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SUMMARY

A stochastic model is proposed for the study of the influence of time-dependent covariates on
the marginal distribution of the binary response in serially correlated binary data. Markov chains
are expressed in terms of transitional rather than marginal probabilities. We show how to construct
the model so that the covariates relate only to the mean value of the process, independently of the
association parameter. After formulating the stochastic model for a simple sequence of data with
possibly missing data, the same approach is applied to a repeated measures setting and illustrated
with a real data example.

Some key words: Correlated binary data; Discrete time series; Logistic regression; Longitudinal data; Markov
chain; Missing data; Odds ratio; Repeated measures; Serial dependence.

1. INTRODUCTION

Much current literature is concerned with the analysis of binary data collected at successive time
points to examine the relationship between the probability of success and some time dependent
covariates. In the simplest case, a sequence (ylt..., yT) is collected at equally spaced time points,
with a fc-dimensional covariate x, associated with time t (t = 1 , . . . , T). We are also interested in
multiple sequences, i.e. repeated measures analysis. A frequent complication in repeated measures
settings is missing data.

Markov chains are an obvious model. There are however many distinct ways of introducing
them. As remarked by Ware, Lipsitz & Speizer (1988), a first broad distinction is between tran-
sitional and marginal models, depending on whether the covariates determine the conditional
distribution given the past or the marginal distribution of any nominated observation. Within
transitional models, the effect of the covariates may be on the transition probabilities of the Markov
chain or on its mean value; Stiratelli, Laird & Ware (1984), Zeger & Qaqish (1988) and Cox &
Snell (1989, pp. 96-102) are in this framework. However, it seems to us more plausible that, after
the model has been fitted, one would want to use it for predicting the mean value of the next
response on the basis of the covariates alone. Thus we prefer marginal models.

There has recently been widespread use of generalised estimating equations (Liang & Zeger,
1986) to overcome the difficulties related to 'the lack of a rich class of models such as the multivari-
ate Gaussian'. The key feature of their method is that one does not attempt to model the joint
distribution of the subject profile: only the marginal distribution at each time point is modelled as
a function of the covariates, and the standard errors of the regression parameters are adjusted to
allow for data autocorrelation. See also Lipsitz, Laird & Harrington (1992). A recent publication
containing an up-to-date list of references is Carey, Zeger & Diggle (1993). While this approach
has much merit, it does not produce a model for the stochastic mechanism which generates the
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data. The present paper explores the possibility of developing proper statistical models for some
of the situations for which generalised estimating equations provide a solution. As a by-product,
we obtain methods applicable to single time series, a case not covered by generalised estimating
equations.

The plan of the paper is as follows. In § 2, a logistic regression model is considered assuming
that the data are generated by an nonhomogeneous first-order Markov chain. In § 3, this is extended
to the case of missing data and to repeated measures settings. In § 4, some numerical work is
presented: specifically, a simulation study has been conducted to investigate some theoretical aspects
which could not be studied analytically; furthermore, the methodology is applied to a real data
set. Section 5 contains a final discussion.

2. BINARY MARKOV CHAINS

For simplicity, consider first the case of a single stationary process (Ylt..., YT) assumed to be
generated by a binary Markov chain taking values 0 and 1. Denote by

p=(1~Po Po

U - P i Pi

the transition matrix, where pj = pT(Y, = l\Y,-l=j) for j = 0,l. We search for a parameterisation
such that 6 = E(Y,) is free from the parameter that regulates the serial dependence. A quantity that
measures dependence between successive observations is the odds ratio

1 = y, = l )pr (^_ 1 = ^ = 0)
oi^ i )pr( i ; i y ; o)" ( 'v Po/(i-Po)

A technical reason in favour of this choice is given by Fitzmaurice & Laird (1993): when the
association between observations is modelled using \p, the estimates of the mean are relatively
insensitive to changes of the association parameter. Moreover, the range of feasible values for i]/ is
independent of the value of 6.

