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Preface

Modern life in fully developed countries relies on the coordinated functioning of
several infrastructures such as Electric System, Aqueducts, Communication
Assets, Fresh food distribution chains, Gas-ducts, Oil Pipelines, Transports,
Financial networks, etc. Several of such infrastructures have been regarded as
critical since they provide vital services to sustain the modern technological
society and its development.

During the last decades, the level of awareness about the importance of
protecting our Critical Infrastructures (CIs) has been steadily growing. In this
respect, US has been the first country to take an official financial commitment by
means of the celebrated American Presidential Directive PDD-63 of May 1998
under the Clinton administration. After ten years also the European Community
made a similar commitment through the EUDIR Council Directive 2008/114/EC
(dated December the 8-th, 2008), that has been afterwards implemented by the EU
member states. It has to be noticed that, while the US directive is very broad in its
scope, the EU directive is presently limited to the energetic, transport and financial
sectors.

The functioning of Critical Infrastructures requires both physical components
and human actors. It is therefore important not only to employ reliable components,
but also to understand human behaviour at both individual and collective levels.
Moreover, each infrastructure resorts to other Cls (typically, but not limited to,
energy and ICT) to accomplish its goals: in other words, Cls are inter-dependent.
Identifying, understanding and analysing critical infrastructure interdependencies is
therefore a crucial task to be pursued by the scientific community at both the aca-
demic and applied levels [1].

In the development of Cls, the ICT sector has played a crucial role in several
respects. ICT pervades any complex activity of modern societies based on com-
munications and represents a fundamental part for the governance of any complex
infrastructure. The quality and quantity of information-based services provided to
our modern society has been steadily increasing during last 30 years (Web, e-mail,
e-commerce, social networking, e-banking, e-health, Web-based entertainment,
SCADA systems, etc). In order to improve their performance and to enhance their
reliability, the infrastructures have been endowed with increasingly complex
connection networks and computerized systems, thus allowing their governance
optimization and reducing the humans allocated to that purpose. Nowadays, our
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society is on the verge of a new revolution in which the infrastructures are required
to become smart and to integrate into a smart technological environment. Driving
the advent of a smart society on a painless and secure path represents one of the
most difficult challenges for all the technologically advanced countries.

Most of the infrastructures exhibit a network structure. In the last decade,
stemming from the availability of large data and based on the statistical physicist
perspective of the graph theory, a new paradigm to describe large networks has
blossomed: the Network Science [2, 3].

Network Science has revealed a powerful and unifying tool that enables to treat
on the same footing widely different networked systems, ranging from biology to
sociology to power grids to the Internet and the World Wide Web. In fact, despite
their intrinsic differences, all such networks are large systems consisting of simple
elementary units (the nodes) interacting via basic mechanisms (represented by the
links). Statistical Physics teaches us that this is the case where to expect the
occurrence of emergent behaviours, i.e., of collective (systemic) effects. In fact,
while each component may be perfectly working, the system as a whole can be in a
failure state: as an example, think about a big traffic jam, where all the cars, lights,
indications, navigators and roads are perfectly functioning and yet everybody is
stuck.

Financial networks’ analysis represented the forerunner to assess the concept of
systemic risk in real infrastructures. Nowadays, several financial institutions
consider and employ the global metrics developed by EU network scientists [4] to
assess their risk level and robustness consistently with the Basel III Stress Testing
[5].

Applying the Network Science paradigm to Inter-dependent Critical Infra-
structures has lead to the development of the concept of “Networks of Networks”:
the NetONets. While from the graph-theory point of view a network of networks is
just a larger (inhomogeneous) network, in real life infrastructural networks are
governed and operated separately and interactions are only allowed at well-defined
boundaries. Assessing properties on NetONets instead of that on single networks is
like deciding to consider males and females instead of human beings as a single
community: depending on the question to answer, either approach may be the most
fruitful.

The first applications of the NetONets approach to understand critical infra-
structures has been related to the propagation of failures in inter-dependent
infrastructures modelled as either trees or planar lattices [6, 7]. However, the
upheaval of the interest in NetONets has followed the publication of a Nature
paper on a percolation model of cascade failures in coupled ICT/power networks
[8]. Another important step towards real applications has been the analysis of the
North America inter-connected electric systems [9] aiming to reduce the global
vulnerability of the system.

In general, numerous efforts are nowadays devoted to develope the mathematics
of NetONets. While most of the current models have a percolative flavour [10-13],
some new directions in understanding the dynamics on NetONets are being
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explored [14-16] resorting to the spectral properties of networks. The European
efforts on the subject have recently concentrated in the “MULTIPLEX” project
[17] combining top scientists in Complexity and Algorithmic. While the com-
plexity approach allows to concentrate on systemic effects and emergent behavior,
other routes have to be considered to perform the analyses of the systems needed
for several tasks including management, planning the development, enhancing the
security, defining coordinated national and EU/US contingency plans, and
assessing the policies at the state and the regional levels. To such an aim, several
techniques such as I/O models, federated simulations, agent-based models, time-
series analysis are employed. Each of the previous approaches provides a partial
perspective of the system behaviour; however to manage and understand the
complexity of our society, all of them are required. Our book aims to foster a meta-
community able to share and integrate all such perspectives.

This volume is structured along three main sections: part I covers the theoretical
approaches, part II provides some applications and part III is devoted to phe-
nomenological modelling. The former taxonomy has been mainly introduced for
the sake of presentation. However, due to their inter-disciplinarity, it is difficult to
ascribe each contribution to a specific topic only. To improve legibility, each part
of the book is endowed with a brief overview of its contents.

We have spent our best efforts to provide the reader with as different
contributions as possible; most of the authors have been actively involved in the
NetONets and related conference series. However, by no means our book can be
regarded as exhaustive. Probably, the I/O models [18] represent the most sig-
nificant lack in our book. Some of the most important topics, such as the systemic
risk analysis [19] or time series analysis, would have deserved a more extended
treatment. We hope to be able to cover such topics in a nearby future.

Furthermore, there are important topics that are crucial to develop in the nearby
future. In particular, the human behaviour, both at the management and at the end
user levels, must be accounted for improving the analysis, modelling and simu-
lation of inter-dependent infrastructures. Regarding the complexity approach, it is
crucial to build up methodological tools for the statistical analysis of ‘small’
systems. In fact, while most of the current techniques are aimed to understand the
behaviour of the system in the infinite-size limit, almost all infrastructural net-
works exhibit a relatively small size.

We have tried hard to produce a book that could be regarded as an updated
reference for the NetONets state-of-the-art. To the same purpose of providing
updated information, we have also built a website (netonets.org) wherein to gather
and advertise all the initiatives in the field.

One of the main barriers to overcome is the lack of a common language. It is
therefore crucial to foster the up-growing NetONets community providing a
common ground for knowledge sharing. We hope that our efforts will contribute to
such a direction.

As acknowledges the support from the US grant HDTRA1-11-1-0048, the
CNR-PNR National Project “Crisis-Lab” and the EU FET project MULTIPLEX
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Part 1
Theoretical Approaches

This part of the book is devoted to the theoretical approaches to interdependent
networks. The state of the art of such a novel and dynamic field is experiencing a
continuous growth. Here we have selected, mainly for historical reasons, the
contributions stemming from the Statistical Physics approach.

Modelling interdependent networks consists in defining different graphs and the
interactions among them. In the multiplex approach, the different layers are
modelled by means of different types of links. In the interacting networks
approach, the different layers are explicitly modelled as separate networks and the
links among them represent the inter-layer interactions.

In Chaps. 1-3 authors rely on ‘static’ approaches aimed at assessing the
robustness and/or the resilience of interdependent systems upon both random
failures and targeted attacks. Considering the dynamics of the systems upon
continuous stressing leads to the introduction of further effects discussed in
Chaps. 4 and 5



Chapter 1
Network of Interdependent Networks: Overview
of Theory and Applications

Dror Y. Kenett, Jianxi Gao, Xuqing Huang, Shuai Shao, Irena Vodenska,
Sergey V. Buldyrev, Gerald Paul, H. Eugene Stanley and Shlomo Havlin

Abstract Complex networks appear in almost every aspect of science and tech-
nology. Previous work in network theory has focused primarily on analyzing single
networks that do not interact with other networks, despite the fact that many real-
world networks interact with and depend on each other. Very recently an analytical
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framework for studying the percolation properties of interacting networks has been
introduced. Here we review the analytical framework and the results for percola-
tion laws for a network of networks (NON) formed by n interdependent random
networks. The percolation properties of a network of networks differ greatly from
those of single isolated networks. In particular, although networks with broad degree
distributions, e.g., scale-free networks, are robust when analyzed as single networks,
they become vulnerable in a NON. Moreover, because the constituent networks of
a NON are connected by node dependencies, a NON is subject to cascading failure.
When there is strong interdependent coupling between networks, the percolation
transition is discontinuous (is a first-order transition), unlike the well-known con-
tinuous second-order transition in single isolated networks. We also review some
possible real-world applications of NON theory.

1.1 Introduction

The interdisciplinary field of network science has attracted great attention in recent
years [1-26]. This has taken place because an enormous amount of data regarding
social, economic, engineering, and biological systems has become available over
the past two decades as a result of the information and communication revolution
brought about by the rapid increase in computing power. The investigation and grow-
ing understanding of this extraordinary amount of data will enable us to make the
infrastructures we use in everyday life more efficient and more robust. The original
model of networks, random graph theory, developed in the 1960s by Erds and Rényi
(ER), is based on the assumption that every pair of nodes is randomly connected with
the same probability (Ieading to a Poisson degree distribution). In parallel, lattice net-
works in which each node has the same number of links have been used in physics
to model physical systems. While graph theory was a well-established tool in the
mathematics and computer science literature, it could not adequately describe mod-
ern, real-world networks. Indeed, the pioneering observation by Barabdsi in 1999
[2], that many real networks do not follow the ER model but that organizational
principles naturally arise in most systems, led to an overwhelming accumulation of
supporting data, new models, and novel computational and analytical results, and
led to the emergence of a new science: complex networks.

Significant advances in understanding the structure and function of networks,
and mathematical models of networks have been achieved in the past few years.
These are now widely used to describe a broad range of complex systems, from
techno-social systems to interactions amongst proteins. A large number of new mea-
sures and methods have been developed to characterize network properties, includ-
ing measures of node clustering, network modularity, correlation between degrees
of neighboring nodes, measures of node importance, and methods for the identifi-
cation and extraction of community structures. These measures demonstrated that
many real networks, and in particular biological networks, contain network motifs—
small specific subnetworks—that occur repeatedly and provide information about
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functionality [8]. Dynamical processes, such as flow and electrical transport in het-
erogeneous networks, were shown to be significantly more efficient compared to ER
networks [27, 28].

Complex networks are usually non-homogeneous structures that exhibit a power-
law form in their degree (number of links per node) distribution. These systems
are called scale-free networks. Some examples of real-world scale-free networks
include the Internet [3], the WWW [4], social networks representing the relations
between individuals, infrastructure networks such as airlines [29, 30], networks in
biology, in particular networks of protein-protein interactions [31], gene regulation,
and biochemical pathways, and networks in physics, such as polymer networks or
the potential energy landscape network. The discovery of scale-free networks has led
to a re-evaluation of the basic properties of networks, such as their robustness, which
exhibit a character that differs drastically from that of ER networks. For example,
while homogeneous ER networks are vulnerable to random failures, heterogeneous
scale-free networks are extremely robust [4, 5]. An important property of these in-
frastructures is their stability, and it is thus important that we understand and quantify
their robustness in terms of node and link functionality. Percolation theory was intro-
duced to study network stability and to predict the critical percolation threshold [5].
The robustness of a network is usually (i) characterized by the value of the critical
threshold analyzed using percolation theory [32] or (ii) defined as the integrated size
of the largest connected cluster during the entire attack process [33]. The percolation
approach was also extremely useful in addressing other scenarios, such as efficient
attacks or immunization [6, 7, 14, 34, 35], for obtaining optimal path [36] as well as
for designing robust networks [33]. Network concepts were also useful in the analy-
sis and understanding of the spread of epidemics [37, 38], and the organizational
laws of social interactions, such as friendships [39, 40] or scientific collaborations
[41]. Moreira et al. investigated topologically-biased failure in scale-free networks
and controlled the robustness or fragility by fine-tuning the topological bias during
the failure process [42].

Because current methods deal almost exclusively with individual networks treated
asisolated systems, many challenges remain [43]. In most real-world systems an indi-
vidual network is one component within a much larger complex multi-level network
(is part of a network of networks). As technology has advanced, coupling between
networks has become increasingly strong. Node failures in one network will cause
the failure of dependent nodes in other network, and vice-versa [44]. This recursive
process can lead to a cascade of failures throughout the network of networks system.
The study of individual particles has enabled physicists to understand the properties
of a gas, but in order to understand and describe a liquid or a solid the interactions
between the particles also need to be understood. So also in network theory, the study
of isolated single networks brings extremely limited results—real-world noninter-
acting systems are extremely rare in both classical physics and network study. Most
real-world network systems continuously interact with other networks, especially
since modern technology has accelerated network interdependency.
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Fig. 1.1 Example of two interdependent networks. Nodes in network B (communications network)
are dependent on nodes in network A (power grid) for power; nodes in network A are dependent
on network B for control information

To adequately model most real-world systems, understanding the interdependence
of networks and the effect of this interdependence on the structural and functional
behavior of the coupled system is crucial. Introducing coupling between networks is
analogous to the introduction of interactions between particles in statistical physics,
which allowed physicists to understand the cooperative behavior of such rich phe-
nomena as phase transitions. Surprisingly, preliminary results on mathematical mod-
els [44, 45] show that analyzing complex systems as a network of coupled networks
may alter the basic assumptions that network theory has relied on for single networks.
Here we will review the main features of the theoretical framework of Network of
Networks (NON), and present some real world applications.

1.2 Overview

In order to model interdependent networks, we consider two networks, A and B, in
which the functionality of a node in network A is dependent upon the functionality
of one or more nodes in network B (see Fig. 1.1), and vice-versa: the functionality
of a node in network B is dependent upon the functionality of one or more nodes in
network A. The networks can be interconnected in several ways. In the most general
case we specify a number of links that arbitrarily connect pairs of nodes across
networks A and B. The direction of a link specifies the dependency of the nodes it
connects, i.e., link A; — B provides a critical resource from node A; to node B;.
If node A; stops functioning due to attack or failure, node B; stops functioning as
well but not vice-versa. Analogously, link B; — A provides a critical resource
from node B; to node A ;.

To study the robustness of interdependent networks systems, we begin by remov-
ing a fraction 1 — p of network A nodes and all the A-edges connected to these
nodes. As an outcome, all the nodes in network B that are connected to the removed
A-nodes by A — B links are also removed since they depend on the removed nodes
in network A. Their B edges are also removed. Further, the removed B nodes will
cause the removal of additional nodes in network A which are connected to the re-
moved B-nodes by B — A links. As a result, a cascade of failures that eliminates
virtually all nodes in both networks can occur. As nodes and edges are removed, each
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network breaks up into connected components (clusters). The clusters in network A
(connected by A-edges) and the clusters in network B (connected by B-edges) are
different since the networks are each connected differently. If one assumes that small
clusters (whose size is below certain threshold) become non-functional, this may
invoke a recursive process of failures that we now formally describe.

Our insight based on percolation theory is that when the network is fragmented the
nodes belonging to the giant component connecting a finite fraction of the network
are still functional, but the nodes that are part of the remaining small clusters become
non-functional. Thus in interdependent networks only the giant mutually-connected
cluster is of interest. Unlike clusters in regular percolation whose size distribution
is a power law with a p-dependent cutoff, at the final stage of the cascading failure
process just described only a large number of small mutual clusters and one giant
mutual cluster are evident. This is the case because the probability that two nodes that
are connected by an A-link and their corresponding two nodes are also connected
by a B-link scales as 1/Ng, where Np is the number of nodes in network B. So
the centrality of the giant mutually-connected cluster emerges naturally and the
mutual giant component plays a prominent role in the functioning of interdependent
networks. When it exists, the networks preserve their functionality, and when it does
not exist, the networks split into fragments so small they cannot function on their
own.

We ask three questions: What is the critical p = p. below which the size of any
mutual cluster constitutes an infinitesimal fraction of the network, i.e., no mutual
giant component can exist? What is the fraction of nodes P, (p) in the mutual giant
component at a given p? How do the cascade failures at each step damage the giant
functional component?

Note that the problem of interacting networks is complex and may be strongly
affected by variants in the model, in particular by how networks and dependency
links are characterized. In the following section we describe several of these model
variants.

1.3 Theory of Interdependent Networks

In order to better understand how present-day crucially-important infrastructures in-
teract, Buldyrev et al. [44] recently developed a mathematical framework to study
percolation in a system of two coupled interdependent networks subject to cascad-
ing failure. Their analytical framework is based on a generating function formalism
widely used in studies of single-network percolation and single-network structure
[41, 44, 46]. Using the framework to study interdependent networks, we can fol-
low the dynamics of the cascading failures as well as derive analytic solutions for
the final steady state. Buldyrev et al. [44] found that interdependent networks were
significantly more vulnerable than their noninteracting counterparts. The failure of
even a small number of elements within a single network in a system may trigger a
catastrophic cascade of events that propagates across the global connectivity. For a
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Fig. 1.2 Schematic demon- P A
stration of first and second “
order percolation transitions.
In the second order case, the
giant component is continu-
ously approaching zero at the Second order ./
percolation threshold p = p..
In the first order case the giant
component approaches zero

discontinuously. After [47] First order

|
|
|
|
|
|
1
P, P, P

fully coupled case in which each node in one network depends on a functioning node
in another network and vice versa, Buldyrev et al. [44] found a first-order discontin-
uous phase transition, which differs significantly from the second-order continuous
phase transition found in single isolated networks (Fig. 1.2). This interesting phe-
nomenon is caused by the presence of two types of links: (i) connectivity links
within each network and (ii) dependency links between networks. Parshani et al.
[45] showed that, when the dependency coupling between the networks is reduced,
at a critical coupling strength the percolation transition becomes second-order.

We now present the theoretical methodology used to investigate networks of
interdependent networks (see Ref. [47]), and provide examples from different classes
of networks.

1.3.1 Generating Functions for a Single Network

We begin by describing the generating function formalism for a single network that
is also useful when studying interdependent networks. Here we assume that all N;
nodes in network i are randomly assigned a degree k from a probability distribution
P;(k), and are randomly connected, the only constraint being that the node with
degree k has exactly k links [48]. We define the generating function of the degree
distribution

Gi(x) = > Pi(k)x*, (1.1)

k=0
where x is an arbitrary complex variable. The average degree of network i is

= G)(1). (1.2)

x—1

ad IG;
(k); = ;kﬂ'(k) ==
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In the limit of infinitely large networks N; — o0, the random connection process
can be modeled as a branching process in which an outgoing link of any node has a
probability k P; (k) /(k); of being connected to a node with degree k, which in turn has
k — 1 outgoing links. The generating function of this branching process is defined as

>0 Pkt Gl)

(o) = h); ~ GO

(1.3)

The probability f; that a randomly chosen outgoing link does not lead to an infinitely
large giant component satisfies a recursive relation f; = H;(f;). Accordingly, the
probability that a randomly chosen node does belong to a giant component is given
by gi = G;(fi).Once afraction 1 — p of nodes is randomly removed from a network,
its generating function remains the same, but must be computed from a new argument
z = px + 1 — p [46]. Thus P ;, the fraction of nodes that belongs to the giant
component, is given by [46],

P.i = pgi(p), (1.4)
where
gi(p) =1—-Gilpfi(p) +1—p], (1.5)
and f;(p) satisfies
fi(p) = Hilpfi(p) +1— pl. (1.6)

As p decreases, the nontrivial solution f; < 1 of Eq. (1.6) gradually approaches the
trivial solution f; = 1. Accordingly, P~ ;—selected as an order parameter of the
transition—gradually approaches zero as in the second-order phase transition and
becomes zero when two solutions of Eq. (1.6) coincide at p = p.. At this point the
straight line corresponding to the right hand side of Eq. (1.6) becomes tangent to the
curve corresponding to its left hand side, yielding

pe=1/H';(1). (1.7)

For example, for Erd6s-Rényi (ER) networks [49-51], characterized by the Poisson
degree distribution,

Gi(x) = H;(x) = exp[{k)i (x — D], (1.8)
gi(p) =1— fi(p), (1.9)
fi(p) = exp{p(k)il fi(p) — 11}, (1.10)
and |

Pe= T (1.11)
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Finally, using Eqgs. (1.4), (1.9), and (1.10), one obtains a direct equation for P ;

Poo,i = pl1 — exp(— (k)i Poc,i)]. (1.12)

1.3.2 Two Networks with One-to-One Correspondence
of Interdependent Nodes

To initiate an investigation of the multitude of problems associated with interacting
networks, Buldyrev et al. [44] restricted themselves to the case of two randomly
and independently connected networks with the same number of nodes, specified
by their degree distributions Pa (k) and Pg(k). They also assumed every node in
the two networks to have one B — A link and one A — B link connecting the
same pair of nodes, i.e., the dependencies between networks A and B establish a
isomorphism between them that allows us to assume that nodes in A and B coincide
(e.g., are at the same corresponding geographic location—if a node in network A
fails, the corresponding node in network B also fails, and vice versa). We also assume,
however, that the A-edges and B-edges in the two networks are independent.

Unlike the percolation transition in a single network, the mutual percolation tran-
sition in this model is a first-order phase transition at which the order parameter (i.e.,
the fraction of nodes in the mutual giant component) abruptly drops from a finite
value at p. + € to zero at p. — . Here ¢ is a small number that vanishes as the size of
network increases N — oo. In this range of p, a removal of single critical node may
lead to a complete collapse of a seemingly robust network. The size of the largest
component drops from N P, to a small value, which rarely exceeds 2.

