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How and when can environmental factors influence traits and their

transgenerational inheritance?
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The environment can have a long-lasting influence on an
individual’s physiology and behavior. While some environ-
mental conditions can be beneficial and result in adaptive
responses, others can lead to pathological behaviors. Many
studies have demonstrated that changes induced by the
environment are expressed not only by the individuals directly
exposed, but also by the offspring sometimes across multiple
generations. Epigenetic alterations have been proposed as
underlying mechanisms for such transmissible effects. Here,
we review the most relevant literature on these changes and
the developmental stages they affect the most. We discuss
current evidence for transgenerational effects of prenatal and
postnatal factors on bodily functions and behavioral
responses, and the potential epigenetic mechanisms in-
volved. We also discuss the need for a careful evaluation of the
evolutionary importance with respect to health and disease,
and possible directions for future research in the field.
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Introduction

Changes in the environment induce behavioral
adaptation

The ability to perceive and evaluate surrounding environments,
and adopt appropriate behavioral responses is critical for living
organisms [1]. It allows for suitable reaction to stimuli, which
increases the chance of survival and reproduction [2]. Main-
taining a memory of such adaptive responses is essential for
coping with similar conditions when encountered in later
life [3]. Although behavioral adaptation is generally beneficial
and helps adjust to a changing environment, it can also be
maladaptive when external conditions and requirements
change too rapidly and result in a mismatch with the adapted
behavior/s [4]. Such divergence between an individual’s
response and the surrounding milieu can lead to inappropriate
and pathological behaviors, and can increase the predisposi-
tion to disease [5]. Thus, although an inherited trait is typically
thought of as being beneficial and hence selected for, some
inherited traits can be maladaptive in that they do not fit the
progeny’s environmental demand [6]. The biological mecha-
nisms underlying adaptive behaviors are complex and involve
activity-dependent changes in gene expression in multiple
neural circuits and brain regions [5]. Importantly, because
these changes are modulated by the environment rather than
being genetically encoded, many are mediated by non-genomic
processes, in particular epigenetic mechanisms [7, 8]

The epigenetic code controls genomic activity

One of the primary functions of epigenetic processes is to
remodel chromatin and thereby activate or silence genes.
Chromatin comprises the DNA helix, which wraps around
octamers of histone proteins to form nucleosomes [9]. It can be
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structurally remodeled by covalent modification of the DNA
and histones, in particular DNA methylation (DNAme), and
histone posttranslational modifications (HPTMs). The ensem-
ble of these modifications constitutes an epigenetic code that
alters gene activity without changing the genomic DNA
sequence itself [10]. In mammals, DNAme is a biochemical
process that involves the covalent addition of a methyl group
to cytosines in DNA, preferentially onto CpG (cytosine-
guanine) dinucleotides [11]. HPTMs are also covalent mod-
ifications that occur on protein histones in specific combina-
tions and include, among others, acetylation, methylation
(mono, bi, or tri), phosphorylation, and ubiquitylation [12-14].
The ensemble of modifications composed of DNAme and
HPTMs establishes an epigenetic profile that is dynamically
regulated at each individual gene. These marks modify the
local electrochemical properties of chromatin, altering its
conformation and thereby regulating the accessibility of genes
to the transcriptional machinery [15]. Ultimately this modifies
gene transcription in a spatial- and temporally regulated
manner in response to specific internal and external cues [16,
17]. Further to DNAme and HPTMs, increasing evidence has
pointed to the importance of non-coding RNAs (ncRNAs) as an
additional means of gene regulation. ncRNAs exist in a diverse
range of sizes, and unlike messenger RNA (mRNA), are not
translated into proteins but act to regulate gene expression.
They can induce mRNA degradation and thereby downregulate
protein translation, or they can act as guides of components of
epigenetic machinery to specific DNA sequences [12, 18, 19].