To obtain (p0, pt) for given values of (6, \j/), we solve (1) and

6 = ePl + (l-6)p0 (2)

with respect to p0 and pt.
In practice, we are often concerned with the nonstationary case, in which 9, = E(Yt) varies with

t via some function such as

logit(0,) = x;ft (3)

where x, is a fe-dimensional vector of time-dependent covariates and /? is a fe-dimensional parameter.
There is no special reason to consider the logit link, which is used only as an example; any other
legitimate link function can be used in (3).

In the nonstationary case, we replace (2) by its generalisation

0, = 0,-iPi + ( l -0,_ 1)p o (t = 2,...,T), (4)

where p0 and p t now vary with t.
For a given value of /?, the sequence 0u...,6T is determined by (3), and we can solve (1) and

(4) with respect to the p/s for any t > 1. After some algebraic manipulation, we obtain

( for $ = 1,

-1)0 , (1-0 ,_ ,
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(t = 2 , . . . , T), where

0 ,_ 1 )V- (^ + 0(-1)2 + 2(0( + 0r_1)}. (6)

It can be shown that the p/s always lie in (0,1).
The above relationships allow us to generate a process having the desired properties. On taking

pr(Yj = 1) = 0t and then generating Y2,..., YT via a nonhomogeneous Markov chain with trans-
ition probabilities given by (5), we obtain a sequence such that E(Y,) = 6, for t = 1, . . . , T and the
odds ratios for (Yt-U Y,) are equal to ip.

It is not necessary for i// to be constant across time. The present formulation concentrates on
modelling the mean value 6, via covariates. However, (5) would apply even if ip were modelled in
terms of covariates, similarly to (3).

Suppose now that a sequence of observed data yi,.--,yT is available for inference. The log-
likelihood function for j? and X = log i// is

/(/U)= Z /,(/U)= Z {^ logi t^ . J + logd-p,,. ,)}, (7)
t=i i= i

with pj defined by (5) for the 't > V terms of the summation and pyo = 0t.
Obtaining the derivatives of /(/?, X) is conceptually simple but tedious; the relevant expressions

are given in the Appendix. It does not seem feasible to obtain expressions for the second order
derivatives. Therefore, standard errors of the estimates must be obtained by numerical differen-
tiation of the first derivatives, except in the case of repeated measures where a simpler solution is
available, as explained later.

One relevant issue is the orthogonality of )3 and X. In the stationary case with 9, = 6, one can
prove orthogonality of /? and X from the argument of Cox (1970, pp. 72-3), provided end-effects
related to the value yt and y r are ignored. Specifically, consider first the case of a single explanatory
variable taking constant value. Then (/?, X) form the so-called mixed parameterisation of an
exponential family; hence they are orthogonal: see for instance Barndorff-Nielsen & Cox (1994,
p. 64). The orthogonality property still holds if 6 is a function of a /c-dimensional parameter /?. It
is natural to conjecture that orthogonality also holds in the nonstationary case, but this property
has not been proved.

3. SOME EXTENSIONS

3-1. Missing data
Consider now the case that some of the observations are missing, but retain the assumption that

the designed observation times are equally spaced. In the terminology of Little & Rubin (1987),
we assume that the data are missing at random; this means that the reason data are missing at
certain time points is independent of the values taken on by the process at those time points.

It is not difficult to generalise (7) to cover this case, since it suffices to replace the one-step
conditional probabilities by m-step transition probabilities. If the observations between time t and
t — m are missing, we use an expression similar to (7), replacing pyt_1 by p»™'_m, where
pjj) = pr(Y,= 1| Y,_m = j), and summing over the values of the t index corresponding only to
observed data. We obtain pffl by multiplying one-step transition matrices. Again, computing the
derivatives of the log-likelihood produces complicated expressions, which are presented in the
Appendix.

