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Abstract

Conventional approaches to analyze the behavior of softapplications are black box
based, that is, the software application is treated as aendnad only its interactions with the
outside world are modeled. The black box approaches igmdoenhation about the internal
structure of the application and the behavior of the indigidoarts. Hence they are inadequate
to model the behavior of a realistic software applicationchtis likely to be made up of several
interacting parts. Architecture—based analysis, whigks#o assess the behavior of a software
application taking into consideration the behavior of itstp and the interactions among the
parts is thus essential. Most of the research in the areabitacture—based analysis has been
devoted to developing analytical models, with very litleany effort being devoted to how
these models might be applied to real software applicatidnsorder to apply these models
to software applications, methodologies must be develdpesktract the parameters of the
analytical models from information collected during thesextion of the application. In this
paper we present an experimental methodology to extragtatemeters of architecture—based
models from code coverage measurements obtained durirexétoition of the application. To
facilitate this we use a coverage analysis tool called ATAGQt¢matic Test Analyzer in C),
which is a part of Telcordia Software Visualization and Arséd Toolsuite (TSVAT) developed
at Telcordia Technologies. We demonstrate the methoddbigggredicting the performance
and reliability of an application called SHARPE (Symboliekarchical Automated Reliability
Predictor), which has been widely used to solve stochastidets of reliability, performance
and performability.
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1 Introduction

The size and complexity of computer systems has increasee raypidly in the past decade,
than our ability to design, test, implement and maintaimth€omputer systems are being in-
creasingly used in various active (controlling), and pas¢monitoring) applications, and the
trend will surely continue in the future. Computer systetiiufes make newspaper headlines
because at best they inconvenience people (e.g., malbasadf home appliances), cause eco-
nomic damage (e.g., interruptions of banking serviced),iarthe extreme cases cause deaths
(e.g., failures of flight control systems or medical soft@)arThe computer industry has seen
uneven progress. With the steadily growing power and riiialof the hardware, software
reliability has been identified as a major stumbling blockha realization of highly depend-
able computer systems. When lives and fortunes depend tmasef assurance of its quality
becomes an issue of critical concern.

Conventional approaches to analyzing the performance @rability of software applica-
tions treat the software application as a whole and onlyniisractions with the outside world
are modeled [11]. One of the most notable drawbacks of theigeaches is that they ignore
the internal structure of the application and the perforoeaand reliability behavior of the var-
ious parts of which the application is made up of [18, 24]. iceemoderate sized software
application is likely to be developed using a “divide and qaexr” strategy and made up of
several interacting parts. As a result, conventional aggiies which treat the application as a
whole are inadequate to model the behavior of even moderate applications. A recognition
of the inadequacy of conventional approaches is evident ftee fact that a few research ef-
forts have addressed the issue of characterizing the behaiimodular software applications
since the 1970s [7, 31, 32, 33, 36, 38, 39, 40]. The advent wipoment technologies and
object—oriented programming holds the promise of realizire vision of assembling software
applications from systematically developed reusablensoft components. This has generated
renewed interest in “architecture—based analysis” whintsdo characterize the performance
and reliability behavior of software applications basedtlo& behavior of the “components”
and the “architecture” of the application [10, 15, 13, 17, 28, 28, 29, 44]. We note that the
notion of “architecture” and “components” is well definedyom the context of applications
that are assembled from software components using one abtin@onent technologies such
as Microsoft's COM/DCOM [1] or CORBA component model [2] oarfEMicrosystems’ Jav-
aBeans [4] and Enterprise JavaBeans [3]. The notion of i&athire and components is not
clearly defined in the context of applications which are tbgibund up. However, the use
of architecture—based analysis which essentially chariaes the behavior of a software ap-
plication in terms of the behavior of its parts and interacs among the parts is not limited
to applications developed using the component—based agipran fact, architecture—based
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analysis is valuable towards analyzing how different pseaethe application interact and con-
tribute to the overall application reliability even for apmication that is built ground up.

The existing approaches to architecture-based analysibealassified into three cate-
gories, namely, state—based [7, 27, 31], path—based [28,14and additive [46] as proposed
by Goseva—Popstojanova [16]. Of the three types of appeschate—based approaches have
received a maximum degree of attention. State—based muodelthe control flow graph to
represent software architecture and evaluate softwaebiily analytically. They assume that
the transfer of control among the components follows a Magkmperty. Software architec-
ture is modeled using a discrete time Markov chain (DTMC) ntinuous time Markov
chain (CTMC) [27, 31], or a semi—Markov process (SMP) [26pdtlof the research efforts in
the area of state—based models have focused on the developfribeoretical models. Very
little energy has been devoted to the question of how to appge models to real software
applications. In order to apply these models to real softveguplications, the parameters that
drive these models need to be obtained. These parametenibdethe architectural behav-
ior of a application and the failure characteristics of iBnponents. These parameters can
be obtained from a variety of sources. Unlike black box apphes which can be applied
only during the testing phase of the application (which ie of the drawbacks of the black
box approaches [18, 24]), architecture—based analysideaapplied as early as the design
phase of the software application. A software applicattoat ts developed in an ideal manner
will go through a first round of architecture—based analykisng the design phase. When
architecture—based analysis is conducted during the mesigse, the architecture of the appli-
cation may be obtained from expert opinion, from prior exgace with a similar product, from
the previous release of the same product, by simulation grbadguestimated”. It is unlikely
that the failure behavior of the components is availablénduthe design stage except for com-
ponents which are being reused or are picked off the shdlfieltomponent is an off the shelf
component its reliability may be certified [19]. In the desjzhase, architecture—based analysis
can be used to answer questions such as: (i) which compoaientsitical to the performance
and reliability of the application, and (ii) how is the amaition reliability influenced by the
performance and reliabilities of individual componentsthé software application is going to
be assembled from a collection of components, then answergh questions can help the de-
signers to make decisions such as which components shopidiel off the shelf, and which
components should be developed in house. If the softwardé&appn is going to be developed
ground up, then such answers can help the designers in md&agigions such as which com-
ponents should be developed by experienced developerbefpplication progresses through
the development and integration phases, additional daydbeavailable which could be used
to refine the parameters representing the architecture bhasvehe failure behavior. During



