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Abstract— We investigate bit-interleaved coded modulation
with iterative decoding (BICM-ID) for bandwidth efficient trans-
mission, where the bit error rate is reduced through iterations
between a multilevel demapper and a simple channel decoder. In
order to achieve a significant turbo-gain, the assignment strategy
of the binary indices to signal points is crucial. We address
the problem of finding the most suitable index assignments to
arbitrary, high order signal constellations. A new method based
on the binary switching algorithm is proposed that finds optimized
mappings outperforming previously known ones.

I. INTRODUCTION

Bit-interleaved coded modulation (BICM) [1], [2] is the
concatenation of an encoder, an interleaver and a symbol
mapper, and is well suited for bandwidth efficient transmis-
sion over fading channels. The performance of BICM can
be greatly improved through iterative information exchange
between the inner decoder, i.e. the demapper, and the outer
channel decoder, similar to iterative decoding of serial con-
catenated codes (SCCC) [3]. This system, introduced in [4],
[5], is usually referred to as BICM with iterative decoding
(BICM-ID). It is a promising low complexity alternative to
turbo codes [6] well suited for a combination with e.g. iterative
equalization or MIMO detection. It was soon recognized that
the choice of the mapping (labeling map) is the crucial design
parameter to achieve a high coding gain over the iterations.
With increasing constellation order, an exhaustive computer
search to find suitable mappings becomes intractable due
to high complexity. Several mappings for BICM-ID were
introduced in [7]−[10], but to the best of our knowledge, no
general design algorithm has been proposed.

In this paper, we introduce a low complexity method to
find labeling maps with desired characteristics for arbitrary
signal constellations. The optimization scheme is based on the
binary switching algorithm (BSA) previously used for index
optimization in vector quantization [11]. The labeling indexes
are assigned to constellation points so that an average cost is
optimized. We investigate several cost functions for BICM-ID
based on mutual information and error bounds.

Section II introduces the system model. Then, in Section III,
a distance spectrum for mappings and the EXIT charts [12]
are used to characterize mappings. The BSA and appropriate
cost functions are investigated in Section IV. The analysis and
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simulation results of the new mappings show the performance
gains of the optimization with the BSA in Section V.

II. SYSTEM MODEL

We consider the BICM system with iterative decoding
(BICM-ID) depicted in Fig. 1.
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Fig. 1. BICM-ID system model.

A block of data bits is encoded by a convolutional encoder
and bit-interleaved by the random interleaver Π. The coded
and interleaved sequence is denoted by c; m consecutive
bits of the sequence c are grouped to form the subsequences
ck = (ck(1), . . . , ck(m)). Each subsequence ck is mapped to
a complex symbol sk = µ(ck) chosen from the 2m-ary signal
constellation χ according to the labeling map µ.

The channel is described by rk = ak · sk + nk, where ak

denotes the fading coefficient, and nk is the complex zero-
mean Gaussian noise with variance σ2

n = N0/2Es in each
real dimension.

At the receiver, the demapper processes the received com-
plex symbols rk and the corresponding a priori log-likelihood
ratios (LLRs) La(Ck(i)) = log(P (Ck(i)=0)

P (Ck(i)=1) )
1 of the coded bits

and outputs the extrinsic LLRs [5]:

Le(Ck(i)) = log
P (ck(i) = 0|rk, La(Ck))

P (Ck(i) = 1|rk, La(Ck))
− La(Ck(i)).

(1)
Let χi

b denote the subset of symbols sk ∈ χ whose bit labels
have the value b ∈ {0, 1} in position i ∈ {1, . . . ,m}, i.e. χi

b =
{sk = µ(ck),∀ck ∈ {0, 1}m|ck(i) = b}. Using Bayes’ rule
and taking the expectation of p(rk|sk) over P (sk|Ck(i) = b),
sk ∈ χi

b, yields

Le(Ck(i)) = log

∑

sk∈χi

0

p(rk|sk) · P (sk|Ck(i) = 0)
∑

sk∈χi

1

p(rk|sk) · P (sk|Ck(i) = 1)
. (2)

1Ck(i) denotes the binary random variable with realizations ck(i) ∈ {0, 1}



The first term p(rk|sk) is computed according to the channel
model out of the Gaussian distribution:

p(rk|sk) =
1√

2πσn

e
−

|rk−ak·sk|2

2σ2
n . (3)

The second term P (sk|Ck(i) = b) is computed from the a
priori information of the individual bits:

P (sk|Ck(i) = b) =

m
∏

j=1,j 6=i

1

1 + e−La(Ck(j))
e−La(Ck(j))·ck(j).