32. Repeated measures
An important field of application for the above results is repeated measures, since dependence

between successive observations on the same individual must be taken into account, and it is
plausible that adjacent data are more strongly correlated than data far apart in time, a feature
reproduced by the model under consideration.
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Suppose n individuals are available and invididual i is observed at times 1, 2 , . . . , 7] (i = 1, . . . , n)
except for some possibly missing data. Denote by yit the observation from subject i at time t, by
6it its expected value, and by xit a fc-dimensional vector of covariates associated with design
point (i, t).

Assuming that each individual follows the model described in § 2, namely logit (0,,) = x'itp, and
that distinct individuals behave independently, the log-likelihood is

where / i+, is computed applying (7), or its generalisation in the case of missing data, to the sequence
y>iu • • •. V,T,- Similarly, the derivatives of the log-likelihood are obtained by summing the n deriva-
tives computed using the formulae for the case of a single binary time series.

In the context of repeated measures, standard errors of the estimates can be obtained without
computing the second derivatives of /(/?, X). We approximate the variance of the estimates by

' - 1 - 1

dp

\ d X l

dp

this approximation is motivated by the fact that the quantity inside square brackets approximates
the Fisher information, at least for large n.

4. SOME NUMERICAL WORK

4-1. A simulation study
A simulation study was conducted with three aims: (i) to explore the conjecture that p and X

are orthogonal or nearly orthogonal parameters in the nonstationary case, (ii) to examine the
appropriateness of vx{P,X) in approximating the actual variance matrix of the parameters, and
(iii) to test the behaviour of the estimates and their standard errors when the process is erroneously
assumed to have constant odds ratio between adjacent time points.

All data sets were generated with n = 25, 7] = 5, k = 2 and the covariates constantly equal to

1 1 1 1 1

-0-5 -0-25 0 0-25 05

for all values of i. For obtaining uniform pseudo-random variates, the algorithm of Wichmann &
Hill (1982) was used.

For each data set, the estimate ()30, pu X) and vx($, X) were computed. After replicating the above
procedure 2500 times, the sample average and sample variance matrix of the 2500 estimated vectors
(P0,PltX) were obtained; we denote by V0(ft,X) the sample variance of the estimates. Moreover,
the average, V^fi, X), of the 2500 matrices i>,($, X) was computed.

The first group of simulations generated data from the assumed dependence model, i.e. a Markov
chain with constant \p. Table 1 contains a summary of these simulations. The three main conclusions
are: (i) the bias of (Po, Pi, X) is very small; (ii) the estimated correlations of the parameters support
the conjecture of orthogonality between X and fly, (iii) the use of vt(P, X) to estimate the variance
matrix of the estimates is extremely effective, as the ratios in the last three columns of Table 1 are
very close to 1.

The only case for concern is the final one, with parameter (1,0,0). Here a single data set with
A== —21 produced an absurd matrix vt(P, X); in particular, this affected the average of the X's and
the last ratio of the diagonal elements Vx over Vo. In spite of the fact that all of this was due to a

 at Penn State U
niversity (Paterno L

ib) on M
ay 10, 2016

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


T
ab

le
 1

. 
Su

m
m

ar
y 

re
su

lt
s 

of
 s

im
ul

at
io

ns
 u

nd
er

 c
or

re
ct

 m
od

el
 s

pe
ci

fi
ca

ti
on

Po
 

P
x

0 
0

0-
5

Po 0 0-
5

0

0-
5

0-
5

0-
5

1

A 0 1
-

1 2
-

2 0 1
-

1 0 1
-

1 0 1
-

1 0 A

1 2
-

1
-

2 1
-

1 1
-

1

P
o

00
01

0-
00

2
0

0
0

2
0-

00
3

0-
00

0

00
01

0-
00

4
00

04

00
01

00
04

0
0

0
3

0-
51

2
0-

51
2

0-
50

8

10
21

P
o

00
00

00
02

00
00

00
00

0-
51

1
0-

50
9

00
03

00
02

M
ea

n

k 00
14

00
11

00
10

00
04

00
05

0-
52

2
0-

52
4

0-
52

0

10
32

10
42

10
33

0-
52

6
0-

52
7

0-
52

4

00
19

T
ab

le
 2

.