Note that the value of p, is significantly larger than in single-network percolation.
In two interdependent ER networks, for example, p, = 2.4554/(k), while in a single
network, p. = 1/(k). For two interdependent scale-free networks with a power-law
degree distribution Pa (k) ~ k—*, the mutual percolation threshold is p. > 0, even
for 2 < A < 3, when the percolation threshold in a single network is zero.

Note also that, in this new model, networks with a broader degree distribution are
less robust against random attack than networks having a narrower degree distribution
but the same average degree. This behavior also differs from that found in single
networks. To understand this we note that (i) in interdependent networks, nodes
are randomly connected—high degree nodes in one network can connect to low
degree nodes in other networks, and (ii) at each time step, failing nodes in one
network cause their corresponding nodes (and their edges) in the other network
to also fail. Thus although hubs in single networks strongly contribute to network
robustness, in interdependent networks they are vulnerable to cascading failure. If a
network has a fixed average degree, a broader distribution means more nodes with
low degree to balance the high degree nodes. Since the low degree nodes are more
easily disconnected the advantage of a broad distribution in single networks becomes
a disadvantage in interdependent networks.
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The following features have been investigated analytically in Ref. [52], a study
that assumes that the degrees of the interdependent nodes exactly coincide, but that
both networks are randomly and independently connected by their connectivity links.
Reference [52] shows that, for two networks with the same degree distribution Pa (k)
of connectivity links and random dependency links, studied in Ref. [44], the fraction
of nodes in the giant component is

Po = pll = GA@I, (1.13)
where 0 < z < 1 is anew variable z = 1 — p 4+ pfa satisfying equation

[1— Ha@Ill = Ga@] _ 1. (1.14)
1—z p

while in case of coinciding degrees of interdependent nodes Eqs. (1.13) and (1.14)
become respectively
Py = p[1 = 2GA(2) + Ga(2D)] (1.15)

and

1 — (1 +2)HA(2) + 2Ha(2?) _ l. (1.16)
11—z 4

The left-hand side of Eq. (1.14) always has a single maximum at 0 < z. < 0, and
the solution abruptly disappear if p becomes less than p,, the inverse left hand side
at z.. This situation corresponds to the first order transition. In contrast, the left-hand
side of Eq. (1.16) has a maximum only if Hj (1) converges, which corresponds to
A > 3 when there is a power law tail in the degree distribution. In this case, p. is the
inverse maximum value of the left-hand side of Eq. (1.16), e.g., for ER networks,
pe = 1.7065/(k). When A\ < 3, H'(z) diverges forz — 1 and p, = 0, P, = 0
as in the case of regular percolation on a single network, for which Eqgs. (1.4), (1.5),
and (1.6) give

Poo = p[l — Ga(2)], (1.17)

and | H |
1-HAm _ 1 (1.18)

11—z p

Thus for networks with coinciding degrees of the interdependent nodes for A\ < 3,
the transition becomes a second-order transition with p. = 0. In the marginal case
of A =3, p. > 0, but the transition is second-order.

From Egs. (1.13)—(1.18) it follows that, if H A(l) converges, the networks with
coinciding degrees of interdependent nodes are still less robust than single networks,
still undergo collapse via a first-order phase transition, but are always more robust
than networks with uncorrelated degrees of interdependent nodes. If the average
degree is fixed, the robustness of the networks with coinciding degrees of inter-
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dependent nodes increases as the degree distribution broadens in the same way as
for single networks. Similar observations have been made in numerical studies of
interdependent networks with correlated degrees of interdependent nodes [53]. In
conclusion, the robustness of interdependent networks increases if the degrees of the
interdependent nodes are correlated, i.e., if the hubs are more likely to depend on
hubs than on low-degree nodes. For the case of common connectivity links in both
networks see Dong et al. [54] and Cellai et al. [55].

1.3.3 Framework of Two Partially Interdependent Networks

A generalization of the percolation theory for two fully interdependent networks
was developed by Parshani et al. [45], who studied a more realistic case of a pair
of partially-interdependent networks. Here both interacting networks have a certain
fraction of completely autonomous nodes whose function does not directly depend
on nodes in the other network. They found that when the fraction of autonomous
nodes increases above a certain threshold, the collapse of the interdependent networks
characterized by a first-order transition observed in Ref. [44] changes, at a critical
coupling strength, to a continuous second-order transition as in classical percolation
theory [32].

We now describe in more detail the framework developed in [45]. This framework
consists of two networks A and B with the number of nodes Na and Ng, respectively.
Within network A, the nodes are randomly connected by A edges with degree distri-
bution Pa (k), and the nodes in network B are randomly connected by B edges with
degree distribution Pg (k). In addition, a fraction g of network A nodes depends on
the nodes in network B and a fraction gp of network B nodes depends on the nodes in
network A. We assume that a node from one network depends on no more than one
node from the other network, and if A; depends on B}, and B; depends on A, then
k = i. The latter “no-feedback” condition (see Fig. 1.3) disallows configurations that
can collapse without taking into account their internal connectivity [56]. Suppose
that the initial removal of nodes from network A is a fraction 1 — p.

We next present the formalism for the cascade process, step by step (see Fig. 1.4).
The remaining fraction of network A nodes after an initial removal of nodes is
Y| = p. The initial removal of nodes disconnects some nodes from the giant
component. The remaining functional part of network A thus contains a frac-
tion 11 = ¢|ga(¥)) of the network nodes, where ga(1]) is defined by Egs.
(1.5) and (1.6). Since a fraction gg of nodes from network B depends on nodes
from network A, the number of nodes in network B that become nonfunctional is
(1 —vY1)g = gBll — 1;ga(¥})]. Accordingly, the remaining fraction of network
B nodes is ¢} = 1 — gg[l — ¢|ga(¥)])], and the fraction of nodes in the giant
component of network B is ¢1 = ¢ g(¢)).

Following this approach we construct the sequence, 1; and ¢}, of the remaining
fraction of nodes at each stage of the cascade of failures. The general form is given by
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(a) Network A

Network B

(b) Network A

Network B

Fig. 1.3 Description of differences between the (a) feedback condition and (b) no-feedback con-
dition. In the case (a), node Az depends on node B, and node B3 # B> depends on node Az, while
in case (b) this is forbidden. In case (a), when ¢ = 1 both networks will collapse if one node is
removed from one network, which is far from being real. So in our model, we use the no-feedback
condition [case (b)]. The blue links between two networks show the dependency links and the red
links in each network show the connectivity links which enable each network to function. After [47]

Y = p,

1 =1—gll — pga@)],
Yy = pll —gal — g(d;_ )],
¢y =1 —gl[l — pga(¥;_D]I.

(1.19)

To determine the state of the system at the end of the cascade process we look at
¢, and ¢’ at the limit of 7 — oo. This limit must satisfy the equations ¢ = v
and ¢ = ¢, since eventually the clusters stop fragmenting and the fractions of
randomly removed nodes at step 7 and 7+ 1 are equal. Denoting ¢/, = x and ¢/, =y,

we arrive at the stationary state to a system of two equations with two unknowns,

x = p{l —qall — gge(W1},
y=1—gg[l — ga(x)pl. (120

The giant components of networks A and B at the end of the cascade of failures
are, respectively, Poo A = Yoo = xgA(x) and Pso, B = ¢ = ygB(Y). The nu-
merical results were obtained by iterating system (1.19), where ga (¢)) and gg(¢,)
are computed using Eqgs. (1.9) and (1.10). Figure 1.5 shows excellent agreement
between simulations of cascading failures of two partially interdependent networks
with N = 2 x 10° nodes and the numerical iterations of system (1.19). In the simu-
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(a)

attack Network A

Network B

(b)

I stage

(0
[ J

II stage

(d)

III stage

(e)

IV stage

Fig. 1.4 Description of the dynamic process of cascading failures on two partially interdependent
networks, which can be generalized to n partially interdependent networks. In this figure, the black
nodes are the survived nodes, the yellow node represents the initially attacked node, the red nodes
are the nodes removed because they do not belong to the largest cluster, and the blue nodes are the
nodes removed because they depend on the failed nodes in the other network. In each stage, for one
network, we first remove the nodes that depend on the failed nodes in the other network or on the
initially attacked nodes. Next we remove the nodes which do not belong to the largest cluster of the
network. After [47]

lations, p. can be determined by the sharp peak in the average number of cascades
(iterations), (7), before the network either stabilizes or collapses [15].
Aninvestigation of Eq. (1.20) can be illustrated graphically by two curves crossing
in the (x, y) plane. For sufficiently large g and gp the curves intersect at two points
(0 < x0,0 < yp)and (xg < x1 < 1, yo < y1 < 1). Only the second solution (x1, y1)
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—=— Theory
—— Simulation

0.6

Fig. 1.5 Cascade of failures in two partially interdependent ER networks. The giant component
¢, for every iteration of the cascading failures is shown for the case of a first order phase transition
with the initial parameters p = 0.8505,a = b = 2.5, ga = 0.7 and gg = 0.8. In the simulations,
N = 2 x 10° with over 20 realizations. The gray lines represent different realizations. The squares
is the average over all realizations and the black line is the theory, Eq. (1.19). After [47]

has any physical meaning. As p decreases, the two solutions become closer to each
other, remaining inside the unit square (0 < x < 1;0 < y < 1), and at a certain
threshold p = p. they coincide: 0 < xg = x] = x, < 1,0 < yg =y = y. < 1.
For p < p. the curves no longer intersect and only the trivial solution g4(x) =
gs(y) = 0 remains. For sufficiently large ga and gp, Poo 4 and Py p as a function
of p show a first order phase transition. As gp decreases, P 4 as a function of p
shows a second order phase transition. For the graphical representation of Eq. (1.20)
and all possible solutions see Fig. 3 in Ref. [45].

In arecent study [33, 57], it was shown that a pair of interdependent networks can
be designed to be more robust by choosing the autonomous nodes to be high degree
nodes. This choice mitigates the probability of catastrophic cascading failure.

1.3.4 Framework for a Network of Interdependent Networks

In many real systems there are more than two interdependent networks, and di-
verse infrastructures—water and food supply networks, communications networks,
fuel networks, financial transaction networks, or power station networks—can be
coupled together [58]. Understanding the way system robustness is affected by such
interdependencies is one of the major challenges when designing resilient infrastruc-
tures.

Here we review the generalization of the theory of a pair of interdependent net-
works [44, 45] to a system of n interacting networks [59, 60], which can be graph-
ically represented (see Fig. 1.6) as a network of networks (NON). We review an
exact analytical approach for percolation of an NON system composed of n fully
or partially coupled randomly interdependent networks. The approach is based on
analyzing the dynamical process of the cascading failures. The results generalize the
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Fig. 1.6 Schematic representation of a network of networks. Circles represent interdependent
networks, and the arrows connect the partially interdependent pairs. For example, a fraction of g3;
of nodes in network i depend on the nodes in network 3. The networks which are not connected by
the dependency links do not have nodes that directly depend on one another. After [47]

known results for percolation of a single network (n = 1) and the n = 2 result found
in [44, 45], and show that while for n = 1 the percolation transition is a second-order
transition, for n > 1 cascading failures occur and the transition becomes first-order.
Our results for n interdependent networks suggest that the classical percolation the-
ory extensively studied in physics and mathematics is a limiting case of n = 1 of a
general theory of percolation in NON. As we will discuss here, this general theory
has many novel features that are not present in classical percolation theory.

In our generalization, each node in the NON is a network itself and each link
represents a fully or partially dependent pair of networks. We assume that each
network i (i = 1,2, ...,n) of the NON consists of N; nodes linked together by
connectivity links. Two networks i and j form a partially dependent pair if a certain
fraction g j; > 0 of nodes of network i directly depends on nodes of network j, i.e.,
they cannot function if the nodes in network j on which they depend do not function.
Dependent pairs are connected by unidirectional dependency links pointing from
network j to network i. This convention indicates that nodes in network i get a
crucial commodity from nodes in network j, e.g., electric power if network j is a
power grid.

We assume that after an attack or failure only a fraction of nodes p; in each network
i will remain. We also assume that only nodes that belong to a giant connected
component of each network i will remain functional. This assumption helps explain
the cascade of failures: nodes in network i that do not belong to its giant component
fail, causing failures of nodes in other networks that depend on the failing nodes of
network i. The failure of these nodes causes the direct failure of dependency nodes
in other networks, failures of isolated nodes in them, and further failure of nodes in
network i and so on. Our goal is to find the fraction of nodes P, ; of each network
that remain functional at the end of the cascade of failures as a function of all fractions
pi and all fractions g;;. All networks in the NON are randomly connected networks
characterized by a degree distribution of links P;(k), where k is a degree of a node
in network i. We further assume that each node a in network i may depend with
probability ¢ ;; on only one node b in network j with no feed-back condition.
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To study different models of cascading failures, we vary the survival time of
the dependent nodes after the failure of the nodes in other networks on which they
depend, and the survival time of the disconnected nodes. We conclude that the final
state of the networks does not depend on these details but can be described by a
system of equations somewhat analogous to the Kirchhoff equations for a resistor
network. This system of equations has n unknowns x;. These represent the fraction
of nodes that survive in network i after the nodes that fail in the initial attack are
removed and the nodes depending on the failed nodes in other networks at the end of
cascading failure are also removed, but without taking into account any further node
failure due to the internal connectivity of the network. The final giant component of
each network is Py, ; = x;g; (x;), where g; (x;) 1s the fraction of the remaining nodes
of network i that belongs to its giant component given by Eq. (1.5).

The unknowns x; satisfy the system of n equations, [53]

K
Xj = pi H[jSyjigj(xj) —qji +1], (1.21)
j=1

where the product is taken over the K networks interlinked with network i by partial
dependency links (see Fig. 1.6) and

Xi

Piqivjigi(xj) —qji + 1

Yij = (1.22)

is the fraction of nodes in network j that survives after the damage from all the net-
works connected to network j except network i is taken into account. The damage
from network i must be excluded due to the no-feedback condition. In the absence
of the no-feedback condition, Eq. (1.21) becomes much simpler since y;; = x;.
Equation (1.21) is valid for any case of interdependent NON, while Eq. (1.22) rep-
resents the no-feedback condition.

A more the most general case of interdependency links was studied by Shao et al.
[56]. They assumed that a node in network i is connected by s supply links to s
nodes in network j from which it gets a crucial commodity. If s = oo, the node does
not depend on nodes in network j and can function without receiving any supply
from them. The generating function of the degree distribution P% (s) of the supply
links G/ (x) = Z?io PJi(s)x* does not include the term P/i(c0) = 1 — qji> and
hence G;(1) = g;; < 1. Itis also assumed that nodes with s < oo can function
only if they are connected to at least one functional node in network j. In this case,
Eq. (1.21) must be changed to

K

xi=pi [ 11— G711 = xjg;(x))). (1.23)
j=1

When all dependent nodes have exactly one supply link, G;; (x) = xq;; and Eq. (1.23)
becomes
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K
xi=pi [ |11 = qji +qjixjg; ()], (1.24)
j=1

analogous to Eq. (1.21) without the no-feedback condition.

1.3.5 Examples of Classes of Network of Networks

Finally, we present four examples that can be explicitly solved analytically: (i) a
tree-like ER NON fully dependent, (ii) a tree-like random regular (RR) NON fully
dependent, (iii) a loop-like ER NON partially dependent, and (iv) an RR network
of partially dependent ER networks. All cases represent different generalizations of
percolation theory for a single network.

1.3.5.1 Tree-Like NON of ER Networks

We solve explicitly the case of a tree-like NON (see Fig. 1.7) formed by n ER [49-51]
networks with average degrees ki, k2, ...k;, ..., k,, p1 = p, pi = 1 fori # 1 and
gij = 1 (fully interdependent). Using Eqs. (1.21) and (1.22) for x; and taking into
account Egs. (1.8), (1.9) and (1.10), we find that

n
fi=exp | —pki [T = f) | i=1.200m. (1.25)
j=1

These equations can be solved analytically [59]. They have only a trivial solution
(fi = ) if p < p., where p. is the mutual percolation threshold. When the n
networks have the same average degree k, k; = k (i = 1, 2, ..., n), we obtain from
Eq. (1.25) that f. = fi(p.) satisfies

—1

fC:exp[fc ] (1.26)
nfe

where the solution can be expressed in terms of the Lambert function W_(x), f. =

—[nW_(— %e‘ " )17, where W_(x) is the most negative of the two real roots of the

Lambert equation el V®IW@O=x for x < 0.
Once f, is known, we can obtain p. and the giant component at p. P, = Poo

pe = [nkfe(1 — fo)=D1=1

_ 1.27
Poo(pe) = 1,;]()];6 ( )
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Chain-like NON Star-like NON Tree-like NON

Fig. 1.7 Three types of loopless networks of networks composed of five coupled networks. All
have same percolation threshold and same giant component. The dark node is the origin network
on which failures initially occur. After [47]

Equation (1.27) generalizes known results for n = 1, 2. For n = 1, we obtain the
known result p. = 1/k, Eq. (1.11), of an ER network [49-51] and Py (p.) = O,
which corresponds to a continuous second-order phase transition. Substituting n = 2
in Egs. (1.26) and (1.27) yields the exact results of [44].

From Egs. (1.21)—(1.22) we obtain an exact expression for the order parameter
Pso(pe), the size of the mutual giant component for all p, k, and n values,

Pso = pl1 — exp(—k Pso)]". (1.28)

Solutions of Eq. (1.28) are shown in Fig. 1.8a for several values of n. Results are
in excellent agreement with simulations. The special case n = 1 is the known ER
second-order percolation law, Eq. (1.12), for a single network [49—-51]. In contrast,
for any n > 1 the solution of (1.28) yields a first-order percolation transition, i.e., a
discontinuity of Py, at pe.

To analyze p. as a function of n for different k values, we find f, from Eq. (1.26),
substitute it into Eq. (1.27), and obtain p.. Figure 1.8 shows that the NON becomes
more vulnerable with increasing n or decreasing k (p. increases when n increases
or k decreases). Furthermore, when 7 is fixed and & is smaller than a critical number
kmin(n), pc > 1, which means that when k < kyjn (1) the NON will collapse even if
a single node fails. The minimum average degree kpin as a function of the number
of networks is

kmin(n) = [nfe(1 — fo)@= D171 (1.29)

Equations (1.25)—(1.29) are valid for all tree-like structures such as those shown in
Fig.1.7. Note that Eq. (1.29) together with Eq. (1.26) yield the value of kpin (1) = 1,
reproducing the known ER result, that (k) = 1 is the minimum average degree
needed to have a giant component. For n = 2, Eq. (1.29) also yields results obtained
in [44], i.e., kmin = 2.4554.



20 D. Y. Kenett et al.
1.3.5.2 Tree-Like NON of RR Networks

We review the case of a tree-like network of interdependent RR networks [59, 61]
in which the degree of each network is assumed to be the same k (Fig. 1.7). By

introducing a new variable r = f = into Egs. (1.21) and (1.22) and the generating
function of RR network [59], the n equations reduce to a single equation

o= (rk—l _ l)p(l _ rk)n—l +1, (1.30)

which can be solved graphically for any p. The critical case corresponds to the
tangential condition leading to critical threshold p. and Py

r—1
- (rk—l _ 1)(1 _ rk)n—l ’

De (1.31)

_ ky "
n—1 P % ke
Po=pl1-1pirg (1—(%’)) —1|+1 . (1.32)

Comparing this with the results of a tree-like ER NON, we find that the robustness
of n coupled RR networks of degree k is significantly higher than the n interdependent
ER networks of average degree k. Although for an ER NON there exists a critical
minimum average degree k = kni, that increases with n below which the system
collapses, there is no such analogous ki, for a RR NON system. For any & > 2,
the RR NON is stable, i.e., p. < 1. In general, this is the case for any network with
any degree distribution such that P;(0) = P;(1) = 0, i.e., for a network without
disconnected and singly-connected nodes [61].

1.3.5.3 Loop-Like NON of ER Networks

In the case of a loop-like NON (for dependencies in one direction) of n ER networks,
all the links are unidirectional and the no-feedback condition is irrelevant. If the initial
attack on each network is the same 1 — p, gi—1; = g1 = ¢, and k; = k, using Eqgs.
(1.21) and (1.22) we find that P, satisfies

P = p(1 — e *>)(gPy —q + 1). (1.33)

Note that when ¢ = 1 Eq. (1.33) has only a trivial solution Py, = 0, but wheng = 0
it yields the known giant component of a single network, Eq. (1.12), as expected.
We present in Fig. 1.8b numerical solutions of Eq. (1.33) for two values of g. Note
that when ¢ = 1 and the structure is tree-like, Eqs. (1.28) and (1.32) depend on =,
but for loop-like NON structures, Eq. (1.33) is independent of .
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1.3.5.4 RR Network of ER Networks

Now we review results [47] for a NON in which each ER network is dependent
on exactly m other ER networks. This system represents the case of RR network
of ER networks. We assume that the initial attack on each network is 1 — p, and
each partially dependent pair has the same ¢ in both directions with no-feedback
condition. The n equations of Eq. (1.21) are exactly the same due to symmetries, and
hence p. and P, can be solved analytically,

pll = b (1.34)
< k(=g '

P

Poo = (1= 7)1 — g+ /(1 - ) +4g P, (1.35)

where p!! denotes the critical threshold for the second order phase transition.
Again, as in the case of the loop-like structure, it is surprising that both the critical
threshold and the giant component do not depend on the number of networks 7, in
contrast to tree-like NON, but only on the coupling ¢ and on both degrees k and m.
Numerical solutions of Eq. (1.35) are shown in Fig. 1.8. In the special case of m = 0,
Egs. (1.34) and (1.35) coincide with the known results for a single ER network, Egs.
(1.11) and (1.12) separately. It can be shown that when ¢ < ¢, we have “weak cou-
pling” represented by a second-order phase transition and when g, < ¢ < gmax We
have “strong coupling” and a first-order phase transition. When ¢ > gmax the system
become unstable due to the “very strong coupling” between the networks. In the last
case, removal of a single node in one network may lead to the collapse of the NON.

