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The ambiguity involved in reconstructing an image from limited Fourier

data is removed using a new technique that incorporates prior knowledge

of the location of regions containing small-scale features of interest. The

“prior discrete Fourier transform” (PDFT) method for image reconstruc-

tion incorporates prior knowledge of the support, and perhaps general

shape, of the object function being reconstructed through the use of a

weight function. The new approach extends the PDFT by allowing different

weight functions to modulate the different spatial frequency components

of the reconstructed image. The effectiveness of the new method is tested

on one- and two-dimensional simulations. c© 2009 Optical Society of America

OCIS codes: 100.3010, 100.3020, 100.3190, 100.6640.

1. Introduction

Many image reconstruction techniques have been remarkably successful in applica-

tions such as medical imaging, remote sensing, nondestructive testing, and radar. Here

our focus is on a general problem that arises in many such applications, the reconstruc-

tion of a compactly-supported function from a limited number of its Fourier-transform

values. Because the data is limited, there are an infinite number of solutions consistent

with the data [1, 2], and it is typically challenging to choose a good image estimate.

Among all data-consistent estimates, the well-known minimum-norm (MN) estima-

tion takes the one which has the smallest energy. A special case of the MN estimation,
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referred to as the discrete Fourier transform (DFT), can be easily and efficiently im-

plemented with a finite-length data vector of uniformly-sampled Fourier transform

values by the fast Fourier transform (FFT), but usually fails to achieve an acceptable

resolution for fine-structured object. As is properly understood, the degree of freedom

from finitely sampled Fourier data limits the DFT resolution [2, 3]. High-resolution

methods, such as Gerchberg-Papoulis band-limited extrapolation [4, 5] and Burg’s

maximum-entropy spectral-estimation [6–8], can present a superiority of resolving

the details of fine-structured object to the DFT, through the incorporation of some

known aspect (priori) about the object to be reconstructed. Of particular interest in

this paper is the model based on the minimum weighted norm (MWN) estimation. In

particular, to combat a more challenging problem of imaging small-scaled portions in

a compactly-support function, we present a promising image reconstruction method.

It is often the goal to image accurately some small and finer portion of the object.

This critical issue is much harder, especially when the small-scale portions involve only

a small amount of the total energy from the object. Our topic here is the reconstruc-

tion of such small-scale features of a compactly-supported function, from values of its

Fourier transform. We develop a new imaging technique in which the reconstructed

image is a weighted sum of windowed complex exponential functions. The resolution

enhancement comes from the incorporation of prior knowledge of the domain of the

object, as well as the locations of the small-scale features of interest. The coefficients

in the sum are determined by imposing the condition that the reconstructed image
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be consistent with the measured data. We use uniform-amplitude windows, although

smooth-shaped windows may lead to smoother reconstructions. Our proposed algo-

rithm is closely related to the prior discrete Fourier transform (PDFT) reconstruction

method [9–16]. The effectiveness of our method is illustrated in several examples.

2. Mathematical Background

Let f(x) be a complex-valued function supported on the interval [−π, π] of the real

line. Let the data be the Fourier-transform values

F (kn) =

∫ π

−π

f(x) exp(−jxkn)dx , (1)

for n = 1, 2, . . . , N . Our reconstruction will take the form of a linear estimator of

f(x),

f̂(x) =
N∑

n=1

anbn(x) , (2)

where the bn(x) are known functions and the an are determined by the data-

consistency conditions. For example, if kn = 2πn/N , and bn(x) = exp(jxkn), then

Eqn. (2) becomes

f̂(x) =
1

2π

N∑
n=1

F (kn) exp(jxkn) , (3)

which is the minimum-norm reconstruction, also called the DFT reconstruction. The

DFT method is easily implemented using the Fast Fourier Transform (FFT).
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Suppose that the true object function f(x) takes the value zero for |x| > ν, for

some ν in the interval (0, π). Except when N is large, the DFT usually provides a

poor reconstruction, since it does not incorporate the knowledge that the support of

f(x) is limited to the interval [−ν, ν].

To incorporate prior knowledge of the support of f(x), we select a non-negative

function w(x) supported on a set Ω containing the interval [−ν, ν], and find the

function of the form

f̂PDFT(x) = w(x)
N∑

n=1

an exp(jxkn) ; (4)

this is the “prior discrete Fourier transform” (PDFT) reconstruction.

To satisfy the data-consistency requirements, we must have

F (km) =
N∑

n=1

anW (km − kn) , (5)

for m = 1, 2, . . . , N , where W (k) is the Fourier transform of the function w(x). A

typical choice for w(x) is the function w(x) = χΩ(x) that takes the value one for x in

Ω, and zero outside Ω. The closer the set Ω is to the interval [−ν, ν], the better the

reconstruction, although care must be taken to regularize in the case of noisy data.