M
ea

n

k 00
07

00
05

00
12

00
11

0-
52

6
0-

52
3

10
40

10
36

A

-0
0

4
4

0-
98

2
-1

0
8

6
20

01
-2

1
2

8

-0
0

4
5

0-
98

3
-1

0
9

1

-0
0

4
5

0-
97

8
-1

0
9

0

-0
0

6
1

0-
96

6
-1

1
0

5

-0
1

1
6

Su
m

m
ar

y

A

-0
0

6
2

-0
0

7
2

-0
0

4
2

-0
0

4
3

-0
0

7
7

-0
0

5
5

-0
0

7
4

-0
-0

4
4

St
.

P
o

01
86

0-
22

6
01

49
0-

26
7

01
19

01
86

0-
22

5
01

51

01
87

0-
22

8
01

54

01
94

0-
23

2
01

57

0-
20

9

de
vi

at
io

n

k 0-
53

0
0-

57
9

0-
46

3
0-

57
6

0-
39

0

0-
53

2
0-

57
8

0-
47

0

0-
53

7
0-

58
1

0-
47

5

0-
54

7
0-

59
2

0-
48

9

0-
60

6

A

0-
41

7
0-

43
0

0-
43

4
0-

47
3

0-
48

3

0-
42

1
0-

43
0

0-
44

0

0-
43

0
0-

43
4

0-
45

2

0-
45

1
0-

45
4

0-
49

6

0-
68

9

(L
k)

00
15

00
08

00
00

-0
0

1
5

00
11

00
24

00
14

00
02

00
00

00
41

0-
00

4

00
06

00
45

00
68

00
06

C
or

re
la

ti
on

(P
o J

)
00

01
-0

0
2

8
-0

0
0

1
-0

0
2

2
-0

0
1

0

-0
0

0
8

-0
0

4
0

-0
0

0
9

00
00

-0
0

2
7

-0
0

0
7

-0
0

0
4

-0
0

1
9

-0
0

3
7

-0
-0

7
0

(k
A)

00
18

00
11

-0
0

0
3

00
07

00
20

00
06

-0
0

0
1

-0
0

1
6

-0
0

2
3

-0
0

1
7

-0
0

2
3

-0
0

0
5

00
09

00
21

00
00

re
su

lt
s 

of
 s

im
ul

at
io

ns
 w

he
n 

de
pe

nd
en

ce
 is

 i
nc

or
re

ct
ly

 s
pe

ci
fi

ed

St
.

P
o

0-
21

3
0-

24
0

01
59

01
36

0-
22

0
01

66

0-
21

5
01

60

de
vi

at
io

n

k 0-
51

0
0-

44
9

0-
52

1
0-

49
4

0-
52

7
0-

54
9

0-
51

6
0-

53
2

A

0-
50

9
0-

59
6

0-
34

2
0-

28
4

0-
54

6
0-

37
9

0-
52

1
0-

34
9

(L
k)

00
01

00
00

00
00

00
08

00
07

00
06

00
01

00
21

C
or

re
la

ti
on

(L
k)

-0
0

0
7

00
00

-0
0

0
1

-0
0

0
7

-0
0

0
3

-0
0

0
2

00
00

-0
0

1
6

(k
,h

-0
0

0
7

-0
0

0
1

00
00

00
01

-0
0

0
3

-0
0

0
5

-0
0

0
4

00
04

D
ia

go
na

l 
(K

,/F
o)

*

P
o

10
34

10
22

10
55

10
08

10
66

10
43

10
30

10
50

10
52

10
29

10
48

10
33

10
31

10
65

10
43

P
i

10
28

1-
00

3
1-

04
2

10
04

10
65

10
34

10
08

10
42

10
43

10
24

10
54

10
39

10
20

10
50

10
41

A

10
81

1-
75

4
10

88
1-

05
7

10
84

10
84

10
82

10
88

10
83

10
92

10
91

10
95

10
84

10
94

2
x

lO
8

D
ia

go
na

l 
(V

,/K
o)

