EventJava: An Extension of Java for Event
Correlation*

Patrick Eugster and K.R. Jayaram

Department of Computer Science, Purdue University, West Lafayette, IN 47906
{peugster, jayaram}@cs.purdue.edu

Abstract. Event correlation has become the cornerstone of many reac-
tive applications, particularly in distributed systems. However, support
for programming with complex events is still rather specific and rudimen-
tary. This paper presents EventJava, an extension of Java with generic
support for event-based distributed programming. EventJava seamlessly
integrates events with methods, and broadcasting with unicasting of
events; it supports reactions to combinations of events, and predicates
guarding those reactions. EventJava is implemented as a framework to
allow for customization of event semantics, matching, and dispatching.
We present its implementation, based on a compiler transforming spe-
cific primitives to Java, along with a reference implementation of the
framework. We discuss ordering properties of EventJava through a for-
malization of its core as an extension of Featherweight Java. In a per-
formance evaluation, we show that EventJava compares favorably to a
highly tuned database-backed event correlation engine as well as to a
comparably lightweight concurrency mechanism.

1 Introduction

Events demark incidents in the execution of software, a change of state in some
component. In a distributed event-based system (DEBS), software components
communicate by transmitting and receiving event notifications, which reify the
events and describe the observed changes in state. Some examples of events in
different domains are (i) the reading from a temperature sensor, (i) a stock
quote, (iit) a link failure in a network monitoring system, (iv) change of re-
lationship status in a social networking tool, or (v) drop in inventory below a
defined threshold. Interacting objects in a DEBS can act in two roles, namely
as (a) sources (notifying events), and/or (b) sinks (manifesting interest in be-
ing notified of events). Event notifications describe state changes by attributes
attached to them. Fxplicit attributes represent application-specific data; e.g, a
stock quote event has the name of the organization, the price of the stock and the
opening price as explicit attributes. These are sometimes paired with implicit at-
tributes conveying contextual information, such as wall clock time, logical time,

* Financially supported by National Science Foundation (NSF) through grants number
0644013 and number 0834529.

S. Drossopoulou (Ed.): ECOOP 2009, LNCS 5653, pp. 570 20009.
© Springer-Verlag Berlin Heidelberg 2009

EventJava: An Extension of Java for Event Correlation 571

geographical/logical coordinates, or sources. Henceforth, we will use the term
events to refer to both the incidents underlying such events as well as to their
incarnations and notifications.

Sinks are not always interested in single events. Events can be correlated with
other events, resulting in complex events. Examples arel]

— Average of temperature readings from 10 sensors inside a boiler.

Average of temperature readings from a sensor within a 10 minute interval.

— The price of a stock decreases for 10 successive stock quotes immediately
after a negative analyst report.

— Two insider trades of a large volume (> 10000) immediately after a stock

price hits its 52 week high.

Release of a new TV followed by 5 positive reviews in 1 month.

Event correlation is widely used in algorithmic trading and financial services,
patient flow monitoring in hospitals, routing and crew scheduling in transporta-
tion, monitoring service level agreements in call centers, consumer behavior in
on-line retailing and airline baggage handling, network monitoring and intrusion
detection [I] just to name a few. In pervasive computing, events are often viewed
as an adequate interaction abstraction due to their strongly asynchronous na-
ture [2]. Examples of specialized event correlators in the database community
are Cayuga [3], Aurora [4], and Borealis [5].

In DEBS, decoupling between the interacting objects (sources, sinks) is de-
sired because it can lead to greater scalability. Because of this decoupling between
components, interaction between them is asynchronous and often anonymous —
sources and sinks do not need to know the identities of each other. Anonymous
interaction is enabled by groups formed between sources and sinks. For exam-
ple, the object that publishes stock quotes and objects which monitor stocks
(at several stock brokers) are in a group — managed either using a group com-
munication middleware (e.g. Spread [6]) or a specialized event dissemination
middleware (e.g. Hermes [7], ActiveMQ [8]). The middleware is responsible for
delivering events to sinks and providing fault tolerance.

In support of an increasing family of programs based on events and event-
correlation in particular, we propose in this paper a novel extension of the main-
stream Java programming language, called EventJava. This paper presents its
design, semantics and implementation, starting by an illustration of its features
through examples. The technical contributions of EventJava and this paper are:

1. An object-oriented programming model with generic support for event-based
interaction. This model is implemented as an extension to Java, EventJava,
incorporating features for event correlation, broadcast and unicast of events.

2. An implementation framework for event correlation promoting customiz-
able propagation and matching of events. A reference implementation of this
framework is presented, based on the Rete pattern matching algorithm [9]

1 Source: fwww . thecepblog. com, www.complexevents. com,
www . event-based.org

www.thecepblog.com
www.complexevents.com
www.event-based.org

572 P. Eugster and K.R. Jayaram

in the Jess expert system shell [I0], and the JGroups [11] group commu-
nication system. Empirical evaluation shows that these custom off-the-shelf
components can be used to achieve performance and scalability comparable
to highly specialized correlation engines or lightweight concurrency mecha-
nisms, illustrating the adequacy of the abstractions proposed in EventJava.

3. Formal semantics of event correlation in EventJava expressed as an extension
to Featherweight Java (FJ) [12]. We present a default semantics of Event-
Java, where events are correlated non-deterministically, and broadcast inter-
action between sources and sinks does not preserve the ordering of events of
the middleware layer. We then present the precise semantics for a more de-
terministic event correlation in our reference implementation, showing that
it preserves the ordering properties of the underlying middleware layer.

The remainder of this paper is organized as follows. Section [2] presents Even-
tJava through examples. Section [J] details its syntax and semantics. Section []
presents an implementation of EventJava based on a framework for semantics
customization. Section [evaluates the performance of EventJava. Section [6] ex-
plains some of our design decisions and discusses various options in EventJava.
Section [presents related work and Section [§ draws conclusions. A companion
technical report [13] provides further details such as type checking rules.

2 EventJava by Example

This section gives an overview of EventJava, introducing its features stepwise
through simplified examples.

2.1 Event Methods

An application event type is implicitly defined by declaring an event method, a
special kind of asynchronous method. The formal arguments of event methods
correspond to the explicit attributes of the event type.

Handling events. Consider the example below of a travel agency which notifies
its customers of severe weather in cities that are part of their flight itineraries.
Instances of the Alerts class react to simple severewWeather events by retriev-
ing the email addresses of flight passengers (in- or outbound for the city) from
a database and sending emails to them. Sinks can specify additional constraints
on event attributes through predicates, which follow the when keyword.

class Alerts {
ItineraryDatabase db;
event severeWeather (String city, String description, String source)
when (source == "weather.com") {
Iterator<Itinerary> it = db.getItinerariesByCity(city) .iterator();
while (it.hasNext ()} { Messenger.sendEmail (it.getAssociatedEmail());}

In this example, the travel agency only trusts alerts from weather . com. The
method body is called a reaction and is executed asynchronously in a separate

weather.com

EventJava: An Extension of Java for Event Correlation 573

thread (typically from a thread pool) upon occurrence of an event satisfying
the predicate. Arguments are considered to be values, i.e., of primitive types or
conforming to Serializable, to enable event notification across address spaces.
Events (event method invocations) that match the predicate are consumed by
the reaction.

Unicast. Invoking an event method on an object notifies the event to that
object. To that end, the source object needs a reference to the sink — a stub if
the sink is remote. For example, a severeWeather event can be notified to an
instance a of Alerts as follows:

a.severeWeather ("Chicago", "Snow Storm 15 inches", "weather.com");

Broadcast. The same severeWleather event can be notified to all instances of
Alerts just like a static method call:

Alerts.severeWeather ("Chicago", "Snow Storm 15 inches",
"weather.com") ;

When an event method e () is invoked on a class C it is broadcast to all live
instances of C' and all instances of any subclass C’ of C. By all instances of a
class C, we mean all local instances and all remote instances of C' within the
group (see Section M for remote interaction and Section [f for bootstrapping).
When the invocation happens on an interface I, the event is broadcast to all
instances of all classes C' implementing I.