(4)
The extrinsic estimates Le(Ck(i)) are deinterleaved and

applied to the APP channel decoder. Performing iterative
decoding, extrinsic information about the coded bits from
the decoder is fed back and regarded as a priori information
La(Ck(i)) at the demapper. During the initial demapping step,
the a priori LLRs are set to zero.

III. CHARACTERISTICS OF LABELING MAPS

The applied labeling map is the crucial design parameter
for the considered BICM-ID system. The labeling map can be
either characterized through a distance spectrum or through
EXIT charts.

A. Distance spectrum

Similar to the distance spectrum of Hamming weights for a
channel code, we introduce a distance spectrum of Euclidean
distances for mappings with the values N̄(dE), which are
defined as the number NN (dE , sk) of symbols ŝk ∈ χi

b̄
2

at Euclidean distance dE from the symbol sk ∈ χi
b, averaged

over all bits i = 1, . . . ,m and 2m symbols sk:

N̄(dE) =
1

m2m

m
∑

i=1

1
∑

b=0

∑

sk∈χi

b

NN (dE , sk). (5)

In other words, the distance spectrum is the average number
of bit errors made at a specific Euclidean distance dE :

N̄(dE) =
1

m2m

∑

sk∈χ

NH(dE , sk), (6)

where NH(dE , sk) is the total Hamming distance between the
symbol sk and the symbols at Euclidean distance dE from sk.

As an example, we will consider three characteristic 16-
QAM mappings proposed in the literature and depicted in Fig.
2: Gray, where symbols at minimum Euclidean distance differ
in one bit, Modified Set Partitioning (MSP) [8] and Maximum
Squared Euclidean Weight (MSEW) mapping [10].

We consider first the case where no a priori information
about the coded bits is available at the demapper (e.g. during
the initial demapping step). The shaded regions in Fig. 2
correspond to the decision regions for bit i having the value 1
(subset χi

1), the unshaded regions correspond to the decision
regions for bit i = 1 having the value 0 (subset χi

0). If a symbol
error occurs within one decision region, no error will be made
on the corresponding bit. Large decision regions provide a

2χi

b̄
denotes the complementary subset to χi

b
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Fig. 2. For bit i=1: 16-QAM mappings with decision regions without a
priori information and binary signal constellations selected by the ideal a
priori information of the last 3 bits.

high protection for the corresponding bit, since the number
of nearest neighbors, i.e. the number of symbols ŝk ∈ χi

b̄
at

minimum Euclidean distance from sk ∈ χi
b is minimized. In

other words, the Hamming distances between symbols at small
Euclidean distance should be minimized in order to minimize
the number of bit errors for one symbol error.

Table I shows the distance spectrum as defined above for the
considered signal constellations. α, shown in Fig. 2, denotes
the minimum squared Euclidean distance (d2

E) of 16-QAM.
The performance is expected to be the best for Gray labeling,
where the average number of nearest neighbors is minimized,
followed by MSP and MSEW mapping.

d2

E
α 2α 4α 5α 8α 9α 10α 13α 18α

Gray 0.75 1.12 1 2.25 1 0.25 0.75 0.75 0.12
MSP 1.62 1.19 0.75 2.25 0.25 0.62 0.75 0.5 0.06

MSEW 2.25 1.12 1 0.75 1 0.75 0.75 0.25 0.12

TABLE I

DISTANCE SPECTRUM WITH NO A PRIORI INFORMATION.