*

P
o

0-
77

4
0-

61
1

1-
43

7
1-

98
6

0-
78

7
1-

40
4

0-
78

4
1-

44
7

P
i

11
14

1-
40

3
10

54
11

69

11
24

10
35

11
31

10
56

A

0-
73

1
0-

52
6

1-
62

1
2-

38
6

0-
76

0
1-

53
7

0-
73

7
1-

63
6

C
/J T
O

 at Penn State University (Paterno Lib) on May 10, 2016http://biomet.oxfordjournals.org/Downloaded from 

http://biomet.oxfordjournals.org/


772 A. AZZALINI

single case out of 2500, the author felt it inappropriate to downweight the outlying observation
using robust methods and decided to summarise the results by plain averages.

In a second group of simulations, the yit's were generated using the same model for the mean
values 6it but changing the dependence structure. The purpose was to examine the effect of incorrect
specification of the serial dependence structure on the estimates of the regression parameters, which
are usually the parameters of interest. We generated yn and yn independently with mean value Q^
and d2, respectively, and the remaining values (yi3, yi4, yiS) by imposing on (yitt~2, yt.t) the kind of
dependence which so far we imposed on (y^-i, yi<t). Table 2 reports a summary of the simulations;
these figures indicate a satisfactory degree of robustness of the proposed models, insofar as the
mean values of (/?0, ft) are almost exactly equal to the theoretical values, near orthogonality of
the parameters is preserved and the inaccuracy of estimated standard errors, as measured by the
square roots of the ratios VXIVO, remains within acceptable bounds, except possibly when \k\ is large.

4-2. A real-data example

Fitzmaurice, Laird & Lipsitz (1994) have analysed a subset of data from the Muscatine Coronary
Risk Factor Study, a longitudinal study of coronary risk factors in school children from Muscatine,
Iowa. The data set contains records on 1014 children who were 7-9 years old in 1977 and were
examined in 1977, 1979 and 1981. Height and weight were measured in each survey year and those
children with relative weight greater than 110% of the median weight in their respective stratum
were classified as obese.

The binary response of interest is whether the child is obese (1) or not (0). Since one of the
objectives of study was to determine the effects of sex and age on risk of obesity, the marginal
probability of obesity for each given value of the risk factors is the quantity of interest. Therefore,
a marginal model is appropriate.

However, many data records are incomplete, since many children participated only in one or
two occasions of the survey. In particular some of them participated in the 1977 and 1981 surveys,
but not in 1979, therefore creating a 'genuine' missing data problem; those subjects having missing
observations only in 1977 or 1981 could be regarded as complete but unbalanced data. Fitzmaurice
et al. (1994) give a list of the data.

For comparison with the results of Fitzmaurice, Laird & Lipsitz, the same three models for the
marginal probability of the event have been fitted to the data, namely:

Model I: logit (6) = p0 + ft G + p2A(L) + ftA(Q) + ftGA(L) + ft GA(Q),
Model II: logit (0) = ft + ft G + p2A(L) + p3A(Q),
Model III: logit (0) = p0 + ft/i(L) + P2A{Q),

where G indicates sex (female = 1, male = 0) and A(L), A(Q) are orthogonal polynomial contrasts
for age effect.

The estimated values of the parameters and their standard errors are reported in Table 3; compare
with values given by Fitzmaurice et al. (1994). The parameter estimates are generally quite similar
between the two methods. The main differences occur between the standard errors, which are far
smaller for the present method. This fact can be explained by the smaller number of nuisance
parameters; the present method uses one parameter instead of four to allow for dependence between
adjacent observations.

Computer programs in S-PLUS and FORTRAN for the Muscatine data analysis and for the
simulation study are available from the author on request.