Epigenetic processes contribute to the
transmission of acquired traits

Studies in rodents have shown that some epigenetic modifi-
cations in chromatin remodeling can persist and be maintained
throughout life [4, 20, 21]. These modifications have the
potential to be transmitted to subsequent generations if present
in the germline [22]. The transmission of adaptive traits is an
essential biological process that can have a tremendous impact
on the evolution of a species [12]. Although transmission
provides an optimized response to an environment encountered
by the previous generation, it has the potential to result in
maladaptive behaviors if the environment changes in-between
generations [6]. Mechanistically, while the transgenerational
inheritance of behaviors does not involve any change in the
DNA sequence, it is nonetheless difficult to be explained
conceptually via epigenetic modifications. This is because most
epigenetic marks, in particular DNAme, are erased from the
chromatin during germ cell development and in the early zygote
in mammals, a process known as epigenetic reprogramming.
However at some genes, in particular imprinted genes and
various other specific loci [23], epigenetic profiles can be
maintained or re-instated despite reprogramming, and remain
in the progeny. This strongly suggests that some, but perhaps
not all, epigenetic profiles can persist across generations.
Here, we review the most recent evidence demonstrating
that the acquisition of traits induced by environmental factors
can occur during different developmental phases, that the
acquired information can be transmitted across generations,
and that it likely involves epigenetic mechanisms. We focus on
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traits induced by environmental changes in early life, their
consequences on behavioral responses later in life and across
subsequent generations.

The brain is susceptible to stress during
critical periods in life

The influence of environmental factors on the body and
underlying epigenetic mechanisms has been studied in
relation to brain functions. In the brain, the (re)programming
of epigenetic marks by environmental factors depends on
cellular responses to intrinsic and extrinsic signals [24]. It
contributes to various brain processes and functions such as
memory formation [25], drug addiction [26], and stress
responses [27]. In some cases, these marks are transient and
dynamically regulated [28, 29], while in others, they can persist
and be perpetuated [30]. The strength and persistence of
epigenetic changes strongly depend on the developmental
stage and the time of establishment. The prenatal period [31],
early childhood [32], and adolescence [33] are critical temporal
windows for the influence of environmental conditions in
mammals. During these developmental phases, the brain
experiences extensive growth [34], remodeling [16], and is
particularly sensitive to external conditions and interfer-
ence [35]. Environments involving stress are especially
detrimental. In humans, stressful conditions experienced
during pregnancy increase the incidence of neurodevelop-
mental disorders such as schizophrenia and autism spectrum
disorders in the child [36-38]. Likewise, in laboratory animals,
such as rodents, gestational stress applied to the mother alters
stress sensitivity, behavior, morphology, and gene expression
in the resulting offspring [39, 40]. Environmental conditions in
early postnatal life also strongly influence development, and
increase predisposition to psychiatric disorders in later life in
humans [41]. This is as well the case in animals, in which the
level of maternal care is particularly critical. Maternal nursing
is directly associated with the formation of proper behavioral
responses in later life, and the susceptibility to stress-induced
disorders in adulthood. This link was shown to implicate
epigenetic mechanisms of gene regulation, in particular,
changes in DNAme of a regulatory region of the glucocorticoid
receptor (NR3CI) in the hippocampus [21]. Adolescence is
another critical window during which stress exposure can have
detrimental consequences on mental health later in life. In
humans, maltreatment during adolescence can induce
antisocial behaviors in young adults [42]. In rodents, hyper-
activation of the hypothalamic-pituitary-adrenal (HPA) axis
due to stress during this period also alters behavioral
responses and elicits multiple symptoms including increased
aggression and antisocial behaviors [43, 44].

The characteristics of stress exposure
determine the consequences on brain
and behavior

The impact and long-term consequences of stress exposure are
known to depend on the type, severity, and duration of the
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stressor(s). Stressors include a variety of environmental
conditions such as psychological challenge and nutritional
restriction.