the testing phase, measurements obtained during the eecfithe application can be used
to refine the architecture—based models further. In ordeséthe execution information gen-
erated during the testing of the application to refine thdisectural models, methodologies
must be developed to record and process the execution iafumm The methodology capa-
ble of using execution information for architecture—bas@alysis will not only be useful in
refining architectural models in the testing phase, butaldb be useful towards applying such
analysis to a software application that has already beeloglsgh and is operational. Applying
architecture—based analysis to an operational softwagpéicagion will enable us to abstract
the current characteristics of its architecture as welltagomponents into a model. These
current characteristics may deviate significantly fromaharacteristics expected in the design
phase and also from the characteristics that existed jimt fordeployment. These deviations
may be a result of the inevitable evolution of the softwargligption. Abstracting the current
characteristics into a model can be used to answer questiaisas: (i) what will be the im-
pact on application performance and reliability if compoin¥ is to be replaced by component
Y?, and (ii) in order to improve the application performamcel reliability which components
should be targeted? In addition, the analytical model cem la¢ useful in analyzing the effect
of porting the application between different platforms.tHé application was not developed
using a component-based paradigm, but needs to be adapteel tcomponent world, then
model-based analysis can enable informed decisions abfoci wieces should be developed
in—house, and which pieces should be reused by pointingasetpieces that are critical to
application performance and reliability.

The key to refining architecture—based models in the tegtivagse or to apply the analysis
in the operational phase is in generating and processinguéga information to extract the
parameters of architecture—based models. The generaiwipracessing of execution infor-
mation will be influenced by several factors such as: (i) Wwhethe application was developed
ground up, or assembled using a component—based approak(ii) avhether the source code
of the application is completely or partially available. eTburrent paper presents an exper-
imental approach to generate and process the executiormiafion in order to extract the
parameters of architecture—based models for applicatiemsloped ground up and with com-
plete access to the source code. This methodology needsttapéed in order to be applied to
applications assembled using software components, sirteapplications tend to differ from
the applications developed ground up. In Section 3 we bralcribe how the methodology
may be adapted to apply to component—based software aflisa For applications devel-
oped ground up, the notion of a component is not very wellheefiand is largely a matter of
tradeoff between number of components, their size and hailyehe necessary information
can be extracted. We designate a single source file as ardadivcomponent of the appli-
cation. This designation was motivated by the hope that aviileld host a group of related
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functions which are likely to be placed in a single comporneithe componentized version of
the application. This assumption holds reasonably welllferapplication we have used for the
demonstration of our experimental approach. However, wealdviike to note that our experi-
mental methodology is not limited by this designation. lctfaur experimental methodology
can extract parameters, even if an individual componensssimed to consist of a collection
of a small number of source statements. We elaborate onsthi ifurther in the paper (See
Section 3.2). We parameterize the analytical model of tidigadion using coverage measure-
ments generated during the execution of the applicatioe. ridvelty of the approach lies in its
integration of two distinct yet important areas, namelgtestbased software performance and
reliability models and coverage analysis. The experimeaparoach thus presents an initial
step towards addressing the important issue of how one majgpily analytical architecture—
based software reliability and performance analysis tahgeftware application.

The state—space approach used to model the architecture application is a discrete time
Markov chain (DTMC). Coverage measurements generatechgldhie execution of the ap-
plication are used to determine the failure behavior of themgonents via the enhanced non
homogeneous Poisson process model [14]. Coverage measueeane also used to extract the
intercomponent transition probabilities of the architeetof the application. Our experimental
approach is facilitated by a coverage analysis tool callB8G\(Automatic Test Analyzer in C)
which is a part of the Telcordia Software Visualization anabfysis Tool Suite (TSVAT) [22].
We demonstrate the methodology by predicting the relighdind performance of an applica-
tion called SHARPE (Symbolic Hierarchical Automated Relity Predictor). SHARPE has
been used to solve stochastic models of reliability, pertorce and performability [37].

The layout of the paper is as follows: Section 2 outlines tscdption and analyses meth-
ods of state—based models and provides a brief overvieweo¥dkious architectural models,
failure behavior of the components and the methodologyedipt reliability and performance.
Section 3 describes the experimental set up. Section 4risesesults and the subsequent anal-
yses. Section 5 concludes the paper and presents direfioiigure research.

2 Description and analyses of state-based models

The description of state—based models to predict the preince and reliability of an appli-
cation based on its architecture requires knowledge about:

e Architecture of theapplication: This is the manner in which the different componénts
of the software interact, and is given by the intermodulansition probabilities. The

LComponents, modules and subsystems are used interchinigetitis paper.



architecture may also include information about the edeoutime (mean, variance,
distribution) of each component. The architecture of thgliaption can be modeled ei-
ther as a DTMC (Discrete Time Markov Chain) [7], CTMC (Coniius Time Markov
Chain) [27], SMP (Semi-Markov Process) [26], DAG (Directkcyclic Graph) [45] or
a SPN (Stochastic Petri Net). The state of the applicaticangttime is given by the
component executing at that time, and the state transitiEgresent the transfer of con-
trol among the components. DTMC, CTMC, SMP and SPN can bedudlassified into
irreducible and absorbing categories, where the formaesgmts an infinitely running
application, and the latter a terminating one. The architecof the application provides
the performance model of the application. Analysis of thdgmmance model can be
used to obtain performance predictions such as time to aetiopl of the application,
and identify performance bottlenecks. Performance mocheisalso be used to analyze
the effect of porting the application to a different platfgror porting it from a sequential
platform to a distributed one.

e Failure behavior of the components/interfaces. Failure may occur during the execu-
tion of any component or during the control transfer betwago components. The
failure behavior of the components may be specified in teritkeoprobability of fail-
ure (or reliability), time—independent failure rate or &rdependent failure intensity. It
is a widely known fact that interface failures or failurestttoccur during the transfer
of control between two components should be consideredraba from individual
component failures. However, very little information isadable on how the parame-
ters representing the failure behavior of the interfacey bma estimated. The failure
behavior of the interfaces may also be specified in terms efptiobability of failure,
time—independent failure rate or time—dependent failaterisity.