2.2 Complex Events and Correlation Patterns

Complex events are defined by correlation patterns, comma-separated lists of
event method headers, e.g. e1 () ,e2(),....eq () , preceded by the keyword event.
As we will detail later, the correlation semantics can be sensitive to order.
Consider an algorithmic trading example comparing earningsReport and
analystDowngrade events. If a stock has a negative earnings report (the actual
earnings per share, epsact, is less than the estimate epsEst), followed by an
analyst downgrade to “Hold”, then the algorithm recommends selling the stock.

class StockMonitor {
Portfolio p;
event earningsReport(String firm, float epsEst, float epsAct, String period),
analystDowngrade(String firml, String analyst, String from, String to)
when (earningsReport < analystDowngrade && firm == firml &&
epsAct < epsEst && to == "Hold") {
p.RecommendSell (firm) ;

The first condition earningsReport<analystDowngrade compares an event
earningsReport with an analystDowngrade event. It is a shorthand notation
for earningsReport.time < analystDowngrade.time. The time attribute is
a default implicit event attribute representing timestamps for events (explained
shortly). firm can be used in lieu of £irml in analystDowngrade, but then the
event name followed by the attribute must be used in the predicate and reaction
for disambiguation, as in earningsReport. firmand analystDowngrade. firm.

574 P. Eugster and K.R. Jayaram

We refer to a predicate which compares attributes of two different events as a
Type-B predicate (e.g. firm == firml). Predicates which compare an attribute
to a constant are referred to as Type-A predicates. As a comparison, our com-
panion technical report [I3] sketches a possible implementation of the same cor-
relation pattern in standard Java.

Events that match the correlation pattern and satisfy the predicate are con-
sumed by the reaction. Formal arguments of event methods can be similarly
used in the reaction. An EventJava application developer is responsible for syn-
chronizing accesses to shared data structures that occur inside the body of a
reaction. One way to achieve synchronization is to add the synchronized key-
word in front of the pattern; it applies to the reaction, ensuring mutual exclusion
among its executions and those of other reactions and regular methods marked
as synchronized.

2.3 Streams

EventJava also supports correlation over event streams through array-like in-
dices on event methods in correlation patterns defining windows. Consider a
simple pattern in fraud detection, which looks for 3 different insider trades of a
stock with a combined volume > 100000. This pattern specifies the number of
insiderTrade events being correlated, and the attributes of each of the events
are accessed in the predicate and reaction body using indices.

event insiderTrade[3] (String firm, String name, String role, float price, long vol)

when (insiderTrade[0].name != insiderTrade[l].name &&
insiderTrade[1l] .name != insiderTrade[2].name &&
insiderTrade[0] .name != insiderTrade[2].name &&
insiderTrade([0].firm == insiderTrade[l].firm == insiderTrade[2].firm &&
insiderTrade[0] .vol + insiderTrade[l].vol + insiderTrade([2].vol >= 100000){...}
A pattern of the form event e[n] when (p) ... specifies that n events e are

correlated such that:

—Vij€e{0,..,n—1} 4 < j implies e[i] .time < e[j].time, for example
with e=insiderTrade above.

— Although e[i].time < e[i+1].time, the n events need not be consecu-
tive. For example, there can be another event ¢’=insiderTrade(. ..) which
does not satisfy predicate p such that e[0].time < e’ .time < e[1].time.
If needed, windows of consecutive events can be achieved with additional
predicates e.g. based on monotonically increasing counter values assigned as
attributes to events of the same type.

Aggregated events can of course be correlated with non-aggregated ones. Con-
sider the following algorithmic trading scenario which seeks a stock decreasing
monotonically in value for 10 quotes after an analyst downgrade.

event analystDowngrade(String firml, String analyst, String from,
String to),
stockQuote[10] (String name, float sPrice)
when (analystDowngrade < stockPrice[0] &&
for i in 0..8 stockQuote[i].sPrice > stockQuote[i+l].sPrice &&
for i in 0..9 stockQuote[i].name == analystDowngrade.name) {...}

EventJava: An Extension of Java for Event Correlation 575

A declaration e () without window is in fact simply treated like e[11 (). Con-
sider implementing the TV example from Section[I} Release of a new TV followed
by 5 positive reviews in 1 month. We assume that on a scale of 0 to 5, a rating
above 3.5 is considered positive:
event tvRelease(String model, float price, String date),

tvReview[5] (String modell, File review, float rating) when
(for i in 0..3 tvReview[i] .modell == tvReview[i+1].model &&
for i in 0..4 tvReview[i].rating >= 3.5 &&

tvReview([4] .time - tvReview[0].time = 30%24%60%x60%1000 &&
tvReview[0] .modell == tvRelease.model) {...}

2.4 Matching Semantics

Event correlation semantics have different parameters [T4JT5]. For instance, a
pattern event e1 (), ez () can be matched by a sequence of events e, e?, e} ei-
ther as (el,ed) (FIFO) or (e?,el) (LIFO). In the latter case, one might even
want to discard the superseded ei. Different semantics can be of interest for
different settings. In tightly coupled concurrency scenarios, the latter suggestion
of discarding an event without consuming it seems wrong. In systems with dy-
namically joining and leaving participants and in the presence of predicates, it
becomes infeasible in general to ensure that any event is consumed at least
by one object, and obsolescence of events might be part of the application
semantics.

To be able to accommodate various application types, matching in EventJava
is implemented as part of a framework explained more in the following sections.
Our default semantics presented in the next section are non-deterministic in that
in the above example either outcome is possible. This reflects many concurrency
settings where non-determinism is desired to achieve some form of fairness. The
semantics of our reference implementation strike a balance between (a) static
settings, i.e., where by design and deployment every event is assured to be con-
sumed by at least one object (possibly by omitting predicates), and (b) dynamic
distributed settings. They will be presented in Section

2.5 Context

Events can have explicit and implicit attributes. In EventJava, implicit attributes
form a context. The timestamps (* . time) used in Section 22 are but an example
— though an important one. The ordering underlying our matching semantics rely
on this notion.

Implicit event attributes are in fact fields defined globally by a Context class,
of which an instance is passed along with every event. The code required to
instantiate and pass this context is generated by our compiler. In the following
simple class, an event is simply timestamped with the local physical clock. Please
note that this is but a simple example, and that the notion of time is generally
more complex and has to be closely aligned with the underlying communication
infrastructure and the other parts of the framework (see Section M.

576 P. Eugster and K.R. Jayaram

public class Context implements Comparable<Context> , Serializable
{

public long time;

. /+* more fields =/

public Context() { this.time = System.currentTimeMillis(); }

public Context (long time) { this.time = time; }

public int compare(Context other) {

if (timestamp == other.timestamp) return 0;

The Context class is verified at compilation for well-
formedness. Its public fields fi,f2,..,fq (in the order of dec-
laration) define the implicit event attributes. Constructors [
can have formal arguments corresponding to subsequences of I
those fields. An event method declaration can optionally list sskm

1 55km(0.5%)

the entire context, e.g. event e () [f1,..., fq], and an event [C“' __________
method invocation in special cases may want to explicitly pro- ;ssm

vide values for the context corresponding to a constructor, |

e.g. e()[f1,.... f;1 (j€[1l..q]). Consider a Context class us-

ing geographic coordinates in addition to timestamps. The pjg 1. Example

following example shows how a correlation pattern can use with geographic
this context to collect rainfall readings from twenty different coordinates
sensors located in a square region (see Figure [It 55km North

to 55km South and 55km East to 55km West) around the cur-

rent location (which is denoted by C). The latitude and longitude are in the

decimal degrees@ format, in which 0.1° = 11km. Rainfall readings aggregated by
the pattern should be within a 60 minute interval.

public class Context implements Comparable<Context> , Serializable
{
public long time;
public float latitude; //in decimal degree format
public float longitude; //in decimal degree format
//more fields and methods
}

class WeatherStats {
float currLatitude;
float currLongitude;
event rainfall[20] (float rainInMM, String place, int sensorID) when

(for i in 0..19 Math.abs(rainfall[i].latitude - currLatitude) == 0.5 &&
for i in 0..19 Math.abs(rainfall[i].longitude - currLongitude) == 0.5 &&
for i in 0..18 rainfall[i].sensorID != rainfall[i+1].sensorID &&
for i in 0..19 rainfall([i].time - currTime == 60 x 60 x 1000) {

float sum = 0;

for(int j = 0 ; j < 20 ; j++) sum += rainfall[j].rainInMM;

float averageRainfall = sum/20;

2 http://en.wikipedia.org/wiki/Decimal_degrees

http://en.wikipedia.org/wiki/Decimal_degrees

EventJava: An Extension of Java for Event Correlation 577

3 EventJava Syntax and Semantics

This section presents the syntax and semantics of EventJava in more detail,
as an extension Featherweight Java (FJ) [12], dubbed Featherweight EventJava
(FEJ). FEJ supports illustration, and reasoning about subtyping, inheritance,
and matching semantics.

