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In computational structure-based drug design, the scoring functions are the cornerstones to
the success of design/discovery. Many approaches have been explored to improve their reliability
and accuracy, leading to three families of scoring functions: force-field-based, knowledge-based,
and empirical. The last family is the most widely used in association with docking algorithms
because of its speed, even though such empirical scoring functions produce far too many false
positives to be fully reliable. In this work, we describe a World Wide Web accessible database
that gathers the structural information from known complexes of the PDB with experimental
binding data. This database, the Ligand-Protein DataBase (LPDB), is designed to allow the
selection of complexes based on various properties of receptors and ligands for the design and
parametrization of new scoring functions or to assess and improve existing ones. Moreover,
for each complex, a continuum of ligand positions ranging from the crystallographic position
to points on the surface of the protein receptor allows an assessment of the energetic behavior
of particular scoring functions.

Introduction

The search for new drugs entails the use of a broad
range of computational techniques. They are involved
in the generation of new databases of compounds1,2 and
in their refinement.3,4 They are also useful for the
selection of the new lead molecules performed by
quantitative comparisons of the ligands or by structure-
based drug design when the three-dimensional structure
is available.5 For structure-based drug design, many
docking/scoring programs exist either to screen very
large databases or to optimize lead molecules. If it is
assumed that most of these programs perform very well
in searching the conformational space in the binding site
(the docking part),6,7 the scoring functions still need
improvements to enhance the reliability of discriminat-
ing correctly docked from misdocked conformations.8
Many approaches have been used to improve the ac-
curacy of scoring functions, leading to three families of
functions: knowledge-based, force field-based, and em-
pirical. The knowledge-based scoring functions use
statistical analysis of three-dimensional complex struc-
tures to derive a sum of potentials of mean force
between receptor and ligand atoms.9-12 Force-field-
based scoring functions use the classical molecular
mechanics force fields, based on physical interactions,
to compute the interaction energies (van der Waals and
electrostatic) between the receptor and the ligand atoms.
Often, they also add empirical terms to take into account
the entropy and solvation changes.13-16 The empirical
scoring functions are based on the assumption that the
binding free energy can be broken down into different

countable contributions such as the number of hydrogen
bonds, ionic interactions, apolar contacts, and entropy
penalties for fixing rotatable bonds in docking the ligand
onto the receptor. Moreover, they suppose that these
terms are additive.17-24

Empirical scoring functions are the most widely
utilized in current drug design/discovery software.
However, because of their general lack of reliability,
often a combination of scoring functions is used and a
“consensus” is sought.25 The difficult part of empirical
scoring function design is the need to determine ap-
propriate weights for each term. These weights are often
calculated using multivariable regression methods to fit
a training set of receptor-ligand complexes, requiring
both high-resolution three-dimensional structures and
experimentally known binding constants. Obviously, the
larger and less correlated the training set, the better
will be the potential for the parameters to yield cor-
relation between energy and accuracy over a broad scope
of possible ligands.26

The need of such a training set provides the motiva-
tion for our efforts to create a World Wide Web acces-
sible database, the Ligand-Protein DataBase (LPDB),
which gathers (at present) 195 complexes corresponding
to 51 different receptors with both high-resolution
structure and known experimental binding affinity.
Each complex has been characterized by a set of one-
dimensional descriptors, describing the individual fea-
tures of the protein, the ligands, and the interaction
interface. The selected descriptors, extracted from those
used in existing empirical scoring functions, allow an
accurate description of the complexes and thus an easy
selection of targeted subsets that can be used to tune
scoring functions. Principal component analysis (PCA)
has been performed to understand the possible relation-
ships between the distributions of complexes and to
identify outliers and data clusters.26 The correlation
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between the selected descriptors and the binding con-
stant is also investigated using partial least squares
(PLS).26 Both linear statistical studies were performed
with the default options available in the SIMCA-P8.0
software.26 Moreover, the LPDB not only provides a
large training set of complexes to improve the param-
etrization of empirical scoring functions but is also
designed to assess the energy landscape of a particular
scoring function by providing a continuum of ligand
positions from the binding site to the receptor surface
for each complex. With these sets of “decoys”, we plan
to assess many of the existing scoring/energy functions
for their ability to discriminate docked from misdocked
conformations. To date, several popular scoring func-
tions such as AutoDOCK3,22 DOCK4,16 and FlexX1.923

have been tested. The results will be reported in a future
paper.27

In this paper, we describe the overall structure and
layout of the LPDB. The first section deals with the
selection of the complexes, their characterization and
parametrization for force field, as well as empirical
energy functions. Next, we focus on the selected descrip-
tors used to annotate the complexes and their statistical
analysis. We then illustrate the processes used to
generate the continuum of “decoy” positions. Finally, we
illustrate possible queries that demonstrate the struc-
ture of the user interface.