Altered maternal care perturbs adult behaviors

The quality of the social and parental environment in early life
is a critical determinant of the proper development of an
individual. In humans, prolonged separation from the mother
and maternal neglect predispose an individual to behavioral
deviance such as drug abuse in later life, in part by altering
reward pathways [45]. In rodent models, predictable maternal
separation (subjected at the same time daily) often has no
lasting behavioral effects in the offspring due to compensatory
maternal behaviors [46]. However, unpredictable and frag-
mented stress strongly compromises maternal sensory signals
and triggers persistent cognitive and emotional dysfunctions
in later life [47]. In mice, unpredictable maternal separation
combined with unpredictable maternal stress was shown to
lead to a wide range of behavioral symptoms including
depressive-like behaviors, social withdrawal, impaired social
recognition, and reduced risk assessment [30, 48, 49].
Interestingly at the same time, this manipulation also
increases behavioral flexibility and makes the animals more
reactive in challenging situations (our own unpublished
observations). This suggests that unpredictable stress in early
life may provide some benefit later in life. In most cases,
psychological stress acts as a negative factor, however under
favorable conditions such as exposure to an enriched
environment, beneficial effects may be observed [50]. Notably,
the long-lasting effects of living conditions in early life have
been reported to be sex-dependent. While both females and
males can be affected, the extent of behavioral alterations
such as depressive-like behaviors can depend on gender [51].

Mainutrition puts the organism under stress

One of the first reports on the consequences of under-nutrition
in humans is the effect of diet restriction during fetal life. A
large-scale study in a Dutch cohort subjected to hunger during
winter at the end of World War II (The Dutch Hunger Winter
Families Study) showed that individuals born from mothers
undernourished during pregnancy had altered epigenetic
marks [52, 53]. A differentially methylated region of the
imprinted gene IGF2 was shown to be hypomethylated in the
blood of individuals born to these women up to 60 years after
the period of hunger [54]. Many of these individuals suffered
from metabolic alterations [55-57] and a higher prevalence of
psychiatric disorders including higher incidence of schizo-
phrenia, and unipolar/bipolar depression [58-60]. In rodent
models, malnutrition also alters behavior and impacts brain
functions. Maternal high-fat diet during gestation increases
anxiety and alters hippocampal serotonin level in mice [61]. It
also reduces corticosterone and increases the level of its
cognate receptors in the amygdala in the offspring [62].
Likewise in rats, direct exposure to a high-fat diet for an
extended period (eight weeks) increases anxiety and cortico-
sterone level [63]. However in contrast to long exposure, short
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exposure (one week) to a high-fat diet has an opposite effect
and is anxiolytic [64].

The effects of environmental exposure
can be passed to subsequent
generation(s)

Numerous epidemiological and clinical studies in humans
have underscored a strong heritable component in mood
disorders like major depressive disorder (MDD) [65], post-
traumatic stress disorder [66] and associated externalizing
and internalizing traits [67]. However up to now, the
heritability of these disorders could not be only attributed
to genetic factors. Genes influencing such complex diseases
have been proposed to contribute and act either as low
penetrance common variants, or rare, highly penetrant
inherited mutations. In the case of MDD, only approximately
40% of the risk was determined to be genetic [68], with the
remaining 60% considered to be “missing heritability”. This
“missing heritability” was postulated to be accounted for by
environmental factors. Such factors may affect not only the
exposed individuals but also their offspring, and thereby
potentially impact several generations. This suggests that
epigenetic changes brought about by the environment likely
underlie some of the inheritance of complex diseases [69-71].
This hypothesis is strengthened by a recent epidemiological
study showing that paternal obesity leads to IGF2 hypome-
thylation in newborns [72], suggesting that paternal malnu-
trition has an heritable influence on IGF2. Since IGF2 is a
hormone that plays an essential role in promoting growth
during gestation and is necessary for cognitive processes
throughout life [73, 74], it will be interesting to see whether the
alterations in IGF2 persist into adulthood and contribute to
psychiatric disease risk.