3.1 Featherweight EventJava (FEJ) Syntax

The major additions of EventJava to Java are reflected in Figure[2l As in FJ, tnis
is a special variable 2, and o represents a sequence 07 ..04; separating symbols — if
any — depend on the context. A given element of a sequence is referred to as o;.
Two-level nested sequences o are also possible; in this case, an individual element
can be referred to as 0;?. The first bar above the o relates to the subscript index

j, whereas the second one refers to the superscript k; oF thus unambiguously
represents of ..o%. We use (0)1..4 instead of o to explicitly specify the size g of o.

In FEJ, a program is a parallel execution of threads, where each thread is of
the form t(t;); the parallel composition operator | is commutative and asso-
ciative. In %(¢;), i represents a unique identifier (not necessarily continuously
assigned). Threads can be created explicitly (aew T(t;)) or by the system. Types
(T) encompass classes (C'), immutable classes (I), and value classes (D) which
reflect primitive types. B, 1, , s for instance refer to booleans, integers, floats,
and strings respectively. Instances of immutable and value classes are the only
permissible terms for event attributes (V). Immutable classes are introduced to
abstract serialization and avoid costly cloning. No assignments can occur to fields
of such objects, and their fields have to be recursively immutable. (EventJava
applies a simple static analysis to attempt to infer immutability and reverts to
cloning if it fails.) Immutable classes cannot define patterns. FJ’s call-by-value
semantics are retained but as in other extensions (e.g. [16]), we introduce field
assignments (¢.x:=..) and thus new A (...) terms evaluate to locations [(A) in mem-
ory. The latter terms are not used explicitly in programs; when not germane to
the discussion, the type A will be omitted for brevity.

Correlation patterns include a sequence of events F, a predicate, and a re-
action. Events can either declare their context (en1 (N x) N’ z’1), or omit it
(etn1(N x)). A predicate is a conjunction or disjunction (s-.») of simpler predi-
cates. Among those are comparisons of value objects (vo), and universal quan-
tification (for i inim..n1 p). An event e; is always defined over a window of size
n;> 1, with n; commonly 1. Predicates only allow u terms which represent a
strict subgrammar of ¢, omitting for instance fields of tnis; even if type check-
ing can ensure that a field f is of an immutable type, its value could otherwise
change (by reassignment in another thread). In practice, the £inal modifier
helps overcome this limitation.

3.2 Evaluation

Figure [presents auxiliary definitions for FEJ. We use contextual semantics to
model dynamic semantics, introduced in Figures @ and

578 P. Eugster and K.R. Jayaram

program Qu=01]Q|T'{E;) value v:u=1(A) | new D (d)
mutable L::=class C extends C{T f, K M Py type T:=C|I|D
immutable J::=class I extends [{N f, K M} class Au=C |1
constructor K = A (T f) {super (f) ; this. f ?;} attribute N:u=1| D
method M:=Tm (T T){t; return t;} pattern P::=event E whenp (t;}
event E:=e[n] (NZ) [N '] | eln] (N T)
filter u w.f| (T)u | new D(d) | z[n] | z[i]
predicate pi=1uvopu |pbopp | ! p| foriin[n..n] p
term tu=wv |z |t.flt.fr=t|t.m @) | (D)t |t.e®) |t.e®) [t]]| C.e(¥)
|C.e(t)[t] | new A(T) | new T (Z;)

deD (D,d,D)€{(,b,B),(1,2,Z),(F,7,R),(s,s, X%), ..}

Il €dom(L) v-op € {==, <=, <}

n€zZm b-op € {&&, | 1}

Fig. 2. Featherweight EventJava (FEJ) syntax

CT(C)=class C extends ..{.. Py

fields(Object)=0 [OBJ-CLASS] it e - _
event e[n] (Nz) [N'z'] whenp{t;} P

CT(E)=class E extends Object{} — —
[Ev-CLass] rbody(e, C)= (zz',p, 1)

_ REAcT-BODY

CT(A)=class A extends A' (T f; ..} :)

fields(A))=T" f’

= J CT(C)=class Cv extends ..{.. P}
fields(A)=T" f", T f vV j fresh xi—x'l sz q=|*N|
[F1ELD-TYPE] event e[n] (Nz’) whenp{t;} €P
CT(C)=class ijtendf ...(...7173) rbody(e, C)= (571),{)
event.. e[n] (N T).. {t;}€P [REACT-BODY-DEF]
[Ev-TYPE]

etype(e, C)=nxN *N—E -
CT(C)=class C extends C'{.. P}

CT(C)=class C extends C’{.. P} A.e.cP A.es.eP
etype(e, C)=etype(e, C") rbody (e, C)=rbody(e, C")
[Ev-TYPE-INH] [REACT-BODY-INH]

Fig. 3. Auxiliary definitions for FEJ

Contextual semantics. Event methods are typed (etype) just like ordinary
methods ([Ev-Tyeg], [Ev-Tyee-Inn)), since they don’t have return values. & is used
as a placeholder for event and has neither methods nor fields. Evaluation takes
place on tuples; in the context of local evaluation —, such a tuple is a term
together with an object store £ and an event store S (see Figured]). S(I) repre-
sents per-object queues of events of the form (e, vv’)-(e, vv’)-... Global evaluation
= s similar to local evaluation, but relates programs instead of terms. —* is
the transitive closure of — . £ changes when vales are assigned to object fields
([FieLp-Ass-R]) and when new objects are created ([Loc-R]). In [Forarr-R], quantifi-
cation over integers n..n’ is reduced to n’ — n + 1 predicates. We sometimes use
(0)1..q instead of o to make the size ¢ of o explicit.

Contexts and broadcast. The context is represented by a set of terms Vi
of types *xN. In an event en1 (N x) (N’ x’'1, we assume, without loss of gener-
ality, that the first term of the context z is used for ordering. In FEJ, values
for the context variables are either specified explicitly (¢.e) t1, C.e) t1) or

EventJava: An Extension of Java for Event Correlation 579

instantiated during reduction ([Ev-Der-R, Ev-Beast-Der-R]). To simplify the calculus
rules, we make two assumptions: (i) Either all events in a given pattern decla-
ration specify the context or omit it. (#4) In all invocations of an event method,
the context is either explicitly specified or instantiated during reduction. Rules
[Ev-Der-R] and [Ev-Beast-Der-R] mimic actions performed by the runtime/middle-
ware in an implementation. In [Ev-Der-R] and [Ev-Beast-Der-R], for a given object
[, the Vt| terms assigned must evaluate to values that are totally ordered, in
increasing order. In [Ev-R], events are added to the queue corresponding to object
l. Broadcast ([Ev-Beast-Der-R, Ev-Beast-R]) is semantically equivalent to a sequence
of unicasts ([Ev-R]). Note that in both [Ev-Beast-Der-R] and [Ev-Beast-R], broadcast
is not atomic, because it takes g reduction steps, which can be interleaved with
reduction steps of other threads running in parallel. So there is no global total
order, i.e., events in different queues may be ordered differently.

Correlation. The core of the semantics is the reaction rule [Reacr-R], which
relies on the match() predicate, and uses a number of auxiliary definitions.
7, S(1) is a projection that simply extracts a subsequence of events of type e
from an event queue S(I). Set complement S(1)\(..) and inclusion € follow the
usual intuition, but are specified to simplify understanding of the weaknesses
of the present semantics and the refined semantics for our reference implemen-
tation presented in the next section. The match() predicate ([Parr-Marcn]) sim-
ply takes any set of events matching any pattern defined for a given object
(€), regroups the corresponding events (A) and creates a corresponding vari-
able substitution (©). In case the predicate for the pattern evaluates to true,
[React-R] simply removes the events from the queue and creates a new thread
(thread pool in practice) to execute the reaction. Note that [Reacr-R] does not
produce any side-effects in £, due to the constraints on predicates. Given the
non-deterministic nature of the event matching, paired by the simple reduction
of an event broadcast to a multi-send in [Ev-Beast-R], two instances of a same class
receiving identical sets of broadcast (only) events will not necessarily correlate
the same events.