Materials and Methods
Complex Selection. All of the selected complexes are

extracted from the Protein DataBank (PDB).28 The first step
of the selection process was to analyze the training sets of the
already well-known empirical scoring functions.17-22 These
training sets are summarized in Table 1. After removing all
redundancies and complexes for which structural data was
unavailable, we were left with 153 complexes.

We then mined the PDB to find new complexes, based on
keywords such as “COMPLEX WITH”, which yielded ap-
proximately 1000 potential complexes. For each hit, we
examined the primary citation to assess whether the experi-
mental binding constant was available. Unfortunately, defin-

ing automatic approaches to locate binding constant values is
not possible since, most of the time, the value is not in the
primary citation and the reference paper for the binding
constant is too old to be available online. Therefore, this part
was very time-consuming and has currently been done for only
a small number of the selected complexes. Much still remains
to be done; however, at the present time, the Ligand-Protein
DataBase consists of 195 complexes divided among 51 different
receptors (21 protein classes) and 178 different ligands. As in
all of the previous training sets, we avoid covalently bonded
complexes.

Parametrization. Our preparation of the suitable com-
plexes for parametrization involved the following steps. For
each complex, all of the water molecules were removed and,
after a visual inspection, only the cofactors (heme, NADP,
NAD, FAD) and structural or catalytic ions (Zn, Mg, Mn, Fe)
were kept as a part of the receptor. When there were multiple
positions for the ligand, only one was chosen. For multi-subunit
structures, we only kept one ligand position.

In the first step of parametrization, we categorized the
chemical environment of the ligand atoms using the atom-
typing module of the commercial modeling program INSIGHT
II, and then all the hydrogen atoms were added.29 The partial
charges were setup using the CHARMm force field30 together
with the typing and charging engine in INSIGHT II. The rest
of the complex (receptor, cofactors, ions) was parametrized in
the same force field, but using the academic version of
CHARMM.31 We then proceeded to identify whether suitable
parameters exist for the force field of interest. Finally, we
“regularized” the atomic positions using force-field-based
minimization. The minimization consisted of 1000 steps of
conjugate gradient (tolgrad 0.5) with a harmonic restraint on
the protein backbone atoms. The restraint was incrementally
removed during the minimization. The average root-mean-
square deviation (RMSD), over all the complexes, between the
crystallographic and the minimized forms is 0.34 Å (maximum
at 0.66 Å for 1lgr). When we focus on the binding site, the
RMSD for the residues within 3.6 Å of the ligand is 0.35 Å
and the RMSD of the ligand itself is 0.37 Å. This underlines
that the minimization does not change the conformation of the
complex, the binding site and the ligand, but only allows for
minor readjustment of the atom positions.

Properties. Defining useful and reliable properties to
describe the complexes, receptors, and ligands is not a simple
task, as numerous descriptors are available. Nevertheless, we

Table 1. PDB Codes for the Training Sets of Six Popular Empirical Scoring Functions

scoring function

ChemScore17 Score118 Hammerhead35 Autodock322 Validate21 Score220

training set 82 45 34 30 51 82
PDB codes 1aaq, 1apt, 1apu,

1hbv 1hpv, 1htf,
1htg, 1hvi, 1hvj,
1hvk, 1hvl, 1hvr,
1lyb 1ppk, 4hvp,
5hvp, 7hvp, 1bra,
1etr, 1ets, 1ett,
1ppc, 1pph, 1tmt,
1tng, 1tnh, 1tni,
1tnj, 1tnk, 1tnl,
3ptb, tmt1, 1cbx,
1mnc, 1tlp, 1tmn,
2tmn, 3cpa, 3tmn,
4tln, 4tmn, 5tln,
5tmn, 6cpa, 6tmn,
7cpa, 8cpa, 1abe,
1abf, 1apb, 1bap,
1dog, 1mfe, 1nsc,
1nsd, 2gbp, 2xis,
5abp, 5cna, 6abp,
7abp, 8abp, 9abp,
1adb, 1dih, 1ebg,
1hsl, 1mbi, 1pgp,
1phf, 1phg, 1rbp,
2cgr, 2cpp, 2ifb,
2tsc, 2ypi, 4dfr,
5cpp, 7dfr, dfr4,
tsc2