1.3.6 Resilience of Networks to Targeted Attacks

In real-world scenarios, initial system failures seldom occur randomly and can be the
result of targeted attacks on central nodes. Such attacks can also occur in less cen-
tral nodes in an effort to circumvent central node defences, e.g., heavily-connected
Internet hubs tend have more effective firewalls. Targeted attacks on high degree
nodes [4, 6, 7, 13, 42] or high betweenness nodes [62] in single networks dramatically
affect their robustness. To study the targeted attack problem on interdependent net-
works [13, 63—65] we assign a value W, (k;) to each node, which represents the prob-
ability that a node i with k; degree will be initially attacked and become inactive, i.e.,

k&
Woki) = ——, —00 < av < +00. (1.36)
ke

When o > 0, higher-degree nodes are more vulnerable to intentional attack. When
a < 0, higher-degree nodes are less vulnerable and have a lower probability of
failure. The case o = 0, W = %, represents the random removal of nodes [44].
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Fig. 1.8 The fraction of nodes in the giant component P, as a function of p for three different
examples discussed in Sects. 1.3.5.2—1.3.5.4. (a) For a tree-like fully (¢ = 1) interdependent NON
is shown P, as a function of p for k = 5 and several values of n. The results obtained using Eq.
(1.28). Note that increasing n from n = 2 yields a first order transition. (b) For a loop-like NON,
Py as a function of p for k = 6 and two values of g. The results obtained using Eq. (1.33). Note
that increasing ¢ yields a first order transition. (¢) For an RR network of ER networks, P, as a
function of p, for two different values of m when g = 0.5. The results are obtained using Eq. (1.35)
, and the number of networks, n, can be any number with the condition that any network in the NON
connects exactly to m other networks. Note that changing m from 2 to m > 2 changes the transition
from second order to first order (for ¢ = 0.5). Simulation results are in excellent agreement with
theory. After [47]

In the interdependent networks model with networks A and B described in Ref.
[44], a fraction 1 — p of the nodes from one network are removed with a probability
Wea (ki) [Eq. (1.36)]. The cascading failures are then the same as those described in
Ref. [44]. To analytically solve the targeted attack problem we must find an equivalent
network A’, such that the targeted attack problem on interdependent networks A and
B can be solved as a random attack problem on interdependent networks A’ and B.
We begin by finding the new degree distribution of network A after using Eq. (1.36)
to remove a 1 — p fraction of nodes but before the links of the remaining nodes that
connect to the removed nodes are removed. If A, (k) is the number of nodes with
degree k and P, (k) the new degree distribution of the remaining fraction p of nodes
in network A, then
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Ap (k)
P, (k) = —L—. 1.37
p (k) N (1.37)
When another node is removed, A, (k) changes as
A (k) = A, (k) Ppk? (1.38)
—1/N = - ) .
e P k(p))

where (k(p)®) = > P,(k)k“. In the limit of N — oo, Eq. (1.38) can be presented
in terms of a derivative of A, (k) with respect to p,

dA (k) _N P, (k)k™

—_. (1.39)
dp (k(p)*)
Differentiating Eq. (1.37) with respect to p and using Eq. (1.39), we obtain
d Py (k) Py (k)k”
—p—E—= =Pyk) — 2, (1.40)
dp (k(p)*)

which is exact for N — oo. In order to solve Eq. (1.40), we define a function
Golx) =2, P(k)xkn', and substitute f = G;l (p). We find by direct differentiation
that [46]

FE 1 1o
P, (k) = P(k = —Pl) ¥, 1.41
) (k) ()Ga(f) p (k) f (1.41)
fGL(f)
k(p)®) = L2 2 1.42
(k(p)) Gull) (1.42)

satisfy the Eq. (1.40). With this degree distribution, the generating function of the
nodes left in network A before removing the links to the removed nodes is

Gap(x) =D Pplk)xt = % > PRk (1.43)
k k

Because network A is randomly connected, the probability of a link emanating from

a remaining node is equal to the ratio of the number of links emanating from the

remaining nodes to the total number of links emanating from all the nodes of the

original network,

pN(k(p)) > P()kf*
N (k) 2 POk

p= (1.44)

where (k) is the average degree of the original network A, and (k(p)) is the average
degree of remaining nodes before the links that are disconnected are removed. Re-
moving the links that connect to the deleted nodes of a randomly connected network
is equivalent to randomly removing a (1 — p) fraction of links of the remaining
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Fig. 1.9 Dependence of p. on « for SF single and interdependent networks with average degree
(k) = 4 for targeted attacks described in Sect.3.5. The lower cut-off of the degree is m = 2. The
horizontal lines represent the upper and lower limits of p.. The black dashed line represents p. for
single SF network. After [63]

nodes. It is known [46] that the generating function of the remaining nodes after
random removal of (1 — p) fraction of links is equal to the original distribution of
the network with a new argument z = 1 — p + x p. Thus the generating function
of the new degree distribution of the nodes left in network A after their links to the
removed nodes are also removed is

Gac(x) =Gap(l — p+ px). (1.45)

The only difference in the cascading process under targeted attack from the case
under random attack is in the first stage when network A is attacked. If we find a
network A’ with generating function G a0(x) such that after a random attack with
a (1 — p) fraction of nodes removed the generating function of nodes left in A’ is
the same as G 4.(x), then the targeted attack problem on interdependent networks
A and B can be solved as a random attack problem on interdependent networks A’
and B. We find GAo(x) by solving the equation GAo(l — p 4 px) = Gye(x) and
from, Eq. (1.45),

G ao(x) = Gap(l + %(x — D). (1.46)

This formalism allows us to map the problem of cascading node failure in interdepen-
dent networks caused by an initial rargeted attack to the problem of random attack.
We note that the evolution of equations only depends on the generating function of
network A, and not on any information concerning how the two networks interact
with each other. Thus this approach can be applied to the study of other general
interdependent network models.

Finally we analyze the specific class of scale-free (SF) networks. Figure 1.9 shows
the critical thresholds p. of SF networks. Note that p. in interdependent SF networks
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is nonzero for the entire range of o because failure of the least-connected nodes in one
network may lead to failure of well-connected nodes in a second network, making
interdependent networks significantly more difficult to protect than a single network.
A significant role in the vulnerability to random attacks is also played by network
assortativity [66].

1.3.7 Interdependent Clustered Networks

Clustering quantifies the propensity of two neighbors of the same vertex to also
be neighbors of each other, forming triangle-shaped configurations in the network
[1, 10, 67]. Unlike random networks in which there is little or no clustering, real-
world networks exhibit significant clustering. Recent studies have shown that, for
single isolated networks, both bond percolation and site percolation have percolation
and epidemic thresholds that are higher than those in unclustered networks [68—73].
Here we review a mathematical framework for understanding how the robustness of
interdependent networks is affected by clustering within the network components.
We extend the percolation method developed by Newman [68] for single clustered
networks to coupled clustered networks. Huang et al. [65] found that interdepen-
dent networks that exhibit significant clustering are more vulnerable to random node
failure than networks with low significant clustering. They studied two networks, A
and B, each having the same number of nodes N. The N nodes in A and B have
bidirectional dependency links to each other, establishing a one-to-one correspon-
dence. Thus the functioning of a node in network A depends on the functioning of
the corresponding node in network B and vice versa. Each network is defined by a
joint degree distribution Py, (generating function Go(x, y) = Z?’,;o Py x*y") that
specifies the fraction of nodes connected to s single edges and ¢ triangles [68]. The
conventional degree of each node is thus k = s 4 2¢. The clustering coefficient c is

_ z‘vttPSf
> k(k — HPk)/2

c

(1.47)

1.3.7.1 Percolation on Interdependent Clustered Networks

To study how clustering within interdependent networks affects a system’s robust-
ness, we apply the interdependent networks framework [44]. In interdependent net-
works A and B, a fraction (1 — p) of nodes is first removed from network A. Then
the size of the giant components of networks A and B in each cascading failure step
is defined to be p1, p2, ..., pn, Which are calculated iteratively

Pn = Mn—lgA(Mn—l), n is odd, (1.48)
Pn = pngB(1n), N 1s even, '



26 D. Y. Kenett et al.
where 1o = p and pu, are intermediate variables that satisfy

pn = pgA(pn—1), nis odd, (1.49)
tn = pgB(Un—1), nis even. )

As interdependent networks A and B form a stable mutually-connected giant com-
ponent, n — oo and i, = p,—2, the fraction of nodes left in the giant component is
Poo- This system satisfies
x = pga(y),
1.50
y = pgx), (150

where the two unknown variables x and y can be used to calculate po, = xgp(x) =
vga (). Eliminating y from these equations, we obtain a single equation

x = pgalpg(x)]. (L.51)

The critical case (p = p.) emerges when both sides of this equation have equal
derivatives,
dga dgs

2
l=p dx [pr(x)]E(xNx:xc,p:pca (1.52)
which, together with Eq. (1.51), yields the solution for p, and the critical size of the
giant mutually-connected component, pso(pc) = XcgB(x¢).

Consider for example the case in which networks A and B have Poisson degree

distributions P/} and P2 for both s and ¢:

s 1
PA — g HATVA HAVA
st sl

o Ms .
PE = ¢ ”B%. (1.53)

Using techniques in Ref. [68] it is possible to show that in this case x = p(1 —ua),
y = p(1 — up), where
Up = vp = eltayT2y(=p)uala=D+vap? 3 —1) (154
ug = vg = elsx+2x(1—0uplp—D+vep>(F=1) '
If the two networks have the same clustering, 1 = o = pp and v = vp = 1B, Poo
is then )
Poo = p(l — eypoo_(ﬂ+2V>Poo)2' (155)

Here 1 and v are the average number of single links and triangles per node respec-
tively.

The giant component, p,, for interdependent clustered networks can thus be
obtained by solving Eq. (1.55). Note that when v = 0 we obtain from Eq. (1.55) the
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Fig. 1.10 Behavior of interdependent networks with different clustering coefficients. a Size of
mutually connected giant component as a function of cascading failure steps n. Results are for
¢ = 0.1, p = 0.64 (below p.), p = 0.66 (at p.) and p = 0.7 (above p.). Lines represent theory
(Egs. (1.48) and (1.49)) and dots are from simulations. Note that at p. there are large fluctuations. b
Size of giant component, po, in interdependent networks with both networks having clustering via
Poisson degree distributions of Eq. (1.53) and average degree (k) = pua+2va = 4,asafunctionof p.
Dashed lines are number of interactions (NOI) before cascading failure stops obtained by simulation
[74]. Inset: Green line is the critical threshold p. in interdependent networks as function of clustering
coefficient c. Red dashed line represents critical threshold of shuffled interdependent networks which
originally has clustering coefficient c. The shuffled networks have zero clustering and degree-degree
correlation, but has the same degree distribution as the original clustered networks. Symbols and
dashed lines represent simulation, solid curves represent theoretical results. After [65]

result obtained in Ref. [44] for random interdependent ER networks. Figure 1.10,
using numerical simulation, compares the size of the giant component after n stages
of cascading failure with the theoretical prediction of Eq. (1.48). When p = 0.7 and
p = 0.64, which are not near the critical threshold (p. = 0.6609), the agreement with
simulation is perfect. Below and near the critical threshold, the simulation initially
agrees with the theoretical prediction but then deviates for large n due to the random
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fluctuations of structure in different realizations [44]. By solving Eq. (1.55), we have
Poo as a function of p in Fig. 1.10 for a given average degree and several values
of clustering coefficients. The figure shows that the interdependent networks with
higher clustering become less robust than the networks with low clustering and the
same average degree k, i.e., p. is a monotonically increasing function of ¢ (see inset
of Fig. 1.10).

1.4 Application to Infrastructure

In interacting networks, the failure of nodes in one network generally leads to the fail-
ure of dependent nodes in other networks, which in turn may cause further damage
to the first network, leading to cascading failures and catastrophic consequences.
It is known, for example, that blackouts in various countries have been the re-
sult of cascading failures between interdependent systems such as communication
and power grid systems [75] (Fig. 1.11). Furthermore, different kinds of critical
infrastructures are also coupled together, e.g., systems of water and food supply,
communications, fuel, financial transactions, and power generation and transmis-
sion (Fig. 1.11). Modern technology has produced infrastructures that are becoming
increasingly interdependent, and understanding how robustness is affected by these
interdependencies is one of the major challenges faced when designing resilient
infrastructures [56, 58, 75, 76].

Blackouts are a demonstration of the important role played by the dependencies
between networks. For example, the 28 September 2003 blackout in Italy resulted in a
widespread failure of the railway network, healthcare systems, and financial services
and, in addition, severely influenced communication networks. The partial failure
of the communication system in turn further impaired the power grid management
system, thus producing a negative feedback on the power grid. This example empha-
sizes how interdependence can significantly magnify the damage in an interacting
network system [44, 45, 58, 75].

Thus understanding the coupling and interdependencies of networks will enable
us to design and implement future infrastructures that are more efficient and robust.

1.5 Application to Finance and Economics

Financial and economic networks are neither static nor independent of one another.
As global economic convergence progresses, countries increasingly depend on each
other through such links as trade relations, foreign direct investments, and flow of
funds in international capital markets. Economic systems such as real estate markets,
bank borrowing and lending operations, and foreign exchange trading are intercon-
nected and constantly affect each other. As economic entities and financial markets
become increasingly interconnected, a shock in a financial network can provoke
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Fig. 1.11 Left: Power grid and Internet dependence in Italy. Analysis of this system can explain the
cascade failure that led to the 2003 blackout. Right: Inter-dependence of fundamental infrastructures.
A further example is a recent event in Cyprus (July 2011), where an explosion caused a failure of
the electrical power lines, which in turn caused the countries water supply to shut down, due to the
strong coupling between these two networks

significant cascading failures throughout the global economic system. Based on the
success of complex networks in modeling interconnected systems, applying complex
network theory to study economic systems has been given much attention [77-84].

The strong connectivity in financial and economic networks allows catastrophic
cascading node failure to occur whenever the system experiences a shock, especially
if the shocked nodes are hubs or are highly central in the network [7, 63, 76, 85, 86].
To thus minimize systemic risk, financial and economic networks should be designed
to be robust to external shocks.

In the wake of the recent global financial crisis, increased attention has been given
to the study of the dynamics of economic systems and to systemic risk in particular.
The widespread impact of the current EU sovereign debt crisis and the 2008 world
financial crisis show that, as economic systems become increasingly interconnected,
local exogenous or endogenous shocks can provoke global cascading system failure
that is difficult to reverse and that can cripple the system for a prolonged period of
time. Thus policy makers are compelled to create and implement safety measures
that prevent cascading system failures or that soften their systemic impact.

To study the systemic risk to financial institutions, we analyze a coupled (bipartite)
bank-asset network in which a link between a bank and a bank asset exists when the
bank has the asset on its balance sheet. Recently, Huang et al. [87] presented a
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model that focuses on real estate assets to examine banking network dependencies
on real estate markets. The model captures the effect of the 2008 real estate market
failure on the US banking network. Between 2000 and 2007, 27 banks failed in
the US, but between 2008 and early 2013 the number rose to over 470. The model
proposes a cascading failure algorithm to describe the risk propagation process during
crises. This methodology was empirically tested with balance sheet data from US
commercial banks for the year 2007, and model predictions are compared with the
actual failed banks in the US after 2007 as reported by the Federal Deposit Insurance
Corporation (FDIC). The model identifies a significant portion of the actual failed
banks, and the results suggest that this methodology could be useful for systemic
risk stress testing for financial systems. The model also indicates that commercial
rather than residential real estate markets were the major culprits for the failure of
over 350 US commercial banks during the period 2008-2011.

There are two main channels of risk contagion in the banking system, (i) di-
rect interbank liability linkages between financial institutions and (ii) contagion via
changes in bank asset values. The former, which has been given extensive empirical
and theoretical study [88-92], focuses on the dynamics of loss propagation via the
complex network of direct counterpart exposures following an initial default. The
latter, based on bank financial statements and financial ratio analysis, has received
scant attention. A financial shock that contributes to the bankruptcy of a bank in
a complex network will cause the bank to sell its assets. If the financial market’s
ability to absorb these sales is less than perfect, the market prices of the assets that
the bankrupted bank sells will decrease. Other banks that own similar assets could
also fail because of loss in asset value and increased inability to meet liability oblig-
ations. This imposes further downward pressure on asset values and contributes to
further asset devaluation in the market. Damage in the banking network thus con-
tinues to spread, and the result is a cascading of risk propagation throughout the
system [93, 94].

Using this coupled bank-asset network model, we can test the influence of each
particular asset or group of assets on the overall financial system. If the value of
agricultural assets drop by 20 %, we can determine which banks are vulnerable to
failure and offer policy suggestions, e.g., requiring mandatory reduction in exposure
to agricultural loans or closely monitoring the exposed bank, to prevent such failure.

The model shows that sharp transitions can occur in the coupled bank-asset system
and that the network can switch between two distinct regions, stable and unstable,
which means that the banking system can either survive and be healthy or collapse.
Because it is important that policy makers keep the world economic system in the
stable region, we suggest that our model for systemic risk propagation might also
be applicable to other complex financial systems, e.g., to model how sovereign debt
value deterioration affects the global banking system or how the depreciation or
appreciation of certain currencies impact the world economy.



1 Network of Interdependent Networks 31

1.5.1 Cascading Failures in the US Banking System

During the recent financial crisis, 371 US commercial banks failed between 1 January
2008 and 1 July 2011. The Failed Bank List from the Federal Deposit Insurance
Corporation (FBL-FDIC) records the names of failed banks and the dates of their
failure. We use this list as an experimental benchmark for our model. The dataset used
as input to the model is the US Commercial Banks Balance Sheet Data (CBBSD)
from Wharton Research Data Services, which contains the amount of assets in each
category that the US commercial banks have on their balance sheets.

To build a sound bank-asset coupled system network and systemic risk cascad-
ing failure model, it is important to study the properties of the failed banks and
compare them with the properties of the banks that survive. Thus the asset portfo-
lios of commercial banks containing asset categories such as commercial loans or
residential mortgages are carefully examined. The banks are modeled according to
how they construct their asset portfolios (see the upper panel of Fig. 1.12). For each
bank, the CBBSD contains 13 different non-overlapping asset categories, e.g., bank
i owns amounts B, o, B; 1, ..., B 12 of each asset, respectively. The total asset value
B; and total liability value L; of a bank i are obtained from CBBSD dataset. The
weight of each asset m in the overall asset portfolio of a bank i is then defined as
wim = Bin/Bi. From the perspective of the asset categories, we define the rotal
market value of an asset m as A, = >_; B; »,. Thus the market share of bank i in
assetmis S; m = Bim/Anm.

Studying the properties of failed banks between 2008 and 2011 reveals that, for
certain assets, asset weight distributions for all banks differ from the asset weight
distributions for failed banks. Failed banks cluster in a region heavily weighted with
construction and development loans and loans secured by nonfarm nonresidential
properties while having fewer agricultural loans in their asset portfolios than the
banks that survived. These results confirm the nature of the most recent financial
crisis of 2008-2011 in which bank failures were largely caused by real estate-based
loans, including loans for construction and land development and loans secured by
nonfarm nonresidential properties [95]. In this kind of financial crisis, banks with
greater agricultural loan assets are more financially robust [96]. Failed banks also
tend to have lower equity-to-asset ratios, i.e., higher leverage ratios than the banks
that survived during the financial crisis of 2008-2011 [97].

A financial crisis usually starts with the bursting of an economic or financial
bubble. For example, with the bursting of the dot-com bubble, the technology-heavy
NASDAQ Composite index lost 66 % of its value, plunging from 5048 in 10 March
2000 to 1720 in 2 April 2001. In our current model, the shock in the bank-asset
coupled system originated with the real estate bubble burst. The two categories
of real estate assets most relevant to the failure of commercial banks during the
2008-2011 financial crisis were construction and land development loans and loans
secured by nonfarm and non-residential properties. Although it is widely believed
that the financial crisis was caused by residential real estate assets, the coupled
bank-asset network model does not find evidence that loans secured by 1-4 family
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Fig. 1.12 Bank-asset coupled network model with banks as one node type and assets as the other
node type. Link between a bank and an asset exists if the bank has the asset on its balance sheet.
Upper panel: illustration of bank-node and asset-node. B; ,, is the amount of asset m that bank i
owns. Thus, a bank i with total asset value B; has w; ,, fraction of its total asset value in asset m. s; ,,
is the fraction of asset m that the bank holds out. Lower panel: illustration of the cascading failure
process. The rectangles represent the assets and the circles represent the banks. From left to right,
initially, an asset suffers loss in value which causes all the related banks’ total assets to shrink. When
a bank’s remaining asset value is below certain threshold (e.g., the bank’s total liability), the bank
fails. Failure of the bank elicits disposal of bank assets which further affects the market value of the
assets. This adversely affects other banks that hold this asset and the total value of their assets may
drop below the threshold which may result in further bank failures. This cascading failure process
propagates back and forth between banks and assets until no more banks fail. After [87]

bank

H N

residential properties were responsible for the commercial bank failures. This result
is consistent with the conclusion of Ref. [95]: that the cause of commercial bank
failure between 2008 and 2011 were commercial real estate-based loans rather than
residential mortgages. For more details regarding the coupled bank-asset model see
Ref. [87].

1.6 Summary and Outlook

In summary, this paper presents the recently-introduced mathematical framework
of a Network of Networks (NON). In interacting networks, when a node in one
network fails it usually causes dependent nodes in other networks to fail which,
in turn, may cause further damage in the first network and result in a cascade of
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failures with catastrophic consequences. Our analytical framework enables us to fol-
low the dynamic process of the cascading failures step-by-step and to derive steady
state solutions. Interdependent networks appear in all aspects of life, nature, and
technology. Examples include (i) transportation systems such as railway networks,
airline networks, and other transportation systems [53, 98]; (ii) the human body as
studied by physiology, including such examples of interdependent NON systems
as the cardiovascular system, the respiratory system, the brain neuron system, and
the nervous system [99]); (iii) protein function as studied by biology, treating pro-
tein interaction—the many proteins involved in numerous functions—as a system
of interacting networks; (iv) the interdependent networks of banks, insurance com-
panies, and business firms as studied by economics; (v) species interactions and the
robustness of interaction networks to species loss as studied by ecology, in which
it is is essential to understand the effects of species decline and extinction [100];
and (vi) the topology of statistical relationships between distinct climatologically
variables across the world as studied by climatology [101].