5. DISCUSSION

Fitzmaurice & Laird (1993) tackled a similar problem to ours, via the so-called 'mixed parameter'
model. Their approach offers some desirable features and some disadvantages. Among the advan-
tages are generality and robustness to incorrect modelling of serial dependence. The main disadvan-
tage of the 'mixed parameter' model, as discussed by Fitzmaurice, Laird & Rotmitsky (1993), is
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Table 3. Parameter estimates for Muscatine data

Model

I

II

III

logL

-966-56

-969-52

-969-56

Parameter

Intercept
G

A(L)
A(Q)

G x A(L)
G x A(Q)

X

Intercept
G

A(L)
A(Q)

X

Intercept
A(L)
A(Q)

X

Estimate

-1-386
0-228
0141
0060
0160

-0-292
3066

— 1-288
0038
0-222

- 0 0 9 0
3026

-1-269
0-220

- 0 0 9 0
3026

SE

0031
0040
0027
0031
0037
0042
0-965

0023
0022
0019
0020
0043

0020
0019
0020
0-043

Ratio

-45-21
5-71
5-30
1 91
4-27

-6-98
318

-55-57
1-72

11-64
-4-46
70-42

-63-87
11-62

-4-43
70-46

773

that the distribution is not 'reproducible', which means that a subset of length T* of a series of
length T has a distribution different from that obtained by considering only the corresponding
subset of observations and parameters. This aspect makes the 'mixed parameter' model inappropri-
ate for analysing series of different lengths. A second disadvantage is that the association parameters
are odds ratios of the distribution of the adjacent variables conditional on the remaining data,
instead of the more familiar marginal odds ratio. Finally, the number of nuisance parameters grows
rapidly when T increases, with possible loss of accuracy of the estimates of interest.

None of these problems are present in the formulation of this paper. Instead, a plausible criticism
of this approach could be that the form of serial dependence is quite restricted. When the interest
of the analysis focuses on the regression parameters, it seems to us acceptable if serial dependence
is not accurately modelled, provided the regression parameters are not strongly influenced. Some
evidence in favour of the robustness of the approach is provided by a small simulation study.
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APPENDIX

Derivatives of the log-likelihood
We give expressions to compute the derivatives dl/dp and dl/dX. Assume first that a complete

sequence y t , . . . , yT with no missing values is available.
Consider the tth term /, of the summation in (7); its derivatives are computed via the chain rule,

giving

dl, dl, (dpy _ d8t

OP OPy \ OO, Op

dl,
\i> d k y ' • • • ' ) •
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These quantities depend in turn on

86,

86,_1
 =~A

where 5 is defined in (6), A and B are the denominator and numerator of pyt_i, writing

_B _(2j-l){l-5 + ^-1)6,^}+(ij/-1)6,
Pj A

which is equivalent to (5) when \]/ =j= 1, and

35 1

Finally, adding d^i/dk = i/', we have all ingredients to compute (31/3/3, dl/dxjj). If the link function
(3) was changed, one would need to change (ddjdfi, 36,-i/d/}) accordingly.

Consider now the case of missing observations, discussed in § 31 . In practice, the problem is
reduced to the computation of the derivatives of pj"J. From the Chapman-Kolmogorov identity

n(m) /1 (m—1)\_ i I , ( " ' - l ) _
Pt.j —U —Pt-lJ )Pt,O + Pt-l.jPt.l>

we can write

dco dco dco

for a generic quantity a. This formula must then be used recursively on p$1~[j> to obtain the full
expression of the derivative.

We illustrate the use of (Al) in the case of m = 2. Without loss of generality, set t = 3 and
consider, with a temporary change of notation, the derivatives of

with respect to 6,, for t = 1,2, 3. From (Al), we write

3pl2]}_, , , , dP23|o tP23i° (~Pn]j) ~w
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for t = 1, 2, 3; a similar expression holds for dp13\j/d\l/. Then we have

, , . , dP23lO gpnlj ^P23|l
P23I° ( Pl2u) ~ ^ T + l e T P 2 3 1 1 " ^ T Pl21""

The derivative dpl3\j/d\l/ has a similar pattern of dp13\j/d92. Finally, from

dp h 99, dp

we obtain dl/dp, and a similar computation produces dl/dl.
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