3ptb, 1dwb, 4cha,
4tmn, 5tmn, 1tlp,
1tmn, 4tln, 1rne,
2er6, 4er2, 4er4,
9hvp, 4phv, 4hvp,
4dfr, 2tsc, 1stp,
1rbp, 2ifb, 2gbp,
1fkf, 2r04, 2phh,
4cna, 1mbi, 4hmg,
2ypi, 3cpa, 6cpa,
2xis, 1ulb +
13 unavailable
complexes

7cpa, 1stp, 6cpa,
4tmn, 4dfr, 4phv,
1dwd, 5tmn, 2gbp,
1tlp, 1etr, 1tmn,
1rbp, 1ppc, 5tln,
1pph, 4dfr, 1ett,
1phf, 5cpp, 1xis,
2ifb, 1ulb, 2ypi,
3ptb, 2phh, 2tmn,
3ptb(2), 1dwd, 4tln,
3ptb(3), 4cha, 1dwb,
3ptb(4)

4cna, 3cpa, 6cpa,
2cpp, 4dfr, 1dwb,
zer6, 1etr, 1ets,
1ett, 1fkf, 2gbp,
4hmg, 1hvj, 4hvp,
5hvp, 1hvr, 2ifb,
1mbi, 2mcp, 3ptb,
1rbp, 4tln, 1tlp,
1tmn, 4tmn, 5tmn,
1ulb, 2xis, 2ypi

4hvp, 7hvp, 5hvp,
9hvp, 1aaq, 4phv,
1tlp, 1tmn, 2tmn,
3tmn, 4tln, 4tmn,
5tmn, 6tmn, 7tln,
1eed, 2er0, 2er6,
2er7, 2er9, 3er3,
4er1, 4er4, 5er2,
1abe, 1abf, 1abp,
1bap, 9abp, 7abp,
8abp, 1tpa, 2ptc,
1sbn, 2sni, 3sic,
5sic, +
14 unavailable
complexes

1add, 1bzm, 1cbx,
1cps, 1ctt, 1ela,
1elc, 1fkf 1hpv,
1hvr 1l82, 1l83,
1l86, 1l87, 1ldm,
1mbi, 1phe, 1phf,
1phg, 1ppc, 1pph,
1pso, 1rbp, 1rne,
1sbp, 1sre, 1stp,
1tlp, 1tmn, 1tnk,
2cpp, 2ctc, 2er6,
2gbp, 2gpb, 2ifb,
2tmn, 2tsc, 2tsc(2),
2xis, 2ypi, 3cpa,
3dfr, 3ptb, 3ptb(2),
3ptb(3), 3ptb(4),
3tpi, 4cha, 4cha(2),
4cha(3), 4cna, 4dfr,
4dfr(2), 4er2, 4er4,
4gr1, 4hvp, 4phv,
4tln, 4tmn, 4tsi,
5cpp, 5tim, 5tln,
5tmn, 5tmn(2),
6acn, 6cpa, 6rsa,
7cpa, 7cpp, 9aat,
1dwb + 7
unavailable
complexes

standard error
(kcal mol-1)

2.07 1.32 1.37 2.18 1.55 1.74
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isolated common features between many of the popular scoring
functions that can lead to both binding constant prediction and
specific subset selection.

Complex Features. For the selection of protein-ligand
complexes, the resolution of the experimental structure is an
important parameter since it reflects the precision of the
crystallographic data. Often in training scoring and docking
functions, high-resolution structures are used for training and
lower-resolution structural data is utilized for validation.21,32

The interaction surface area between the ligand and the
receptor reflects the extent of ligand burial in the receptor. In
addition to its use for complex selection, the interaction or
buried surface can be part of the scoring function as a measure
of desolvation.10 As with the interaction surface area, the
number of hydrogen and ionic bonds can be used in both
scoring schemes and as a criteria for the selection of complexes.
Finally, the experimental binding constant provides the link
between the three-dimensional structure and experimental
measurement.