The performance with ideal a priori information at the
demapper represents the achievable gain over the iterations.
In this case, all the bits are perfectly known at the demapper,
except for the bit to be detected, since only the extrinsic infor-
mation is used. The a priori known bits select a pair of symbols
which differ only in the bit i to be detected. Possible symbol
pairs for bit i = 1 are shown in Fig. 2. The symbol pairs
consist of the subsets χi

1 and χi
0 which are reduced through

ideal a priori knowledge from the shaded and unshaded regions
to one symbol, denoted by the filled and unfilled signal points
respectively. The distance spectrum, shown in Table II, can
be obtained similar to the case without a priori information.
With Gray mapping, the number of distances at minimum
Euclidean distance is not reduced through a priori knowledge.
Thus, only very small performance improvement is expected
over the iterations. With MSP, designed in [8] to provide a
good trade-off between performance with and without a priori
information, the number of small distances is reduced and with
MSEW mapping, the minimum squared Euclidean distance
between the symbol pairs is maximized. It is interesting that,
if the binary bit labels are converted to decimal numbers, the
MSEW mapping is a perfect magic square, since the sum of
all rows, columns, diagonals, 2 × 2 sub-squares and 2 × 2
cyclic sub-squares is equal to 30. We also observed that every
perfect magic square has the distance spectrum of the MSEW
mapping.



d2

E
α 2α 4α 5α 8α 9α 10α 13α 18α

Gray 0.75 0 0 0 0 0.25 0 0 0
MSP 0 0.06 0.25 0.12 0.25 0 0.12 0.12 0.06

MSEW 0 0 0 0.75 0 0 0 0.25 0

TABLE II

DISTANCE SPECTRUM WITH IDEAL A PRIORI INFORMATION.

B. Analysis with mutual information: EXIT chart

Additional insight can be gained through the analysis of la-
beling maps based on the average mutual information between
the coded bits and the output of the demapper as a function
of the a priori input. The iterative exchange of this mutual
information between the demapper and the decoder can be
visualized by EXIT charts. For an introduction to EXIT charts
we refer to [12].

Fig. 3 depicts the transfer functions in the EXIT chart for
an AWGN channel of the three 16-QAM mappings presented
in Section III-A, together with the transfer function of a 4-
state, rate-1/2 convolutional code and a simulated trajectory
which passes through the tunnel. Let us denote the values of
the demapper functions with no a priori knowledge and ideal
a priori knowledge by I0 and I1 respectively. High values of
I0 and I1 are desirable in order to avoid an early crossing of
the transfer functions, which would cause the iterative process
to stop, and to reach low error rates respectively. As expected,
Gray mapping has the highest I0, MSEW mapping the highest
I1, while MSP is a good trade off, which can be explained as
follows: the area A under the transfer function of the demapper
chart corresponds approximately to A ≈ C(χ)/m [13], where
C(χ) denotes the channel capacity of the signal constellation
χ. Since the capacity is independent of the applied mapping,
high I0 usually corresponds to low I1 and vice versa. MSP
mapping is particularly interesting because of its slightly
curved shape, which allows both high I0 and I1.
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Fig. 3. Transfer functions of different mappings in the EXIT chart.

IV. OPTIMIZATION OF THE INDEX ASSIGNMENTS

The goal is to have a method, where weights for the
performance without and with ideal a priori knowledge can
be set and the algorithm finds an optimal mapping for the
selected weight distribution. Those mappings could be found
through exhaustive search, which becomes intractable for

higher order constellations since 2m! different possibilities
have to be checked. We propose a binary switching algorithm
(BSA) to overcome the complexity problems of the brute-force
approach. This algorithm finds a local optimum on a given cost
function. First, the BSA for mappings is presented. Then, we
investigate several possible cost functions.

A. Binary switching algorithm

The binary switching algorithm (BSA) [11] is started with
an initial mapping. Using one of the cost functions defined in
the next sections, the cost of each symbol and the total cost are
calculated. An ordered list of symbols, sorted by decreasing
costs, is generated. The idea is to pick the symbol with the
highest cost in the list (which has the strongest contribution
to a ”bad” performance), and to try to switch the index of
this symbol with the index of another symbol. The latter is
selected such, that the decrease of the total cost due to the
switch is as large as possible. If no switch partner can be
found for the symbol with the highest cost, the symbol with the
second-highest cost will be tried to switch next. This process
continues for symbols in the list with decreasing costs until
a symbol is found that allows a switch that lowers the total
cost. After an accepted switch, a new ordered list of symbols
is generated, and the algorithm continues as described above
until no further reduction of the total cost is possible. Several
algorithm executions with random initial mappings yield to the
presumed global optimum, as the BSA finds a local optimum.