With w(x) = χΩ(x), let PΩ be the matrix with entries Pm,n = W (km−kn). Then PΩ

is a positive-definite Hermitian matrix with positive eigenvalues λ1 > λ2 > · · · > λN

and associated norm-one eigenvectors u1, u2, . . . , uN . The PDFT reconstruction of
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f(x) in Eqn. (4) can then be written

f̂PDFT(x) = χΩ(x)
N∑

n=1

λ−1
n (u†

nF )Un(x) , (6)

where F is the column vector with entries F (kn),

Un(x) =
M∑

m=1

(un)m exp(jxkm) , (7)

and (un)m is the m-th entry of the vector un. Because the eigenvectors of PΩ are

orthogonal, it follows that

∫
Ω

Un(x)Um(x)dx = λnu
†
mun = 0 (8)

for m �= n, and

∫
Ω

|Un(x)|2dx = λn . (9)

From these equations we learn that the Un(x), which we call here the “eigenfunc-

tions” , are mutually orthogonal functions within the set Ω, and as n increases, the

functions Un(x) become less concentrated within Ω and possess more zeros at values

of x within Ω. This means that, for the higher values of n, the functions Un(x) oscillate

more rapidly within Ω. Because the PDFT reconstruction also employs the weights

λ−1
n , the functions Un(x) with the most oscillation within Ω are the ones that are
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most prominent in the reconstruction, thereby increasing the resolution (see Shieh et

al.). When the amount of data is large, forming the matrix PΩ can be prohibitively

expensive. In such cases, the use of the matrix PΩ can be avoided and the PDFT

reconstruction can be calculated using an iterative weighted algebraic reconstruction

technique (see Shieh et al.).

Even with accurate prior information about the true object support, the PDFT may

not reconstruct small-scale features with the necessary accuracy. To achieve improved

resolution of such small-scale features, we modify the PDFT reconstruction and select

an estimate of f(x) having the form

f̂(x) =
N∑

n=1

anwn(x) exp(jxkn) , (10)

where the wn(x) are selected non-negative window functions. Data consistency is

achieved when the an satisfy the equations

F (km) =
N∑

n=1

anWn(km − kn) , (11)

where Wn(k) is the Fourier transform of wn(x).

3. Selection of windows

Suppose that the support of f(x), which we take to equal Ω, can be divided into two

disjoint regions, a larger one, denoted L, in which there are no small-scale features,
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and a smaller one, denoted S, containing small-scale features of interest to us. Suppose

also that the set {kn} of “spatial frequencies” can be divided into two sets, LF and

HF , with LF = {kn|n = 1, ..., K} consisting of lower values of kn and HF = {kn|n =

K + 1, ..., N} consisting of higher values.

Our PDFT reconstructed image is

f̂PDFT(x) = χL(x)
N∑

n=1

an exp(jxkn) + χS(x)
N∑

n=1

an exp(jxkn), (12)

using

χΩ(x) = χL(x) + χS(x).

If we can safely assume that within the set L the function f(x) involves no high

spatial frequencies, and within the set S no low spatial frequencies, then it makes

sense to modify Eqn. (12) and write

f̂(x) = χL(x)
∑

n|kn∈LF

an exp(jxkn) + χS(x)
∑

n|kn∈HF

an exp(jxkn). (13)

Suppose, just for the sake of getting some feeling for what is going on here, we make

the simplifying assumption that

∫
L

exp(jxkn) exp(−jxkm)dx =

∫
S

exp(jxkm) exp(−jxkn)dx = 0, (14)
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whenever kn ∈ LF and km ∈ HF . Then the matrix involved in the system of equations

to be solved is block-diagonal, with PL in the northwest block and PS in the southeast

block. As a result, the reconstruction given by Eqn. (13) will be a sum of the Un(x)

for the matrix PL, for x in L, and the Un(x) for the matrix PS, for x in S. Since

χS(x) has the small set S for its support, the eigenfunctions Un(x) associated with

PS oscillate rapidly within the set S, allowing the reconstruction to reveal small-scale

detail within that region.

The reconstruction in Eqn. (10) simply extends this idea, allowing each spatial

frequency to have its own region, although, in practice, there will usually be only

two distinct windows, as in our illustration. For the purpose of explanation, one- and

two-dimensional examples are demonstrated in the following two sections.