Protein Features. The number of residues and the number
of subunits usually characterize the proteins. However, most
interesting is to select the proteins with respect to their class,
as proteins gathered in a same class share many common
features in reactivity and receptor topology. We defined the
class based on the EC (Enzyme Commission) number or the
name if the protein is not an enzyme. This kind of selection
provides another useful means to specifically design/param-
etrize/assess a scoring function. We also focus on the binding
site, defined as the residues that lie around 3.6 Å of the ligand
crystallographic position. The formal charge and the number
of residues were included as well.

Ligand Features. As for the protein moiety, the LPDB
needs descriptors that give an accurate description of the
ligand properties. Many descriptors exist to assess the ligand
properties; we choose only simple descriptors that have been
used in empirical scoring functions.33,34 The number of rotat-
able bonds, as well as the number of rings, gives one an insight
into the flexibility of the ligand. These properties are often
used to assess the loss of conformational entropy due to
binding, as in ChemScore,17 FlexX1.9,23 AutoDOCK3,22 and
Hammerhead.35

The number of donors and acceptors is clearly related to
the possibility for the ligand to make hydrogen bonds and ionic
interactions with the receptor. We have defined the H-bond
donors as the sum of the polar hydrogen atoms on oxygen and
nitrogen and the number of acceptors as the nitrogen and
oxygen atoms, based on the CHARMm atom types.

The molecular weight of the ligand is well correlated with
its size. The logarithm of the molecular weight is used in the
Hammerhead scoring function as an approximation for the loss
of rotational and translational entropy.19

In addition to the use of the previous structural descriptors,
we have computed two widely used descriptors for global
molecular properties: the calculated logP (ClogP), which is
closely correlated with the hydrophobicity of the ligand, and
the calculated molar refractivity (CMR), which is related to
the binding force between polar portions of the receptor and
its ligand. We have chosen Leo’s method available from the
Daylight package (version 3.05) for the calculation of these
properties.36

The charge is a difficult parameter to handle, as most of
the time the protonation states of the ligand and the residues
in the binding site are not available. We have made the
assumption that both the protein and the ligand have a
protonation state corresponding to their free form at pH 7.
However, an important feature of any scoring function is its
flexibility, which means its ability to handle the lack of
information and even misinformation.

Overall, we have tabulated 16 descriptors, divided into three
classes, to annotate aspects of the complexes contained in the
LPDB: (i) the resolution, the interaction surface area, and the
number of ionic and hydrogen bonds to describe the complex;
(ii) the number of basic and acidic residues, the total number
of residues, and the formal charge for the protein; and (iii)

the number of donors, acceptors, rotatable bonds, rings, and
atoms, the molecular weight, ClogP, CMR, and the formal
charge for the ligand.

Statistical Analysis. To evaluate the relevance of all the
chosen descriptors on our data set of 195 complexes, a principal
component analysis (PCA) has been performed. This method
extracts a small set of orthogonal factors describing the data
distribution. It helps to identify correlation between the
descriptors and outliers in the data set. Then the projection
on latent structures (PLS) methodsa multidimensional linear
regression techniqueswas used to see how the chosen descrip-
tors are correlated with the binding constant.

All these descriptors serve our attempt to build a database
that can handle very diverse subset selections that can lead
to specific scoring function optimization or assessment. How-
ever, for an assessment of the energy landscape of such scoring
functions, we need to consider not only the “native” ligand-
protein complex, but also alternative “decoy” positions of the
ligand.

Generation of a Continuum of “Decoy” Positions. For
each complex in the LPDB, our goal is to provide a continuum
of “decoy” positions that allow assessment of the energetic
behavior of a particular scoring function from the binding site
to the surface of the receptor (see Figure 1). For many docking
programs such as DOCK4 and FlexX1.9, the docking/search
process is carried out within a limited volume around a
putative receptor site defined by the user. Thus, an assessment
of the energy function in the vicinity of the binding site is
sufficient. However, the development of genome-scale modeling
efforts will provide more and more targets for structure-based
drug design with unknown binding site positions. For this
application, characterization of putative sites not in the vicinity
of identified or known binding pockets is also important. There
are already programs, including DOCK4, FlexX1.9, and Auto-
DOCK3, which can look for the binding sites before docking.
In this case, it is useful to generate ligand positions at the
surface of the receptor to assess the ability of the program to
find the binding site location. As in all the actual docking
programs, the protein is fixed for all the calculations.