B. Cost function based on mutual information

We first consider the mutual information I(C;R) ∈ [0, 1]
between the coded bits and the received channel output as
a cost function for the BSA. This mutual information, also
used in the EXIT charts [12], can be evaluated by numerical
integration over the signal space C:

I(C;R) =
1

2m
·

m
∑

i=1

1
∑

b=0

∫

C

p(a)

∫

C

p(r|C(i) = b)·

· log2

2 · p(r|C(i) = b)

p(r|C(i) = 0) + p(r|C(i) = 1)
dr da, (7)

with
p(r|C(i) = b) =

1

2m−1
·
∑

s∈χi

b

p(r|s), (8)

for independent and uniformly distributed code bits. For
AWGN channels, the integration over the probability density
function p(a) of the fading coefficient a can be omitted as
a = 1. p(r|s) is given by the Gaussian distribution 3.

The mutual information is a robust performance measure.
However, without a priori information and without approxima-
tions, we can only give a separate performance measure for
each bit position rather than for each symbol as required for
the BSA. Thus, we will use the mutual information only for
the case of ideal a priori information, where the subset χi

b in
the summation of (8) is reduced to one symbol:

DIr = 1 − I(C;R) and DIa = 1 − I(C;R)|a=1 , (9)

for the Rayleigh and AWGN channel respectively.



C. Cost functions based on error bounds

Instead of using the mutual information computed by expen-
sive numerical integration in (7) as cost function, we can use
simple terms which characterize the influence of the mapping
in error bounds. Our main goal is not to use tight error bounds,
but to have a qualitative measure to define costs for mappings.

Let P (sk → ŝk) denote the probability of choosing the
symbol ŝk instead of the transmitted symbol sk. In the general
case of a Rician fading channel with Rice-Factor K, the
Chernoff upper bound of P (sk → ŝk) is given by [14]:

P (sk → ŝk) ≤ 1 + K

1 + K + Es

4N0

|sk − ŝk|2

× exp

(

−
K Es

4N0

|sk − ŝk|2

1 + K + Es

4N0

|sk − ŝk|2

)

. (10)

Let c and ĉ denote two coded bit sequences which differ
in d consecutive positions. The bits c are transmitted within
distinct symbols. P (c → ĉ) is the pairwise error probability
(PEP), i.e. the probability of choosing the sequence ĉ instead
of the transmitted sequence c. Assuming perfect interleaving
and averaging over all symbols and bit positions, the PEP of
the two sequences c and ĉ is given by [2]:

P (c → ĉ) =





1

m2m

m
∑

i=1

1
∑

b=0

∑

sk∈χi

b

∑

ŝk∈χi

b̄

P (sk → ŝk)





d

.

(11)
For small values of K (e.g. K=0, Rayleigh fading) and high
SNR ((1 + K) � Es

4N0

|sk − ŝk|2), using (10) and (11), the
influence of the mapping on the PEP is described by

Dr =
1

m2m

m
∑

i=1

1
∑

b=0

∑

sk∈χi

b

∑

ŝk∈χi

b̄

1

|sk − ŝk|2
. (12)

The inverse of Dr is interpreted in [2] as the harmonic mean
of the Euclidean distance.

For large values of K (e.g. K → ∞, AWGN channel) or
low SNR ((1 + K) � Es

4N0

|sk − ŝk|2), the influence of the
mapping on the PEP is described by

Da =
1

m2m

m
∑

i=1

1
∑

b=0

∑

sk∈χi

b

∑

ŝk∈χi

b̄

exp

(

− Es

4N0
|sk − ŝk|2

)

.

(13)
Depending on the channel, Dr or Da can be used as

cost functions for the BSA. Separate costs for each symbol,
required by the BSA, can be easily determined by considering
only the selected symbol sk in the summation in (12) and (13).
We distinguish between the case without a priori knowledge
(Dr

0, Da
0 ) and with perfect a priori knowledge (Dr

1, Da
1 ). In

the latter case, the signal subset χi
b̄

in the summations (12)
and (13) is reduced to one symbol. We propose to use the
weighted combination

DEr = λ0 ·Dr
0 +λ1 ·Dr

1 and DEa = λ0 ·Da
0 +λ1 ·Da

1 (14)

as a cost function for the Rayleigh and AWGN channel
respectively; λ0 and λ1 denote the weights for the performance
without and with perfect a priori knowledge.

V. RESULTS

The cost functions DIr, DIa (9), DEr and DEa (14) can
be determined for arbitrary signal constellations. The BSA
can output for different initial mappings and cost functions
different optimized mappings with the same distance spectrum.