The matching semantics presented here are intentionally weak and serve
mostly as illustration. The handling of broadcast for instance does not assume
more than reliable point-to-point communication. Using expensive event dis-
semination protocols results in better ordering guarantees. The semantics of our
reference implementation (Section [2)) uses deterministic selection of matching
events and total order broadcast to disseminate events, providing strong guar-
antees on the order of execution of reactions (Section [L.2]). But, FEJ does not
force the use of a specific dissemination protocol or protocol family, because
the choice strongly depends on the application, and the underlying infrastucture
and system model. Ordering guarantees, for instance, induce a sensible overhead
most of the time. In specific cases, they may be achieved more easily or even
spontaneously (e.g. if the basic communication mechanism is broadcast-based
such as on a single Ethernet wire or in certain wireless settings) or simply not
be needed. Ordering properties, just like correlation semantics in general, can
not be automatically inferred from the application.

580 P. Eugster and K.R. Jayaram

Evaluation contexts S()=(e,vv")-S'(1)

E:=[| ME|E.f|E.f:=t|v.f:=E|E.m (f) . S()=(e,vv")-7,S' ()
[v.m(E) |E.e(®) |E.e(?)[t]|v.e(E) []
|v.e(E) |v.e (@) [E]|C.e(E)|C.e(E)[t]

[Ev-ProJ-INCL]

i i (o) Y.
|C.e(v) [E] |new A(E) |v; E;t |7, E,T S)=(e",vv") /S @ [Ev-Pros-Excr]
| E v-opt |V v-op E | Eb-opp |vb-op E | E . S()=m,8" ()
| E; returnt |v; return E
£,8) = (Q, L8 S(H)=8"(1)-(e,7v")-8"(1) (e, T)¢S (1)

Q,L,S) Q'L
L SO\ (e, 70)}=8"(1)-8" (1)
@It (Ui)7£75>:><6[?75’5> | [Ev-ReM]
THREAD-KILL-R
j fresh s5=s"-51-5" sy , €87 P(sy,.,s,)
(Q T (Enew T (:)]), £, S)= 51..4€5 P(s1, -, 8,)
@It (BT (), L,S) [Ev-SEq-INcL]
[THREAD-FORK-R]
(£, 8)— (', £, 8) Ve e (WW im,y E”eﬁ”(@))
(QIT (Bt), £.8) = QI T (BIt];). £/,) etype(es,) =n; x..
[CONGRUENCE-R] rbody(e, C)=(za’,p,t)
match(S,1(C),e,N,0) j fresh N:UkE[l..nj] (ej,viv'd),
S'={SOW/ 5)}S rbody(e,C)=(Ta',p,t m— i
{<ep,£,s$(’)>}—>*<new B((tmez,a(,s)) O0={Ytnis, "N GTiaT 2 T [k,1]>k6[1”nﬂ}
Q. £, 8)=(Q|1(8%;),£,5") match(S,1(C),E,N,0)
[REACT-R] [PATT-MATCH]

Fig. 4. Contextual semantics of FEJ

3.3 Constraints on Event Methods

Event methods are specific methods, and their declaration and implementation
thus follows special restrictions.

R1 Event methods cannot throw exceptions and cannot return values. Their
return type is event. This simplifies broadcast — the absence of exceptions
and return values avoids dealing with multiple returns.

R2 Event method headers cannot be synchronized, as this would contradict
their asynchronous nature. Reactions may be defined to be synchronized
though by adding the keyword in front of the correlation pattern declaration.

R3 Similarly, £inal applies to correlation patterns. By prefixing a correlation
pattern with that keyword, all event methods in the correlation pattern are
transitively made final, and none of them can be overridden in a subclass
correlation pattern.

R4 Predicates, like reactions, can not be defined in interfaces. An interface, or
a class, can define an abstract event correlation pattern, which is strictly
the same as defining the respective event methods individually.

R5 A reaction body can make a call to a reaction body of a pattern in its super-
class through super only if the pattern involves the same set of events.

R6 An event method can only appear in a single correlation pattern within a
class. Without this restriction, semantics become much more complicated,
as elaborated in Section

EventJava: An Extension of Java for Event Correlation 581

(b-0p, a-op) €{(8&, A), (11, V) }
(new B (b) b-op new B(b'),L,S)—
L(1)= [f1: 01, fq : Vq] (new B (b a-op V'), L, S)
F -Acc-R -Op-
WA) T3, L, 8)—(0,, L, S) [FIELD-AcC-R] [BooL-Op-R]

(w-op, a-op) €{ (==, =), (<=,), (<,)}

(t,L,8) — (', L', 8)

L(l):. [fl : ’017/ fq.: ’Uq] <new D (d) vop new D (dl),£,$>*>
o =g davdy y g (new B (d a-op d'), L, S)
((C). fj:=v", L, 8)— (', L', S) [VAL-OP-R]
[FIELD-Ass-R]

(l.e(@),L,8)—(l.e (D) [Vt],L,S)
A=T [Ev-DEF-R]

OBJ-CAST-R
(T I(A).2.8)—((A). £, 5) |OprCasTR] _
&' ={SWeT ”/)/;}S
— - [Ev-R]
D=<T (l.e (@) [v],L£,S)—(newE(),L,S’)
((T)new D (d), L,S)—(new D (d), L, S) _
[VAL-CAsT-R] fields(A)=T f [&dom(L)
E/:{[fl:7]1""’fqmq]/l}£ . R
(v;return v’, L, S)— (v, £,S) [RET-R] (new A (0), £, 8)—((A), L, S) [Loc-R]
mbody(m, A)=(%,1) I={l|1(C)eL NC=C"}
(UA).m @), L, S)—{" = Y tnis}t, L, S) (O e@,L,8)—
[METH-R] (li.e (@) [Vt1];.ily.e (@) [VEa], L, S)

[Ev-BcasT-DEF-R]|
(foriin(n..n'] p,L,8)—

FORALL-R’ 7
() pssnsa (™))p, £,y ORI [={1 | (O)eL N CXC'
(C".e @) v1,L,8)—
(!new B (b),L,S)—(new B(-b), L, S) (I1.e (@) (V] wily.e (@) [V]1,L,S)
[BooL-NEG-R] [Ev-BcaAsT-R]

Fig. 5. Contextual semantics of FEJ (cont’d). <denotes subtyping, refer to the com-
panion technical report [I3] for the subtyping rules.

In FEJ, R1 is achieved by the introduction of the placeholder =. R2 and R3
are abstracted, R4 and R6 are enforced by inheriting from FJ. R5 is abstracted
in FEJ because F.J does not have super-calls.

3.4 Event Overloading, Event Overriding and Pattern Overriding

As in Java, an event method ey overloads es if they have the same name but
different type signatures (etype in Figure B]). In EventJava, they are treated as
two different event methods and can appear in different correlation patterns in
the same class (subject to restriction R6). Overriding an event method e (with
window (n1) is possible (with n’1, n’>n) iff e is not in a £inal pattern in the
(non-£inal) super-class. Consider a correlation pattern p; in class C' containing
event methods ey, .., e, with windows n1,..,ng. Assume that class C’ inherits
from class C, and defines a pattern p; containing e;. Then, we say that po
overrides p;. But pa does not have to contain e, .., e, which may be included
in other patterns of C’. So, a pattern in C can be overridden by more than one
pattern in C’. By restriction R6, since an event method can occur only in one
correlation pattern per class, if C’ does not define patterns containing es, ..., e,
then they become abstract just like the subclass C” itself.

582 P. Eugster and K.R. Jayaram

3.5 Global Progress

Consider an object [(C') with a pattern event ¢ n1 (N 2) (N] whenpit;} defined
in C.

Definition 1 (Configurations). We refer to C = (Q, L, S) as a configuration.

- EF(Q,L,8) = (»"(E[d;.e; vl v')]i) | Q, L,S) is an event configuration.
- ’Rle(c)(Q,Q,E,S) = (2{(©)e)(Ot;.)| Q, L,S) is a reaction configuration.

Definition 2 (Run).
A run is a succession of configurations C=C,=..=—=C,.

Theorem 1 (Global progress). Assume a run C s.t. Vj € [1..q],k € [1..n;],
(i) df € LC)U{C" | C = C'}, (id) LKD), (ii) 3C = EF(QY, L;*, SF) € C,

(1v) ({Y enie 707/ (zjz,j)kell__n/_]}p w) —* (new B(tTUE), ..) . Then VC' = C=
C"3IR;(0,Q,L,8) el

Proof by induction on derivation of =. (The theorem reads “If a pattern of an
object gets satisfied, the corresponding reaction will eventually be evaluated.”)

4 Implementation

This section first presents the implementation framework underlying EventJava.
Then, a reference implementation based on Jess [10] and JGroups [11] is pre-
sented along with its specific matching semantics, showing that these preserve
total ordering properties of message dissemination in JGroups.