Distributed Surface Decoys. Starting from the minimized
complex structure, we constructed a set of surface distributed

Figure 1. Flowchart describing the generation of a continuum
of ligand positions.
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decoys by the following procedure. We translated the ligand
to points on a spherical shell around the protein. The inner
and outer radii of this shell depend of the size of the protein.
The outer radius of the shell was defined to be the extreme
distance between the geometric center of the protein and the
protein surface plus 5 Å. We used the smallest distance as
the minimum radius. The grid comprised 10 radial shells
between these values with an angular resolution of π/10,
resulting of 1820 points. We removed the points overlapping
with the protein. For each remaining grid point, at least three
global random rotations were performed to orient the ligand
if the ligand had no rotatable bonds. Alternatively, we defined
the number of global rotations based on the number of
rotatable bonds with a maximum of 15. At the same time, the
rotatable bonds adopted random values of -60°, 60°, or 180°.
If the closest atom of the ligand was between 1 and 4 Å from
the protein, we kept the position and minimized the conforma-
tion using the steepest descent method to find a nearby
minimum (2000 steps, tolgrad 0.05). We tested the interaction
energy of the new position, and if the energy was negative,
we performed a second minimization using conjugate gradients
(2000 steps, tolgrad 0.1). Finally, we calculated the RMSD of
the final position. The average number of resulting ligand
positions was 278.5 per complex.

Decoys in the Neighborhood of the Binding Site.
Starting from the position of the ligand in the binding site of
the minimized structure, we used the REPLICA (multiple
copy) method in CHARMM together with molecular dynamics
to explore the pathway for release of the ligand. Using this
approach, our intent was not to explore all possible positions
in the binding site neighborhood, as done in most docking
algorithms. Instead we enabled guiding restraints to move the
ligand from its original position to a position near the protein
surface. We used short molecular dynamics runs (from 200 to
2000 steps) with coupling to a Langevin heat bath (300 K) to
enable this sampling. Finally, we minimized the energy using
2000 steps of steepest descent (tolgrad 0.05) to obtain a new
final position. We record the positions and RMSD with respect
to the “native” complex.

Clustering of Misdocked and Near-Docked Decoys. We
used the clustering facility in CHARMM, which is based on a
nonhierarchical, K-means clustering algorithm,37 to identify
clusters representing 50 unique positions to be used to
evaluate scoring functions. To obtain the desired number of
positions, we varied the maximum radius of the clusters. For
the surface positions, the clustering was based on the geomet-
ric center of the ligand and its RMSD with respect to its
“native” position, as the RMSD by itself is not a sufficient
discriminator due to the large conformational space repre-
sented by the spherical grid. For the positions generated from
the binding site, we used only the RMSD, as the conforma-
tional space is much smaller. By merging these two sets of 50
positions, we obtained a continuum of ligand positions with
reasonable conformations and known RMSD values. These
conformations can be used to assess the energy landscape of
various scoring functions.

All of the calculations (dynamics and minimization) and the
extraction of the properties were performed automatically from
the crystallographic structures after their parametrization for
the CHARMm force field.30 We used the programming lan-
guage Python both as a scripting language for interacting with
CHARMM and to compute the descriptors.38

Results and Discussion

For each complex, the descriptor values and the set
of conformational decoys were integrated using the
relational database management system MySQL.39 As
for the generation of the data, we used the programming
language Python38 to handle the database and create a
CGI interface between the database and the World Wide
Web, allowing for dynamic management of the overall
structure. Calculations and database management are

performed on a Beowulf Linux cluster of eight dual
processors Pentium II 400 MHz PCs.

The Structure of the Queries to LPDB. There are
many ways to retrieve information from the LPDB. The
CGI interface allows a selection of the complexes based
on all of the previously described descriptors (see
Materials and Methods). The query interface is divided
into three parts.

(i) The first one deals with the properties of the
complex: the PDB code, the resolution, the interface
surface area, and the experimental value of the binding
constant. By selecting a resolution threshold of 2 Å, the
LPDB can be divided into two subsets. The first high-
resolution subset is composed of 101 complexes with a
resolution lower or equal to 2 Å and the other one of 94
complexes.