Animal models have proven useful to study this question
and the underlying mechanisms. Exposure to chronic
traumatic stress during the first two weeks of life persistently
alters behavioral responses across several generations in
mice. Unpredictable maternal separation combined with
unpredictable maternal stress in young mouse pups causes
depressive-like behaviors and deficits in novelty response, risk
assessment, and social behaviors in adulthood [48, 49, 75].
These behavioral symptoms are transmitted to the following
generation through both females and males (up to three
generations for males) and are independent of maternal care.
They are associated with alterations in DNAme in several
stress-related genes in the adult brain, and sperm in first and
second-generation animals, along with altered expression of
these genes in the brain. Likewise in rats, adolescent stress has
an impact across multiple generations. The offspring of
stressed rat dams have increased anxiety but conversely also
display better sociability and improved avoidance learn-
ing [76]. Interestingly, exposure to an enriched environment
before gestation has an effect on the offspring, opposite to
that after stress exposure. The offspring of enriched dams
show sex-dependent differences in anxiety level and reduced
avoidance learning when compared to the offspring of
stressed dams [76]. Further, in juvenile mice (postnatal day
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15-30), exposure to enriched conditions can rescue a deficit in
synaptic plasticity in adulthood. Enrichment reverses a defect
in hippocampal long-term potentiation (LTP), a form of
synaptic plasticity linked to memory processes, in the exposed
animals and also in the adolescent progeny of these
animals [77]. Thus, traits acquired by environmental exposure
have the potential to be transmitted across generations.
Transmission may occur through different potential routes.

Potential routes of transmission of
acquired traits across generations

Traits acquired by environmental exposure can be maintained
and transferred from one generation to the next through
different means. Some routes depend on the presence of the
initial trigger, i.e. poor maternal care, which is needed at each
generation to reinstate the traits. Such routes are based on
behavioral and social transfer. Other routes involve more
stable mechanisms that become independent of the initial
trigger, and reflect a molecular transfer implicating germ cells.

Behavioral and social transfer

Many traits acquired following exposure to environmental
factors are transmitted from one generation to the next
through behavioral and social interactions in early or adult
life. In mammals, the quality and level of maternal care in
early postnatal life have a strong influence on the progeny’s
development, and determine their physiological and behav-
ioral responses in later life. In rats, maternal behaviors in
mothers condition maternal behaviors in the female offspring.
Thus, female rats providing insufficient maternal care give rise
to female offspring that become poor mothers themselves.
Mechanistically, such behavioral transfer is associated with
broad epigenetic changes across the genome affecting
multiple genes [78]. Further, in rat, exposure of males to
stressful anti-social experiences in youth increases aggression
towards females in adulthood, an effect also observed in the
offspring of these males. This transfer involves depressive
behaviors of dams subjected to mistreatment by their mate,
and also aggressive behaviors in the male offspring [79].

Molecular transfer

Pioneering studies in plants and invertebrates have provided
initial insight into the potential mechanisms involved in
epigenetic inheritance, demonstrating that ncRNAs can act as
carriers of information across generations and contribute to
the transfer of acquired traits [80-83]. In mammals however,
the mechanisms involved remain only partially elucidated.
There are thought to be multiple mechanisms and that they
depend on the developmental stage of induction. They
determine the penetrance of the effects and their perpetuation
across subsequent generations. In this respect, a critical
notion in transgenerational inheritance is the fact that
inheritance can only be considered truly transgenerational

494

Prospects & Overviews B B

and epigenetic if environmentally induced traits do not need
the initial trigger at each generation, and are observed in
individuals of the third generation, whose founder germ
cells have not been exposed to the trigger [84]. The expression
of the traits in these individuals is an indication that
epigenetic mechanisms in germ cells are involved [85].
However, it is difficult to study these mechanisms in
mammals, because germ cells are not easy to collect or to
analyze. Further, ideally both maternal and paternal lines
(matrilines and patrilines, respectively) need to be examined.
However, patrilines have the advantage of excluding maternal
care confounds, possible social and/or behavioral transfer,
and preventing interference by somatic components of
oocytes and the in utero environment. Sperm cells are also
more abundant than oocytes and easier to use for molecular
analyses. However, since true epigenetic inheritance also
occurs in matrilines [49], findings in male germ cells need to
be validated in females. The following section discusses the
importance of the developmental stage for the induction of
persistent traits and presents various observations of the
transmission of acquired traits. Although these findings are
based on rodent studies, a mechanistic translation to
humans can be envisaged given that the time window of
epigenetic reprogramming in male germ cells relative to birth
(pre- vs. postnatal exposure), is comparable in mice and
humans [86].