The information about the architecture of the applicationl ¢he failure behavior of its
components and the interfaces between the components camiéned in the following two
different ways to predict application performance ancataility.

e Compositemethod: The architecture of the application can be combined witHahere
behavior of the components and the interfaces into a congpo®del which can then
be analyzed to predict the performance and reliability opplication. We will refer to
this method of performance and reliability prediction awhiposite Method”.

e Hierarchical method: The other possibility is to solve the architectural moded an-
perimpose the failure behavior of the components and tlefates on to the solution
of the architectural model, to predict reliability. Solwi of the architectural model pro-
vides the performance metrics for the application. We r&dethis method as “Hierar-
chical Method”.
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Figure 1: Description and analyses of architecture—basedein

The information required for the description of state—ldas®wdels, and the different ways
in which this information can be analyzed in order to pregietformance and reliability are
depicted in Figure 1. An exhaustive discussion of the cortpasd hierarchical approaches
to predict the reliability of an application is presented[itb].

The specific analytical model we use has the following fezstur

e Architecture: The architecture of the application is assdro be modeled by a discrete
time Markov chain (DTMC).

e Failure behavior: Failure behavior of the components isimesl to be characterized
by time—dependent failure intensity. Time—dependenufailintensity was chosen to
characterize the failure behavior of the components becafigs ability to express the
dependence of the failure behavior on the code charadtsratd how the code is being
used. In addition, time—dependent failure intensity cao aapture intra—component
dependence via cumulative execution time. We elaboratbesetissues in Section 2.2
and Section 2.3 respectively. We assume that the interficest fail. We note that this



assumption is not necessary to ensure model tractabilitg. ilodel can be extended to
accommodate unreliable interfaces. However, it is notrdieav the parameters repre-
senting the failure behavior of the interfaces may be egdthevhen an interface consists
of items such as global variables, parameters and filesgrition testing proposed in
[8, 9] may hold a lot of promise for estimating interface adlilities and is the topic of

our future research.

e Solution method: We use the hierarchical method of solutié«s explained in Sec-
tion 2.3, analysis using the composite method is not feasdslthis particular combina-
tion of architectural model and failure behavior.

2.1 Architecture of the application

The architecture of the application is modeled using a DTM&\we present a brief overview
of DTMCs in this section. A DTMC is characterized by its ontepstransition probability ma-
trix, P = [p;;]. The state probability vector of the DTMC at time stefs denoted byr(n).

™ = 7w.P )
Te = 1 2)
wheree = (1,1, ..., 1)T and the superscrigh denotes the transpose.

From the point of view of modeling the architecture of softevapplications, DTMCs can
be classified into the following two categories:

e Irreducible: A DTMC is said to be irreducible if every statencbe reached from every
other state. An irreducible DTMC can be used to model theitacture of an infinitely
running application.

e Absorbing: A DTMC is said to be absorbing, if there is at leas¢ state, from which
there is no outgoing transition. Starting from the startesta DTMC upon reaching an
absorbing state is destined to remain there forever. AnralilspDTMC can be used to
model the architecture of a terminating application or the that operates on demand.

In the case of a DTMC with one or more absorbing states, theagd number of times
the process visits statg denoted by;, can be computed by solving the following system of
linear equations:

Vi =Y Vipij + ;(0) 3



wheren(0) denotes the initial state probability vector.

We can use the DTMC analysis presented in this section tdropt&aformance measures
such as time to completion of the application, identify perfance bottlenecks, determine the
effect of changes in the workload, and determine the effechanges to a particular module,
as follows:

e Time to completion: If ¢;, the expected time spent by the application in comporient
per visit is known {; can either be obtained experimentally or may be knewgriori),
thenVjt; is the expected total time spent in the compongitt a typical execution of
the application. For an application withcomponents, the expected completion titne
of the application is given by [42]:

t=> Vit; 4

e Performancebottlenecks: argmaz{V;t;} is the performance bottleneck of the applica-
tion. Thus, we note that neith&f, which is the expected number of visits to component
J during a single execution of the application, ngrwhich is the expected time spent by
the application in componertper visit, are individually sufficient to determine the per-
formance bottleneck, but their produgft; is. This definition of performance bottleneck
is applicable only in the context of a terminating applicati

e Changesin theworkload: A workload pattern is determined by a set of intercomponent
transition probabilities. For a software application tle¢ af intercomponent transition
probabilities will be affected by the operational profiléb]3 Upgrades to the software
may introduce new features in an application which may leaa¢hange in how the ex-
isting features are used. This may render an existing esinfahe operational profile
invalid. When the operational profile changes, a new set teféomponent transition
probabilities may be obtained by executing the applicasigainst the sample test cases
drawn from the new operational profile. An estimate of thefgpenance of the applica-
tion could also be obtained during the process of estimatiteycomponent transition
probabilities. However, the process of testing and estomawill have to be repeated
every time the operational profile changes. In a well-desigapplication where the
interactions among the components is limited it may be ptes$d determine which in-
teractions are impacted by a change in the operational @ijilconsulting the experts.
Model-based analysis may then be used to determine theigignsif the performance



and reliability estimates to the changes in the intercorepbrransition probabilities

among the components which are likely to be impacted by thegh in the operational
profile. An analytical model will enable us to obtain the peniance and reliability esti-

mates for various values of intercomponent transition gbiliiies among the impacted
components without actually having to estimate the valdidseoprobabilities. Estima-

tion of the intercomponent transition probabilities andf@enance metrics by extensive
testing can be lengthy both in terms of computation time asdurces.