(ii) The second interface allows selections based on
the receptor properties, such as the name of the protein,
its class, the number of residues, and the protein’s
formal charge. As a test case, the selection of the
aspartic peptidases returns 53 complexes. However, if
you constrain the query to HIV-proteases, only 27
complexes are chosen.

(iii) The last interface deals with the ligand properties.
The entries for the query are the name of the ligand,
the number of heavy atoms, the number of rotatable
bonds, the number of donors and acceptors, the number
of rings, the molecular weight, the ClogP, the CMR, and
the charge. As an example of a query, we can ask how
many of the LPDB ligands match the Lipinski’s “rule
of five”.40 We have to select a maximum of 10 acceptors,
5 donors, a maximum molecular weight of 500, and
ClogP lower than 5.41 The LPDB extracts 105 complexes
with a ligand that matches these criteria.

If we use all the previous selection criteria, we
retrieve only one complex: the penicillopepsin complex
with a pepstatin analogue (1apu).

The Nature of Compiled Information in the
LPDB. For each complex, the LPDB provides a descrip-
tion of the complex, receptor, and ligand properties
based on the selected descriptors. It also provides the
ligand SMILE code, the identity of the binding site
residues (within 3.6 Å of the ligand), a 2D representa-
tion of the ligand, and the primary citation of the PDB
file.

Furthermore, the user can download the original PDB
file, the minimized PDB file, the CHARMm PSF file,
and the MMFF mrk file for the complex. The files
available for the receptor are the original PDB, the
minimized PDB, and the SYBYL mol2 formats.41 Fi-
nally, for the ligand, the LPDB gives the original PDB,
the minimized PDB, the CHARMm RTF, and the
SYBYL mol2 formats. From these formats, one can
easily generate the required files for use in docking
programs such as DOCK4, AutoDOCK3, FlexX1.9, and
also the molecular modeling programs CHARMM/
CHARMm and MMFF.

The 100 positions generated to assess the energetic
landscape of an energy function can also be downloaded.
Each position can be selected individually based on its
RMSD from the minimized protein-ligand complex
structure, or on its energy with respect to a particular
scoring function. The header of each PDB file contains
the RMSD associated with the position.
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Statistical Characterization of the LPDB. Even
though the current LPDB represents only a relatively
small set for statistical characterization (195 com-
plexes), we have explored the correlation between the
experimental binding affinity and 16 selected descrip-
tors using linear statistical methods. Table 2 provides
on overview of the distribution of each descriptor,
illustrating the diversity of our data set. The experi-
mental binding affinity for complexes in the LPDB
ranges between -2.03 kcal mol-1 (1tnk) and -19.03 kcal
mol-1 (7cpa). A total of 77% of the binding constants
fall in nano- and micromolar range, leading to scoring
functions more effective in this area. The LPDB contains
51 different proteins divided into 21 classes. The most
important classes are the aspartic proteases (28%), the
oxidoreductases (21%), the serine proteases (14%), then
the immunoglobulins, the metallo-proteins, the arabi-
nose-binding proteins, the lyases, and the histocompat-
ibility antigens (MHC) (∼4.5% each). It is obvious that
some families are much more present than others,
introducing some bias in the sampling. However, only
the availability of new complexes for the missing classes
will change the balance. The structural resolution of
LPDB complexes lies between 1.25 Å (2wea) and 3.16
Å (1dwb), but ∼50% of the complexes have a resolution
better than 2 Å, underlying the generally good quality
of the structures. The interaction surface areas range
from 240 Å2 (1mbi) to 1905 Å2 (1vaa), displaying a wide
range of buried surface area. We also computed the
number of residues within 3.6 Å from the ligand that
defined the binding site. This number ranges from 1
(2cpp) to 19 (1hhj, 1vac) with an average of 8.3 residues
per binding site. In the LPDB, 44% of the complexes
have less than 10 rotatable bonds. Nevertheless, com-
pounds from 0 (imidazole, thiazole) up to 54 rotatable
bonds (peptoid ligand in 3er5) are available. The mo-
lecular weights range from 69.08 g mol-1 (imidazole) to
1269.54 g mol-1 (3er5). The molecular weight of 57% of
the ligands is lower than 500 g mol-1. Of the ligands,
68% have fewer than five donors and 76% have less than
10 acceptors. Finally, the ClogP of 92% of the ligands
is less than 5. All the reference values correspond to
the “rule of 5” described by Lipinski et al.40 We also
looked at the number of rings, which falls between 0

and 7 (1hvr), with a maximum at 1 for 35% of the
complexes.