4.1 Implementation Framework

The EventJava compiler, implemented using Polyglot [17], translates EventJava
programs to standard Java by (a) code transformations and (b) generation of
application-specific helper classes (e.g. for broadcasting).

Framework components. The generated code represents the glue between Even-
tJava programs and the framework components shown in Figure[fl An event noti-
fication/method invocation is forwarded to the communication substrate, JGroups
in the case of our reference implementation, which takes care of remote communica-
tion including unicast and broadcast. In the broadcast case, the substrate delivers
all the serialized event method invocations to the resolver, which determines the
classes on which the methods were invoked and interacts with broadcast objects
for those classes. Broadcast objects deliver the events to the sinks, where they are
stored, typically but not necessarily, in event queues. The matcher — one instance
per sink — checks the stored events for a match to any of the correlation patterns
and spawns the reaction on its sink. Multi-threading can be used in various places,
with synchronization depending on the desired semantics. While the substrate and

EventJava: An Extension of Java for Event Correlation 583

&

Broadcast
classes

Resolver

I

v
onanb jueAy
onanb jueAy
onanb jueay

Matcher

Communication substrate

Fig. 6. The EventJava framework. Ovals represent the application. Shaded boxes rep-
resent fixed components; others are customizable.

matcher, like the context, are defined as an API, the resolver and broadcast classes
are generated by our compiler to avoid costly dynamic invocations through reflec-
tion. The context of a given event is used and sometimes modified or augmented
throughout the substrate and the matcher.

Code transformations. On the source side, each event method invocation is
altered to create the context, serialize the explicit arguments, and invoke the
substrate. All the instances of any class C' which has at least one event method
need to be tracked by its broadcast class. To that end, a static field instances is
added to every such sink class to track all of its instances with weak references.
Every new on a sink class is instrumented to add the created object to the class’
instances set. Broadcast objects for sink classes recursively store references to
broadcast objects for their sink subclasses.

Integration with Java RMI and garbage collection of sinks. Some
constraints in EventJava come from its integration with the Java RMI frame-
work [18]. This does not mean that remote communication in EventJava takes
place over Java RMI. EventJava is merely integrated with the interfaces, for
portability and interoperability with J2EE. The constraints introduced by this
integration lead to a leaner and simpler model and do not reduce expressive-
ness to the extent of offsetting the benefits of the integration. The integration
implies that events must be declared in interfaces subtyping java.rmi.Remote
(omitted in the examples so far for brevity), which means that sinks are re-
mote objects. Event methods become thereby public, and can not be static.
These last two restrictions are ensured by FEJ, as bare FJ only supports such
members. This integration with Java RMI also helps garbage collection of dead
sinks, and ensures that events are not delivered to dead sinks. The static field
instances added to the sink class uses weak references, which are periodically
purged.

4.2 Deterministic Matching in the Jess Reference Implementation

While non-determinism might be desired in certain cases, a trading algorithm
replicated for reliability by running several instances of the same class will

584 P. Eugster and K.R. Jayaram

yield contradictory results with the default semantics in Section 3.2 even if
the application-level algorithm is deterministic.

Rete-based matching. Figure [presents an alternative deterministic dis-
patching semantics describing our reference implementation of the matcher on
top of the Rete [9] algorithm in Jess [10]. In short, Rete treats events, with their
explicit and implicit attributes as typed data. The matcher implementation en-
sures that predicate evaluation is synchronized for a given sink. Correlation
patterns and predicates are encoded by our compiler as Jess rules. The matcher
delivers the matched events to a dispatch method. The dispatch method, gener-
ated by our compiler, has code to receive matched events and use threads from
a thread pool to execute the reaction bodies.

Semantics. In Figure [d, rules [Ev-Beasr-Der-R'], [Ev-Boast-R’] and [Parr-Marcn’] Te-
place [Ev-Bcast-Der-R], [Ev-Beast-R] and [Part-Marc] respectively. Rules [Reacr-R'y]
and [ReacT-R’s] replace [React-R]. In [Ev-Beast-Der-R’] and [Ev-Bcast-R7], when an
event is broadcast, the context terms are instantiated and the events are added
to the corresponding per-object queues of S in a single atomic step, i.e., to-
tal order broadcast is used. This differs from the default semantics of FEJ
where a multi-send is used. Again, in [Ev-Beast-Der-R’], for a given object [,
the V¢, terms assigned must evaluate to values that are totally ordered, in
increasing order. This, in combination with the use of total order broadcast,
ensures global total order, i.e., the events in all the queues of S are totally or-
dered.

In Rete-based matching, for pattern event e () ,..., e, () when p, the first re-
ceived instance of e; is chosen for which an instance of each remaining event
type has been received such that the predicate p is matched. If there are several
instances of ep for which instances of es, .., ¢4 exist such that p holds, then the
first one is chosen and so on. If an event e; has an assigned window of size n;
then the algorithm of course looks for the first sequence of length n; (relation
€! defined by [Ev-First-Seq-Inci]) such that there are instances of the remaining
event types.

Once a match is determined for a given correlation pattern, any event which
is of an event type within the correlation pattern and older than the respec-
tive matching one is discarded in addition to the matching one (V). Otherwise,
the total order determined by JGroups is not preserved. Furthermore, reac-
tions for a same correlation pattern on a same object are executed sequen-
tially in the order in which they are identified, by identifying threads by a
(object, pattern) tuple ([Reacr-R'12]). Synchronization code has to consider this.
Total order broadcast (as well as reaction serialization) can be disabled in our
reference implementation if an application does not require the ordering guaran-
tees. In the absence of ordering guarantees, an EventJava implementation could,
for instance, choose to handle reactions like transactions with an optimistic con-
currency model.

EventJava: An Extension of Java for Event Correlation 585

gl s s;..qels“” P(s'l,...,s;) match!(S,1(C),e,N,0) Q=Q' |1t (¥;)

o S g ST gl e rbody(e, C)=(Ta’,p, ?) S'={SON N/ s0)}S
Asles” : ! . ”2"" (O p,L,S)— " (new B (true), L, S)
P(sY, s o
N Pliog) (@ £.8)=(Q 109 (F:61:).£.5)
51..4€ 5 P(sy, ., 54) [REACT-R’;]

[EV-FIRST-SEQ-INCL]

match(S,1(C),&,N,0) Q#Q'|T¢"% (¥;)
rbody(e, O)=(za’,p,7) S'={SOV N/ 54)}s

S()=8"(1)-(e,mv")-S1)" (e, Tv") €S (1) (O p,L,S)—"(new B (true), L, S)
SN {(e, w0} =81)" @ £,8)=(Q[r"*(©OF),£,5")
[EvV-REM-ALL) [REACT-R’2]
I={l | I(C)eL AC=C"} ((67,17‘7:')1 n,elwe_sa(cn)
=y . ' o ’ i=1..q
S':{s(h)’("‘j vt 1)/11 .. SlgXev Vit q)/lq}S € =ej.eq etype(e;,C)=n;X..
(C'.e@),L,S)—(newE(),L,S’) rbody (€, C):(ﬁ,p,f)
[Ev-BcAsT-DEF-R’] _
NzUkG[l..w,j] (ej,viv'),
I={L| (O ELACZC} S'={5DT)1}S O={Ythis, T W Gl o i Dep.)
— T
(C'.e @) [v],L,S)—(newE(),L,S’) T —
[Ev-BOAST-R] match® (S,1(C),e,N,0)

[PATT-MATCH)

Fig. 7. Deterministic matching semantics in the Jess reference implementation

Ordering properties. We can prove that ordering at the JGroups level is
preserved by the matching semantics. Consider Definitions [Il and [2] for config-
urations and runs given in Section Assume [(C) and I'(C), and a pattern

event (N1 (NN) [N 1whenp(t;) defined in C.

Theorem 2 (Order preservation). Assume a run C s.t. VC = Sf(Q, L,S) e
C djy ¢ {1(C),I'(C)}.

Then VCi,Ci/,Cj,Cj/ eC | Cl = Rf(@,@i,/ji,&), Cil = Rf(@’,Qi/,/ji/,Si/),
Ci =Ry(0,Q5,L;,S)), Cir =R (0, Qyr, Ly, §jr) i < i & j < j".

Proof by induction on derivation of =>. (The theorem reads: “For two instances
of a same class receiving only broadcast events, the objects will execute reactions
to a given pattern in the same order.”)