Changesto amodule: If a single module changes while preserving its interactidgtin
the other modules (as determined by the intercomponergitiam probabilities), and all
the other modules remain unchanged, the overall perforeeac be predicted by simply
measuring the execution time per visit of a changed comporigus, if component
changes, the time to completion of the application is giwen b

n
=Y Vit)+Vitl (5)
j=Llj#c

In Equation (5),t} is the new execution time per visit for componentWe note that
the expected number of visits to the component, denotet.bwhich depends on the
intercomponent transition probabilities remains uncl@hgModel-based analysis can
thus provide the capability to assess the impact of a chamgemiodule by estimating
the values of the parameters only for the changed moduléehelfperformance of the
application had been determined empirically by runningjdases against the application
and averaging over all the runs, then assessing the impaatttdnge to a module would
require us to repeat the empirical procedure. Repetitiothefempirical procedure is
likely to be more costly than estimating the values of theapaaters for the changed
module.

2.2 Failurebehavior of the components

Intuitively, the failure behavior of a component will depkan the code characteristics of
the component and how the component is being used. Empigaénce has supported the
conjecture that the failure behavior is highly correlatathwode coverage [5, 6, 12, 34]. Code
coverage can thus be a useful measure to capture how the nentpis being used. Hence
we use time—dependent code coverage as a parameter irsticgtbthodel to estimate the fail-
ure intensity of the component. The characteristics of teeaan be captured by estimating
the number of faults in the component based on software esetie estimate the number of
faults in each component based on the number of lines of coitheicomponent using the fault
density approach [30].
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The enhanced non homogeneous Poisson process (ENHPP) [idedlates the failure
intensity of a component to the expected number of faultglires in the component and its
time—dependent coverage behavior. This relationship ésngified by the following expres-
sion:

A(t) = ac (t) (6)
wherea is the expected number of faults present in the componentc%(n)jis the first
derivative of the expected coverage behavia) of the component.

The reliability of a component, denoted by, given the failure intensity of the component,
and the expected time spent in the modyléwherey; = V;t;), is:

R; = efoﬂ{j A;(0)d0 @)
From Equation (6), Equation (7), can be written as:

Rj — e fow ajCj/(G)dG _ efajcj(“{j) (8)

2.3 Method of analyses

In this section, we motivate the choice of the hierarchicalthnd of analyses for an ap-
plication with architecture modeled by a DTMC, and the failiehavior modeled by the
time—dependent failure intensity with the help of an examplVhen the architecture of the
application is modeled by a discrete time Markov chain (DTM@d the failure behavior of
the components are characterized by their reliabilitiesraposite method of analyses is pos-
sible as discussed by Cheung [7]. However, characteritiaddilure behavior of a component
by its reliability cannot take into consideration how themgmnent is being used. As discussed
earlier, time—dependent failure intensity expressed asnaposition of the number of faults
in the component and time—dependent coverage behavioakarirtto consideration both the
factors that affect component failures, namely, the codeattieristics and the how the code is
being used. As a result, we characterize the failure beha¥ithe individual components by
their time—dependent failure intensities.

Consider an application with three components. The arctite of the application is de-
scribed by the DTMC shown on the left in Figure 2. Let the faglintensity of componentbe
denoted by\;(¢), and~; be the cumulative time spent by the application in compotiéram
the beginning of system operation. Combining the architecand the failure behavior of the
application, gives rise to a composite reliability modeshewn on the right in Figure 2, where
the stateF' indicates the failure of the application. However, sincecgssive sojourns in a
given state are not in general contiguous, the reliabiliydei shown on the right in Figure 2
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is a complex stochastic process (it is hot a non—homogen&dMC nor is it a semi—Markov
process) that cannot be analyzed using composite methods.

A3(y3)

Figure 2: Composite reliability model

The analysis is much simpler using hierarchical method afyaes, by which the reliability
of the application, denoted by is given by:

3
=[I & ©)

j=1

whereR; is the reliability of moduley.

Thus, the reliability of the overall application is given:by

3 .
R=T[e Jo’ 2@ (10)
j=1
Equation (10) can be generalized to compute the reliakilitgn application withn compo-
nents, and is given by:

R= H e~ Jo! AO)d (11)
From Equation (8), Equation (11) can be written as:
H —a;c;(Vjts) (12)
7j=1
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Equation (10) assumes inter-component independence tf28]js, the execution of one
component does not in any way affect the failure behaviornyf @her component, an as-
sumption which underlies most state—based software iijabnd performance models. The
execution of one component could affect the failure belrasi@nother component due to er-
ror propagation via data flow. Hence error propagation vig dew could be an important
factor influencing application reliability. The path—bdsaodel proposed by Singpurwalks.
al. [41] considers error propagation via data flow along with ¢oetrol flow of the applica-
tion. However, path—based models are unable to accounhéanfinite number of paths that
might exist due to the existence of loops in the control floapdy. State—based models can
analytically account for the infinite number of paths. Deypéhg state—based models which
account for error propagation via data flow is a subject offature research. The effects of
error propagation due to data flow can be quantified using fiasirtion testing [21, 43].

Modeling the failure behavior of a component using time-eshefent failure intensity en-
ables us to capture intra—component dependence [25] asimsglbelow. Intra—component
dependence can arise for example, when a component is thvo&ee than once in aloop. Re-
liability values assuming intra—component independemedrageneral pessimistic as pointed
out by Krishnamurthyet. al.[25]. They resolve the issue by collapsing multiple exemaiof
the same component intooccurrences wherk is defined as the degree of independence.