4. Some one-dimensional simulations

For the one-dimensional simulations, let’s assume that 31 low-pass Fourier transform

values of frequencies, {−15, . . . , 0, . . . , 15}, are used in the image reconstruction. A

typical case is that the object is characterized as a small and finer part embedded in

a large smooth background, as shown in Fig. 1 and Fig. 2. To obtain a good image by

our proposed method, window functions wn can be chosen as either χS for confining

complex exponentials of frequencies {kn | kth ≥ |kn|, for n = 1, 2, . . . , 31}, or χL for

complex exponentials of other frequencies {kn | kth < |kn|, for n = 1, 2, . . . , 31}. In

principle, χΩ (χS +χL) must agree with the object’s true domain accurately, and this

9



true domain can be typically acquired for some applications, such as medical imaging

and nuclear power plant nondestructive flaw testing. As shown in Fig. 2(c), if assigning

χL (2(a)) for complex exponentials of frequencies {−11, . . . , 0, . . . , 11} (kth = 11) and

χS (2(b)) for otherwise, our proposed technique can obtain a good-quality image,

clearly superior to the DFT estimate in Fig. 1(a) and the PDFT estimate in Fig. 1(c)

with a tight prior (χΩ) in Fig. 1(b).

In our proposed method, the support domain of χS is critical to the final image

estimate. In essence, χS having a more accurate support to the small portion’s domain

can typically lead to a higher-quality image reconstruction, but χS must cover the

small portion’s domain for an acceptable image at least. With the same object and

sampled Fourier data used in Fig. 1 and Fig. 2, the examples of poorly-using and

misusing χS are shown in Fig. 3, Fig. 4, Fig. 5, and Fig. 6.

For more realistic situation in applications, there can be typically several discrete

small portions within the object. In Fig. 7 and Fig. 8, for the purpose of demonstra-

tion, two discrete finer portions with different profiles are inset in the object. The

choice of χS can be suitably discretely-distributed windows wherein each window ac-

commodates a finer part individually. For the estimate in Fig. 8(c), with χL in Fig.

8(a), χS in Fig. 8(b), and kth = 9, our proposed method essentially presents its supe-

riority over the DFT estimate in Fig. 7(a) and the PDFT estimate in Fig. 7(c). While

a simple example having only two discrete small portions is demonstrated here, this

strategic choice of window functions can be easily extended for the case with more
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discrete finer portions.

The determination of an appropriate value of kth is somewhat challenging for our

proposed method. In principle, taking an improper value of kth forces some/all win-

dowed exponentials to reconstruct the image over unappropriate regions, and con-

sequently boost up the energy of the resulting estimate mistakenly. Accordingly, for

quantitative purpose, the Frobenius norm (Hilbert-Schmidt norm) of the final esti-

mate by our proposed method can be used as a measure of appropriateness. For the

example in Fig. 2, the chart of the image estimate’s norm with respect to kth is shown

in Fig. 9, in which the values of kth between 8 and 13 physically correspond to a

more or less minimum norm and obtain good-quality images (10 is the best for this

example). Additionally, for the example in Fig. 8, the chart of the image estimate’s

norm with respect to kth is shown in Fig. 10, and the values between 6 and 11 are

acceptable (7 is the best).

5. Some two-dimensional simulations

The extension of our proposed technique to the two-dimensional problem is straight-

forward. Let the two-dimensional object function f(x, y) be compactly supported in

|x| ≤ π and |y| ≤ π, and have its sampled Fourier transform values given by

F (αm, βn) =

∫ π

−π

∫ π

−π

f(x, y) exp(−jxαm − jyβn)dxdy , (15)
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for m = 1, 2, . . . , M and n = 1, 2, . . . , N . The two-dimensional algorithm is formulated

as

f̂(x, y) =
M∑

m=1

N∑
n=1

am,nwm,n(x, y) exp(jxαm + jyβn) , (16)

and the weights am,n for n = 1, 2, . . . , N can be determined by

F (αp, βq) =
M∑

m=1

N∑
n=1

am,nWm,n(αp − αm, βq − βn) , (17)

for p = 1, 2, . . . , M and q = 1, 2, . . . , N . Wm,n is the Fourier transform of wm,n.

To test the above two-dimensional modality, we applied it to Fourier transform

data of frequencies located in a 31 × 31 square regular grid. The window functions

wm,n(x, y), for m = 1, 2, . . . , M and n = 1, 2, . . . , N , are chosen in the following

manner,

wm,n(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

χL , for
√

α2
m + β2

n ≤ kth

χS , otherwise

where the two-dimensional uniform-amplitude window χD takes the value one for

(x, y) in D, and zero outside D.