Thus far only a few real-world interdependent systems have been thoroughly an-
alyzed [53, 98]. We expect our work to provide insights leading further analysis of
real data on interdependent networks. The benchmark models presented here can be
used to study the structural, functional, and robustness properties of interdependent
networks. Because in real-world NONs individual networks are not randomly con-
nected and their interdependent nodes are not selected at random, it is crucial that
we understand the many types of correlation that exist in real-world systems and that
we further develop the theoretical tools to take them into account. Further studies
of interdependent networks should focus on (i) an analysis of real data from many
different interdependent systems and (ii) the development of mathematical tools for
studying real-world interdependent systems. Many real networks are embedded in
space, and the spatial constraints strongly affect their properties [20, 102, 103].
There is a need to understand how these spatial constraints influence the robustness
properties of interdependent networks [98]. Other properties that influence the ro-
bustness of single networks, such as the dynamic nature of the configuration in which
links or nodes appear and disappear and the directed nature of some links, as well as
problems associated with degree-degree correlations and clustering, should be also
addressed in future studies of coupled network systems. An additional critical issue
is the improvement of the robustness of interdependent infrastructures. Our studies
thus far shown that there are three methods of achieving this goal (i) by increasing
the fraction of autonomous nodes [45], (ii) by designing dependency links such that
they connect the nodes with similar degrees [44, 53], and (iii) by protecting the high-
degree nodes against attack [33]. Achieving this goal will provide greater safety and
stability in today’s socio-techno world.

Networks dominate every aspect of present-day living. The world has become
a global village that is steadily shrinking as the ways that human beings interact
and connect multiply. Understanding these connections in terms of interdependent
networks of networks will enable us to better design, organize, and maintain the
future of our socio-techno-economic world.
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Chapter 2
Avalanches in Multiplex and Interdependent
Networks

G. J. Baxter, S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes

Abstract Many real-world complex systems are represented not by single networks
but rather by sets of interdependent networks. In these specific networks, vertices
in each network mutually depend on vertices in other networks. In the simplest rep-
resentative case, interdependent networks are equivalent to the so-called multiplex
networks containing vertices of one sort but several kinds of edges. Connectivity
properties of these networks and their robustness against damage differ sharply from
ordinary networks. Connected components in ordinary networks are naturally gener-
alized to viable clusters in multiplex networks whose vertices are connected by paths
passing over each individual sort of their edges. We examine the robustness of the
giant viable cluster to random damage. We show that random damage to these sys-
tems can lead to the avalanche collapse of the viable cluster, and that this collapse is a
hybrid phase transition combining a discontinuity and the critical singularity. For this
transition we identify latent critical clusters associated with the avalanches triggered
by aremoval of single vertices. Divergence of their mean size signals the approach to
the hybrid phase transition from one side, while there are no critical precursors on the
other side. We find that this discontinuous transition occurs in scale-free multiplex
networks whenever the mean degree of at least one of the interdependent networks
does not diverge.

2.1 Introduction

The network representation of complex systems is successfully exploited in various
sciences [1]. Numerous real-world systems, however, cannot be represented by a
single network. Instead, they consist of several interacting networks. In simple sit-
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Fig. 2.1 a Two interdependent networks. A vertex in one network has a mutual dependence,
represented by grey vertical lines, on zero or one vertex in the other network. b This can be reduced
to a multiplex network by merging the mutually dependent vertices, and representing the edges of
each network by different kinds or colours of edges

uations, these interactions can be represented by interlinks connecting vertices in
different networks [2, 3]. When these interconnections and edges in all these net-
works are identical, then it is possible to describe the structural organization of this
set of networks and the statistics of its connected components similarly to ordinary
networks [4]. Here we consider significantly more interesting systems in which ver-
tices in each network mutually depend on vertices in other networks in the sense that
the removal (or, generally, change of the state) of a vertex in one network immedi-
ately leads to the removal (or change of the state) of its neighbour in another network.
These interdependent networks describe numerous complex systems, both natural
[5], and man-made [6, 7]. Importantly, the interdependencies can make a system
more fragile: damage to one element can lead to avalanches of failures throughout
the system [8, 9]. Recent theoretical investigations of interdependent networks con-
sisting of two [10] or more [11] subnetworks have shown that small initial failures
can cascade back and forth through the networks, leading, at some critical point, to
the collapse of the whole system in a discontinuous phase transition.

In the original formulation of the problem [10] the researchers focused on the
final result of the removal of a finite 1 — p fraction of vertices from one of the
interdependent networks. This removal leads to a complicated infinite (for infinite
networks) cascade in back-and-forth damage propagation. Below a critical point p.,
this cascade of failures eliminates the interdependent networks completely, while
above the transition, the cascade sweeps out a finite fraction of the networks. Son
etal. [12] showed the original approach of studying two interdependent networks can
be simplified, if one uses the equivalence of a wide class of interdependent networks
to a multiplex network problem. They proposed a simple mapping from the model
used in [10] in which a vertex in one network has a mutual dependence on no more
than one vertex in the other network, to a multiplex network with one kind of vertex
but two kinds of edges. The mapping is achieved by simply merging the mutually
dependent vertices from the two networks. Figure 2.1 explains this mapping. In graph
theory, the multiplex networks are also called graphs with coloured edges.

As we will see, the phase transition in this system is discontinuous, and hybrid
in nature, in contrast to ordinary percolation that occurs as a continuous phase tran-
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sition. The difference between hybrid and continuous phase transitions is that the
hybrid transition has a discontinuity like a first-order transition, but exhibits critical
behavior near the transition, like a second-order transition. Moreover, the hybrid
transition is asymmetric: critical correlations appear on only one side of the critical
point, whereas they appear on both sides of a continuous phase transition. Another
intriguing phenomenon appearing at the critical point of the hybrid transition is scale-
invariant avalanches that are absent in a continuous phase transition. Each avalanche
is triggered by removal of a single vertex and results in the elimination of multiple
vertices. To highlight this principal difference from continuous phase transitions, let
us compare with, for example, the continuous percolation phase transition. This is
a second order phase transition in an equilibrium system. Percolation can be repre-
sented as the removal of uniformly randomly chosen vertices. Removal of a vertex
can only split a cluster (connected component) into smaller clusters but, it cannot
trigger an avalanche.

In this chapter we describe these discontinuous phase transitions. Our aim is to
expand and deepen the understanding of the nature of the phase transition and the
avalanche collapse in interdependent and multiplex networks. This understanding
has been lacking until recently. We investigate the damage caused by the removal of
a single node chosen at random from an infinite network. The removal of a single
vertex causes an avalanche of damage (so named to distinguish it from the cascades of
failures mentioned above, which are caused by the sudden removal of a finite fraction
of the vertices in the network). Our method allows the identification of individual
avalanches and the study of their structure.

Why is the problem of the avalanches triggered by the removal of a single vertex
principally important and attractive for researchers? The reason is that the statistics
of these individual avalanches reveals the critical divergence at the phase transition
point. To understand a phase transition, it is not sufficient to obtain an equation
showing the emergence of a non-zero order parameter. For continuous and hybrid
transitions, one should also find the divergence of susceptibility associated with this
transition, and also describe critical correlations. It is avalanches that are responsible
for critical correlations. The mean size of the individual avalanches triggered by a
randomly removed vertex plays a role of susceptibility and diverges at the critical
point manifesting the hybrid transition. The second reason, with a practical perspec-
tive, is that knowledge of the organization of individual avalanches enables one to
control them and increase robustness of the system.

In the remainder of this chapter, then, we will generally consider multiplex net-
works, but it should be noted that the results are identical to those for two interdepen-
dent networks as defined above, and may be qualitatively extended to interdependent
networks in general. The results presented in this chapter are based on results obtained
in our paper [13].

This chapter is organised as follows. In Sect. 2.2 we define the multiplex network
model, and give an algorithm for identifying the viable clusters. In Sect. 2.3 we derive
basic equations for the size of the giant viable cluster, and show how the location and
scaling of the transition may be obtained. In Sect.2.4 we analyse the structure and
statistics of the avalanches associated with the transition. These results are extended
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(a)

Fig. 2.2 a In an ordinary network, two vertices i and j belong to the same cluster if there is a path
connecting them. b In a multiplex network, vertices i and j belong to the same viable cluster if
there is a path connecting them for every kind of edge, following only edges of that kind. In the
example shown, there are m = 3 kinds of edges. Vertices i and j are said to be 3-connected

to the special case of scale-free networks in Sect.2.5. Results are summarised in
Sect.2.6.

2.2 Viable Clusters and Algorithm

In ordinary networks, two vertices are connected if there is a path between the ver-
tices. Based on this notion, one introduces clusters of connected vertices and studies
emergence of the giant connected component of a graph. In multiplex network, this
notion of connection between vertices must be modified. We consider a set of ver-
tices connected by m different types of edges. The connections are essential to the
function of each site, so that a vertex is only viable if it maintains connections of
every type to other viable vertices. A viable cluster is defined as follows: For every
kind of edge, and for any two vertices i and j within a viable cluster, there must be
a path from i to j following only edges of that kind. In other words, in multiplex
network with m types of edges, two vertices are m-connected if for every type of
edges there is a path between these vertices. Based on this definition, a viable cluster
is then a cluster of m-connected vertices. Figure 2.2 explains the viable clusters. In
a large system, we wish to find when there is a giant cluster of viable vertices. From
this definition of viable clusters, it follows that any giant viable cluster is a subgraph
of the giant connected component of each of the m networks formed by considering
only a single type of edge in the multiplex network. The absence of, at least, any one
giant connected component means the absence of the giant viable cluster. Note that
viable clusters are simple generalization of clusters of connected vertices in ordinary
networks with a single type of edges. The important difference is that in a multiplex
networks we demand that vertices in a viable cluster must be connected by every
type of edges (m-connected). It is this additional condition that leads to discontinu-
ous emergence of the giant viable cluster as a result of a hybrid phase transition in
contrast to a continuous phase transition in ordinary percolation.

The viable clusters of any size may be identified by an iterative pruning algorithm,
based on the principles of percolation. Here we give such an algorithm for identifying
viable clusters that may be implemented, for example, in a computer program for
investigations of the resilience of real-world multiplex networks.
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() b) s (c) @ s (e)
3

Fig.2.3 Anexample demonstrating the algorithm for identifying a viable cluster in a small network
with two kinds of edges. a In the original network, in step (i) we select vertex O as the test vertex.
b In step (ii) we identify the clusters of vertices connected to O by each kind of edge. ¢ Step (iii):
the intersection of these two clusters forms becomes the new candidate set for the viable cluster
to which O belongs. d We repeat steps (ii) using only vertices from the candidate set shown in
c. Repeating step (iii), we find the overlap between the two clusters from d, shown in e. Further
repetition of steps (ii) and (iii) does not change this cluster, meaning that the cluster consisting of
vertices 0, 1, 3 and 4 is a viable cluster

Fig. 2.4 A small network with two kinds of edges (left). Applying the algorithm described in the
text, non-viable vertices are removed, leaving two viable clusters (right)

Consider a multiplex network, with vertices i = 1,2, ..., N connected by m
kinds of edges labeled s = a, b, .. .. Viable clusters in any multiplex network may
be identified by the following algorithm.

(i) Choose a test vertex i at random from the network.

(i1) For each kind of edge s, compile a list of vertices that can be reached from i by
following only edges of type s.

(iii) The intersection of these m lists forms a new candidate set for the viable cluster
containing i.

(iv) Repeat steps (ii) and (iii) but traversing only the current candidate set. When
the candidate set no longer changes, it is either a viable cluster, or contains only
vertex i.

(v) To find further viable clusters, remove the viable cluster of i from the network
(cutting any edges) and repeat steps (i)—(iv) on the remaining network beginning
from a new test vertex.

Repeated application of this procedure will identify every viable cluster in the
network. A simple example of the use of the algorithm to identify a small viable
cluster is given in Fig. 2.3. The results of applying the algorithm to a graph containing
two finite viable clusters is illustrated in Fig.2.4.
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Fig. 2.5 Diagrammatic representation of Eq.(2.1) in a system of two interdependent networks a
and b. The probability X, represented by a shaded infinity symbol can be written recursively as a
sum of second-neighbor probabilities. Open infinity symbols represent the equivalent probability X
for network b, which obeys a similar recursive equation. The filled circle represents the probability
p that the vertex remains in the network

2.3 Hybrid Transition in Multiplex Networks

In this section we will study collapse of giant viable cluster in multiplex networks
damaged by random removal of vertices. We will use the fraction p of vertices
remaining undamaged as a control variable, however other control variables such as
mean degree could also be used. As we will show below, in uncorrelated random
networks the giant viable cluster collapses at a critical undamaged fraction p. in
a discontinuous hybrid transition, similar to that seen in the k-core or bootstrap
percolation [14, 15].

Hybrid transitions, like those which occurs in the collapse of multiplex and inter-
dependent networks, and associated avalanches, also occur in a wide variety of other
systems. For example, a jump in activity in neural networks [16], population collapse
in biological systems [17, 18], jamming and rigidity transitions and glassy dynamics
[19, 20], and magnetic systems [21].

Letus construct the basic equations which allow us to analyse the hybrid transition.
Consider the case of sparse uncorrelated networks, which are locally tree-like in
the infinite size limit N — oo. In order to find the giant viable cluster, we take
advantage of the locally tree-like property of the network, and define X, with the
index s € {a, b, ...}, to be the probability that, on following an arbitrarily chosen
edge of type s, we encounter the root of an infinite sub-tree formed solely from type
s edges, whose vertices are also each connected to at least one infinite subtree of
every other type. We call this a type s infinite subtree. This is illustrated in Fig. 2.5,
which shows the probability X, as the sum of second-level probabilities in terms of
X, and Xj,. The vector {X,, Xp, ...} plays the role of the order parameter. Writing
this graphical representation in equation form, using the joint degree distribution
P(qa, qp, - - .), we arrive at the self consistency equations

Xo=p D B P gp .. )1 ==X [][1 - (1 = xp*]

Qa’th--<-qs> I s

=Y, (Xy, Xp,...). (2.1)

The multiplier p in Eq. (2.1) is the probability that the vertex remains in the network.
The term (g5 /{qs)) P(qa, qp, - - .) gives the probability that on following an arbitrary
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(a) (b)

Jele = OO
>1 . =21 oo->—@ =1

Fig. 2.6 Viable and critical viable vertices for two interdependent networks. a A vertex is in the
giant viable cluster if it has connections of both kinds to giant viable subtrees, represented by infinity
symbols, which occur with probabilities X, (shaded) or X}, (open)—see text. b A critical viable
vertex of type a has exactly one connection to a giant sub-tree of type a

edge of type s, we find a vertex with degrees q,, gp, ..., while [ — (1—X,)%] is
the probability that this vertex has at least one edge of type a # s leading to the
root of an infinite sub-tree of type a edges. This becomes [1 — (1 —X)% '] when
a = s. The argument leading to Eq. (2.1) is similar to that used in [12]. Later it will
be useful to write the right-hand side of this equation as ¥, (X,, Xp, .. .).

A vertex is then in the giant viable cluster if it has at least one edge of every type
s leading to an infinite type s sub-tree (probability X), as shown in Fig.2.6a.

S=p D P@aa-.) [] [1-0-X0%], 22)

Gaqb;--- s=a,b,...

which is equal to the relative size of the giant viable cluster of the damaged network.
A hybrid transition appears at the point where ¥, (X,, Xp, ...) first meets X at
a non-zero value, for all s. This occurs when

det[J—11=0 (2.3)

where I is the unit matrix and J is the Jacobian matrix J,, = ¥ /9 X,. The critical
point p. is found by solving Egs. (2.1) and (2.3) together. To find the scaling near

the critical point, we expand Eq. (2.1) about the critical value X S(C). We find that
X; — X9 o (p— pe)'/2. (24)

This square-root scaling is the typical behaviour of the order parameter near a hybrid
transition. In the next section we will show that this results from avalanches which
diverge in size near the transition. The scaling of the size of the giant viable cluster,
S, immediately follows

S —Se o (p = po)' /2. (2.5)

A similar result is found for other control parameters, for example, mean degrees of
the vertices.
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Fig. 2.7 A critical cluster. Removal of any of the shown viable vertices will result in the removal
of all downstream critical viable vertices. Vertices 2-5 are critical vertices. Removal of the vertex
labeled 1 will result in all of the shown vertices being removed (becoming non-viable). Removal
of vertex 2 results in the removal of vertices 3, 4, and 5 as well, while removal of vertex 4 results
only in vertex 5 also being removed. As before, infinity symbols represent connections to infinite
viable subtrees. Other connections to non-viable vertices or finite viable clusters are not shown

2.4 Structure of Avalanches

Having established the behaviour of the order parameter, X, and the location of
the hybrid transition, we now turn to examining avalanches, in order to understand
the nature of the transition more completely. We focus on the case of two types of
edges. Consider a viable vertex that has exactly one edge of type a leading to a type
a infinite subtree, and at least one edge of type b leading to a type b infinite subtree.
We call this a critical vertex of type a. It is illustrated in Fig.2.6b. Critical vertices
of type a will drop out of the viable cluster if they lose their single link to a type
a infinite subtree. A vertex may have outgoing edges of this kind, so that removal
of this vertex from the giant viable cluster also requires the removal of the critical
vertices which depend on it. This is the way that damage propagates in the system.
The removal of a single vertex can result in an avalanche of removals of critical
vertices from the giant viable cluster. To represent this process visually, we draw a
diagram of viable vertices and the edges between them. We mark the special critical
edges, that critical viable vertices depend on, with an arrow leading to the critical
vertex. An avalanche can only transmit in the direction of the arrows. For example,
in Fig. 2.7, removal of the vertex labeled 1 removes the essential edge of the critical
vertex 2 which thus becomes non-viable. Removal of vertex 2 causes the removal of
further critical vertices 3 and 4, and the removal of 4 then requires the removal of
5. Thus critical vertices form critical clusters. At the head of each critical cluster is
a ‘keystone vertex’ (e.g. vertex 1 in the figure) whose removal would result in the
removal of the entire cluster. Graphically, upon removal of a vertex, we remove all
vertices found by following the arrowed edges, which constitutes an avalanche. Note
that an avalanche is a branching process. Removing a vertex may lead to avalanches
along several edges emanating from the vertex (for example, in Fig.2.7, removing
vertex 2 leads to avalanches along two edges).As we approach the critical point from
above, the avalanches increase in size. The mean size of avalanches triggered by a
randomly removed vertex finally diverges in size at the critical point, which is the
cause of the discontinuity in the size of the giant viable cluster, which collapses to
zero. These avalanches are thus an inherent part of a hybrid transition.
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Fig. 2.8 Symbols used in
the diagrams to represent /\ /D /OO
key probabilities. Solid lines
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We can use a generating function approach, similar to that developed by Newman
[4] to calculate the sizes and structure of avalanches. There are three possibilities
when following an arbitrarily chosen edge of a given type: (i) with probability X
we encounter a type s infinite subtree (ii) with probability R; we encounter a vertex
which has a connection to an infinite subtree of the opposite type, but none of the
same type. Such a vertex is part of the giant viable cluster if the parent vertex was; or
(ii1) with probability 1 — X; — Ry, we encounter a vertex which has no connections
to infinite subtrees of either kind. These probabilities are represented graphically in
Fig.2.8. We will use these symbols in subsequent diagrams.

The probability R, obeys

Ra = Z (;m) P(qa, qp)(1—Xg)%~! [1-(1—Xp)%] (2.6)

4a  4b

and similarly for Rj. This equation is represented graphically in Fig.2.9.

The generating function for the size of an avalanche triggered by removing an
arbitrary type a edge which does not lead to an infinite type a subtree can be found
by considering the terms represented in Fig. 2.10. The first term represents the proba-
bility, upon following an edge of type a (solid lines) of reaching a “dead end”, that is,
a vertex with no connection to a type b subtree (and hence is not a viable vertex). In
other words, a critical cluster of size 0. The second term represents a critical cluster of
size 1: the vertex encountered has a connection to the type b infinite subtree (infinity
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Fig. 2.10 Representation of the generating function H, (x, y) (right-hand side of Eq.2.8) for the
size of a critical cluster encountered upon following an edge of type a

symbol), but no further connections to viable vertices. Subsequent terms represent
recursive probabilities that the vertex encountered has 1 (third and fourth terms), 2
(fifth, sixth, seventh terms) or more connections to further potential critical clusters.
The variable u (for type a edges) or v (type b) are assigned to each such edge. The
equation for this generating function can be written in terms of functions F(x, y)
and Fj(x, y) which we define as follows:

qb
q - b\ yr ap—r
Fax.y) =D F“}P(qa,qb)x% > (r)be% (2.7)
da qb a r=1

and similarly for Fj(x, y), by exchanging all subscripts a and b. While the function
F,(x, y) does not necessarily represent a physical quantity or probability, we can see
that it incorporates the probability of encountering a vertex with at least one child
edge of type b leading to a giant viable subtree (probability X}) upon following an
edge of type a. All other outgoing edges then contribute a factor x (for type a edges)
or y (type b).