If the failure behavior of the individual components is miediby a time—dependent failure
intensity then it is possible to capture intra—componeiedeence via cumulative execution
time spent in a component. The reliability value obtainesuasng intra—component inde-
pendence is in general pessimistic as compared to the iféjialalue which is based on the
cumulative time spent in the component. We illustrate thithhe help of an example as
follows: Consider a component whose failure behavior istwapl by the failure intensity
function A(t) = 34.05 * 0.0057 * e(~0-0057t) \We assume that during a particular run, the
component is visited twice, arid) time units are spent in the component per visit. Thus a total
of 100 time units is spent in the component during this particubacation. The failure in-
tensities assuming intra—component independence, ae-@amponent dependence captured
via the cumulative execution time approach are as shownerftgure 3. The reliability of
the component assuming intra—component independeric&isand intra—component depen-
dence captured via the cumulative time approach.86. Time—dependent failure intensity
thus provides an ability to capture intra—component deproel

Equation (11) indicates that the reliability of the applioa & — 1.0 as~,’s — 0, for all
4. This is consistent with the software reliability model posed by Singpurwallat. al.[41]

which can be expressed as the following:
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Figure 3: Failure intensity — independent execution anduative time

P(e|H) = P(¢|©)P(O|H) (13)
In Equation (13)P(c|H) is the reliability model of the software conditional to thack-
ground informationH . © is known as the parameter space of the reliability model amatér-
preted as a device for summarizing the background infoonai. In the context of Equation
(11), the background information of the application can lmved to have two possibilities:
(i) the application is executed, (ii) the application is egecuted. Thus, the parameter sp@ce
intended to capture the background information in this casesists ofy;’s. Thus,v; is equal
to zero for allj if the application is not executed at all resulting in a reiligy of 1. At least
one~y; will be greater than zero if the application is executed Itesyiin a reliability value of
less than or equal t0.0.

Equation (12) expresses the overall reliability of an aggilon in terms of the failure be-
havior of its individual components and architectural eleteristics. This approach is very
valuable to identify reliability bottlenecks, as well ag thffect of changes in a single module,
as discussed below:

¢ Réliability bottlenecks: Reliability bottleneck is given byrgmaz{a;c;(V;t;)}. Thus,
the code characteristics of the component and the covertgerior which captures how
the component is being used, together determine the ritljabottieneck. This defini-
tion of reliability bottleneck is applicable only in the dest of terminating applications.

e Changesto a module: If a single module is changed while preserving all the otlser a
pects of the application, namely, the intercomponent tiansprobabilities, and failure
behavior of the other unchanged components, the relialafithe application is given

by:
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R* = ( ﬁ e~ Vits)y gmacec(Vte) (14)
j=1,j7c
wherea ¢} (V. "), is the mean value function of the changed component. Wethate
model-based analysis renders itself well to evaluate tipadtnof a change to a module
by estimating the parameters of the changed module. If ffability of the application
were to be determined empirically, then a change to a modaoilgdvequire the repetition
of the empirical procedure in order to evaluate the impa¢hefchange in a module.

3 Experimental methodology

In this section we describe the experimental methodologgbtain the information nec-
essary for architecture—based analysis. In particularettperimental methodology seeks to
obtain:

e Architecture of the application as characterized by iteficdmponent transition proba-
bilities.

e Time—dependent coverage behavior of each component.

3.1 Selecting the application

The Symbolic Hierarchical Automated Reliability and Perfiance Evaluator (SHARPE) [37]
that solves stochastic models of reliability, performarazed performability was selected. This
application was first developed in 1986 for three groups @frsIs practicing engineers, re-
searchers in performance and reliability modeling, andlestts in science and engineering
courses. Since then several revisions have been made togfixamad adopt new requirements.
The current release of SHARPE is almost bug free. It contai412 lines of C code in 30
files and has a total of 373 functions. The number of lines dkda each file of SHARPE is
summarized in Table 1. Each of these files is regarded as & siogiponent for SHARPE.
The choice of designating a file as a component was based adeoff between the number
of components, their size and the ease with which the negedata can be collected. It was
also due to the fact that each file hosts a group of relatedifumecwhich would be placed in a
single component, had the original design of SHARPE beerpooent—based.

3.2 Executing the application

A suite of 735 test cases created by developers and testaiessfing modifications to the
existing functionality as well as new enhancements in prievireleases of SHARPE was iden-
tified to execute the application. ATAC, which is a part of celia Software Visualization
and Analysis Tool Suite (TSVAT) [22] was used to measure @ye during the execution of
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Table 1: Lines of code for components of SHARPE

Comp. LOC | Comp. LOC | Comp. LOC
analyze.c 946 | inshare.c 1592 | maketree.c | 554
multpath.c 387 | results.c 1322 | in_gnpn.c | 1246
share.c 1977 | cg.c 910 | inchain.c 1203
pfan.c 1155 | bind.c 2358 | hitlib.c 383
reachgraph.c| 1791 | sor.c 820 | newcg.c 704
mpfgn.c 1142 | phase.c 1957 | newphase.c| 1271
util.c 1119 | newlinear.c| 1376 | cexpo.c 1267
inspade.c 880 | expo.c 621 | readl.c 1292
indist.c 680 | symbol.c 1490 | ftree.c 3560
debug.c 259 | uniform.c 819 | mtta.c 315

the application with these test cases. Coverage measutemen enabled us to assess how
well the code of SHARPE could be covered by this suite. TheofigdfAC focuses on three
main activities: instrumenting the software, executinfjveare tests, and measuring coverage
to determine how well the code has been covered. Instruni@mtaf the software occurs at
compile-time, and ATAC allows large systems to be instrutegra piece at a time. Once
instrumentation is complete and an executable has been tesil cases can be executed and
ATAC to generate reports or display uncovered source coble.r@ports reveal the current cov-
erage measures with respect to selected criteimaicating how adequate the existing test set
is. In our experiments, we used block coverage, since thisisnost basic form of coverage
that can be measured using ATAC.

A basic block, or simply a block, is a sequence of instructitimat, except for the last in-
struction, is free of branches and function calls. The ingtons in any basic block are either
executed all together, or not at &llA block may contain more than one statement if no branch-
ing occurs between statements; a statement may contaiiplauitocks if branching occurs
inside the statement; an expression may contain multiplekislif branching is implied within
the expression. Given a program and a test set, the blockageés the percentage of the total
number of blocks in the program exercised by the test setutrcase, the overall block cover-
age for all 735 test cases on SHARPB1s5%. The individual coverage for each component
is listed in Table 2.