For the two-dimensional simulations, the object to be reconstructed is shown in

Fig. 11(a), and the DFT estimate in Fig. 11(b) gives a poor resolution. With a tight

prior window in Fig. 11(c), the PDFT estimate in Fig. 11(d) does not improve the

image quality much, especially for small circular spots. If taking a window function

χL in Fig. 12(a) for complex exponentials of frequencies {(αm, βn) | √α2
m + β2

n ≤
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13 , for m = 1, 2, . . . , M and n = 1, 2, . . . , N} and a window χs in Fig. 12(b) for oth-

erwise, the estimate by our proposed method in Fig. 12(c) improves a better resolution

indeed, as compare to the DFT and PDFT estimates.

6. Conclusions

We have presented a new approach to resolving small-scale features within a portion of

a compactly-supported function from limited Fourier-transform values. In the simplest

case, we divide the exponential basis functions into two groups, according to the

values of their spatial frequencies, and multiply those in each group by the window

function corresponding either to the region of containing no small-scale features, or

the region containing such features. Comparisons are made with the DFT and PDFT

reconstructions, using simulated data and the Frobenius norm measure. While the new

method shows promise, it remains to test it on noisy data and to develop suitable

regularization methods.
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List of Figure Captions

Fig. 1. An example of reconstructing a one-dimensional object function (solid line)

by the DFT and PDFT, (a) the DFT estimate (dotted line), (b) the prior function

(dashed line), and (c) the PDFT estimate (dotted line) with the prior in (b).

Fig. 2. An example of reconstructing a one-dimensional object function (solid line)

by our proposed method, (a) the window function χL (dashed line), (b) the window

function χS (dashed line), and (c) the estimate by our proposed method (dotted line)

with χL in (a) for complex exponentials of frequencies {−10, . . . , 0, . . . , 10} and χS in

(b) for otherwise.

Fig. 3. An example of reconstructing a one-dimensional object function (solid line)

using a properly-located but poorly-sized window (too wide) as χS in our proposed

method, (a) the window function χL (dashed line), (b) the window function χS

(dashed line), and (c) the best estimate (dotted line) with window functions χL in

(a) and χS in (b).

Fig. 4. An example of reconstructing a one-dimensional object function (solid line)

using a properly-located but improperly-sized window (too narrow) as χS in our

proposed method, (a) the window function χL (dashed line), (b) the window function

χS (dashed line), and (c) the best estimate (dotted line) with window functions χL

in (a) and χS in (b).

Fig. 5. An example of reconstructing a one-dimensional object function (solid line)

16



using a properly-sized but improperly-located window as χS (χS cannot cover the

small portion of interest completely) in our proposed method, (a) the window function

χL (dashed line), (b) the window function χS (dashed line), and (c) the best estimate

(dotted line) with window functions χL in (a) and χS in (b).

Fig. 6. An example of reconstructing a one-dimensional object function (solid line)

using a properly-sized but improperly-located window as χS (χS does not cover the

small portion of interest at all) in our proposed method, (a) the window function χL

(dashed line), (b) the window function χS (dashed line), and (c) the best estimate

(dotted line) with window functions χL in (a) and χS in (b).

Fig. 7. An example of reconstructing a one-dimensional object function (solid line)

by the DFT and PDFT, (a) the DFT estimate (dotted line), (b) the prior function

(dashed line), and (c) the PDFT estimate (dotted line) with the prior in (b).

Fig. 8. An example of reconstructing a one-dimensional object function (solid line)

by our proposed method, (a) the window function χL (dashed line), (b) the window

function χS (dashed line), and (c) the estimate by our proposed method (dotted line)

with χL in (a) for complex exponentials of frequencies {−7, . . . , 0, . . . , 7} and χS in

(b) for otherwise.

Fig. 9. The norms of the image estimate by our proposed method with respect to kth

for the example in Fig. 2.

Fig. 10. The norms of the image estimate by our proposed method with respect to

kth for the example in Fig. 8.
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Fig. 11. An example of reconstructing a two-dimensional object function by the DFT

and PDFT, (a) the object, (b) the DFT estimate , (c) the prior function, and (c) the

PDFT estimate with the prior in (c).

Fig. 12. An example of reconstructing a two-dimensional object function by our pro-

posed method, (a) the window function χL, (b) the window function χS, and (c) the

estimate by our proposed method with χL in (a) for complex exponentials of frequen-

cies {(αm, βn) | √α2
m + β2

n ≤ 13 , for m = 1, 2, . . . , M and n = 1, 2, . . . , N} and χs in

(b) for otherwise.
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