5 Evaluation

Given that there is a strong variance in workloads produced by distributed ap-
plications (same or different), over time depending on their deployment, we do
not evaluate our system with specific applications, but rather use stress testing
by varying the different parameters of the load. This section stress tests our
reference implementation of EventJava (referred to as EventJava) by compari-
son with (a) the highly tuned Cayuga correlation engine [3] and (b) lightweight
limited correlation for concurrency in Cw [22]. All tests use the more resource-
demanding ”\” semantics (see Section [@).

586 P. Eugster and K.R. Jayaram

5.1 Cayuga

Cayuga [3] is a highly tuned, database-backed, correlation engine. The paper by
Demers et al. [3] shows that Cayuga outperforms other correlation engines like
Aurora [] and Borealis [5]. All measurement scenarios and settings were taken
from [3] to not favor EventJava. Figure [§ compares the throughput of Event-
Java with Cayuga with respect to the number of different event methods/event
types involved per sink.This experiment was conducted on an iMac dual core
2.0Ghz with 2GB RAM. Sink classes were generated with 1000, ... ,150000 (non-
abstract) event methods and 4 event methods per correlation pattern, i.e. for the
sink class with 100,000 event methods, there were 25,000 correlation patterns.
The number of event methods and correlation patterns is relevant because it
directly affects the performance of the matcher — the time taken by any search
algorithm to match an event to a pattern. The throughput (number of events
processed per second) of EventJava remains well above 10,000 events/sec even
for the case involving 150,000 event methods and 37,500 correlation patterns,
even outperforming Cayuga. Note though that according to [3], Cayuga scales
relatively better than EventJava, performance with EventJava drops relatively
sharper beyond 150,000 event methods per sink. Cayuga’s throughput drops be-
yond 10,000 event types, but Cayuga can scale even up to 400,000 event types
(their throughput is 2000 events/sec at 400,000 event methods). Also, Cayuga’s
memory footprint is smaller than EventJava. We weren’t able to reproduce these
results, and use the figures from [3] to plot the graph. Note that only one sink is
used because Cayuga has a single correlation engine and the goal is to compare
peak throughput of matching. We conclude that even when implemented with
custom off-the-shelf components such as Jess, the performance of EventJava is
comparable to a highly tuned correlation engine in substantial load scenarios.
This illustrates that the high-level programming abstractions of EventJava and
its resulting gains in safety, (e.g. when compared to queries expressed in SQL-like
grammars) do not entail any inherent penalty.

25000 15400
15200
15000

14800

I3
<
H
c
g
I Q ~#-4 per pattern
by H -+
- H 8 per pattern
£ =—EventJava 2 14600 pere
3 10000 A%] —4=12 per pattern
@ ~=== -
e ~"s~ Cayuga g Lea0o =16 per pattern
~
é \s\‘ L * =%=20 per pattern
E] 5000 == 14200 "
o R N
H -+ oty
L o 14000
0 20000 40000 60000 50000 100000 120000 140000 160000 0 200000 400000 600000 800000 1000000 1200000
of event methods/event types # of events

Fig. 8. Simple throughput comparison of Fig.9. EventJava throughput w.r.t. num-
EventJava and Cayuga ber of event methods per pattern

EventJava: An Extension of Java for Event Correlation 587

5.2 Complexity of Correlation Patterns

Figure [illustrates the scalability of EventJava with respect to the number of
event methods in a correlation pattern. The experiment was conducted using a
single sink with 100,000 different event methods. So, if there are 4 event methods
per correlation patten, there are 25,000 correlation patterns. The throughput
increases slightly with the number of events in the pattern, and in all cases the
throughput is well above 14,000 events/sec. Figure [shows five such scenarios
with 4, 8, 12, 16, and 20 event methods per pattern respectively. In Figure [0,
we measure throughput by randomly generating events. The throughput remains
fairly constant, irrespective of the number of events used in the measurement. For
each scenario, we measure average throughput over streams of 100,000 events to 1
million events. The variation in throughput for any scenario is within 250 events
per second, i.e., ~2%. This shows that the throughput of EventJava does not
decrease over time when it faces continuous streams of events. This experiment
was conducted on an iMac 2.0 Ghz dual core with 2GB RAM.

5.3 Cw

Polyphonic C# [22], which is now part of Cw, implements the Join calculus [23]
in C#. The key differences between (the Polyphonic-C# part of) Cw and Event-
Java are (i) Cw does not support predicates (ii) Cw targets concurrent program-
ming, supporting one synchronous method per pattern at most (iii) Cw does not
explicitly support broadcast interaction (iv) Cw and EventJava differ in the algo-
rithms used for the storage and matching of events, and (v) Cw has stream types
which can be viewed as pointers to/iterators over a priori endless arrays, but they
are not integrated with chords and correlation over streams is not supported.
Correlation patterns without predicates are called chords in Cw terminology.
Calls to asynchronous methods part of a pattern (a chord in Cw terminology)
are queued, and a reaction can be dispatched when every method in the pattern
has been called. In Figure [0} we measure the matching performance of Event-
Java with Cw for predicate-less patterns which favors the concurrency scenarios
aimed at by Cw. The measurements in this case were conducted on an HP PC
with an Intel quad core 2.4Ghz processor and 3.5GB RAM.The throughput of
EventJava is actually 18-19% higher than that of Cw, which shows the versatility
of the reference implementation of EventJava. We conclude that EventJava can
be an alternative to Cw for concurrent programming. Note that the introduction
of predicates is in fact debated in [22], but not realized to retain the lightweight
matching implementation.

5.4 EventJava Latency

For completeness, and to argue for the integration of a broadcast substrate in
EventJava, we evaluate the end-to-end latency of EventJava in a distributed
settting. Latency here is measured as the time interval between the production
of the last event that instantiates a correlation pattern, and the dispatch of the

588 P. Eugster and K.R. Jayaram

35000 120000
R 100000 s
1) 4
- 7/’
€ 25000 4
g P ——— Z 80000 7
2 20000 £ ,"
- >
8 g 60000 ’
2 s =—Eventlava & ol -—Cw
o rd
%D 10000 -Cw = 40000 i —EventJava
o ’
- 4
£ o 20000 ya
4
0 0
0 2 4 6 8 100 120 0 200 400 600 800 1000 1200
of event types # of sinks

Fig.10. Simple throughput comparison Fig.11. End-to-end latency of EventJava
of EventJava and Cw application with respect to the number of
sinks on different nodes

corresponding reaction at a possibly remote sink. For example if two events e, e
are used to match a pattern, and if the reaction at the remote sink is dispatched
at time ¢, then the end-to-end latency is t —maz(e; . time, e5. time). These mea-
surements were conducted in a local area network, where clocks of hosts were
closely synchronized. Figure [[T] compares the average latency of EventJava with
that of the same application implemented using Cw with .NET Remoting. The
sink objects were distributed in groups of 100 on 1, 3, 5, 7, 9, 11 nodes and the
source was on a different node. Each node was a Dell OptiPlex GX270 Work-
station with a 3Ghz Pentium 4 processor and 512 MB RAM running Microsoft
Windows XP. Figure [[T] shows that average end-to-end latency remains closely
constant in the EventJava application as the number of sinks increases, while
average latency rapidly increases when performing a blunt multi-send with .NET
Remoting.

6 Discussion

We discuss issues related to the design and implementation of EventJava, includ-
ing three parameters for matching (M1, M2, M3) that can be set by the runtime.

Events in multiple patterns. As mentioned in Section[3.3] in a class, the same
event method cannot be a part of more than one correlation pattern. Consider a
class C, where an event method e occurs in more than one pattern p; and ps. At
runtime, the implementation has two alternatives when an event matches more
than one pattern:

A1l Non-deterministic choice: Non-deterministically choose a pattern that con-
sumes the event. This breaks the order preservation property of our reference
implementation, which would defeat the purpose of many event dissemina-
tion protocols in the substrate. An application developer can easily separate
p1 and po into two separate classes C; and C5, and if non-determinism is

EventJava: An Extension of Java for Event Correlation 589

desired, the developer can easily introduce it by randomization. But, recon-
structing event order at the application level is much more complicated. If
A1 can also create scenarios where a pattern is starved, i.e. does not consume
any event for long periods of time.

A2 Cloning: Clone the event, thereby allowing all matching patterns to consume
the event. This alternative can also break the order preservation property.
Also, if events are cloned, the EventJava runtime has to maintain per-pattern
data structures to store events, because the consumption of an event by one
pattern is independent of other patterns. This degrades performance. A2 also
complicates inheritance; if a class C' defines two patterns p; and ps, both
containing event method e, and if class C’ extends C' and defines pattern ps3
containing e, does p3 override p; or p2? Both? Neither? We would need to
add further syntax to EventJava to explicitly specify overridden events and
patterns.