Block-level coverage measurements obtained during theuéige of the application are
used to obtain the time—dependent coverage behavior for@aponent as described in Sec-
tion 3.3. They are also aggregated to determine interac@onong the functions, and subse-
guently among the files of the application as described ini@e8.4. We would like to note

2TSVAT can report coverage with respect to the function eriyck, decision, c—uses and p—uses criteria [23].
3This definition assumes that the underlying hardware doefaialuring the execution of a block.
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Table 2: Block coverage for components of SHARPE

Comp. Cov. | Comp. Cov. | Comp. Cov.
analyze.c | 96.7 | indist.c 98.4 | pfgn.c 97.8
bind.c 98.0 | inshare.c 97.5 | phase.c 90.6
bitlib.c 96.0 | inspade.c 99.3 | reachgraph.c| 75.8
cexpo.c 87.9 | maketree.c | 99.4 | readl.c 97.9
cg.c 76.2 | mpfgn.c 99.5 | results.c 99.2
debug.c 69.1 | mtta.c 95.5 | share.c 93.2
expo.c 98.9 | multpath.c | 96.9 | sor.c 92.6
ftree.c 93.4 | newcg.c 85.2 | symbol.c 97.5
in.gnpn.c | 87.8 | newlinear.c | 93.0 | uniform.c 91.6
inchain.c | 99.5 | newphase.c| 95.4 | util.c 85.7

that the proposed methodology uses block—level coveragsumements since they are readily
available from the coverage analysis tool. However, bltekel coverage measurements are
not imperative to the use of this methodology. Since theksitmvel coverage information is
subsequently condensed to obtain the time—dependentag@/éehavior for the whole com-
ponent, any profiling tool which reports coverage inforraaton a per function basis would
also provide necessary information. Similarly, since kidevel coverage information is ag-
gregated to determine the interactions between functioddites, any profiler which records
similar execution information for individual functions wol also provide the information nec-
essary for determining the interactions. For applicatideseloped using component—based
software engineering paradigm, monitoring the componantbeir boundaries by recording
the events originating from the components could also peo¥he necessary information to
determine the architecture of the application. If the sewrade of the component is available
then instrumenting the source code and collecting exeatytiofiles will provide the coverage
information necessary for determining coverage behaviorthe event that the source code
is not available, then instrumentation of the object codddprovide the necessary coverage
data.

3.3 Determining failure behavior of the components

As explained in Section 2.2, to determine the failure betraei the components, we need to
obtain the expected coverage as a function of time and theceagh number of faults for each
component (see Equation (6)). We first describe how to olbkearexpected coverage behavior
for each component:

The execution time for each test is the difference betwesstarting and ending time which
can be obtained from the ATAC trace file. The expected coweimmgomputed by running the
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application multiple times with the same suite of test cdmesn different ordering and aver-
aging coverages over all these runs. Stated differentbh sangle run gives one realization of
block coverage over time; an average over a number of suchwas computed to give the
expected coverage as a function of time. To avoid any pasbibls, the test ordering for each
run was generated randomly.

We now use an example to explain the steps outlined abovenGiv application with two
tests,t; andt,, suppose there are 20 blocks in the application: 10 of thentavered by,
5 by ¢y, and 3 by both. Assume also the execution timetfoandt, is 2 sec and 3 sec, re-
spectively. Depending on which test is executed first, thekbtoverage may vary with time
as shown in the first two parts of Table 3. The third part of €abkhows the expected block
coverage, which is the average of the block coverage ovautiein the first two tables.

Since repeated execution of the application with a big telsissvery costly, a tradeoff is to
use its block minimized subset which is the minimal subsegtims of the number of test cases
that preserves the block coverage of the original test sebut case, the number of tests is
reduced from 735 to 275 because of a minimization with reSjoethie block coverage.

The expected number of faults in each component can be ebtaising a variety of ap-
proaches. It may be estimated based on the failure datectadleluring unit testing of each
component. It may also be estimated based on the softwaresnet the component. We es-
timate the expected number of faults in each component ukfault density approach [30]
(See Section 4 for details). We note that the fault densipr@ach is a specific example of the
broad class of approaches that are based on software metrics

3.4 Determining the architecture of the application

The architecture of the application in terms of the interpoment transition probabilities is
determined based on the following protocol: we assume tha&rva function A calls another
function B, control is eventually transferred back to fuaotA, except for when the appli-
cation terminates successfully, or there is an error in tipeiti specification or of some other
form which causes the application to terminate abnormaltyder these situations, the control
is transferred to the terminating state. Thus, there aretésminating states-— one repre-
sents normal termination and the other represents abndemaination. For every block, the
following possibilities exist:

¢ If the block has neither a function call nor a return statetndren upon completion of
the block, control is transferred to the next block whichlygically contiguous. In this
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Table 3: Block coverage with respect to time for a sample aogand test set
Execution orderingt; followed byto

Block Time
coverage (%) (second)
0 0
0 1
50 2
50 3
50 4
60 5

Execution orderingto followed byt

Block Time
coverage (%) (second)
0 0
0 1
0 2
25 3
25 4
60 5

Expected block coverage

Expected Time
block coverage (%) (second)
0 0
0 1
25 2
375 3
375 4
60 5
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&

Figure 4: An example of file level transitions

case we say that the control is transferred to another blotke same file, or at the file
level of granularity we say that the control is transferretlbto the same file. If the

block happens to be the last block in the file, then the colidroansferred back to the
file which called the current file.

e If the block has a function call to one of the user—defined ions!, which may or may
not be in the same file, then the control is transferred to tfst flock of the called

function, and we say that the control is transferred to tlffilwhich the called function
resides.

With this assumption, the branching probabilities for tlomteol flow graph of SHARPE
were computed based on the execution counts extracted frerATAC trace files. The exe-
cution counts were first obtained at the finest level of grarity] i.e., the block level, and are
combined later to obtain the execution counts and probisilat the file level.