In terms of these functions, we can write the generating function for the number
of critical vertices encountered upon following an arbitrary edge of type a (that is,
the size of the resulting avalanche if this edge is removed) as

H(u,vy=1—X,— R, +uF,[H,(u,v), Hy(u,v)] (2.8)

and similarly for Hp(u, v), the corresponding generating function for the size of the
avalanche caused by removing a type b edge:

Hp(u,v) =1—Xp — Rp +vFp[Hy(u,v), Hp(u, v)]. (2.9)
These recursive equations can be understood by noting that H,(0,v)

= 1 — X, — R, is the probability that an arbitrarily chosen edge leads to a vertex
outside the viable cluster. Here u and v are auxiliary variables. Following through a
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critical cluster, a factor u appears for each arrowed edge of type a, and v for each
arrowed edge of type b. For example, the critical cluster illustrated in Fig.2.7 con-
tributes a factor u?v?. The mean number of critical vertices reached upon following
an edge of type a, 1.e. the mean size of the resulting avalanche if this edge is removed,
is given by 9, H,(1, 1) + 9, H,(1, 1), where 9, signifies the partial derivative with
respect to u.

Unbounded avalanches emerge at the point where 9, H,(1, 1) [or d,Hp(1, 1)]
diverges. Taking derivatives of Eq. (2.8),

0uHy(u,v) = Fa[Hy, Hp] + u {auHaaxFa[Haa Hp] + 8qu8yFa[Ha, Hb]}
(2.10)

WH,(u,v) =u {avHaaxFa [Ha, Hp] + 0y Hp0dy Fa[Hy, Hb]} (2.11)
with similar equations for d, Hy(u, v) and 9, H,(u, v). Some rearranging gives

Ry + 9, Hp(1, 1)ayFa(1 — Xa, 1 = Xp)

0,H,(1,1) =
wHa(l, 1) 1 =8, Fa(1 — Xg, 1 — Xp)

(2.12)

and
0,H,(1, 1o Fp(1 — X,;,1 — X
BvHa(l,l): u a( )x b( a b) (213)
1= 3, Fp(1 — Xgu 1 — Xp)

where we have used that H,(1,1) =1 — X, and F,(1 — X;,1 — Xp) = R,.
From Egs. (2.1) and (2.7),

d
axFa(l - Xaa 1 - Xb) = lpa(Xaa Xb) (2-14)
0X,
oy Fi1(l — Xq, 1 — Xp) = \da) L‘Pb(Xa, Xbp), (2.15)
(qp) 0Xq

and similarly for d, F;, and d, F;, which when substituted into (2.12) and (2.13)
gives
Rl — 5% ¥ (Xa, Xp)]

ouH,(1,1) = detl) — 11 . (2.16)

We see that the denominator exactly matches the left-hand side of Eq. (2.3), meaning
that the mean size of avalanches triggered by random removal of vertices diverges
exactly at the point of the hybrid transition.

The mean size of the avalanche triggered by the removal of arandomly chosen ver-
tex can be related to the susceptibility of the giant viable cluster to random damage,
similar to the susceptibility for ordinary percolation. In the latter case, the suscepti-
bility is defined as the mean size of the cluster to which a randomly chosen vertex
belongs [22]. Due to the similarity of Eq.(2.4) to the k-core version [23], we can
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expect that, at the critical point p = p,, the size distribution of avalanches triggered
by randomly removed vertices obeys a power law p(s) o« s~ with o = 3/2.

2.5 Avalanches in Scale-Free Networks

In ordinary and k-core percolation, networks with degree distributions that are asymp-
totically power laws P(q) ~ ¢~ may exhibit qualitatively different transitions
from those described above, especially when y < 3. To investigate such effects
in the giant viable cluster, we consider two uncorrelated scale-free networks, so
P(qa,q») = P.(qa) Pr(gp), having powerlaw degree distributions with fixed mini-
mum degree go = 1 (then (q) =~ (y — 1)qo/(y — 2)), so that

Ps(qs) = ¢(ys)q ™" (2.17)

where s takes the values a or b, and £ (y) is the Riemann zeta function. As before,
we apply random damage to the system as a whole as a control parameter, so that
vertices survive with probability p.

First consider the case that at least one of the degree distribution exponents y,
and y;, is greater than three. The giant viable cluster is necessarily a subgraph of
the overlap between the giant-components of each graph. We know from ordinary
percolation that for y > 3, the giant component appears at a finite value of p [24]. It
follows that the giant viable cluster, also, cannot appear from p = 0; there must be a
finite threshold p., (with a hybrid transition). This is true even if one of the networks
has y; < 3.

The more interesting case is when y,, y» < 3, when the percolation threshold is
zero for each network when considered separately. Let us write y, = 2 4+ §, and
¥p = 2+ 8p, and examine the behavior for small §, and 5;. We proceed by assuming
that in this situation, for p near p., Eq. (2.1) have a solution with small X,, X} < 1.
Writing only leading orders of X, and X}, and 6, and &, we find that
72

lpa(Xaa Xb) = p65b

xbe (X - x,™) (2.18)

and similarly for ¥, (X, Xp). The location of the critical point is found from Eq.
(2.3) which becomes

2

T X, X

S + 8 = pzxgaxgb (X_b + X—b) . (2.19)
a

Substituting Eq. (2.18) into (2.1) and solving with Eq. (2.19), we find X and S at p..
We find in general that the hybrid transition persists for §,, §, # 0, thatis p. > 0, but

that the height of the discontinuity XAEC) at the hybrid transition becomes extremely
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small for small § small. In experiments or simulations, this could be misinterpreted
as evidence of a continuous phase transition.

To illustrate the results in this case, we describe two representative examples.
First, we fix §; at some small value, and examine the limit §, — 0, so that §, < Jp.
That is, y, — 2 while y;, > 2. We find that the location, p., of the transition tends
to a finite value as §, — 0, proportional to the larger &,

_ [ A2y g (2.20)
Pe=NFa=—prey " '

where f & 0.236. The values of X, and X}, become very small at the critical point,
X, = f1% and X, ~ 1.5X;, meaning the size of the giant viable cluster at the
critical point is exponentially small

_ 3/2
S, = (1 f2f) f2/8b — Ae—B/(Sb (2.21)

where A &~ 3.36 and B = 2.89. We see that a hybrid transition occurs, albeit with
an extremely small discontinuity, at a non-zero threshold p. as long as at least one
of §, and §p is not equal to zero.

To examine the case that both §, and §,, tend to zero, we consider the symmetric
case 6, = 0p = 6. Then X, = X}, = X.

Equation (2.1) become a single equation,

w(X) ~ p%z) (x”‘S - X1+25) . (2.22)

The discontinuity is found by requiring ¥’ (X) = 1 [from Eq. (2.3)] which condition
becomes
w'(X) ~ pr(2) [(1 X —q —|—26)X2‘3] =1 (2.23)

Solving these two equations, we find that X, = (1/2)!/% and

24

pe=—38 (2.24)
1\2/%

S. =4 (5) . (2.25)

The location of the hybrid transition tends to p = 0 as § — 0, and the size of the
‘jump’ becomes very small even for nonzero §, but vanishes completely as § — 0. In
Fig.2.11 we plot the size of the giant viable cluster in this symmetric case for three
values of y. For values not close to two, the transition looks similar to that observed
in, say, Erd6s—Rényi graphs. As y approaches 2, however, we see that the height
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Fig. 2.11 Size of the giant viable cluster S as a function of the fraction p of vertices remaining
undamaged for two symmetric powerlaw distributed networks with, from right to left, y = 2.8,
2.5, and 2.1. The height of the jump becomes very small as y approaches 2, but is not zero, as seen
in the inset, which is S versus p on a logarithmic vertical scale for y = 2.1

of the discontinuity becomes extremely small. Nevertheless, the square-root scaling
and non-zero critical point are retained.

We can also examine the behaviour of X and S above the transition (p > p).
Expanding ¥ (X)) about X, we find that

(2.26)

X-X. _ 12 (p—pc)”2
X 728 pe DPc

which holds so long as p — p. < 3. That is, the scaling of the order parameter X,
and hence the size of the giant viable cluster, S, is square-root in a narrow region of
width ¢'(83) above the hybrid transition. This region disappears as § — 0.

2.6 Conclusions

In conclusion, we have studied the robustness of multiplex networks, which are
networks with two or more different kinds of edges. There is a direct mapping
between such multiplex networks and interdependent networks, in which vertices in
one network depend on at most one vertex in another network. We found that the giant
viable cluster of a multiplex network with two or more kinds of edges collapses with
a discontinuous hybrid transition. The collapse occurs through avalanches which
diverge in size when the transition is approached from above. We described critical
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clusters associated with these avalanches. The avalanches are responsible for both the
critical scaling and the discontinuity observed in the size of the giant viable cluster.
Remarkably, these specific clusters and avalanches in our problem turned out to be
organized in a novel way, different from those in the k-core [15, 23] and bootstrap
percolation [14] problems.

In contrast to ordinary networks, where two vertices are connected if there is a
path between them, in multiplex network with m types of edges, two vertices are m-
connected if for every kind of edge there is a path from one to another vertex. Based
on this notion, we introduced viable clusters as clusters of m-connected vertices
in multiplex network. This new notion of connectivity between vertices leads to the
emergence in a multiplex network of a giant viable cluster in a hybrid phase transition
in contrast to a continuous phase transition in ordinary percolation.

Surprisingly, when the degree distributions are asymptotically power-law P(g) o
q 7 the critical point p. (taking the undamaged fraction of vertices p as the control
parameter) remains at a finite value even when the exponents y of the degree distrib-
utions are below three, remaining finite until both exponents reach two, in agreement
with an argument given in [10]. This is in stark contrast to ordinary percolation in
complex networks, in which the threshold falls to zero as soon as y reaches three
[25, 26]. We show, further, that the nature of the transition does not change. Although
the height of the discontinuity becomes extremely small near y = 2, it remains finite
near this limit (see Fig. 2.11). The critical clusters may have important practical appli-
cations, helping to identify vulnerabilities to targeted attack, as well as informing
efforts to guard against such attack.
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Chapter 3
Multiplex Networks

Kyu-Min Lee, Jung Yeol Kim, Sangchul Lee and K.-1. Goh

Abstract Typical complex system operates through multiple types of interactions
between its constituents. The collective function of these multiple interactions, or
multiple network layers, is often non-additive, resulting in nontrivial effects on the
network structure and dynamics. To better model such situations, the concept of mul-
tiplex network, the network with explicit multiple types of links, has recently been
applied. In this contribution, we survey recent studies on this subject, focused on
the notion of correlated multiplexity. Empirical multiplex network analysis as well
as analytical results on the random graph models of correlated multiplex networks
are presented, followed by a brief summary of dynamical processes on multiplex
networks. It is illustrated that a multiplex complex system can indeed exhibit struc-
tural and dynamical properties that cannot be represented by its individual layer’s
properties alone, establishing the network multiplexity as an essential ingredient in
the new physics of “network of networks.”

3.1 Introduction

In the last decade, network science has successfully established itself as a unified
framework for studying complex systems [1, 2]. Along with its impressive success,
the framework has continuously been evolving. One of the most current evolution of
complex network theory is the study of multiplex networks, the networks with more
than one type of links [3]. Indeed, most studies until quite recently have focused on
isolated, single networks, ignoring the existence of multiple types of interactions. In
most, if not all, real-world complex systems, however, nodes in the system can engage
in more than one type of interactions, and such multiple interactions can make a non-
additive effect on network structure and the dynamics on it. For example, as illustrated
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in Fig. 3.1, people in a society interact via their friendship, family relationship, and/or
more formal work-related acquaintanceship, etc., which are collectively responsible
for complex emergent social phenomena [4, 5]. Countries in the global economic
system also interact via various international relations ranging from commodity trade
to political alliance [6]. Even proteins in a cell participate in multiple layers of
interactions and regulations, from transcriptional regulations and metabolic synthesis
to signaling [7]. Obviously, in dealing with such problems the multiplex network
representation would be a more appropriate description than the single network, or
simplex, one.

In this contribution, we will survey recent works on the topic of multiplex net-
works. We begin with an analysis of real-world multiplex coauthorship network data
to introduce the notion of correlated multiplexity in Sect. 3.2. Then the random graph
model of correlated multiplex network is introduced in Sect.3.3. In Sect. 3.4, ana-
lytical formalism based on the joint degree distribution for analyzing the structural
properties of multiplex random graph models is developed. The cases of duplex ran-
dom graphs and duplex scale-free networks are studied in detail in Sects. 3.5 and 3.6,
respectively. Topics of network robustness and network dynamics are briefly dis-
cussed in Sects. 3.7 and 3.8, respectively. Finally, we will conclude our contribution
with a summary and outlook.

3.2 Correlated Multiplexity

In most previous studies of coupled networks—in context of layered, interacting,
interdependent networks [8—10]—network layers were coupled randomly. In real-
world complex systems, however, nonrandom structure in network multiplexity can
be prominent. For example, a person with many links in the friendship layer is likely
to also have many links in another social network layer, being a friendly person. We
termed the correlated multiplexity [3] to refer such a nonrandom pattern of network
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multiplexity. Examples of correlated multiplexity are widespread. Some of examples
reported in the literature are:

Social networks: online-game network [11], coauthorship network [12].
Organizational networks [13].

Transportation networks [8, 14, 15].

Cellular network: Interaction network and perturbation network [16].
Economic networks: Trade networks in different industrial sectors [17].

The most frequent pattern of correlated multiplexity is the positively correlated
multiplexity, such that a node with large degree in one layer likely has more links
in the other layer as well. For example, in the online game social network data [11],
it was shown that different positive social relations such as friendship and trade are
highly correlated as well as overlap.

In Fig. 3.2, we present our own analysis of a multiplex coauthorship network [12].
The network consists of a set of researchers who are connected with one another
by three types of collaboration links, first being due to publications in the field of
fractal surface growth (denoted KPZ, representing Kardar-Parisi-Zhang equation),
second in the field of self-organized criticality (denoted SOC, representing Self-
Organized Ceriticality), and third in the field of complex network theory (denoted
CNR, representing Complex Network Research), resulting in a triplex network (for
more details on the data collection, see [12]). Despite the separation of timescales
of three research topics, degree distributions of the three network layers, and that of
the superposed network, are indistinguishable (Fig. 3.2a, inset). Within the individual
layer, analysis of degree distributions of restricted set of nodes that participate in more
than one layers reveals that there indeed exists a positively correlated multiplexity
pattern: the more layer a node participates to, the more likely would they have larger
degrees (Fig.3.2a). The analysis of joint degree distributions (Fig. 3.2c,d) confirms
this finding. There is a systematic enrichment of joint degree distribution near the
diagonal of the plots, revealing strong correlation between degrees of a node in two
network layers. In addition, it was found that a pair of nodes which are closer in
one layer tend to be also closer in another layer (Fig.3.2b). This result extends the
classical concept of multiplexity that accounts only for direct link overlap [4] and
demonstrates the effect of network multiplexity at all scales.

3.3 Random Graph Model of Correlated Multiplexity

For a systematic mathematical understanding of correlated multiplexity, one needs
a graph model. There exist a few random graph models with multiple link-types
(or colored edges) [3, 18, 19]. Here we present a way to build correlated multiplex
networks, following [3].

Given two network layers with equal number of nodes, we define three particu-
lar couplings: (i) uncorrelated, (ii) maximally-positive (MP), and (iii) maximally-
negative (MN) correlated couplings (Fig.3.3). In the uncorrelated coupling, we
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Fig. 3.2 Patterns of correlated multiplexity in multiplex coauthorship network. a Degree distri-
bution of nodes participating in a single (diamond), double (circle), and triple layers (square). b
Conditional distance distribution P(dkpz|dsoc) in KPZ-layer of pairs of nodes of distance dsoc in
SOC-layer. ¢ Joint degree distribution P (ksoc, kxpz), and d Significance plot based on Z-score with
respect to randomly coupled counterpart. Z-score is obtained as Z = (Preai — {Prandom)) /P, umiom »
where the average and standard deviation for P,4,40m are evaluated over 10* independent random-
izations

couple the two layers randomly, that is, we use a random matching between a node
in one layer to a node in the other layer. In the MP correlated coupling, a node’s
degrees in different layers are maximally correlated in their degree order; the node
that is hub in one layer is also the hub in the other layer, and the node that has the
smallest degree in one layer also has the smallest degree in other layer. Likewise,
in the MN correlated coupling, a node’s degrees in different layers are maximally
anti-correlated in their degree order.

These three particular couplings are useful in their mathematical simplicity and
tractability, thus highlighting the effect of correlated multiplexity. Yet in real-world
multiplex systems the correlated multiplexity would hardly be maximal. The cases
of partially correlated multiplexity can be constructed by maximally correlating a
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Fig. 3.3 Schematic illustration of constructing the correlated multiplex networks discussed in the
text. MP (MN) stands for maximally-positive (maximally-negative) correlated multiplexity

fraction g of nodes in the network while randomly coupling the rest fraction 1 — q.
Using this method one can interpolate between MP, through uncorrelated, and MN
couplings, modulating the strength of correlated multiplexity.

3.4 Analytical Formalisms

3.4.1 Degree Distributions

The information of degree distribution of a multiplex network with ¢ layers (¢-
plex network) can be encoded in the joint degree distribution P({ky}) = P(ky, k2,
-+, k¢). (Throughout this work, we will use Greek subscript to denote the layer
index). The degree distribution within a layer «, denoted as m, (ky ), can be obtained
as the marginal distribution, my (ky) = Z{k 5ra) P(ky, ka, - -+, k¢). The total degree

of a node in the multiplex network is given by k = >, ko, which can differ from the
number of distinct connected nodes when there are link overlaps between network
layers. Such link overlaps can be neglected for large, sparse random graphs, but can
be significant in real-world multiplex networks as in multiplex social network data
[11, 12]. One can obtain the total degree distribution P(k) from the joint degree
distribution as P(k) = Z{kM}P({kM})Sk,ZU k,» Where & denotes Kronecker delta
symbol.
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3.4.2 Emergence of the Giant Component

Having established a way to construct the total degree distribution P (k), it is tempting
to use it to calculate the connected components properties via standard generating
function technique [20]. It turns out that, however, this simplified procedure works
only when the degree distributions of all layers are identical, as we will see shortly.

Now we develop a theory which exploits the full joint degree distribution P({ky}),
applicable when every layer is uncorrelated and locally tree-like, as in random graph
models. Let us define u, to be probability that a node reached by a randomly chosen
link in layer o does not belong to the giant component (which is connected via any
types of links). Following a similar reasoning as the standard generating function
technique, one can construct the self-consistency equations for u,’s as

e = Z kaP({k,u}) Hv uy”

Za Uy

(@=1,---,0), (3.1
k)

where 7, is the mean degree of layer a. Then the probability that a randomly chosen
node belongs to the giant component (that is, the giant component size), denoted S,
can be obtained as
S=1-=> Pk []ub (3.2)
Vv

{ku}

with u,,’s being the solution of Eq. (3.1). Therefore, the giant component exists (that
is, § > 0) if Eq. (3.1) has a nontrivial solution other than (u1, --- ,up) = (1,---, 1).
This condition can be extracted from the Jacobian of Eq. (3.1), which reads in the
case of duplex network

1 K K K K 2 42
z (_1+_2)+\/(_1__2) i v O T (3.3)
4 21 22 21 22 Z122

where k| = (klz), Ky = (k%), and k12 = (kik>) are second-order moments of joint
degree distribution.

When the degree distributions of all layers are identical, one has the solution of
Eq. (3.1) satisfying u; = up = --- = uy, which reduces Eqgs. (3.1-3.3) to those of
standard generating function technique [20]. For example, Eq. (3.3) reduces to the
well-known Molloy-Reed criterion for the total degree distribution, (k%) =2(k) > 0,
with k = k; + kp [21]. This shows that in such a case, one can use the reduced total
degree distribution P (k) to study the component structure, but in general Egs. (3.1-
3.3) should be used to have the correct results. Note that similar generating function-
type techniques for clustered [22], multi-type [23], and interdependent networks [24]
have also been developed recently, which slightly differ from the current formalism.
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3.4.3 Degree-Degree Correlations

The fact that one cannot use the reduced total degree distribution P (k) for compo-
nent structure of correlated multiplex network suggests that the superposed network
possesses degree correlations even when uncorrelated random networks are coupled.
To show this explicitly, let us consider the assortativity coefficient r defined as [25]

(3.4)

where k and k’ are the rotal degrees of nodes at two ends of an edge and (- - - ); denotes
the average over all edges in the superposed network. Nonzero value of r dictates the
presence of degree-degree correlations between connected nodes. Following the steps
developed in [22], one can show that the numerator of Eq. (3.4) can be expressed,
after some manipulations, as

2 2
DK QUK — | D kQU K | =D cuXi — (Z cuxﬂ)
u u

k. k' k. k'

1
= DX —X,)* =0, (35)
nw,v

where Q(k, k') denotes the probability that a randomly chosen link (of any kind)
connects two nodes with total degree k and k’ at each end, ¢, is the fraction of links
of type «, such that >, ¢, = 1, and X, is the expected total degree of a node that is
reached by following a randomly chosen link of type «, which is related to the joint
degree distribution as

Xo =D kD kaP({kuD3k = D ki) /2 - (3.6)

k {ku}

Therefore, a multiplex network can become assortative (r > (), even when uncorre-
lated layers are coupled, unless the degree distributions of all layers are identical, so
that all X,,’s are equal. (Another exception is the uncorrelated multiplex ER graphs,
see Sect. 3.5.1.) It also allows one to calculate the assortativity coefficient r, once the
joint degree distribution is given.
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3.5 Duplex ER Graphs

To illustrate basic effects of multiplex couplings, in this section we apply the for-
malism to duplex Erd6s-Rényi (ER) graphs [26] in which two ER graph layers are
multiplex coupled, summarizing the results reported in [3].

3.5.1 Uncorrelated Duplex ER Graphs

In the absence of correlation between network layers, the joint degree distribution
factorizes, Pyncorr (k1, ko) = 1 (k1)m2(k2). The total degree distribution is then given
by the convolution of 7y (ky), Puncorr(k) = Zilzo 1y (ky)ma(k — ky). It is easy to
see that the resulting superposed network is nothing but an ER graph with the total
mean degree z1 + 22, so that
e ik
k!