PCA. From a principal component analysis on the
descriptors in our data set, we find that the first
principal component explains R2 ) 44% of the variance.
It mainly takes into account descriptors linked to the
size of the ligand, e.g., molecular weight, number of
atoms, and rotatable bonds of the ligand, and also to
the size of the ligand/receptor interface (interaction
surface area and number of hydrogen and ionic bonds).
This result does not obviously mean that the larger the
ligand the better will be the affinity, since the data set
is biased toward aspartic proteases, which bind large
peptoid ligands with high affinity. The second compo-
nent, which explains 19% of the variance, is more
correlated to the size of the receptor and the lipophilicity
of the ligand (ClogP and formal charge). It is obvious
from the loading plot (Figure 2a) that some descriptors
are highly correlated. However, on the whole they
provide a global description of the data set, as displayed
in the score plot (Figure 2b). This figure shows that
there are no strong outliers in our data set. In this
figure, the complexes are gathered in 12 different
classes. The clusters mostly correspond to protein
classes. Actually, this score plot can be viewed as a local
map of the PDB complex space.

PLS. Using this multidimensional linear regression
method, we assess the correlation between our descrip-

Table 2. Descriptor Distributions for the Data Set Used in
the LPDB

properties
data set

(195 complexes)a

complex binding constant (kcal mol-1) -8.8 (3.5)
resolution (Å) 2.1 (0.4)
number of hydrogen and ionic bonds 9.3 (5.5)
interaction surface area (Å2) 849.4 (460.9)

receptor number of residues 323.1 (154.8)
number of acidic residues 40.2 (35.9)
number of basic residues 33.4 (21.6)
formal charge -4.8 (9.5)

ligand molecular weight (g mol-1) 412.7 (270.6)
number of atoms 28.9 (19.4)
number of rotatable bonds 14.9 (13.6)
number of donors 4.5 (3.6)
number of acceptors 8.4 (6.1)
formal charge -0.2 (1.0)
number of rings 2.1 (1.6)
ClogP 0.4 (3.8)
CMR 10.9 (7.4)

a Average (standard deviation).

Figure 2. (A) Loading plot of the principal component
projection of the 16 variables on the plane formed by the two
first principal components. Ionic + H-bonds, resolution, surf
refer to the complex properties; residues, basic, acid, charge
(prot) to the protein properties; and donors, acceptors, rotat-
able, rings, MW, ClogP, CMR, atoms to the ligand properties.
(B) Score plot of the principal component projection of the 195
complexes on the plane formed by the two first principal
components (PC1 and PC2). The complexes are organized by
the protein classes. The ellipse represents the projection of the
95% confidence region limit in the two-dimensional score plot.
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tors and the binding constant. The most important
descriptors extracted with the variable influence on
projection parameter (VIP) included in SIMCA-P are
listed in Table 3. As expected, the descriptors that are
linked to the interface between the ligand and the
receptor, the number of hydrogen and ionic bonds, and
the interaction surface area are the most correlated with
the binding constant. This result underlines that im-
portant descriptors are those related to the interaction
area, which play a crucial role in the enthalpic part of
the binding energy. Also of note, the molecular refrac-
tivity, the molecular weight, the number of donors, or
the number of rotatable bonds of the ligand are identi-
fied. These descriptors are often used to model the
entropic part of the energy. The molecular weight could
be correlated to the loss of translational and rotational
entropy, the rotatable bonds to the loss of conforma-
tional entropy. However, in this work our goal is not to
build a new scoring function but to validate our data
set. All the obtained results are consistent with the
previous approximations made in the classical empirical
scoring functions and support a global use of the LPDB
for the training and the assessment of scoring functions.
Thus, it seems to be reasonable to design scoring terms
based on properties that are reflective of the number of
possible contacts between the receptor and the ligand
as well as the size of the ligand.