We illustrate this method with the help of an example. Suppars application consists of
three files, file.1, file.2 and file.3: file.1 has two blocks,By; and By, file.2 has three
blocks, B21, B2 and Bys, and file.3 has two blocksB3; and Bs,. The application begins by
executing blockB;1, which calls a user—defined function fiile.2, of which the first block is
B1. This transfers control tgile.2. AssumeB,; contains no function call. Hence, the next
block By gets executed upon completion Bf;. SupposeB,, calls a user—defined function
in file.3 which begins atB3;. AssumeBs; executes and passes control sequentialligig
which returns control tgfile.2 at block Bys, which then returns control tgile.1 at block
Bi>. This application terminates upon completion of bld8l,. Thus, the calling sequence
at the block level is given by the followingB11, B2y, Boo, Bs1, Bsa, Bog, B1a, Whereas the
calling sequence at the file level fgle.1, file.2, file.2, file.3, file.3, file.2, file.1,T. The
file level transitions in this scenario are as shown in FigynehereT indicates the terminating

4Each system function is treated as a single basic block.
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Figure 5: Coverage behavior as a function of timedbare.c

state of the application.

After obtaining the file level transitions, we proceed to guite the branching probabilities
using execution counts. We explain the methodology usebtairothe branching probabilities
by computing them forfile.1. Suppose each block in the application is executed 10 times.
Since blockBy; is executed 10 times, and it has a call to a user—defined &mitifile.2 the
first block of which isBsy1, we say thaffile.1 calls file.2 10 times. BlockB; is also executed
10 times, and upon completion Bf 5 the application terminates. Thugile.1 transfers control
10 times tofile.2, and 10 times to the terminating stdte As a result,file.1 calls file.2 with
probability 0.5, and calls the terminating state with probabiliiys. Branching probabilities
can be computed fofile.2 and file.3 using similar arguments.

4 Resultsand analyses

The application was executed using the minimal test set as explained ind®e8t8 with
40 random orderings of the test cases. The coverage was reddeu each file during each
run. The expected coverage as a function of time was then it oy averaging over these
40 runs for each file. The coverage for 5 individual runs amdaverage over 40 runs is shown
in Figure 5 forshare.c

Given measured coverage, to obtain the failure behaviomahdividual component, we
need an estimate of the expected number of faylis the component. We obtain this estimate

®In our experiment, the application was SHARPE
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using the fault density approach [20]. Since the applicatiomature, and has been in use at
several hundred locations without any known problems, veeirag the fault densityF{D) to
be 4 per1000 lines of code [20]. The expected number of faults in compbiethenoted by,

is given by:

_ FD*ZZ‘

L 15
%= 1000 (15)

wherel; is the number of lines in componentThe number of lines of code for all the compo-
nents constituting the application is summarized in Table 1

The one step transition probability matiiXis obtained using execution counts, which sub-
sequently gives the visit count$ as explained in Section 2.1. The execution counts for the
file bitlib.c are shown on the left hand side in Figure 6, and the correspormtanching prob-
abilities are shown on the right side.

3 1201123 ‘i) 0.9816

22470 0.0184

maketree.c maketree.q

Figure 6: Execution counts and branching probabilitieshfalib.c

The branching probabilities are computed using per blogcetion information, so a single
block is executed per visit to a file. Thus, the expected tipens by the application in a
component per visit, is the expected time taken to executmek {E£B). In general, the
execution time of different blocks of the same file might #igantly differ. However, in our
approach, a basic block is defined as a set of statementsr¢hall axecuted together or none
at all. According to this definition, a basic block cons#tsiton an average about 2 lines of C
code. The execution time of a set of 2 lines of C code is nohfit@differ significantly from
one set to the other. As a result, in our set up it is reasonabéssume that the execution
time of each block in a file is the same. Also, since the numbétazk executions is likely
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Table 4: Expected time per component of SHARPE

Comp. Exp. time | Comp. Exp. time | Comp. Exp. time
analyze.c 0.0091 | inshare.c 0.0033 | maketree.c| 0.0013
multpath.c 0.0002 results.c 0.0053 in_gn_pn.c 0.0008
share.c 0.0210 | cg.c 0.0035 inchain.c 0.0152
pfan.c 3.4439 | bind.c 0.1037 | bitlib.c 0.0010
reachgraph.c/| 0.2011 | sor.c 0.0806 newcg.c 0.0003
mpfgn.c 0.0010 | phase.c 0.0450 | newphase.c| 0.0005
util.c 1.0726 newlinear.c| 0.0005 | cexpo.c 0.2908
inspade.c 0.0014 | expo.c 0.0125 | readl.c 0.6076
indist.c 0.0015 | symbol.c 0.0193 | ftree.c 0.7439
debug.c 0.0001 uniform.c 0.1149 mtta.c 0.0047

Table 5: Mean value function (MVF) per component of SHARPE

Comp. MVF Comp. MVF Comp. MVF
analyze.c 2.3076e-06| inshare.c 1.9608e-07| maketree.c 0.00
multpath.c 0.00 results.c 2.1899e-06| in_gnpn.c | 1.9109e-07
share.c 1.3705e-05| cg.c 0.00 inchain.c 1.1777e-05
pfan.c 0.0011 bind.c 2.6885e-05| hitlib.c 0.00
reachgraph.c 0.00 sor.c 7.6910e-06| newcg.c 0.00
mpfgn.c 3.6359e-07| phase.c 0.00 newphase.c| 0.00
util.c 2.7770e-04| newlinear.c| 8.3674e-08| cexpo.c 2.7635e-06
inspade.c 6.4805e-07| expo.c 7.3790e-07| readl.c 3.3561e-04
indist.c 1.8069e-07| symbol.c 0.00 ftree.c 6.1570e-04
debug.c 0.00 uniform.c 0.0 mtta.c 1.0705e-06

to be large, small variations in the execution times of edobkare likely to average out. We
compute the expected execution time of a block using thewviatlg equation:

T

EB=—-——
TB

(16)
whereT'T is the total time taken to execu®d5 test cases, and' B are the total number of
block executions. The total time taken to exectig test cases is 5582 sec, and the total num-
ber of block executions i970322031. Hence the expected execution time of a block, from
Equation (16) i®.0000057257. The expected time spent by the application in each componen
is summarized in Table 4, and the mean value function of tkh eeamponent is summarized

in Table 5.