How epigenetic changes are transmitted
across generations critically depends on
the time of induction

The mere observation that an environmental condition
induces epigenetic changes in the germline and specific traits
in a subsequent generation does not guarantee true
epigenetic inheritance. For true epigenetic inheritance, the
epigenetic changes need to persist across generation. If
the marks are not themselves maintained (for instance, a
change in HPTMs in germ cells may only be transient), they
need to be relayed by more stable and/or different marks. The
induction and persistence of epigenetic changes is deter-
mined by the timing of the environmental exposure (Fig. 1).
Although in theory, epigenetic changes can occur through-
out life, they are more likely to happen during early stages of
development, in particular during epigenetic (re)program-
ming of germ cells or in the embryo when the genome is in a
malleable state [87].

Zygotic epigenetic reprogramming

Epigenetic reprogramming engages a complex cascade of
molecular events in early development that allows the
dynamic establishment of epigenetic marks involving DNAme
and HPTMs by successive waves of marking and erasure [88,
89]. In the early zygote, while the maternal and paternal
genomes (derived from gametes) have different epigenetic
profiles, they undergo zygotic reprogramming. DNAme marks
are globally erased immediately post-fertilization and until
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Changes induced by environmental exposure in the F1 epigenome

A) HATs and HMTs
BN HDACs and HDMSL

)

5

Altered DNA methylation HPTMs addition

or removal
_\.\
~

Altered non-coding RNAs composition

uoldNpu|

. Methyl group

F1 sperm epigenome & Acetylgroup
@ CpGisland

B) m MM

Retained histones Protamines

Transmission of sperm e .
N\
2\ hon-coding RNAS Fertilization
DNA demethylation Histone code reinstatement
—
[} ¥
s RN
o N ) _|
< 5
% KOD DNA thylati l Q)
re-metnylation
3 =
3)
3. , -}
5 E
@ wn
DNA demethylatlon HPTMs erasure 3
—
D) )
E wn
o —
Q o
S g DNA re-| methylatlon \L Histone code reinstatement O
3
3 >
=
(e}

e R

N

N\
~—

F2 sperm epigenome

Figure 1. Induction and transmission of the effects of environmental exposure on the epigenome in rodents. A: Induction: environmental factors
can alter DNA methylation, HPTMs, and the composition of ncRNA in animals exposed during either embryonic development, early post-natal life,
or adulthood (F1). Multiple molecular modifiers can contribute to alterations in DNA methylation and HPTMs including DNMTs, which induce
DNAme, and HATs/HMTs and HDACs/HDMs, which acetylate/methylate and deacetylate/demethylate histones, respectively. DNAme and HPTMs
alter the local properties of chromatin, such as the structure and charge, and thereby lead to changes in gene expression. B: Transmission:
some epigenetic marks may be maintained in germ cells during DNA and histone reprogramming from F1 to F2, and contribute to epigenetic
inheritance. To be transmitted, DNAme marks must escape global erasure during fertilization, or be reinstated after erasure. Transmission of
HPTMs also requires reinstatement of the histone code, which in germ cells, is complicated by the replacement of most histones by protamines
during sperm maturation [99]. It therefore requires the selective retention of specific histones, or the reinstatement of the HPTMs in the zygote
post-fertilization. Sperm ncRNAs that are delivered to the oocyte during fertilization may also contribute to this process [111, 119]. For subsequent
inheritance to F3, epigenetic alterations need to additionally resist the reprogramming that occurs in the F2 epigenome (in PGCs). HPTMs, histone
post-translational modifications; DNAme, DNA methylation; DNMTs, DNA methyltransferases; ncRNA, non-coding RNA; HATSs, histone
acetyltransferases; HMTs, histone methyltransferases; HDACs, histone deacetylases; HDMs, histone demethylases; PGC, primordial germ cell.

Biocessays 36: 491-502, © 2014 WILEY Periodicals, Inc. 495

0

sAesso MaIND



0
>
@
)
)
o)
=

Q2
>
@)

o

K. Gapp et al.

the morula stage at preimplantation. In the female pronucle-
us, passive demethylation occurs upon consecutive cell
divisions, correspondingly there is active demethylation in
the male pronucleus [90]. While DNA erasure affects genes
globally, it spares a few of them, in particular imprinted
genes, as well as genes expressed in the male germline [23],
repeat-associated IAP retrotransposons [91] and genes in
heterochromatin within and around centromeres [92]. Fur-
ther, soon after fertilization in the male pronucleus, prot-
amines (histone-like proteins partially replacing histones
during spermatogenesis) are exchanged with maternally
inherited histones [93]. Subsequently, acetylation followed
by methylation occurs on specific lysine (Lys, K) residues, for
example, K5 and K12 on H4 [88]. Some maternal HPTMs
established during oocyte growth, such as K9 and K27
methylation, are however maintained [88] and therefore
constitute an epigenetic memory.