Setting λ0 = 1 and λ1 = 0 in (14) maximizes the
performance without a priori knowledge. As expected, the
BSA outputs Gray or quasi-Gray mappings for all signal
constellations. By setting λ0 = 0 and λ1 = 1 in (14) or
using (9), the performance with ideal a priori information
is maximized. For 8-PSK, all cost functions result in the
same optimum mapping M8 shown in Fig. 4a), which is
identical to the one proposed in [9] found by exhaustive search.
Our optimization, however, took only a few seconds on a
conventional PC, which shows the efficiency and the principal
functionality of our algorithm. For 16-QAM, the BSA finds
two new mappings shown in Fig. 4b) and 4c). M16a results
from the cost functions DIa and DEa at high SNR. Due to
the exponential cost decrease with the Euclidean distance and
the SNR in AWGN channels, the minimum of the squared
Euclidean distance is maximized. M16r results from the cost
function DIr, DEr as well as from DIa and DEa at low SNR.
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Fig. 4. Optimized mappings for ideal a priori information.

d2

E
α 2α 4α 5α 8α 9α 10α 13α 18α

M16a 1.75 1.31 1.25 1.25 0.5 0.75 0.75 0.25 0.19
M16r 1.75 1.31 1 1.75 0.25 0.75 0.5 0.5 0.19

TABLE III

DISTANCE SPECTRUM WITH NO A PRIORI INFORMATION.

d2

E
α 2α 4α 5α 8α 9α 10α 13α 18α

M16a 0 0 0 0.5 0.12 0 0.12 0.25 0
M16r 0 0 0.12 0.25 0.25 0 0.25 0.12 0

TABLE IV

DISTANCE SPECTRUM WITH IDEAL A PRIORI INFORMATION.

For 32-QAM, the BSA finds two new mappings, shown
in Fig. 5. Similar to the mappings M16a and M16r for 16-
QAM, the mapping M32a is optimal for AWGN channels at
high SNR, M32r is optimal for Rayleigh channel or AWGN
channel at low SNR.



10011

011100101111010

01000 01101 00111

110001001010111

10001 10100

0100111110

I

00100

00101

00001 10110

101011100100010

10000 11100 11111

00000

0101000011

01111

11101

11011 01100

00110

Q
00001

100001001110100

11101 00010 10101

110101011000101

01110 01101

1110010010

I

00110

11011

11110 11001

01011

00111

11111

00100

01000

01100

11000

01001

10001

00011

01010

01111

00000

10111

Q

a) M32a b) M32r

Fig. 5. Optimized mappings for ideal a priori information.

Fig. 6 depicts the transfer functions in the EXIT chart for an
AWGN channel of the mappings investigated in this section.
M16a and M32a are expected to have a better performance
at higher SNR than M16r and M32r, but for the considered
SNR, their performance is similar.
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Fig. 6. Transfer functions of new mappings in the EXIT chart.

The BER performance of the investigated 16-QAM map-
pings is shown in Fig. 7 after 1 and 10 iterations, where the
convolutional code is a 4-state, rate-1/2 code, the channel is
an AWGN channel, and the interleaver length is 10000 bits.
The analytic error bounds with ideal a priori information are
computed as described in [2], [8] using the Gauss-Chebyshev
method. The two optimized mappings M16a and M16r clearly
outperform the other mappings once the a priori feedback
information has a certain reliability. Since the new map-
pings are only optimized for ideal a priori information, other
mappings can converge at lower SNR. The MSEW mapping
is outperformed in the whole SNR range by the optimized
mappings. Even though the M16r mapping is optimized for
the fading channel, its performance is similar to the M16a

mapping in the considered SNR range. All those relations are
similar for a fading channel.

VI. CONCLUSIONS

In this paper we have proposed a new method with low
complexity which finds optimized mappings for BICM-ID.
The method is based on a binary switching algorithm. New
16-QAM and 32-QAM mappings are given that outperform
previously proposed ones at high SNR. The proposed method
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Fig. 7. BER of BICM-ID with 16-QAM mappings, AWGN channel, R=1/2,
4-state convolutional code (2-bit/channel use).

can be applied to any arbitrary signal constellation. Simulation
results show that mappings optimized for fading channels are
also well suited for AWGN channels.
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