Because of these drawbacks, EventJava does not permit the same event method
to occur in multiple patterns in a class.

Broadcast vs multicast. Through the presence of predicates in EventJava,
broadcasting leads to implicit multicasting, as not all instances of a sink class
C' (and of its subsclasses) will necessarily deliver a given event C'.e(..). An in-
termediate case between unicast and implicit multicast consists in an explicit
multicast where a select set of sinks are addressed — atomically as opposed to
a multi-send as portrayed in rule [Ev-Beast-R] of Figure Bl Several middleware
systems propose such protocols natively, or they can be built on top. EventJava
supports such interaction through specific proxies. As the invocation then oc-
curs just like a regular unicast invocation (on the proxy) and many authors have
elaborated on that in the past (e.g., [I9J20]) we omit its presentation.

Bootstrapping and groups. Bootstrapping of EventJava components occurs
like in any distributed application: a federated name is necessary for connecting
parties. This name defines a group, which delimits an EventJava application and
thereby also broadcasts. There are several ways of further reducing the scope of
broadcasts. Two dynamic solutions are alluded to above. (1) By adding a name
attribute to corresponding events, sinks can use predicates to specify subgroups
of interest. (2) Creating explicit multicast groups by the use of proxies and li-
braries. Additionally, configuration files can be used to define boundaries for
broadcasts on a per-event basis, e.g., through subnet masks.

Order. The ordering property stated above only holds for two instances of a
same class, and with respect to individual patterns. By matching following
the patterns of a class in a deterministic order (M1), which can be en-
abled in our implementation, the property can be widened to reactions to all
patterns of two instances of a same class. Given the possibility of redistributing
events across patterns and redefining predicates in subclasses, widening to sub-
classes is not possible straightforwardly. Similarly, causal order [21] is a useful
property in asynchronous distributed systems devoid of synchronized clocks, e.g.
for debugging. It can be inherently achieved with total order broadcast and local

590 P. Eugster and K.R. Jayaram

order [21], which our reference implementation provides, in settings considering
individual events. As opposed to traditional message-wise delivery, correlation
introduces the possibility of several and thus causally ordered events to be deliv-
ered simultaneously (in fact this is what many patterns are fishing for), but no
two events e; < es (< representing a happens-before relation) can be handled by
two subsequent reactions r; and ro in the inverse order, i.e., 75 will not handle
e1 after r1 handles es.

Event expiry. Predicates add to the possibility of events never being matched
— or matchable. Events of a given type can accumulate if events of other types
correlated with it are received at lower rates. Our reference implementation thus
allows for the setting of time-outs on events (M2), by sources (context) and
sinks. Furthermore, the deletion of all earlier events of a type when identifying
the first one matching its pattern (7 * ” in rules [Reacr-R'1]) can be similarly
disabled, leading to retaining older non-matched events (by using ” \ ” in-
stead — M3). It is easy to show that this does not invalidate Theorem 2l However,
the order of the reaction executions, though still total, can go against the total
order determined on events by JGroups.

Language design issues. The Context class is not a superclass of all classes
containing event methods because of ongoing extensions to EventJava where
different event methods in a class can have different contexts. Another design
choice would be to have an implicit join if the same parameter name is used
in two event methods in a correlation pattern, rather than having it represent
two variables that have to be disambiguated. Implicit joins are elegant, but
programmers may accidentally use the same parameter name where a join is not
intended.

7 Related Work

In this section, we present related work on programming language support for
event-based programming with emphasis on correlation. An overview of the most
closely related languages/frameworks is given in Table [Il

Concurrency. Like Cw [22], Join Java [26] faithfully implements the Join cal-
culus [23] — providing a means to react to correlated asynchronous method invo-
cations, without predicates, broadcast, and customizable matching. Functional
languages like CML [28] and Erlang [34] provide powerful support for event-
based programming, but do not explicitly support event correlation. In CML,
events are essentially reified as function evaluations such as reads or writes on
channels, which can be combined. Event correlation can be achieved by a staged
event matching, in which a correlation pattern is matched in phases, where the
occurrence of an event of a first type is a precondition for the remaining match-
ing, which consumes that event. Staged event matching imposes an order on
how events are matched to a correlation pattern. This gives the programmer
much control over the exact matching semantics, but means implementing partial
matching schemes repeatedly. In many cases, more advanced schemes expressed

EventJava: An Extension of Java for Event Correlation 591

Table 1. Overview of inherent event programming features of related programming
languages/frameworks. Languages supporting broadcast also have unicast. Type-A and
Type-B predicates are described in Section

Language Joins Type-A Type-B Streams Addressing
predicates predicates

ECO [24] - 4 - - Broadcast

Javapg [25] - v - - Broadcast
Cw [22] v - - - Unicast
Join Java [20] 4 - - - Unicast

AWED [27] v - v - Broadcast

CML [28] v/ (staged) v - - Broadcast
StreamFlex [29] 4 - - 4 Unicast
StreamIt [30] v - - v Unicast
Ptolemy [3I] ¢/(staged) - - - Unicast
Scala Joins [32] 4 4 - - Unicast
Scala Actors [33] v/ (staged) v - - Unicast
Erlang [34] ¢/(staged) v - - Unicast

EventJava 4 4 4 v Broadcast

with staged matching can require “re-inserting” an event, which quickly com-
plicates code. CML provides rich libraries with common operators to mitigate
the issues above. Actor-based languages like Erlang [34] and Scala Actors [33]
similarly support staged event matching. Scala Joins [32] provide Cw-like join
patterns, but does not support Type-B predicates and broadcast interaction.
Jeeg [39] is a concurrency extension of Java imposing ordering of method invo-
cations based on patterns described in Linear Temporal Logic (LTL) in a way
similar to the routines in many active object approaches, e.g., [36]. Like CML
these approaches do however not allow for the atomic reaction to combinations
of incoming calls/events. Responders [37] provide a means of writing responsive
threads in a state-machine manner, yielding a safe and effective way of arranging
event handling code. However, correlation is not supported, and reactions are
synchronous to ensure determinism.

Publish/subscribe, streams and aspects. ECO (events, constraints, ob-
jects) [24] and Javaps [25] extend C++ and Java respectively for publish/
subscribe-like distributed programming, i.e., reacting to singleton events.
StreamIt [30] is a dataflow language targeting fine-grained highly parallel
stream applications and providing a highly optimizing native compiler (and a
Java translator). While StreamlIt programs can be parallelized automatically,
the language is hardly suited for general purpose applications because of the
lack of data types offered and the restricted programming model. Also, there is
no support for event correlation or stream correlation. StreamFlex [29] is a Java
APT for stream processing inspired by StreamIt but providing high-predictability
implemented on top of a real-time virtual machine. Streamlt provides filters
and channels, leading to a similar programming model as CML. DirectFlow [38]
is a domain specific language that simplifies programming information-flow

592 P. Eugster and K.R. Jayaram

components by hiding the control-flow interactions between them. Again, there
is no explicit support for event correlation. AWED (aspects with explicit distribu-
tion) [27]) is an aspect language supporting the remote monitoring of distributed
applications with distributed pointcuts and advice. EventJava can be viewed as
AWED turned inside-out: applications are intentionally written to interact with
specific events, which is achieved by the means of limited additional syntax. DJ-
cutter [40] extends AspectJ’s with remote joinpoints and pointcuts. However, at
the runtime level, DJcutter proposes a centralized aspect-server, which consti-
tutes a bottleneck in a large distributed systems; as many others of the others,
DJcutter lacks consistency guarantees as a consequence of poor integration with
distribution. Ptolemy [31] is an aspect-oriented language with quantified, typed
events, but doesn’t support correlation — joins can be performed in a staged
manner as described earlier.

8 Conclusions and Outlook

We have presented EventJava, a generic language for event-based programming
with event correlation. Our implementation framework allows for adaptation to
various settings and systems. We are for instance in the process of implementing
a lightweight version of EventJava for mobile computing. The notion of context
allows us to easily accommodate contexrt-aware applications.

We are currently pursuing two further axes of research, centered around
matching semantics and the EventJava framework. First, we are devising an-
notations for flexibly configuring matching semantics on a per-pattern basis.
Second, we are investigating the use of domain-specific aspects for context ex-
pression and propagation and other parts of our framework.