Puncorr (k) = (3 7)

with z = z1 4+22. The connectivity and component properties follow the conventional
behaviors [20, 26].

3.5.2 Duplex ER Networks with Equal Link Densities

The case of duplex ER networks with layers of equal link densities is particularly
simple, as one can use standard generating function technique with the total degree
distribution. Furthermore it is amenable for a number of explicit exact results.

MP coupling.—In this case, degrees of a node in the two layers would become
almost equal in the thermodynamic limit (more precisely, relative dispersion of the
two degrees would decay with N and vanish as N — 00), so that the total degree
distribution of the duplex network can be approximated as

2y K2
Pup (k) = (e) z, "/ (k/2)!  (k even), (3.8)

(k odd),

where z; is the mean degree of the layer 1. Therefore, the Molloy-Reed criterion is
fulfilled for all nonzero z;, as (k%) —2(k) = 4(z -l—z%) —22z1) = 4zf > Oforz; # 0,
which can also follow from the condition Eq. (3.3). This means that surprisingly the
giant component exists for any nonzero link density, that is, the critical single-layer
mean degree 7. above which the giant component exists vanishes,
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MP=0. (3.9)

One can further obtain the giant component size S and the average size of finite
components (s) from the standard generating function technique [20], which are
given explicitly by:

S=1-P0)=1—¢e"", (3.10)

and
(sy =1. 3.11)

This shows that the giant component grows linearly in the vicinity of zé"’P , and
that only the isolated nodes are outside the giant component and all the linked nodes
form a single giant component. All these predictions are fully supported by numerical
simulations (Fig.3.4).

MN coupling.—In this case, there exist distinct regimes of z;, three of which
among them are of relevance for the giant component properties (in N — oo limit).

(1) 0<z1 <In2.

In this regime, more than half of nodes are of degree zero in each layer so every
linked node in one layer is coupled with a degree-0 node in the other layer under
MN coupling. After some inspection one obtains the total degree distribution
P(k) as

_ | 27(0) =1 (k =0),
In this regime there is no giant component.
(ii) In2 <z; <z*.
Following similar steps,P(k) in this regime is obtained as
0 (k=0),
227 (0) + (1) — 1] (k = 1),
Py — ] 22T+ () 1] k=D a13)

2r(2) =270+ 1 (k =2),
27 (k) (k > 3).

In this regime, (k%) — 2(k) = 2(2% — 71 — 2e7 %! + 1), which becomes positive
forz; > zé"IN where
MV = 0.838587497... (3.14)

Therefore the giant component emerges at a much higher link density. Being
delayed in its birth, however, the giant component grows more abruptly once
formed (Fig.3.4c). This regime is terminated at z; = z*, determined by the
condition 27 (0) 4+ 7 (1) = 1, from which we have z* = 1.14619322...

(i) z1 = z*.
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Fig. 3.4 a, b Total degree distribution P(k) of duplex ER graphs with z; = zp = 0.7 (a) and
71 = z2 = 1.4(b). Different symbols denotes MP (square), uncorrelated (circle), and MN (diamond)
couplings. ¢, d The giant component size S (¢) and the average size of finite components (s) (d)
as a function of z; of duplex ER graphs with z; = z. Same symbols as (a, b) are used. Gray
shade denotes the region in which S = 1 for the MN case (z; > z*). Lines represent the theoretical
curves and symbols the numerical simulation results. Errorbars denote standard deviations. Adapted
from [3]
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In this regime we have P(0) = P(1) = 0 and thereby S = 1. This means that
the entire network becomes connected into a single component at this finite link
density z*, which can never be achieved for ordinary ER networks.

All these theoretical results are confirmed numerically (Fig. 3.4). Meanwhile, it is
noteworthy that despite these abnormal behaviors and apparently more rapid growth
of S near z., the critical behavior in the MN case is found to be consistent with that
of standard mean-field [3].

Imperfect correlated multiplexity.—So far we have seen that maximally correlated
or anti-correlated multiplexity crucially affects the onset of emergence of giant com-
ponent in multiplex ER networks. For a partially correlated duplex ER network (with
equal link densities) in which a fraction g of nodes are maximally correlated coupled
while the rest fraction 1 — ¢ are randomly coupled, the total degree distribution can
be obtained as Ppariai(k) = qPmaximai(k) + (1 — q)Puncorr (k), where maximal is
either MP or MN. Using Eqgs. (3.8, 3.12, 3.13) and following similar steps as in the
previous section we obtain the critical link density as a function of g as

Ze=0-¢9)/2 (3.152)

for positively correlated case and
1/2-q) (@<2-1/In2),

= 3.15b
C [zl(cn (4>2-1/In2) (150

for negatively correlated case, where z1 (¢) is the solution of (2 — q)z% —71—2ge 1+
g = 0. This result shows that z. depends continuously on ¢ (Fig.3.5), illustrating
that the effect of correlated multiplexity is present for general g.
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3.5.3 Duplex ER Networks with General Link Densities

In this section we consider general duplex ER networks with z; #% z>. Qualitative
picture of behavior of giant component size is similar to the equal link density case:
the giant component emerges at lower link densities for the MP case but grows more
slowly than the uncorrelated case, whereas it emerges at higher link densities for the
MN case but grows more abruptly and connects all the nodes in the network at finite
link density (Fig.3.6).

It should be emphasized, however, that one should use the formalism in Sect. 3.4,
which fully exploits the joint degree distribution, in order to obtain correct theoretical
results for z; # z» (Fig.3.4b, d, f). Indeed, the assortativity coefficient r calculated
both analytically by Egs. (3.4-3.6) and numerically shows that it is assortative in MP
and MN cases, except for z; = z;. This clearly shows that the correlated multiplexity
can not only modulate the total degree distribution P (k) of the superposed network
but also introduce higher-order correlations in its network structure.

3.6 Duplex SF Networks

Now we consider a duplex scale-free (SF) network, in which two SF networks con-
structed by the static model [27] are multiplex-coupled. The static model network is
constructed as follows. Eachnode i (i = 1, --- , N) is assigned a weight w; = i™¢,
where a is a constant greater than 1. By successively connecting two nodes each cho-
sen with probability proportional to its weight until desired number of links are made,
one obtains a network with asymptotic power-law degree distribution 7 (k) ~ k™7,
with y (called the degree exponent) given by y = 1 + 1/a [27]. Thus one can tune
both the degree exponent and the mean degree of the network.

An important property of SF networks is the vanishing percolation threshold for
y < 3 [28], fundamentally different from the case with y > 3. The case of y = 2.5
is examined first (Fig.3.7a). In this case the giant component exists for any z; > 0
even in the single layer, so z. = 0 in all three cases. For small z;, MP has the largest
giant component size as in the ER case. Peculiar behavior is observed for the MN
coupling, in which the giant component size increases slowly until it makes a jump
around Zj,y ~ 1.05, almost doubling its size. This unusual behavior is rooted in
the fact that with MN coupling each layer’s hub supports giant component of its
own and the two giant components are totally disjoint until the link density reaches
the threshold zj,m,,. Beyond this threshold, the two equally-large giant components
cannot but overlap and merge, thereby making a jump. This picture is supported by the
observations that sizes of the largest and second largest component are almost equal,
and the position of jump coincides with the point at which all nodes in the network
acquire at least one link (Fig.3.7a, inset). The case of y = 5.0 is examined next
(Fig.3.7b), yielding overall similar qualitative behaviors as the duplex ER networks,
without any discontinuous jump.
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Fig. 3.7 Giant component size of duplex SF networks of equal link densities with y = 2.5 (a) and
y = 5.0 (b). Symbols stand for uncorrelated (o), MP ([J), and MN (¢) couplings. (Inset) Size of
largest (¢) and second largest (V) components, together with the fraction of nonzero-degree nodes
(%), for MN coupling

3.6.1 Betweenness and Load

Betweenness centrality [29] or load [27] is a widely-used centrality measure which
characterizes the potential burden or traffic over a node in a network due to simple
shortest path-based transport protocols. It has been shown that the load distribution
of SF network also follows a power law, with the exponent & 2.2 for non-tree SF
networks with 2 < y < 3 [27]. Here we examine how the betweenness and its
distribution are affected by the multiplex coupling of SF networks. From the scaling
perspective, neither the degree exponent nor the power-law exponent for betweenness
distribution is found to be affected by the multiplex coupling (Fig. 3.8a, b). Looking
at the individual node level, it is found that the betweenness changes most when the
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two networks are coupled randomly, rather than in a MP or MN way (Fig.3.8c—h).
This suggests that in MP or MN coupling the pathway structure is weakly affected and
topological centralities of hub nodes are largely preserved. Concepts of betweenness
and load are intimately related with the definition of shortest path. One interesting
issue in this regard is the concept of optimal path in multiplex networks with the
context and interplay between layers fully taken into account, which deserves further

study.
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Fig.3.9 Schematic diagram of intentional attack on MP and MN type multiplex networks. From left
to right, nodes are removed in descending order of the total degree to simulate an intentional attack,
and the size of largest connected component in the remaining superposed network is monitored

3.7 Robustness of Multiplex Networks

Having established that correlated multiplexity can significantly affect the overall
connectivity of multiplex networks, the next question we might have is its impact on
network robustness against random failures or intentional attack [2]. For example, as
the cartoon diagram in Fig. 3.9 shows, the way how the network layers are multiplex-
coupled can alter the resilience of the superposed network against attack. It has also
been shown that robustness of interdependent networks to cascade of failures can be
affected by the correlated coupling [14, 30].

As a preliminary case study, here we use the multiplex coauthorship network in-
troduced in Sect.3.2 and examine the topological robustness under various failure
and attack scenarios. We construct the SOC-KPZ coauthorship network, consisting
of the nodes participating in both layers and the links among them. Then we simulate
virtual random node or link failures and degree-based intentional node attacks, and
measure the fraction of nodes in the initial largest component that still form largest
component in the remaining superposed network, denoted S/Sp, as a function of
the fraction of removed nodes or links f. We also compare the results against those
obtained from three shuffled networks, in which the two layers are MP, uncorrelated,
and MN-coupled (obtained by shuffling the node names in each layer according to
the coupling rule, while controlling the link density of the superposed network to be
equal) (Fig.3.10). It is noteworthy that even though the coauthorship networks show
positive correlated multiplexity (Fig.3.2), the topological robustness properties do
not always correspond to those of MP-correlated networks. For example, the real
coauthorship network is more vulnerable, albeit slightly, to random link removals
than its uncorrelated versions, in contrast to the higher robustness of MP-correlated
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Fig. 3.10 Topological robustness of correlated multiplex networks. a Relative size of largest com-
ponent S/Sy of the superposed network under random (failure) and intentional (attack) removal of
nodes of fraction f. The intentional attack was simulated by removing nodes in descending order of
total degree. Shown are results for the multiplex coauthorship network (SOC-KPZ) (x, *) and its
three shuffled versions, MP (square), uncorrelated (circle), and MN-coupled networks (textitdia-
mond). b Same plots for random link removals. Data are averaged over 10* independent simulation
runs

networks than the uncorrelated ones (Fig.3.10b). Such discrepancy indicates the
presence of higher-order correlations in the coupling structure of real multiplex net-
works, beyond the degree correlation. More systematic investigation on this topic
using model networks is currently underway (B. Min et al., arXiv:1307.1253).
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3.8 Dynamics on Multiplex Networks

Multiplexity can also have impact on network dynamics [31]; in fact it is one of the
ultimate goals of the study of multiplex networks to understand what the generic
effect of correlated multiplexity on various dynamic processes occurring on top of
real-world multiplex complex systems. This may have implications on many pro-
found real-world complex systems problems, such as understanding, predicting, and
controlling systemic risk and collective social movement. Dynamics with multiplex-
ity in general, poses the question of how the interplay of different network layers
can bring about emergent dynamic consequences, and in many cases calls for devel-
opment of new theoretical tools, similarly to what we did in Sect. 3.4 for structural
analysis, which raises theoretical challenge as well.

Study of dynamical processes on multiplex networks is still in its infancy, yet
is rapidly growing over the years [32-39]. Surveying all these recent effort would
already require a separate contribution; here we could merely compile them with a
brief summary of key findings. Given the obvious relevance of multiplex-network
framework for many real-world problems, such as social cascades in social networks
[5] or dynamics of systemic risk [40], this list is expected to expand quickly so is by
no means meant to be exhaustive.

One of the first studies on multiplex dynamics was the study of sandpile dynamics
[32], where it is found that the scaling behavior of avalanche does not change by the
multiplex coupling, despite alterations in the detailed cascade dynamics. Generalized
models of behavioral cascades in multiplex social networks [33, 34] showed that
the multiplexity can facilitate global cascades compared to null models of simplex
networks. In the study of random Boolean network on multiplex networks [35], the
multiplex coupling is shown to support stabilization of the system even when each
single layer is in the unstable chaotic state. In studies of evolutionary dynamics on
multiplex networks, it was shown that the cooperative behavior is enhanced when
individuals interact through multiple network layers [36, 37]. In the study of diffusion
dynamics on multiplex networks [38], the existence of multiple channels of diffusive
motion is shown to speed up the diffusion process. These studies collectively highlight
how the dynamical properties on multiplex networks can differ from those of a single
or simplex network.

3.9 Summary and Outlook

In summary, we have surveyed recent studies on multiplex networks, the networks
with explicit multiple types of links, which is a better representation of real-world
complex systems. Particularly emphasized are the notion of correlated multiplexity
and its effect on the structural properties of multiplex network system. We have in-
troduced the random graph models of correlated multiplex networks and developed
analytical formalism to study its structural properties. Applications to multiplex



3 Multiplex Networks 71

ER and SF networks demonstrated that the correlated multiplexity can dramatically
change the properties of the giant component. This shows that a multiplex complex
system can exhibit structural properties that cannot be represented by its individ-
ual network layer’s properties alone. Such nontrivial, emerging multiplex structure
should entail significant impact on dynamical processes occurring on it, opening a
vast avenue of future studies on the impact of correlated multiplexity on network
dynamics and function [14, 30].

The concepts and tools for the multiplex network should also be useful in the
study of related subjects of recent interest such as layered [8], multi-type [23], in-
teracting [9, 41], and interdependent networks [10, 24, 42], which share similar
theoretical framework and mathematical techniques. Notable areas for further in-
vestigation would be, to name but a few, the multiplex network evolution [43] and
the role of negative or antagonistic interactions between layers [11, 44]. Altogether,
these studies will cooperatively help establish unified framework for the emerging
paradigm of “network of networks,” and the concept of network multiplexity will
play an essential role in this collective endeavor.
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Chapter 4
Modeling Interdependent Networks as Random
Graphs: Connectivity and Systemic Risk

R. M. D’Souza, C. D. Brummitt and E. A. Leicht

Abstract Idealized models of interconnected networks can provide a laboratory for
studying the consequences of interdependence in real-world networks, in particular
those networks constituting society’s critical infrastructure. Here we show how ran-
dom graph models of connectivity between networks can provide insights into shifts
in percolation properties and into systemic risk. Tradeoffs abound in many of our
results. For instance, edges between networks confer global connectivity using rela-
tively few edges, and that connectivity can be beneficial in situations like communi-
cation or supplying resources, but it can prove dangerous if epidemics were to spread
on the network. For a specific model of cascades of load in the system (namely, the
sandpile model), we find that each network minimizes its risk of undergoing a large
cascade if it has an intermediate amount of connectivity to other networks. Thus, con-
nections among networks confer benefits and costs that balance at optimal amounts.
However, what is optimal for minimizing cascade risk in one network is subopti-
mal for minimizing risk in the collection of networks. This work provides tools for
modeling interconnected networks (or single networks with mesoscopic structure),
and it provides hypotheses on tradeoffs in interdependence and their implications for
systemic risk.
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4.1 Introduction

Collections of networks occupy the core of modern society, spanning technologi-
cal, biological, and social systems. Furthermore, many of these networks interact
and depend on one another. Conclusions obtained about a network’s structure and
function when that network is viewed in isolation often change once the network is
placed in the larger context of a network-of-networks or, equivalently, when viewed
as a system composed of complex systems [13, 15]. Predicting and controlling these
iiber-systems is an outstanding challenge of increasing importance because system
interdependence is growing in time. For instance, the increasingly prominent “smart
grid” is a tightly coupled cyber-physical system that relies on human operators and
that is affected by the social networks of human users. Likewise, global financial
markets are increasingly intertwined and implicitly dependent on power and com-
munication networks. They are witnessing an escalation in high frequency trades
executed by computer algorithms allowing for unanticipated and uncontrolled col-
lective behavior like the “flash crash” of May 2010. Reinsurance companies uncan-
nily forecast the increase of extreme events (in particular in the USA) just weeks
before the onslaught of Superstorm Sandy [59] and stressed the urgent need for new
scientific paradigms for quantifying extreme events, risk, and interdependence [54].

Critical infrastructure provides the substrate for modern society and consists of
a collection of interdependent networks, such as electric power grids, transporta-
tion networks, telecommunications networks, and water distribution networks. The
proper collective functioning of all these systems enables government operations,
emergency response, supply chains, global economies, access to information and
education, and a vast array of other functions. The practitioners and engineers who
build and maintain critical infrastructure networks have long been cataloging and ana-
lyzing the interdependence between these distinct networks, with particular emphasis
on failures cascading through coupled systems [19, 21, 29, 42, 51, 55, 56, 60, 61,
63].

These detailed, data driven models are extremely useful but not entirely practical
due to the diversity within each infrastructure and due to difficulty in obtaining data.
First, each critical infrastructure network is independently owned and operated, and
each is built to satisfy distinct operating regimes and criteria. For instance, consider
the distinct requirements and constraints of a municipal transportation system versus
a region of an electric power grid. Even within a municipal transportation system
there exist multiple networks and stakeholders, such as publicly funded road net-
works and private bus lines and train networks. Second, there are few incentives
for distinct operators to share data with others, so obtaining a view of a collection
of distinctly owned systems is difficult. Third, the couplings between the distinct
types of infrastructure are often only revealed during extreme events; for instance,
a natural gas outage in New Mexico in February 2011 caused rolling electric power
blackouts in Texas [16]. Thus, even given the most detailed knowledge of individual
critical infrastructure systems, it is still difficult to anticipate new types of failures
mechanisms (i.e., some failure mechanisms are “‘unknown unknowns”).
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Idealized models for interdependent networks provide a laboratory for discover-
ing unknown couplings and consequences and for developing intuition on the new
emergent phenomena and failure mechanisms that arise through interactions between
distinct types of systems. In fact, the idea of modeling critical infrastructure as a col-
lection of “complex interactive networks” was introduced over a decade ago [3].
Yet idealized models are only starting to gain traction [58, 71], and they are largely
based on techniques of random graphs, percolation and dynamical systems (with
many tools drawn from statistical physics). Despite using similar techniques, these
models can lead to contrasting conclusions. Some analytic formulations show that
interdependence makes systems radically more vulnerable to cascading failures [15],
while others show that interdependence can confer resilience to cascades [13].

Given a specified set of network properties, such as a degree distribution for the
nodes in the network, random graph models consider the ensemble of all graphs that
can be enumerated consistent with those specified properties. One can use probability
generating functions to calculate the average or typical properties of this ensemble
of networks. In the limit of an infinitely large number of nodes, the generating func-
tions describing structural and dynamic properties are often exactly solvable [52],
which makes random graphs appealing models that are widely used as simple mod-
els of real networks. Of course there are some downsides to using the random graph
approach, which will require further research to quantify fully. First, in the real-
world we are typically interested in properties of individual instances of networks,
not of ensemble properties. Second, percolation models on random graphs assume
local, epidemic-like spreading of failures. Cascading failures in the real-world, such
as cascading blackouts in electric power grids, often exhibit non-local jumps where
a power line fails in one location and triggers a different power line hundreds of
miles away to then fail (e.g., see Ref. [1]). This issue is discussed in more detail
below in Sect.4.3.4.1. Nonetheless, random graphs provide a useful starting point
for analyzing the properties of systems of interdependent networks.

Here, in Sect.4.2 we briefly review how random graphs can be used to model
the structural connectivity properties between networks. Then, in Sect.4.3 we show
how, with the structural properties in place, one can then analyze dynamical process
unfolding on interconnected networks with a focus on cascades of load shedding.

4.2 Random Graph Models for Interconnected Networks

Our model of “interconnected networks” consists of multiple networks (i.e., graphs)
with edges introduced between them. Thus, the system contains multiple kinds of
nodes, with one type of node for each network, and one type of edge. A simple
illustration of a system of two interconnected networks is shown in Fig.4.1. (A
related class of graphs called multiplex networks considers just one type of node
but multiple kinds of edges [49, 70].) This general framework can model different
kinds of systems that have connections to one another, or it can capture mesoscopic
structure in a single network, such as communities and core-periphery structure.
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Fig. 4.1 A stylized illustra-
tion of two interconnected
networks, a and b. Nodes
interact directly with other
nodes in their immediate net-
work, yet also with nodes in
the second network

4.2.1 Mathematical Formulation

Here we briefly review the mathematics for calculating the structural properties of
interconnected networks as discussed in Ref. [40]. In a system of d > 2 interacting
networks, an individual network w is characterized by a multi-degree distribution
{py }, where K is a d-tuple, (ki, ..., kq), and pj is the probability that a randomly
chosen node in network w has k, connections with nodes in network v. A random
graph approach considers the ensemble of all possible networks consistent with this
multi-degree distribution. To realize a particular instance of such a network we take
the “configuration model” approach [10, 47]. Starting from a collection of isolated
nodes, each node independently draws a multi-degree vector from { pl’f }. Next, each
node is given k, many “edge stubs” (or half-edges) of type v. We create a graph
from this collection of labeled nodes and labeled edge stubs by matching pairs of
compatible edge stubs chosen uniformly at random. For instance, an edge stub of
type v belonging to a node in network u is compatible only with edge stubs of type
1 belonging to nodes in network v. Generating functions allow us to calculate the
properties of this ensemble.
The generating function for the { pl’f } multi-degree distribution is

00 00 d
Gu(x) =Y ---kzopﬁl_[]x’;v, (4.1)
d= V=

k1=0

where x is the d-tuple, x = (x1, ..., xg4). This is a generating function for a prob-
ability distribution already known to us (our multi-degree distribution for network
W), and thus not terribly informative on its own. However, we can derive additional
generating functions for probability distributions of interest, such as the distribu-
tion of sizes of connected components in the system. However, we much first derive
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Fig. 4.2 A diagramatical representation of the topological constraints placed on the generating
function Hy, (x) for the distribution of sizes of components reachable by following a randomly
chosen v-u edge. The labels attached to each edge indicate type or flavor of the edge, and the sum
runs over over all possible flavors

two intermediate generating function forms, one for the probability distribution of
connectivity for a node at the end of a randomly chosen edge and a second for the
probability distribution of component sizes found at the end of a random edge. Ref-
erence [52] contains a clear and thorough discussion of this approach for a single
network, which we apply here to multiple networks.