The expected time to completion as computed from Equatipis (180 sec. The reliability
estimate of the application from Equation (12pi8903.
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4.1 Validation

The performance estimate or the mean time to completioneoéiplication obtained from
our experiment was validated using the mean time to congpletbomputed empirically. If the
total time taken to executR test cases i§), the empirical mean time to completioRT7T'C')
can be computed using the following expression:

ETTC = % (17)

For our experiment) was5582 seconds andk, which is the number of test cases Wia$
test cases. The mean time to completion computed empjricsalhus7.54 seconds. The ex-
pected time to completion using our approaél’¥@ seconds), and the mean time to completion
computed empirically are quite close. The small discrepdetween the empirical expected
time to completion and the one computed using our approactd ¢® due to one or more of
the following reasons: 1) The test suite used in the studwisampletely representative of
actual usage of the application, and hence the branchingapiiities computed based on the
test suite do not represent the true branching probalsilit® The empirical value of the time
to completion will be influenced by the load on the system, atatge variation is possible in
this value.

The component with the maximum expected time is the “peréoree bottleneck”. Table 4
indicates that the componenf gn.c is the performance bottleneck.

The reliability estimate obtained using our approach maydl&ated by reinserting the
faults discovered during integration testing and operatiaise of the application followed by
testing the application based on its operational profiler @asent research involves the de-
velopment of an operational profile for SHARPE followed by tralidation of the reliability
estimates. In the absence of validation, our approach carsbé to determine the relative
importance of individual components on the overall appidcareliability. The contribution of
an individual component to the overall application religpis a function of the utilization of
the component as determined by its visit counts, the rekiduwaber of faults in the compo-
nent, and the time—dependent coverage behavior of the ammpoNe note that the utilization
and time—dependent coverage behavior of each compondnteisied from experimental data,
whereas the residual number of number of faults in each coends estimated using the fault
density approach. If the fault density for each componeas@imed to be identical, then the
relative criticality of each component will depend on itdizhtion and time—dependent cover-
age behavior. Since the utilization and time—dependergrege behavior of each component
is determined using the same experimental set up, thevelatiticalities of the components
computed using this approach are likely to hold, even if theotute reliability values do not.
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Figure 7: Effect of variations in fault density of the entapplication

The relative priority of each component can be determinethftheir mean value functions
listed in Table 5, where the component with the highest meduevfunction is most critical or
is the “reliability bottleneck”. From the table, it can beepethat the componemtfgn.c is the
reliability bottleneck.

4.2 Senditivity analysis

The approach presented in this paper allows us to capturdgphendence between overall
application performance (reliability), application aitelcture, and the performance (reliability)
behavior of its individual components into a parameteriaedlytical model. This parameter-
ized analytical model can be very valuable to conduct seitgiinalysis, or to analyze the
impact of the variation in the performance (reliability)rameters for the individual compo-
nents on the overall application performance (reliabjilitwe demonstrate the ease of use of a
parameterized analytical models for sensitivity analysigg the following two examples:

To determine the effect of the variation in fault density loé tentire application on the re-
liability estimate obtained using our approach, we comghuite reliability for various values
of the fault density. Figure 7 shows reliability of the ajgplion vs. fault density. As can be
seen from this figure, the reliability of the application pisowith increasing fault density. This
analysis can help us answer a question such as: what is ttenpege increase in the reliability
if the fault density of the application is reduced frand to 1.0?

Typically, in a component based software development siersome of the components
are developed in house, while some are picked off the shél. failure behavior of the com-

ponents picked off the shelf is certified, and we have infaiomaregarding the failure behavior
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Reliability for variations in fault density for component pfgn.c
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Figure 8: Effect of variations in fault density pff gn.c

of the components that are developed in house. In addit@atchitecture of the entire ap-
plication (in terms of interactions among the various congras) is known. We would like
to assess the sensitivity of the reliability estimate towhgations in the failure behavior of
the off-the—shelf component. The failure behavior of themponent can vary due to the vari-
ations in its fault density. Without loss of generality, wesame that the componenfgn.c
was picked off the shelf. The reliability of the applicatifor variations in the fault density
of pfgn.c, is shown in Figure 8. As expected, the reliability decreasith increasing values
of fault density of the componenifqn.c. Based on such analysis we can answer gquestions
such as what is the percentage increase in applicatiorbitédfaf component A is procured
from vendor X as opposed to vendor Y, sine the component frender X has a higher reli-
ability than the component from vendor Y, but this higheratelity comes at an increased cost?

5 Conclusionsand futureresearch

In this paper we have described an experimental approacktitacethe parameters of an
analytical architecture—based software performance aliability model based on the infor-
mation obtained from the execution of an application. Theegxnental approach can be used
for applications that are developed in a ground up mannepamdde complete access to the
source code. We use coverage measurements obtained cheiegdcution of the application
to extract parameters. We have demonstrated our expermamproach using the Symbolic
Hierarchical Automated Reliability and Performance Ewsdu (SHARPE). We have illustrated
how a parameterized analytical model can be used for sé@tstinalysis as well as to identify
performance and reliability bottlenecks in an application
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Our future research includes designing and conducting rerpats to validate the relia-
bility predictions obtained using this approach. Experitaé verification of the assumptions
underlying various architecture—based software relighihodels is also currently underway.
Development of empirical methodologies to parameterieeatichitecture—based performance
and reliability models of applications developed usingdbmponent—based software develop-
ment paradigm is also a subject of future research.
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