Acknowledgements

We would like to thank Ryan Maus at Allston Trading LLC for input on the
algorithmic trading examples and Jacob Fancher for his contribution to the
EventJava compiler. We would also like to thank William Cook, as well as
the anonymous reviewers for their invaluable feedback, which helped improve
the contents and presentation of this paper.

References

1. Trigeo: TriGeo Security Information Manager, Trigeo SIM (2007),
http://www.trigeo.com/products/detailedf/

2. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC
Language: A Holistic Approach to Networked Embedded Systems. In: PLDI, pp.
1-11 (2003)

3. Demers, A., Gehrke, J., Hong, M., Riedewald, M., White, W.: Towards Expres-
sive Publish/Subscribe Systems. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W.,
Matthes, F., Hatzopoulos, M., B6hm, K., Kemper, A., Grust, T., Bohm, C. (eds.)
EDBT 2006. LNCS, vol. 3896, pp. 627—644. Springer, Heidelberg (2006)

http://www.trigeo.com/products/detailedf/

(o]

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

EventJava: An Extension of Java for Event Correlation 593

. Abadi, D.J., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Stone-

braker, M., Tatbul, N., Zdonik, S.: Aurora: A New Model and Architecture for Data
Stream Management. VLDB Journal 12(2), 120-139 (2003)

. Ahmad, Y., Berg, B., Cetintemel, U., Humphrey, M., Hwang, J.H., Jhingran, A.,

Maskey, A., Papaemmanouil, O., Rasin, A., Tatbul, N., Xing, W., Xing, Y., Zdonik,
S.: Distributed Operation in the Borealis Stream Processing Engine. In: SIGMOD
2005, pp. 882-884 (2005)

. Amir, Y., Danilov, C., Miskin-Amir, M., Schultz, J., Stanton, J.: The Spread

Toolkit, http://www.spread.org

. Pietzuch, P.R., Bacon, J.: Hermes: A Distributed Event-Based Middleware Archi-

tecture. In: ICDCSW 2002, pp. 611-618 (2002)

. Apache: ActiveMQ (2008), http://activemq.apache.org/
. Forgy, C.: Rete: A Fast Algorithm for the Many Patterns/Many Objects Match

Problem. Artificial Intelligence 19(1), 17-37 (1982)

Friedman-Hill, E.: Jess (2008), http://www.Jjessrules.com/jess/

Ban, B.: JGroups - A Toolkit for Reliable Multicast Communication (2007),
http://www.jgroups.org/javagroupsnew/docs/index.html

Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: A Minimal Core Calcu-
lus for Java and GJ. TOPLAS 23(3), 396-450 (2001)

Eugster, P., Jayaram, K.R.: EventJava: An Extension of Java for Event Correlation.
Technical Report CSD TR #09-002, Department of Computer Science, Purdue
University (2009),
http://www.cs.purdue.edu/research/technical_reports/
Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.K.: Composite Events for
Active Databases: Semantics, Contexts and Detection. In: VLDB 1994, pp. 606617
(1994)

Sénchez, C., Stanina, M., Sipma, H.B., Manna, Z.: Expressive completeness of an
event-pattern reactive programming language. In: Wang, F. (ed.) FORTE 2005.
LNCS, vol. 3731, pp. 529-532. Springer, Heidelberg (2005)

Welc, A., Hosking, A.L., Jagannathan, S.: Transparently reconciling transactions
with locking for java synchronization. In: Thomas, D. (ed.) ECOOP 2006. LNCS,
vol. 4067, pp. 148-173. Springer, Heidelberg (2006)

Nystrom, N., Clarkson, M.R., Myers, A.C.: Polyglot: An extensible compiler frame-
work for java. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 138-152. Springer,
Heidelberg (2003)

Sun: Java Remote Method Invocation, Java RMI (2004),
http://java.sun.com/j2se/1.5.0/docs/guide/rmi/

Black, A., Immel, M.: Encapsulating plurality. In: Nierstrasz, O. (ed.) ECOOP
1993. LNCS, vol. 707, pp. 57-79. Springer, Heidelberg (1993)

Guerraoui, R., Garbinato, B., Mazouni, K.: GARF: A Tool for Programming Re-
liable Distributed Applications. Concurrency 5(4), 29-32 (1997)

Toinard, G.F.C.: A New Way to Design Causally and Totally Ordered Multicast
Protocols. OSR 26(4), 77-83 (1992)

Benton, N., Cardelli, L., Fournet, C.: Modern Concurrency Abstractions for C#.
TOPLAS 26(5), 769-804 (2004)

Fournet, C., Gonthier, C.: The Reflexive Chemical Abstract Machine and the Join
Calculus. In: POPL 1996, 372-385 (1996)

Haahr, M., Meier, R., Nixon, P., Cahill, V., Jul, E.: Filtering and Scalability in the
ECO Distributed Event Model. In: PDSE 2000, pp. 83-92 (2000)

Eugster, P.: Type-based Publish/Subscribe: Concepts and Experiences. TOPLAS
29(1) (2007)

http://www.spread.org
http://activemq.apache.org/
http://www.jessrules.com/jess/
http://www.jgroups.org/javagroupsnew/docs/index.html
http://www.cs.purdue.edu/research/technical_reports/
http://java.sun.com/j2se/1.5.0/docs/guide/rmi/

594

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

P. Eugster and K.R. Jayaram

Itzstein, S.V., Kearney, D.: The Expression of Common Concurrency Patterns in
Join Java. In: PDPTA 2004, pp. 1021-1025 (2004)

Navarro, L., Stidholt, M., Vanderperren, W., Fraine, B.D., Suvée, D.: Explicitly
Distributed AOP using AWED. In: AOSD 2006, pp. 51-62 (2006)

Reppy, J.H., Xiao, Y.: Specialization of CML Message-passing Primitives. In:
POPL 2007, pp. 315-326 (2007)

Spring, J., Privat, J., Guerraoui, R., Vitek, J.: StreamFlex: High-throughput
Stream Programming in Java. In: OOPSLA 2007, pp. 211-228 (2007)

Lamb, A.A., Thies, W., Amarasinghe, S.: Linear Analysis and Optimization of
Stream Programs. In: PLDI, pp. 12-25 (2003)

Rajan, H., Leavens, G.T.: Ptolemy: A Language with Quantified, Typed Events. In:
Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 155-179. Springer, Heidelberg
(2008)

Haller, P., Van Cutsem, T.: Implementing Joins using Extensible Pattern Matching.
In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp.
135-152. Springer, Heidelberg (2008)

Haller, P., Odersky, M.: Actors that Unify Threads and Events. In: Murphy, A.L.,
Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 171-190. Springer,
Heidelberg (2007)

Ericsson Computer Science Laboratory: The Erlang Pogramming Language,
http://www.erlang.org

Milicia, G., Sassone, V.: Jeeg: Temporal Constraints for the Synchronization of
Concurrent Objects. CCPE 17(5-6), 539-572 (2005)

Briot, J.P.: Actalk: A Testbed for Classifying and Designing Actor Languages in
the Smalltalk-80 Environment. In: ECOOP 1989, pp. 109-129 (1989)

Chin, B., Millstein, T.: Responders: Language Support for Interactive Applica-
tions. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 255-278. Springer,
Heidelberg (2006)

Lin, C., Black, A.P.: DirectFlow: A Domain-Specific Language for Information-
Flow Systems. In: Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609, pp. 299-322.
Springer, Heidelberg (2007)

Bierman, G., Meijer, E., Schulte, W.: The Essence of Data Access in Cw. In: Black,
A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 287-311. Springer, Heidelberg (2005)
Nishizawa, M.: Remote Pointcut: A Language Construct for Distributed AOP. In:
AOSD 2004, pp. 7-15 (2004)

http://www.erlang.org

	EventJava: An Extension of Java for Event Correlation
	Introduction
	EventJava by Example
	Event Methods
	Complex Events and Correlation Patterns
	Streams
	Matching Semantics
	Context

	EventJava Syntax and Semantics
	Featherweight EventJava (FEJ) Syntax
	Evaluation
	Constraints on Event Methods
	Event Overloading, Event Overriding and Pattern Overriding
	Global Progress

	Implementation
	Implementation Framework
	Deterministic Matching in the Jess Reference Implementation

	Evaluation
	Cayuga
	Complexity of Correlation Patterns
	C_{omega}
	EventJava Latency

	Discussion
	Related Work
	Conclusions and Outlook
	References