First consider following an edge from a node in network v to a node in network
. The p node is &, times more likely to have v-degree k), than degree 1. Thus the
probability q{f " of reaching a u-node of v-degree k, is proportional to k, p,’jl kyperkg”
Accounting for the fact that we have followed an edge from a node in v to a node
in u, the properly normalized generating function for the distribution of additional
edges from that ©-node is

/

00 00 12 d
(ky + 1)Pk r(ley 1)k k G,/ (x)
Guw(x) = E 2 %1 1 x,) = Gfi(l)' 4.2)
k1=0 kq=0 My y=1 M

Here Euv = Zkl = ky ky pl’f is the normalization factor accounting for G, (1) =
1 and %uv is also the average v-degree for a node in network p. We use G;f (x) to
denote the first derivative of G, (x) with respect to x,, and thus G;f(l) = EW. A
system of d interacting networks has d° excess degree generating functions of the
form shown in Eq. 4.2.

Now consider finding, not the connectivity of the w-node, but the size of the
connected component to which it belongs. This probability distribution for sizes
of components can be generated by iterating the random-edge-following process
described in Eq. 4.2, where we must consider all possible types of nodes that could
be attached to that w-node. For an illustration see Fig.4.2. In other words, the p-
node could have no other connections; it might be connected to only one other node
and that node could belong to any of the d networks; it might be connected to two
other nodes that could each belong to any of the d networks; and so on. Iterating the
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random-edge construction for each possibility leads to a generating function Hy,, for
the sizes of components at the end of a randomly selected edge

Hyy(x) = xu‘](l)?).() (4.3)

1 d
v k
o D8 sty || Hyn®Y
ki...kq=0 y=1

2 d
ny k
+ xu Z 82,Zlekqu1~~kd H Hy (x) 4,
k],“.,kd:() ]/=1

where §;; is the Kronecker delta. Reordering the terms, we find that Hy,, can be
written as a function of G, as follows:

0 00 d
Hy(x) = xp Z Z qlljl‘.}..kd H Hyu(x)ky

k1=0 kq=0 y=1
= x,Gu[H1 (X)), ..., Hyp (X)]. 4.4)

Here again, for a system of d networks, there are d> self-consistent equations of the
form shown in Eq. 4.4.

Now instead of selecting an edge uniformly at random, consider a node chosen
uniformly at random. This node is either isolated or has edges leading to other nodes
in some subset of the d networks in the system. The probability argument above
allows us to write a self-consistency equation for the distribution in component sizes
to which a randomly selected node belongs:

H,(xX) =x, G [Hi (X)), ..., Hy(X)]. 4.5)

With this relation for H,,, we can now calculate the distribution of component sizes
and the composition of the components in terms of nodes from various networks.
However, our current interest is not in finding the exact probability distribution
of the sizes of connected components, but in finding the emergence of large-scale
connectivity in a system of interacting networks. To address this problem, we need
only to examine the average component size to which a randomly chosen node
belongs. For example, the average number of v-nodes in the component of a randomly
chosen p-node is

0
(S/L>v = 9x, H/L(X)

x=1

= 8,wGulH1, (), ..., Hyu (1]

d
+ D> GHHQ). ... Hyp(D]H,), (1)
A=l
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d
=S + D G H,) (). (4.6)
r=1

Table4.1 shows the explicit algebraic expressions derived from Eq. 4.6 for a
system of d = 2 networks with two different forms of internal degree distribution
and types of coupling between networks. Where the algebraic expression for (s, ),
diverges marks the percolation threshold for the onset of a giant component. For
instance, the first case shown in Table 4.1 is for two networks, a and b, with internal
Poisson distributions, coupled by a third Poisson distribution. For this situation, the
percolation threshold is defined by the expression (1 — kaa)(1 — kpp) = kapkpa.

4.2.2 Consequences of Interactions

To quantify the consequences of interaction between distinct networks, we want to
compare results obtained from the calculations above to a corresponding baseline
model of a single, isolated network. Interesting differences already arise for the case
of d = 2 interacting networks, which we focus on here. Consider two networks,
a and b, with n, and n; nodes respectively. They have multi-degree distributions
p,‘ja K and p,’?a ks respectively. The reference single network, C, neglects the network
membership of the nodes. Itis of size ng = n,+np nodes, and has degree distribution

k Kk
b
pe=|fo D, (P;i’ukbcskaJrkb,k) +f Y, (Pkakb5ku+kb,k) ;
Ka kp=0 ka kp=0

where f, = ny/(ng+np)and fp = np/(ng+np). In other words, network C is a com-
posite view that neglects whether a node belongs to network a or b. So a node that had
degree {k,, kp} in the interacting network view has degree k = k, +kp in the compos-
ite, C, view. We compare the properties of the ensemble of random graphs constructed

from the interconnected networks multi-degree distribution, { p,‘éa Ky p,’(’a k }, to the

properties of the ensemble constructed from the composite, py, degree distribution
(Fig.4.3).

In Ref. [39], we analyze the situation for two networks with distinct internal
Poisson distributions coupled together via a third Poisson distribution. We show
that large-scale connectivity can be achieved with fewer total edges if the network
membership of the node is accounted for (i.e., the composite C view requires more
edges to achieve a giant component).

Next we show that other effects are possible for different types of networks.
For instance, the degree distributions that are a truncated power law describe many
real-world networks, such as the connectivity between Autonomous Systems in the
Internet and connectivity patterns in social contact networks [20]. Yet many critical
infrastructure networks (such as adjacent buses in electric power grids) have very
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Fig.4.3 Comparing random graph models which account for interacting networks (red line) to ran-
dom graph models with the identical degree distribution, but which neglect network membership
(dashed black line). a The fraction of nodes in the largest connected component for two intercon-
nected networks with Poisson degree distribution, as edges are added to network b. Accounting
for network structure allows for a giant component to emerge with fewer edges. Here n, = 4n.
b The corresponding fractional size of the giant component for a network with a Poisson degree
distribution coupled to a network with a truncated power law degree distribution as the power law
regime is extended. Here was see the opposite effect to a, where large scale connectivity is delayed
by accounting for network membership

narrow degree distributions, which we approximate here as Poisson. Thus, we are
interested in the consequences of coupling together networks with these different
types of distributions. Let network a have an internal distribution described by a
truncated power law, p,i’a o kg " exp(—k/k,),and network b have an internal Poisson
distribution. Coupling these networks via a distinct Poisson distribution is described
by the second case shown in Table4.1. Here, the composite C view requires fewer
edges to achieve a giant component, so large-scale connectivity requires more edges
if the network membership of the nodes is accounted for. The effects in shifting the
percolation transition can be amplified if the networks are of distinct size, n, # np.
For more details on these percolation properties of interconnected networks, see
Refs. [39, 40]. Also, see Ref. [38] for a discussion of how correlations in multiplex
networks can alter percolation properties.

4.3 Application: Sandpile Cascades on Interconnected Networks

Equipped with a random graph model of interconnected networks and an understand-
ing of its percolation properties, we now use this framework to analyze systemic risk
by studying a dynamical process occurring on such interconnected networks. Here
we seek a model that captures risk of widespread failure in critical infrastructures.
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4.3.1 The Sandpile Model as a Stylization of Cascading Failure
in Infrastructure

A common feature of many infrastructures is that their elements hold load of some
kind, and they can only hold a certain amount of it. For example, transmission lines
of power grids can carry only so much electricity before they trip and no longer carry
electricity [18]; banks can withstand only so much debt without defaulting [30];
hospitals can hold only so many patients; airports can accommodate only so many
passengers per day. When a transmission line, bank, hospital or airport partially or
completely fails, then some or all of its load (electricity, debt, patients or travelers)
may burden another part of that network or a completely different kind of network. For
instance, when a transmission line fails, electricity quickly reroutes throughout the
power grid (the same network), whereas when an airport closes due to a catastrophe
like a volcano eruption [31] travelers may overwhelm railway and other transportation
networks.

In addition to loads and thresholds, another commonality among certain risks of
failure in infrastructure are heavy-tailed probability distributions of event size. In
electric power systems, for instance, the amount of energy unserved during 18 years
of North American blackouts resembles a power law over four orders of magnitude,
and similarly broad distributions are found in other measures of blackout size [18].
In financial markets, stock prices and trading volume show power law behavior, in
some cases with exponents common to multiple markets [22, 26]. In interbank credit
networks, most shocks to banks result in small repercussions, but the 2008 financial
crisis demonstrates that large crises continue to occur. Similarly broad distributions
of event sizes also occur in natural systems such as earthquakes [64], landslides [32]
and forest fires [45, 65]. Some evidence suggests that engineered systems like electric
power grids [18] and and financial markets [22], not to mention natural catastrophes
like earthquakes [64], landslides [32] and forest fires [45, 65], all show heavy-tailed
event size distributions because they self-organize to a critical point.

An archetypal model that captures these two features—of units with capacity
for load and of heavy-tailed event size distributions—is the Bak-Tang-Wiesenfeld
(BTW) sandpile model [5, 6]. This model considers a network of elements that hold
load (grains of sand) and that shed their load to their neighbors when their load
exceeds their capacity. Interestingly, one overloaded unit can cause a cascade (or
avalanche) of load to be shed, and these cascades occur in sizes and durations dis-
tributed according to power laws. This deliberately simplified model ignores detailed
features of real systems, but its simplicity allows comprehensive study that can in
turn generate hypotheses to test in more realistic, detailed models, which we will
discuss in Sect.4.3.4.
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4.3.2 Defining the Sandpile Model on Networks

First studied on a two-dimensional lattice [5, 6], the BTW model has recently been
studied on random graphs [11, 13, 17, 27, 28, 35-37, 41, 53], in part because many
critical infrastructure like power, water, transportation and finance have network
structure. There are different ways to implement the sandpile model on a network,
but these implementations only differ in specifics. Here we study the following natural
formulation [27, 28, 36, 37].

Each node holds grains of sand, which we interpret as units of load. Nodes can
hold only a certain number of grains. When the number of grains equals or exceeds
the node’s threshold, then the node topples and moves sand to its neighbors. A natural
choice for the threshold of a node is its degree, so that when a node topples it sends
one grain to each of its neighbors. Other thresholds have been studied [27, 36], but
these other rules for the threshold require nodes to shed sand to (for example) a
random subset of their neighbors.

The BTW sandpile model consists of a sequence of cascades (avalanches), defined
as follows. First, drop a grain of sand on a node chosen uniformly at random. If the
node’s number of grains is greater than or equal to its threshold (i.e., its degree), then
that node is considered overwhelmed or unstable, and that node sheds (moves) all its
load to its neighbors by sending one grain to each neighbor. These neighbors may
in turn exceed their thresholds and have to topple, and subsequently their neighbors
may topple, and so on. Once no node exceeds its threshold, we record the number
of nodes that toppled (the cascade size), and the process begins again by dropping a
grain on a random node.

In order to prevent the system from becoming inundated with sand, grains of
sand must somehow be removed. Following [28], we choose the following rule for
dissipation of sand: whenever a grain of sand is sent from one node to another node,
with some small, fixed probability that grain is removed from the system.

The quantities of interest are measured in the dynamical equilibrium state that the
system reaches after many cascades have occurred, because the system self-organizes
to a critical point. Specifically, if the network begins without any sand, then sand
slowly builds up in the system. After a large number of cascades (e.g., an order of
magnitude more than the number of nodes), the system appears to reach a dynamical
equilibrium at which the amount of sand does not change significantly relative to the
system size. On one hand, large cascades tend to destroy lots of sand because of the
rule for dissipating sand described above. On the other hand, when the amount of
sand in the system is low, then cascades are typically smaller, so the amount of sand
tends to increase. These effects balance so that the system seeks a critical point at
which the probability distribution of cascade size (and of other measures like cascade
duration) show power law behavior [28, 53]. These power law—distributed cascades
can therefore serve as a useful, stylized model for risk of large cascading failures in
infrastructures.
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4.3.3 Results for the Sandpile Model on Interconnected Networks:
Optimal Interconnectivity, the Yellowstone Effect, and
Systemic Risk

In this subsection, we highlight three results from Ref. [13]. Next, in Sect.4.3.4, we
comment on current and future work to understand the sandpile model on isolated
and interconnected networks, as well as on work to understand risk in interdependent
infrastructures and other examples of optimal, intermediate amounts of connectivity.

We begin by studying one of the simplest interconnected networks, two random 3-
regular graphs a and b with edges introduced between them. Specifically, each node
in network a (b) has 3 neighbors in network a (b, respectively). Networks a and b have
identical number of nodes. Next, a fraction p of nodes in a have one edge to aneighbor
in the other network. (In the notation of the join degree distributions in Sect.4.2.1,
the degree distribution of network a is p,‘{‘a’kb = 8k, .3 [p5kb,1 + (1 — P)5kb,0], and
vice versa for network b.) This “interconnectivity” parameter p € [0, 1] measures
the coupling between the two networks. The threshold of each node is its total degree.

One motivating example for this choice of interconnected networks are power
grids. The degree of a typical node in the transmission grid (the part of a power grid
that moves electric energy at high voltage) is approximately 3 [13], so we chose
to study random 3-regular graphs. (Using 3-regular graphs rather than, say, Erd&s-
Rényi random graphs, simplifies the degree distribution to delta functions and hence
simplifies branching process approximations of cascades [13].) Moreover, power
grids have modular structure because they consist of “regions” or “control areas”.
Historically, each region was its own grid, and then these grids began connecting
with one another, so that now one grid can span an entire continent. Each region
of the grid is typically more densely connected within the region than with other
regions. Furthermore, this modular structure is not static: grids continue to build
new transmission lines between regions in order to, for example, accommodate wind
power [34]. Increasing the interconnectivity p in our model vaguely captures the
construction of new transmission lines between regions of a power grid.

Other infrastructures, from interbank credit networks [46] to transportation [48],
exhibit modular structure at different scales. In some cases, these modules are becom-
ing more interconnected over time, as lending, travel and trade become more global.
Understanding how this increase in connectivity affects systemic risk is a problem
that transcends disciplines. Though the sandpile model does not capture any one of
these infrastructures accurately, it self-organizes to a critical point at which cascades
occur in sizes described by power laws, and this behavior vaguely resembles large
fluctuations in many engineered and natural systems. Thus, the sandpile model can be
useful for generating hypotheses to test in more realistic models. Next we highlight
three such hypotheses.
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Fig. 4.4 The chance that a network a connected to another network b suffers a cascade larger
than half its network [gold curve, Pr(7, > 1000)] has a minimum at a critical amount of inter-
connectivity p*. Networks that want to mitigate their largest cascades would prefer to build or
demolish interconnections to operate at this critical point p*. The blue (red) curve is the chance
Pr(T,, > 1000) [Pr(Tp, > 1000)] that a cascade that begins in a (b) topples at least 1000 nodes
in a. Increasing interconnectivity only exacerbates the cascades inflicted from b to a (red), but
interestingly it initially suppresses the local cascades in a (For each p, we run a simulation on one
realization of two random 3-regular graphs with 2000 nodes each; each node has a neighbor in the
other network with probability p. The dissipation parameter is 0.01, the amount that makes the
largest cascades slightly smaller than the size of the system. The inset depicts a small example with
30 nodes per network and p = 0.1.)

4.3.3.1 Optimal Interconnectivity

Suppose each network a, b is a region of a power grid and that each region is owned
by a different utility. (To reiterate, the sandpile model misses crucial features of
power grids, described below in Sect.4.3.4.1, but we use the power grid example to
facilitate interpretation of results.) If each network (think “each utility in the power
grid”) a, b wants to reduce the risk of cascading failure in its own network, then how
many interconnections (edges between the networks) would they want?

Figure4.4 shows the striking result that each network a, b would want to build
some interconnections but not too many. Specifically, define a large cascade in a
network as a cascade that topples at least half of the network. In Fig. 4.4, a has 2000
nodes, so a large cascade in a is one that causes at least 1000 toppling events in
a. (The results are rather insensitive to changes in this cutoff for calling cascades
large; see [13, Fig.4]. Also, Sect.4.3.3.2 explores the risk of small cascades.) The
chance of a large cascade in a network is a measure of that network’s risk. The gold
curve of Fig.4.4 shows that a network’s risk decreases and then increases with the
interconnectivity p, with the minimum occurring at an intermediate interconnectivity
p*. Thus, two initially isolated networks would want to build interconnections up to
p* in order to reduce their own risk of large cascades.
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The 70 % drop in the risk of either network due to increasing interconnectivity p
from 0.001 to p* = 0.075 £ 0.01 is significant. If these cascades were blackouts,
then utility a (say) would experience 70 % fewer large blackouts. Why? By building
p*N, = 150 £ 20 edges (transmission lines) with its neighboring network b, the
networks can collectively share their risk of large blackouts.

To further illustrate this “optimal interconnectivity” p*, we distinguish cascades
that begin in network a (the blue curve labeled “local cascades” in Fig.4.4) from
cascades that begin in network b (the red curve labeled “inflicted cascades’). As inter-
connectivity p increases, the chance of a large inflicted cascade increases monoton-
ically, because building interconnections opens new avenues for large cascades to
spread to the other network.

More interestingly, building some interconnections (but not too many) suppresses
local cascades. That is, when interconnectivity p is small, the more edges a has with
b, the lower the chance that a cascade begun in a topples a number of nodes in a
greater than half the size of a. One reason for this suppression of local cascades is
that nodes with an edge to the other network have larger threshold (because their
degree is 4 rather than 3), so they topple less often when they receive sand. (How-
ever, the repercussions of toppling a degree-4 node are worse because they hold more
sand.) Another reason that some interconnectivity suppresses local cascades is that
more interconnections make the cascades less confined to one network and instead
become more spread out among the two networks (see [13, Fig. S10]). This phenom-
enon of sharing risk resembles the tenet of diversification in investment portfolios in
finance [2, 9].

Before proceeding, we note a similarity between optimal interconnectivity and
equilibria in economics. Just as rational agents seek more of something as long
as the marginal benefits exceed the marginal costs, a network would seek more
interconnectivity as long as the marginal benefits exceed the marginal costs. In the
sandpile model, building interconnections confers more benefits than costs initially,
where benefits are reduction in risk of large cascades. In a competitive market,
consumers and firms converge on the optimal price p* at which the marginal benefit of
the last unit consumed equals the marginal cost. Analogously, two networks seeking
to mitigate their risk of large cascades converge on the optimal interconnectivity p*
at which the marginal benefits of the last edge built equal the marginal cost. More
realistic models of connections within and between networks would also incorporate
the costs of building and maintaining a new link, and this cost would presumably
change the optimal number of links p*.

Perhaps many interconnected networks are what Nassim Taleb calls “antifragile”,
meaning that they become more robust against large-scale catastrophes [66] if they
have some variability [67] from input from external networks (e.g., interconnectivity
p* > 0).
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Fig. 4.5 a Networks mitigating the smallest cascades of size T, € [1, 50] seek isolation p = 0,
while b networks suppressing intermediate cascades 7, € [50, 100) seek isolation p = 0 or strong
coupling p = 1, depending on the initial interconnectivity p in relation to the unstable critical point
p* ~ 0.12 & 0.02. But networks like power grids that mitigate large cascades ¢, d would seek
interconnectivity at the stable equilibrium p* ~ 0.12 4 0.02. The qualitative shape of the plots in
the bottom figures and the location of p* are robust to changes in the window ¢ < T, < £ 4+ 50
for all 200 < ¢ < 800 (Here we show results from simulations on two random 3-regular graphs
with 1000 nodes each, which is half the network size as in Fig. 4.4, to show how p* decreases with
system size.)

4.3.3.2 Yellowstone Effect: Why Suppressing Small Cascades Can Increase
the Risk of Large Ones

Rather than seeking to mitigate their risk of large cascades (and hence seeking inter-
connectivity p*), what if the two networks a, b seek to mitigate their risk of small
cascades? Figure4.5 shows that the risk of small cascades increases monotonically
with interconnectivity p. Thus, p = 0 minimizes the risk of small cascades.

However, by Fig.4.4, p = 0 is a local maximum in the risk to each network.
Thus, by seeking p = 0 to mitigate their own small cascades, networks a, b would
increase their risks of large cascades. The same phenomenon is thought to occur in
suppressing blackouts [18] and forest fires [45]. In fact, this phenomenon has been
given the name the “Yellowstone effect” because suppressing small forest fires in
Yellowstone National Park, WY, in the twentieth century densified forest vegetation
and hence increased the risk of massive forest fires [45]. What Fig. 4.5 demonstrates
is that interconnectivity is another mechanism that can cause the Yellowstone effect.
This result suggests that we should look for similar phenomena in more realistic
models.
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between random 3-regular graphs enlarges the largest global cascades by an amount on the order

of the additional number of interconnections. As expected theoretically [28], when a and b nodes
are viewed as one network, s(¢) ~ /2 for large t (green line)

4.3.3.3 Risk-Avoiding Networks Can Exacerbate System-Wide Risk

If two networks act in a greedy, rational manner to mitigate their own risk of large
cascades, without regard to the risk of the other network, then by Sect.4.3.3.1 each
network would seek the optimal, intermediate amount of interconnectivity p*. What
is the effect of this self-interested behavior on the system as a whole?

