Depending on which test is executed first, the block coverage may vary with time
as shown in the first two parts of Table 3. The third part of Table 3 shows the expected block
coverage, which is the average of the block coverage over theruns in the first two tables.

Since repeated execution of the application with a big test set is very costly, a tradeoff is to
use its block minimized subset which is the minimal subset interms of the number of test cases
that preserves the block coverage of the original test set. In our case, the number of tests is
reduced from 735 to 275 because of a minimization with respect to the block coverage.

The expected number of faults in each component can be obtained using a variety of ap-
proaches. It may be estimated based on the failure data collected during unit testing of each
component. It may also be estimated based on the software metrics of the component. We es-
timate the expected number of faults in each component usingthe fault density approach [30]
(See Section 4 for details). We note that the fault density approach is a specific example of the
broad class of approaches that are based on software metrics.

3.4 Determining the architecture of the application

The architecture of the application in terms of the intercomponent transition probabilities is
determined based on the following protocol: we assume that when a function A calls another
function B, control is eventually transferred back to function A, except for when the appli-
cation terminates successfully, or there is an error in the input specification or of some other
form which causes the application to terminate abnormally.Under these situations, the control
is transferred to the terminating state. Thus, there are twoterminating states−− one repre-
sents normal termination and the other represents abnormaltermination. For every block, the
following possibilities exist:

• If the block has neither a function call nor a return statement, then upon completion of
the block, control is transferred to the next block which is physically contiguous. In this
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Table 3: Block coverage with respect to time for a sample program and test set
Execution ordering:t1 followed byt2

Block Time
coverage (%) (second)

0 0
0 1
50 2
50 3
50 4
60 5

Execution ordering:t2 followed byt1

Block Time
coverage (%) (second)

0 0
0 1
0 2
25 3
25 4
60 5

Expected block coverage

Expected Time
block coverage (%) (second)

0 0
0 1
25 2

37.5 3
37.5 4
60 5
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 file.1 file.2 file.3

T

START

Figure 4: An example of file level transitions

case we say that the control is transferred to another block in the same file, or at the file
level of granularity we say that the control is transferred back to the same file. If the
block happens to be the last block in the file, then the controlis transferred back to the
file which called the current file.

• If the block has a function call to one of the user–defined functions4, which may or may
not be in the same file, then the control is transferred to the first block of the called
function, and we say that the control is transferred to the file in which the called function
resides.

With this assumption, the branching probabilities for the control flow graph of SHARPE
were computed based on the execution counts extracted from the ATAC trace files. The exe-
cution counts were first obtained at the finest level of granularity, i.e., the block level, and are
combined later to obtain the execution counts and probabilities at the file level.

We illustrate this method with the help of an example. Suppose an application consists of
three files,file.1, file.2 andfile.3: file.1 has two blocks,B11 andB12, file.2 has three
blocks,B21, B22 andB23, andfile.3 has two blocks,B31 andB32. The application begins by
executing blockB11, which calls a user–defined function infile.2, of which the first block is
B21. This transfers control tofile.2. AssumeB21 contains no function call. Hence, the next
block B22 gets executed upon completion ofB21. SupposeB22 calls a user–defined function
in file.3 which begins atB31. AssumeB31 executes and passes control sequentially toB32,
which returns control tofile.2 at block B23, which then returns control tofile.1 at block
B12. This application terminates upon completion of blockB12. Thus, the calling sequence
at the block level is given by the following:B11, B21, B22, B31, B32, B23, B12, whereas the
calling sequence at the file level isfile.1, f ile.2, f ile.2, f ile.3, f ile.3, f ile.2, f ile.1, T . The
file level transitions in this scenario are as shown in Figure4, whereT indicates the terminating

4Each system function is treated as a single basic block.
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Figure 5: Coverage behavior as a function of time forshare.c

state of the application.

After obtaining the file level transitions, we proceed to compute the branching probabilities
using execution counts. We explain the methodology used to obtain the branching probabilities
by computing them forfile.1. Suppose each block in the application is executed 10 times.
Since blockB11 is executed 10 times, and it has a call to a user–defined function infile.2 the
first block of which isB21, we say thatfile.1 callsfile.2 10 times. BlockB12 is also executed
10 times, and upon completion ofB12 the application terminates. Thus,file.1 transfers control
10 times tofile.2, and 10 times to the terminating stateT . As a result,file.1 callsfile.2 with
probability 0.5, and calls the terminating state with probability0.5. Branching probabilities
can be computed forfile.2 andfile.3 using similar arguments.