Epigenetic reprogramming of primordial germ
cells (PGCs)

Another wave of reprogramming takes place in primordial
germ cells (PGCs), which are germ cell precursors in the early
embryo. During this wave, DNAme and HPTMs (e.g. H3K9me2)
are globally erased across the germ cell genome [89, 94]. But
again, although most DNAme marks are erased, some are
maintained at specific loci, for instance in genes containing
or near repeat-associated IAP elements and in subtelomeric
regions [95]. Imprinting is then established [96, 97] to keep a
parent-specific epigenetic mark and determine whether the
maternal or paternal allele is expressed [98]. At a later stage
of postnatal maturation in sperm, H4 variants also become
hyperacetylated to allow nucleosome dissociation. Most
histones are then substituted for protamines to allow for
tighter packaging of the DNA [99]. However, some histones
and their HPTMs, for instance H3K4me3 and H3K27me3, can
be retained at loci containing developmental genes [100],
and therefore provide another means to maintain epigenetic
marks. Protamines in adult sperm can also carry multiple
PTMs [101], suggesting the possibility that the histone-
protamine transition or that protamine PTMs may contribute
to information transfer from one generation to the next.
Functionally, the successive waves of epigenetic reprogram-
ming are paralleled by differential regulation of gene
expression in the embryo [102]. Transcription of both female
and male genomes is increased at 2- and 4-cell stages but the
male genome is more permissive to transcription during
subsequent zygotic stages [103]. Germ cell chromatin is
therefore highly responsive during epigenetic reprogram-
ming and is in a configuration susceptible to epigenetic
alterations. The extent and persistence of alterations
depend on the time of environmental exposure relative to
epigenetic reprogramming. Whether a perturbation by
environmental factors occurs shortly after fertilization, later
in development or in adulthood, the impact and likelihood
of transmission are different. Several time-dependent
scenarii for patriline inheritance can therefore be envisaged
(Fig. 2) and thereby used to distinguish potential different
mechanisms.
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Evidence for the involvement of different
epigenetic mechanisms in the molecular
transmission of acquired traits