Figure 4.6 shows that every increase in interconnectivity p tends to increase the
size of the largest cascades in the whole system (where the size of the cascade
no longer distinguishes types of nodes). The main plot of Fig.4.6 is the cascade
size distribution s(#), which is the probability of observing a cascade with r many
toppling events (in the equilibrium state of the system after many cascades have
been run without collecting statistics), for interconnectivity p = 10_3, 10_2, 1071,
(As expected [28], the avalanche size distribution shows power law behavior with
exponent —3/2 over at least two orders of magnitude, and more detailed theoretical
arguments confirm this conclusion [53].)

To illustrate the tail behavior of the cascade size distribution s(7), the inset of
Fig.4.6 shows a rank-size plot of the largest cascades in the whole system. This
plot shows that, as p increases, global cascades become larger by an amount on the
order of the additional number of interconnections. Because each interconnection
confers an addition to the threshold of nodes and hence to the capacity of the system
to hold sand, the system holds more sand in the dynamic equilibrium state, so the
largest cascades can involve more sand. Similar phenomena occur in transportation
systems and electric power grids. Building a new bridge to Manhattan, for example,
can paradoxically worsen traffic because people use the new capacity (the so-called
Braess’ Paradox [12]). Similarly, the benefits of upgrades to power grids are often
fleeting, because operators seek to efficiently use their costly infrastructure [18].
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4.3.4 Optimal Connectivity in Models Other Than the Sandpile
Model

Because the sandpile model self-organizes to a critical point, it has relatively few
parameters, so its behavior can be explored somewhat comprehensively. By contrast,
detailed models of real systems can have so many parameters that they are difficult to
comprehend, and many parameters are difficult to measure in the real world. Thus,
the interesting behavior of the sandpile model—such as power law distributions
of cascade size, optimal interconnectivity, the Yellowstone effect and system-wide
risk—can serve as hypotheses to test and refine in more realistic models.

Next we review recent work in calculating optimal interdependence and optimal
connectivity in power grids, bank networks and social systems.

4.3.4.1 Cascading Failures in Power Grids: Why Topological Models do not
Suffice, and What Details are Needed

One of the promises of the burgeoning field of complex networks is to simplify the
complicated behavior of real systems. Unfortunately, power grids are one example
for which naive, topological network approaches do not appear to suffice [14, 33].

Furthermore, most of these topological models, like the sandpile model, treat a
cascading failure like an epidemic that spreads between adjacent nodes. By contrast,
failures in the power grid spread non-locally: when a node in a power grid (such
as a bus or a substation) fails or, more commonly, an edge (a transmission line)
trips, the electric power re-routes almost instantly to all parallel paths, inversely
proportionally to the impedances on lines. Thus, a failure can trigger other failures
hundreds of kilometers away [24]. Models that lack this non-locality (or that have
non-local failures but via completely different mechanisms) offer little insight into
cascading failures in power grids [33].

What then is needed to offer insight for blackouts in power grids? A first step
and essential ingredient are the linearized direct current (DC) equations, an approx-
imation of the physics of electric power. These equations require data on the power
injections at every node (which is positive for generators, negative for load buses)
and the impedances and capacities of lines. Thus, the topological structure of a power
grid is insufficient to run the DC power flow equations; these “thin” networks need
to be augmented with data on the buses and transmission lines. (The MATLAB soft-
ware MATPOWER [72] provides a useful starting point because it contains data on
the Polish power grid. Another approach is to generate statistically correct power
grid topologies [69].)

Equipped with a physics-based model of electric power flow in a grid, one must
choose what failure mechanisms to model. Unfortunately, the number of failure
mechanisms is large; examples include thermal overloads, relay failure, voltage col-
lapse, dynamic instability and operator error [23]. The state-of-the-art is to model a
subset of these failure mechanisms (see, e.g., [7, 23, 50]).
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Such a detailed, physics-based, data-driven model of cascading failures might find
rather rich pictures of optimal interconnectivity between regions of a power grid.
The model space would likely be much richer than that of the sandpile model. But
solving this problem once is not enough because modern power grids are changing.
For instance, rapid deployment of smart grid technologies enable greater control
and measurement of the grid. Renewable energy will stress the grid in new ways,
as generation becomes more intermittent and increasingly located in sunny, windy
locations, thereby changing the import of power between regions. These changes to
the grid make studies of optimal grid structure all the more timely and important.

4.3.4.2 Optimal Interconnectivity in Bank Networks, Coupled Transportation
Networks and Social Systems

The notion of optimal, intermediate amounts of connectivity is not new. For example,
Battiston et al. [9] found that a network of banks is most resilient to cascading default
if banks have an intermediate amount of risk diversification. What made this result
novel was its contrast with the common wisdom in the financial literature that more
diversification is always better [2]. In another model of bank default, if banks lend
to an intermediate number of other banks, then the banks can be the most fragile and
still not suffer cascading default [8].

Optimal coupling has also been found in a model of transportation on coupled
spatial networks [48]. If a transportation administrator wishes to minimize both
the average travel time and the amount of congestion, then a nontrivial, optimal
“coupling” between, say, a rail network and a road network can emerge. Like in the
sandpile model on interconnected graphs [13], two competing forces (efficiency and
congestion in the transportation model) can balance at optimal amounts of coupling.

Optimal connectivity has also been found in strategic games played on networks.
For example, a social network playing the minority game is most efficient at an
intermediate amount of connectivity [4, 44]. Optimal interconnectivity between two
networks has been found in the public goods game, where the interconnectivity
p = 1/2 maximizes cooperation [68].

These results in financial and social models suggest that optimal connectivity (and
interconnectivity) may be common in networks. If the dynamics occurring on some
network have opposing tradeoffs, then these tradeoffs may balance at critical points.
Whether the corresponding real systems—such as power grids, bank networks or
social networks—can sense and respond to these tradeoffs and hence operate at the
optimal points remains an open question. The answers would likely be essential to
any effort to control such systems [43].
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4.4 Conclusion and Future Work

Why might two networks build connections between them? This chapter demon-
strates two reasons: to efficiently provide global connectivity and to reduce the risk
that either system suffers a large cascading failure.

This work belongs to a movement to study mesosopic, intermediate-scale structure
in networks, and not just global structure (like degree distributions) and microscopic
structure (like clustering coefficients). Two prominent examples of mesoscopic struc-
ture in networks are community (or modular) structure and core-periphery. There
exist many tools for finding community structure in networks (see the reviews [25,
57]) and comparatively fewer tools for finding core-periphery structure [62]. But we
are only just beginning to learn about the effect of this mesoscopic structure on the
system’s percolation properties (Sect.4.2, Ref. [40]) and on dynamics occurring on
the network (Sect. 4.3, Ref. [13]).

Another challenge is to study the converse: how the dynamics on the network affect
its mesoscopic structure. In the sandpile model on interconnected networks [13], large
cascades in one network may convince it to build more interconnections and hence
to change the mesoscopic structure. Similarly, in power grids, large blackouts can
provoke upgrades to the grid, which can include new transmission lines that change
the structure of the grid. Large financial crises alter web of financial interactions
among banks [46]. Widespread defection in a social network may alter its social ties.
Thus, rare, catastrophic events [66] may be a sign of a network in the throes of its
path toward optimal connectivity, if one exists.
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Thresholds and Complex Dynamics
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Abstract Critical infrastructures have a number of the characteristic properties
of complex systems. Among these are infrequent large failures through cascading
events. These events, though infrequent, often obey a power law distribution in their
probability versus size which suggests that conventional risk analysis does not apply
to these systems. Real infrastructure systems typically have an additional layer of
complexity, namely the heterogeneous coupling to other infrastructure systems that
can allow a failure in one system to propagate to the other system. Here, we model
the infrastructure systems through a network with complex system dynamics. We
use both mean field theory to get analytic results and a numerical complex systems
model, Demon, for computational results. An isolated system has bifurcated fixed
points and a cascading threshold which is the same as the bifurcation point. When
systems are coupled, this is no longer true and the cascading threshold is different
from the bifurcation point of the fixed point solutions. This change in the cascading
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point and even the power law exponent.

B. A. Carreras
BACYV Solutions, Inc., Oak Ridge, TN 37830, USA

D. E. Newman () - P. Gradney
Physics Department, University of Alaska, Fairbanks, AK 99775, USA
e-mail: denewman @alaska.edu

1. Dobson
ECE Department, lowa State University, Ames, IA 50011, USA

V. E. Lynch
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

G. D’Agostino and A. Scala (eds.), Networks of Networks: The Last Frontier of Complexity, 95
Understanding Complex Systems, DOI: 10.1007/978-3-319-03518-5_5,
© Springer International Publishing Switzerland 2014



96 B. A. Carreras et al.

5.1 Introduction

Many critical infrastructure systems exhibit the type of behavior that has come to
be associated with “Complex System” dynamics. These systems range from elec-
tric power transmission and distribution systems, through communication networks,
commodity transportation infrastructure and arguably all the way to the economic
markets themselves. There has been extensive work in the modeling of some of these
different systems. However, because of the intrinsic complexities involved, modeling
of the interaction between these systems has been limited [ 1-3]. At the same time, one
cannot simply take the logical view that the larger coupled system is just a new larger
complex system because of the heterogeneity introduced through the coupling of the
systems. While the individual systems may have a relatively homogeneous structure,
the coupling between the systems is often both in terms of spatial uniformity and in
terms of coupling strength, fundamentally different. Understanding the effect of this
coupling on the system dynamics is necessary if we are to accurately develop risk
models for the different infrastructure systems individually or collectively.

We have already investigated [4, 5] some of the effects of the coupling between
systems by using a dynamical model of coupled complex systems, the Demon model.
This model is an extension of the Complex System Models used to study forest fires
[6, 7]. Here, we will focus on some particular aspects of this model, for which the
coupling introduces some fundamental changes on the properties of the system.

This type of model is characterized by the existence of a bifurcated equilibrium.
Here one equilibrium solution is such that all components of the system are working.
The second type of equilibrium has a fraction of the components failed. As the load
on the system increases (or the probability of failure propagation) there is a transition
from the first type of equilibrium to the second, at a critical loading [8, 9]. In a single
system, this transition point is also the threshold for cascading events of all sizes, that
is, transitioning between “normally distributed events” [10] and large-scale failures.

The coupling between the systems can modify the system’s behavior and therefore
importantly, conditions for safe operation. In this model we introduce a possibility
of failure propagation from one system to another not only when a component fails
but also when a component is out of working order. This has two different effects.
One is a tendency to keep some components failed while still in normal operation.
How many depends on the ratio between the strength of the coupling and the repair
rate. As we see later in this chapter, the “critical loading” bifurcation point of the
equilibrium is reduced by a function of this ratio.

The second effect of the coupling is it allows propagation of failures from one
system to the other during a cascading event. Therefore the cascading threshold is also
lowered by an amount proportional to this coupling. Since the parameter controlling
this effect is not the same as the one controlling the equilibrium bifurcation, the
equilibrium bifurcation point and the cascading threshold are now different.

Because of these changes, the often used metrics [11-13] for determining the
threshold for large scale cascading events in the system will be re-examined and we
will study the effect of the coupling of the systems on these measures.
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The rest of the chapter will be organized as follows: Sect.5.2 gives a description
of the coupled infrastructure model, Demon, and a summary of some of the results
from that model. Section 5.3 introduces a mean field version of the model and uses it
to study the possible steady state solutions. The dynamics from the perspective of the
mean field theory is described in Sect. 5.4 and in Sect. 5.5 the results of this analysis
is compared with the numerical solutions of the mean field model. Then in Sect. 5.6,
the results of the mean field theory are compared with the results of the dynamical
model Demon. Finally, in Sect. 5.7, a discussion of the implications of these results
and conclusions are presented.

5.2 The Demon Model

The infrastructure model discussed here, the Demon model, is based on the forest
fire model of Bak et al. [7] with modifications by Drossel and Schwabl [6].

For a single system, the model is defined on a user defined 2-D network. An
example of such network is shown in Fig.5.1. Nodes represent components of the
infrastructure system and lines represent the coupling between components. These
components can be operating, failed or failing. The rules of the model for each time
step are:

(1) A failed component is repaired with probability P;.

(2) A failing component becomes a failed one.

(3) An operating component fails with a probability P, if at least one of the nearest
components is failing.

(4) There is a probability Pr that any operating component fails.

The Demon model [4] considers a coupled system by taking two of these 2-D net-
works and adding another rule:

(5) A component in System 1 can fail with a coupling parameter c, if the associated
component in System 2 is failed or failing. The same applies for a component
in system 2.

The ordering of the four parameters in the model is very important as discussed
in [6]. Here, for the particular infrastructure problem, the different probabilities
can be directly related to the characteristic times of repair, failure, and propaga-
tion of failure. It is worth noting that the propagation of failure parameter, Py, is
closely related to the loading of the system in a real infrastructure or a more real-
istic infrastructure model such as those described in [8, 14, 15]. This means that
in the real infrastructures and more realistic models, there is an additional feed-
back that moves the system to near its critical point. We will use data from the
power transmission system as guidance for those values. A more difficult parameter
to characterize is the parameter that measures the coupling between the systems.
The ability to explore the couplings between systems is an important flexibility in
Demon as real world systems can have a wide variety of couplings that can im-
pact their dynamics. For example they can be coupled mono-directionally (often,
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Fig. 5.1 A pair of tree networks used for the modeling as an example

Fig.5.2 A cartoon of the coupled networks, note that the number of nodes coupled between systems
can be varied as can the strength, sign and directionality of the coupling

though not always, for pipeline-communications systems) or bi-directionally (most
other systems, i.e. power transmission-communications systems), fully symmetric
or asymmetric coupling strengths (failure in power transmission system has stronger
impact on communications system then the other way around), homogeneously or
heterogeneously (general spatial or course grained in one direction), negative rein-
forcement (power transmission-communications) or positive (perhaps infrastructure
systems—decision making “system”). A cartoon of this type of coupled system is
shown in Fig. 5.2. For most of the work described here we will use the simplest types
of couplings, namely symmetric, homogeneous and with negative reinforcement.

Using these rules, numerical calculations can be carried out, the dynamics and
critical behavior investigated and impacts of system structure explored.

This model is an extension of a previous model [4] based on square grid networks
to consider arbitrary network structures. Therefore, the basic coupling was from
each node to four neighbors. The model in [4] was in turn a simple extension of the
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Table 5.1 Network properties

Type K Number of nodes
Open 3-branch tree 2 3070
Closed 3-branch tree 3 3070
Open 5-branch tree 4 190
Square 3.96 10000
Hexagon 59 4681

Drossel model [6] for forest fires with the added rule number 5 that leads to nontrivial
differences between those models. In the forest fire model, the propagation velocity
of adisturbance is P, f where P, is the probability of a disturbance to propagate from
a node to another node and f the number of available nodes to propagate to, from a
given node. In this model fis an important parameter to understand the propagation
of the disturbances and it is not well determined. If K is the averaged number of
nodes coupled to a single node in a given network, a first guess for fis f = K — 1,
because the disturbance is already coming from one of the nodes that the failing node
is coupled. In the case of the square network it was found [6] that f = 2.66 is a better
value than 3. Therefore, we vary K in order to understand what the possible values
are for f. In Table 5.1 we have summarized some of the properties of the different
networks that we have considered in this chapter.

We will briefly look first at some of the results from this model, then we will
investigate the mean field theory for this model and finally in Sect. 5.6 we will discuss
the comparison between the mean field theory and the Demon model results.

When the control parameter, P,, exceeds a critical (percolation) value the coupled
system exhibits characteristics of a critical complex system. This critical value for
an uncoupled system is given approximately by P, f = 1, which is when the failures
have a non-zero probability of propagating across the entire system. For the full-
coupled system, the coupling between the two systems modifies this value. If the
cross system coupling were the same as the coupling between nodes in each system,
this would be the same as a larger system whose average node degree (effectively
K) is increased by one. When the two systems being coupled are identical, but with
a coupling strength different, typically much smaller, then Py, the size distribution
of failures obeys a power law which is close to —1 for all of the network structures
examined. Below this critical value, the systems display an exponential distribution
of failure size. An instructive exercise can be carried out by having the probability
of random failures, Pf, non-zero in only one of the coupled systems. In this case it
is found that if P, is above the critical value and the coupling between the systems
is also non-zero, the system in which there are no random failures also exhibits the
characteristic power law size distribution (Fig. 5.3). This means that systems that look
robust can actually be vulnerable when coupled making analysis of the entire coupled
system critical. This cross system propagation is of course due to the coupling and
can be seen in the synchronization of the failures in the two systems.

Using a measure developed by Gann et al. [16] for synchronization, which is
basically an average normalized difference between events in the two systems, we
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investigate this effect. For this measure, a value of 1 means the difference is effectively
100 % or no synchronization, while a value of 0 means all events are the same in the
two systems, or they are synchronized. For the Demon model it is found that large
failures are more likely to be “synchronized” across the two dynamical systems,
Fig.5.4, as seen by the decrease in the synchronization function (which is an increase
in the actual synchronization) as a function of size. This means that in the coupled
systems there is a greater probability of large failures and lesser probability of smaller
failures. This in turn causes the power law found in the probability of failure with
size to be less steep, Fig.5.5, with the coupling (i.e. the risk of larger failures is
even higher in the coupled system). Above a certain value of the coupling, this effect
saturates as the largest events are fully synchronized. The value of slope of the power
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Fig. 5.5 PDF tail gets heavier as the coupling strength increases and then, as with the synchroniza-
tion, saturates and stops changing

law for the coupled square grid with parameters given earlier approaches ~—0.8 in
contrast to ~—1.0 for the uncoupled system.

The other major impact of the coupling on the system characteristics is the reduc-
tion of the critical point. As the coupling increases, the critical value of P,, and by
extension the loading, rapidly decreases (Fig.5.6). This means that in an infrastruc-
ture system which by itself is nominally subcritical, the coupling, even weakly, to
another infrastructure can make the entire system critical. This reduction will be
further discussed in the next section on mean field theory of the coupled systems.

5.3 Mean Field Theory: Steady State

Let us consider first the mean field theory for two coupled systems. This is a gen-
eralization of the calculation as done in [6]. Let O (¢) be the number of operating
components in system i at time # normalized to the total number of components N ).
In the same way, we can define the normalized number of failed components, F @),
and the failing ones, B® (¢). The mean field equations for this coupled system are:

(O]
c
BOw+ 1) =Pl 000+ P 0V 0BV 1) + =000 (B0 + FO )

(5.1)
FO@+1) = (1 — PO)FD 4 5O @) (5.2)

oV +1)= (1 - P}“) 0V @0)y+ PVFD )y — pD D oW 1) BV (1)
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Fig. 5.6 The critical point decreases rapidly as the coupling strength increases. Even the maximum
coupling strength is much less then the propagation coefficient within one system but the critical

parameter has fallen by more than a factor of three
e
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BA(+ 1) = PP 0P+ B2 fP0P0BY (1) + K@ 102 () (BV (1) + FO (1)
(5.4)

FOu+1) = (1-P2) FOw0) + B2 (5.5)
0P +1)= (1 - P}z)) 021ty + PP FP1) - PP @ oW 1)B? (1)
(5.6)

—Ke®g0@ 1) (B“)(t) + F(l)(t)) .

Here K = NV /N®@ g is the fraction of nodes in system 1 coupled to system two,
and g is the fraction of nodes in system 2 coupled to system 1. Of course, these

equations are consistent with the conditions:
09ty + BV +FV1) =1 (5.7)

In the limit with no failure triggers, Pf(i) = 0, and for a steady state solution, the

system of equations can be reduced to two coupled equations,

)
[1-PDfDoD](1-0") = %gz(l - 09)oW" (5.8)
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[1 _ Prgz)f(Z)O(Z)](l _ 0(2)> — ICa(z)gl (1 _ 0(2))0(2) (5.9)

where

a =" "7 (5.10)

It is important to note that the relevant parameter involves the ratio of the coupling
between the systems to the repair rate. The reason for that is the particular form of rule
(5) that assumes that a failure can be triggered by both failed and failing components
in the other system. If only failing components had been considered, the relevant
parameter would be the coupling. For real systems, a realistic rule should probably
be in between these two.

If a® # 0 and k = 1, then o =1 implies 0@ = 1, that is, the systems
are decoupled. Therefore, to have truly coupled systems, system 1 must be in a
supercritical state. Such case with a® # 0 is more complicated to solve.

First, we assume identical systems symmetrically coupled. That is, all parameters
are the same for the two systems, f(l) = f(z), al = a(2>, xk =1 and P((nl)) = P((nz)).
This leads to identical solutions for the two systems in steady state. Therefore, we
have the following solutions:

@) @) @)
Oleq - l, Fleq - 0, Bleq - 0 (5.11)

and | . 1 .1
(i) (@) g — (i) g —
OZeq =

— P (5.12)
g

v By = e ra—
SO S R N I O

The second solution is only valid for ¢ > 1. Here, g is the control parameter and is

given by

c(l + Pr)

s p
g nf + P

(5.13)

In Egs.(5.11) and (5.12) the subindex eq indicate that is an equilibrium solution.

The bifurcation point of the fixed point, ¢ = 1, has been decreased from the
decoupled case, P, f = 1, by a term proportional to ¢/ P.. Therefore, in general this
reduction is considerably larger than the magnitude of the coupling itself.

We have tested the results from the mean field theory by comparing them with
numerical results from some of the two-coupled identical systems networks listed in
Table 5.1. The results for the averaged number of operating components are shown in
Fig.5.7. Results have been obtained for fixed P, = 0.001, ¢ = 0.0005, Pr = 0.00001
(for system 1) and P = 0 (system 2), and we have varied the propagation p