4 Results and analyses

The application5 was executed using the minimal test set as explained in Section 3.3 with
40 random orderings of the test cases. The coverage was measured for each file during each
run. The expected coverage as a function of time was then computed by averaging over these
40 runs for each file. The coverage for 5 individual runs and the average over 40 runs is shown
in Figure 5 forshare.c

Given measured coverage, to obtain the failure behavior of an individual component, we
need an estimate of the expected number of faultsai in the component. We obtain this estimate

5In our experiment, the application was SHARPE
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using the fault density approach [20]. Since the application is mature, and has been in use at
several hundred locations without any known problems, we assume the fault density (FD) to
be4 per1000 lines of code [20]. The expected number of faults in component i, denoted byai

is given by:

ai =
FD ∗ li

1000
(15)

whereli is the number of lines in componenti. The number of lines of code for all the compo-
nents constituting the application is summarized in Table 1.

The one step transition probability matrixP is obtained using execution counts, which sub-
sequently gives the visit countsVj as explained in Section 2.1. The execution counts for the
file bitlib.c are shown on the left hand side in Figure 6, and the corresponding branching prob-
abilities are shown on the right side.

bitlib.c 1201123

22470

maketree.c

bitlib.c

maketree.c

0.9816

0.0184

Figure 6: Execution counts and branching probabilities forbitlib.c

The branching probabilities are computed using per block execution information, so a single
block is executed per visit to a file. Thus, the expected time spent by the application in a
component per visit, is the expected time taken to execute a block (EB). In general, the
execution time of different blocks of the same file might significantly differ. However, in our
approach, a basic block is defined as a set of statements that are all executed together or none
at all. According to this definition, a basic block constitutes on an average about 2 lines of C
code. The execution time of a set of 2 lines of C code is not likely to differ significantly from
one set to the other. As a result, in our set up it is reasonableto assume that the execution
time of each block in a file is the same. Also, since the number of block executions is likely
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Table 4: Expected time per component of SHARPE
Comp. Exp. time Comp. Exp. time Comp. Exp. time
analyze.c 0.0091 inshare.c 0.0033 maketree.c 0.0013
multpath.c 0.0002 results.c 0.0053 in qn pn.c 0.0008
share.c 0.0210 cg.c 0.0035 inchain.c 0.0152
pfqn.c 3.4439 bind.c 0.1037 bitlib.c 0.0010
reachgraph.c 0.2011 sor.c 0.0806 newcg.c 0.0003
mpfqn.c 0.0010 phase.c 0.0450 newphase.c 0.0005
util.c 1.0726 newlinear.c 0.0005 cexpo.c 0.2908
inspade.c 0.0014 expo.c 0.0125 read1.c 0.6076
indist.c 0.0015 symbol.c 0.0193 ftree.c 0.7439
debug.c 0.0001 uniform.c 0.1149 mtta.c 0.0047

Table 5: Mean value function (MVF) per component of SHARPE
Comp. MVF Comp. MVF Comp. MVF
analyze.c 2.3076e-06 inshare.c 1.9608e-07 maketree.c 0.00
multpath.c 0.00 results.c 2.1899e-06 in qn pn.c 1.9109e-07
share.c 1.3705e-05 cg.c 0.00 inchain.c 1.1777e-05
pfqn.c 0.0011 bind.c 2.6885e-05 bitlib.c 0.00
reachgraph.c 0.00 sor.c 7.6910e-06 newcg.c 0.00
mpfqn.c 3.6359e-07 phase.c 0.00 newphase.c 0.00
util.c 2.7770e-04 newlinear.c 8.3674e-08 cexpo.c 2.7635e-06
inspade.c 6.4805e-07 expo.c 7.3790e-07 read1.c 3.3561e-04
indist.c 1.8069e-07 symbol.c 0.00 ftree.c 6.1570e-04
debug.c 0.00 uniform.c 0.0 mtta.c 1.0705e-06

to be large, small variations in the execution times of each block are likely to average out. We
compute the expected execution time of a block using the following equation:

EB =
TT

TB
(16)

whereTT is the total time taken to execute735 test cases, andTB are the total number of
block executions. The total time taken to execute735 test cases is 5582 sec, and the total num-
ber of block executions is970322031. Hence the expected execution time of a block, from
Equation (16) is0.0000057257. The expected time spent by the application in each component
is summarized in Table 4, and the mean value function of the each component is summarized
in Table 5.

The expected time to completion as computed from Equation (4) is 6.80 sec. The reliability
estimate of the application from Equation (12) is0.9903.
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4.1 Validation

The performance estimate or the mean time to completion of the application obtained from
our experiment was validated using the mean time to completion computed empirically. If the
total time taken to executeR test cases isQ, the empirical mean time to completion (ETTC)
can be computed using the following expression:

ETTC =
Q

R
(17)

For our experimentQ was5582 seconds andR, which is the number of test cases was735

test cases. The mean time to completion computed empirically is thus7.54 seconds. The ex-
pected time to completion using our approach (6.80 seconds), and the mean time to completion
computed empirically are quite close. The small discrepancy between the empirical expected
time to completion and the one computed using our approach could be due to one or more of
the following reasons: 1) The test suite used in the study is not completely representative of
actual usage of the application, and hence the branching probabilities computed based on the
test suite do not represent the true branching probabilities. 2) The empirical value of the time
to completion will be influenced by the load on the system, anda large variation is possible in
this value.