Several studies have addressed the effect of environmental
exposure during fetal development across multiple gener-
ations. Table 1 summarizes the evidence from rodent models
for a transgenerational impact on brain and behavior, and
indicates the mechanisms proposed to be implicated in the
inheritance [22, 104-110]. Many of these studies used exposure
to an endocrine disruptor as trigger. It is conceivable that the
induced mechanism(s) of inheritance does not differ from
other detrimental exposures, and both may ultimately affect
the stress system in the brain and thereby alter behavior.
Hence, the transgenerational effects of endocrine disruptors
can be viewed as an illustrative example for our purpose.
Inheritance of traits acquired by early postnatal, adoles-
cent, or adult environmental exposure have been observed in
different conditions; some involving both patriline and
matriline transmission (summarized in Table 2 [20, 30, 48,
49, 76, 77, 111-114] with potential transmission mechanism).
While DNAme, HPTMs, and ncRNAs have all been proposed as
potential transgenerational carriers of information, DNAme
has been the most extensively explored [22, 30, 104, 106, 109]
(see Tables 1 and 2). Environmental exposure impacting
imprinted genes is particularly interesting since the mecha-
nisms operating to protect these genes from reprogram-
ming [115, 116] may be recruited for non-genomic inheritance
of acquired traits. Studies on vinclozolin or stress exposure
have indeed shown that imprinted genes can be affected [30,
109], suggesting a susceptibility of these genes to environ-
mental changes. However, susceptibility decreases for expo-
sure after establishment of imprinting in PGCs [117]. Future
studies should determine whether these genes might predis-
pose higher susceptibility of PGCs to environmental changes
during imprinting. Further, although no substantial reprog-
ramming takes place in the male germline during postnatal
life, epigenetic marks continue to be established during this
period [118], making them a target for interference. In
agreement, studies in our lab have shown that imprinted
genes can be affected postnatally [30]. It has been suggested
that environmental exposure could put epigenetic modifica-
tions of non-imprinted genes in an “imprinted-like” state and
thereby enable their transmission [23, 91, 92, 95].
Mechanistically, the inheritance of traits acquired after
birth (Table 2) may also involve pathways different from those
during embryogenesis (Table 1). While studies of embryonic
exposure only provide evidence for the involvement of DNAme
in transmission, later exposure may implicate other epigenetic
modifications such as HPTMs and ncRNAs (see Tables 1 and 2).
Thus, histones and protamines both carry PTMs, and histones
have recently been implicated in the inheritance of the effects
of cocaine self-administration in male rats [112]. Further,
ncRNAs are abundant in sperm cells and may be altered by
external factors. Indeed, initial evidence points to the possible
involvement of small ncRNAs in the transmission of stress-
induced traits. For instance, exposure to chronic stress for six
weeks during puberty or adulthood alters a pool of miRNA in
sperm, and reduces HPA axis responsiveness in the offspring.
Unpredictable traumatic stress in early postnatal life also
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Figure 2. Induction and transmission of environmental exposure during rodent development. A: Environmental exposure during early
embryonic development, for instance before E10 in rodents, is likely to affect all somatic cells including future PGCs in the embryo.
Such induction is most effective when it occurs in the zygote through to the blastocyst (between EO and E3.5) in the first generation.
This is because the chromatin is reprogrammed during this stage and is therefore more susceptible to alterations [90]. B: Environmental
exposure between E10 and E13 may perturb proper PGC reprogramming, and epigenetic marks that resist zygotic reprogramming after
fertilization, which is not as extensive as PGC reprogramming [91, 92], are present in the individuals derived from these germ cells.

C: Environmental exposure during late embryogenesis and postnatal development can also induce heritable epigenetic changes in
germ cells, although germ cells at this stage of development are less susceptible to interference. In (A-C), true transgenerational
transmission requires that epigenetic changes persist through both germ cell and zygotic reprogramming. E, embryonic day; PGC,
primordial germ cell.
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alters miRNA content in mouse sperm [111], and has effects
across generations that are associated with sperm RNAs (our
own unpublished observations). However, how sperm RNAs
are involved in the transmission of stress effects still needs
to be determined. These results corroborate previous data
showing that sperm RNAs can underlie the transmission of a
genetically induced phenotype [119].

Conclusions

Environmental exposure can have long lasting effects on brain
and behavior that can persist over several generations. The
mechanisms underlying such transgenerational transmission
involve epigenetic processes, which enable the stable transfer
of the molecular basis of acquired traits. Despite some reports
of molecular transfer or true transgenerational inheritance of
acquired traits, these mechanisms remain mostly unknown.
This is in part due to their complexity and the difficulty of
studying them in animal models, and certainly in humans.
The analysis of these mechanisms first requires the establish-
ment of robust, consistent, and reliably transmitted pheno-
typic traits in a model system. Then, timely and targeted
measurement of epigenetic marks in the right tissue or cells,
and on the specific genes or loci is also required, with proper
timing of environmental exposure. So far, most studies have
used models with a broad timing of exposure (several days
to several weeks) and a single time-point as the read-out
of epigenetic alterations. These studies have therefore not
allowed to determine the most critical time window of
induction, nor the time course of epigenetic changes.
Moreover, in addition to DNAme, HPTMs, and sncRNAs,
other non-genomic processes such as 5-hydroxy-DNAme, RNA
methylation, long ncRNAs would also be interesting to
examine. Clearly, such processes and mechanisms are likely
intertwined with genetic factors, and studies considering
genome-epigenome interactions will be necessary. The use of
novel techniques and methodologies such as high-throughput
epigenetic screening and molecular imaging are expected to
facilitate a better understanding of these mechanisms, and of
their functional and evolutionary impact [120].
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