Continuum Positions. All of the ligand decoy posi-
tions have been generated and minimized in the
CHARMm force field, so they should have reasonable
conformations. Concerning the surface positions, as the
minimization is performed in a vacuum, the electrostatic
interactions are emphasized over the lipophilic contacts,
favoring the charged interaction sites. As we use mo-
lecular dynamics to generate binding site positions, we
do not perform a comprehensive sampling of the binding
site. Nevertheless, we generate a continuous pathway
from the crystallographic position. Unfortunately, in
some cases, ligand escape from the binding pocket
required significant structural rearrangements in the
binding site, not permitted by our protocol. In these
instances we have not generated a true continuum of
positions. Instead, there is a gap between the surface
positions and the binding site positions. Generally, the
RMSD ranges from around 0 Å to more than 60 Å. We
have already used these positions as a benchmark for
the DOCK4, AutoDOCK3, CHARMm, and MMFF en-
ergy functions. We will present the results of this work
in an upcoming manuscript.27

Conclusions
Many specialized databases are currently emerging

to exploit the rapid growth of experimental information

and underlying the need to make logical connections
between the in silico world and the bench. They range
from global repository databases, such as GenBank
(URL http://www.ncbi.nlm.nih.gov/Web/Genbank/), to
very specialized ones, such as the G protein-coupled
receptors database (URL http://swift.embl-heidelberg.de/
7tm/), from genomic to protein databases, such as the
receptor database (URL http://impact.nihs.go.jp/RD-
B.html); databases are involved in all the domains of
the biological research. Focusing on structural data-
bases, in contrast to the very useful database ReLiBase
(URL http://rcsb.rutgers.edu:8081/home.html), the Lig-
and-Protein DataBase not only organizes and analyzes
protein-ligand complexes from the PDB but also pro-
vides external information about the complexes such as
the binding affinity, the ClogP, and the CMR.42 The
LPDB is clearly oriented toward the improvement of
empirical scoring functions by providing a large number
of complexes with known experimental binding affinity,
which may be used to design and parametrize new
scoring functions. It may also be used as a benchmark
for assessing the behavior of existing and evolving
scoring functions, since the LPDB provides a continuum
of ligand positions for each complex. Discriminating
between docked and misdocked positions is the first
purpose of a scoring function; the second one is to give
a good estimation of the binding constant. The LPDB
provides a means to assess both of these objectives.

It may be noted that our efforts here complement an
ongoing project from the NIST group headed by M.
Gilson.43 This effort, named BindingDB (http://www.
bindingdb.org) is aimed at providing a database of
binding data and experimental conditions but does not
archive structural data.

In this first release, only a few descriptors have been
used to describe the ligands and receptors. More com-
plicated descriptors can be used to correlate specific
complex properties to the experimental binding affinity
in order to design more effective/accurate scoring func-
tions, and this will be pursued in continuing develop-
ment of the LPDB. So far, to our knowledge, no freely
accessible tool exists to link the experimental affinity
data to the high-resolution structural information. We
believe the Ligand-Protein DataBase will be the “miss-
ing link”. It will be available in its preliminary version
on the Scripps Research Institute (TSRI) server (URL
http://lpdb.scripps.edu/). The LPDB will be licensed
through TSRI and the license agreement information
will be available on the Web site. The LPDB provides a
deposit formulary to allow everyone to contribute to its
extension. With help from the scientific community, we
will try to update the LPDB constantly by adding new
complexes, new scoring functions, and new descriptors.

Another goal of the LPDB is to share the results of
the scoring function assessments based on the bench-
mark provided by the continuum of positions for each
complex. Such a benchmark tool can be valuable to
identify the essential terms to use in new empirical
scoring function design in order to decrease the number
of false positives and the standard error, which is
around 1.2 log Ki (1.64 kcal mol-1). Currently, we are
testing several popular scoring functions such as DOCK4,
AutoDOCK3, and FlexX1.9.

Table 3. Most Relevant GC Descriptors According to VIP
Analysis

variables VIP

number of hydrogen and ionic bonds 1.50
interaction surface area (Å2) 1.31
CMR (ligand) 1.31
molecular weight (ligand) 1.29
number of atoms (ligand) 1.28
number of donors (ligand) 1.20
number of rotatable bonds (ligand) 1.16
number of acceptors (ligands) 1.14
ClogP (ligand) 1. 01
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