The component with the maximum expected time is the “performance bottleneck”. Table 4
indicates that the componentpfqn.c is the performance bottleneck.

The reliability estimate obtained using our approach may bevalidated by reinserting the
faults discovered during integration testing and operational use of the application followed by
testing the application based on its operational profile. Our present research involves the de-
velopment of an operational profile for SHARPE followed by the validation of the reliability
estimates. In the absence of validation, our approach can beused to determine the relative
importance of individual components on the overall application reliability. The contribution of
an individual component to the overall application reliability is a function of the utilization of
the component as determined by its visit counts, the residual number of faults in the compo-
nent, and the time–dependent coverage behavior of the component. We note that the utilization
and time–dependent coverage behavior of each component is obtained from experimental data,
whereas the residual number of number of faults in each component is estimated using the fault
density approach. If the fault density for each component isassumed to be identical, then the
relative criticality of each component will depend on its utilization and time–dependent cover-
age behavior. Since the utilization and time–dependent coverage behavior of each component
is determined using the same experimental set up, the relative criticalities of the components
computed using this approach are likely to hold, even if the absolute reliability values do not.
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Figure 7: Effect of variations in fault density of the entireapplication

The relative priority of each component can be determined from their mean value functions
listed in Table 5, where the component with the highest mean value function is most critical or
is the “reliability bottleneck”. From the table, it can be seen that the componentpfqn.c is the
reliability bottleneck.

4.2 Sensitivity analysis
The approach presented in this paper allows us to capture thedependence between overall

application performance (reliability), application architecture, and the performance (reliability)
behavior of its individual components into a parameterizedanalytical model. This parameter-
ized analytical model can be very valuable to conduct sensitivity analysis, or to analyze the
impact of the variation in the performance (reliability) parameters for the individual compo-
nents on the overall application performance (reliability). We demonstrate the ease of use of a
parameterized analytical models for sensitivity analysisusing the following two examples:

To determine the effect of the variation in fault density of the entire application on the re-
liability estimate obtained using our approach, we computed the reliability for various values
of the fault density. Figure 7 shows reliability of the application vs. fault density. As can be
seen from this figure, the reliability of the application drops with increasing fault density. This
analysis can help us answer a question such as: what is the percentage increase in the reliability
if the fault density of the application is reduced from4.0 to 1.0?

Typically, in a component based software development scenario, some of the components
are developed in house, while some are picked off the shelf. The failure behavior of the com-
ponents picked off the shelf is certified, and we have information regarding the failure behavior
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Figure 8: Effect of variations in fault density ofpfqn.c

of the components that are developed in house. In addition, the architecture of the entire ap-
plication (in terms of interactions among the various components) is known. We would like
to assess the sensitivity of the reliability estimate to thevariations in the failure behavior of
the off–the–shelf component. The failure behavior of the component can vary due to the vari-
ations in its fault density. Without loss of generality, we assume that the componentpfqn.c

was picked off the shelf. The reliability of the applicationfor variations in the fault density
of pfqn.c, is shown in Figure 8. As expected, the reliability decreases with increasing values
of fault density of the componentpfqn.c. Based on such analysis we can answer questions
such as what is the percentage increase in application reliability if componentA is procured
from vendor X as opposed to vendor Y, sine the component from vendor X has a higher reli-
ability than the component from vendor Y, but this higher reliability comes at an increased cost?

5 Conclusions and future research

In this paper we have described an experimental approach to extract the parameters of an
analytical architecture–based software performance and reliability model based on the infor-
mation obtained from the execution of an application. The experimental approach can be used
for applications that are developed in a ground up manner andprovide complete access to the
source code. We use coverage measurements obtained during the execution of the application
to extract parameters. We have demonstrated our experimental approach using the Symbolic
Hierarchical Automated Reliability and Performance Evaluator (SHARPE). We have illustrated
how a parameterized analytical model can be used for sensitivity analysis as well as to identify
performance and reliability bottlenecks in an application.
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Our future research includes designing and conducting experiments to validate the relia-
bility predictions obtained using this approach. Experimental verification of the assumptions
underlying various architecture–based software reliability models is also currently underway.
Development of empirical methodologies to parameterize the architecture–based performance
and reliability models of applications developed using thecomponent–based software develop-
ment paradigm is also a subject of future research.
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