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Abstract 

In this article, visual data obtained by a binocular 
active vision system is integrated, together with 
ultrasonic range measurements; in the development 
of a obstacle detection and avoidance system based 
on a connectionist grid. The traditional notion of 
probabilistic occupation grid is  extended through the 
use of a three-layer structure of connectionist net- 
works which allows the integration of several sensorial 
modalities (in this case ultrasonic sensor readings 
and stereo vision information) in a probabilistic 
environment representation. The connectionist nature 
of the network also allows us to deal with obstacle 
avoidance by using a mechanism similar to potential 
jield over a discrete set of the robot‘s configuration 

’ space with each grid node representing a possible 
configuration. The value in each grid node gices us a 
measure of the configuration occupancy probability and 
can also be used t o  guide the robot to a predefined goal 
configuration simulating a simple gradient descending 
technique. Finally we present experimental results 
obtained with the implementation of the above method 
in a mobile platform which also provides the support 
for the sensing deoices described throughout the article. 

1 Problem domain 
In this article. visual data obtained by a binocular ac- 
tive vision system is integrated. together with ultra- 
sonic range measurements. in the development of an 
obstacle detection and avoidance system based on a 
connectionist grid. This grid based framework allows 
the integration of two different sensing modalities (vi- 
sion and sonar). in a way that incoming sensorial data 
can be mutually enhanced and validated. This ap- 
proach assumes that.  for a mobile robot moving in a 
cluttered and noisy environment, where obstacle pres- 
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ence and location are unknown, several sensing modal- 
ities can be cooperatively used to obtain a more real- 
istic perception of the universe around the robot. 

This article proposes a connectionist structure for 
the integration of different sensing modalities which 
is an extension of the occupancy grids first described 
by Ell]. The same extension deals with obstacle avoid- 
ance by building, in real-time, a potential field over the 
occupancy grid [9, 6,  71. 

Each grid node maps a configuration in a discrete 
subset of the robot’s configuration space. Detected ob- 
stacles result in sets of restricted configurations. Using 
the grid data, a potential field is interactively com- 
puted for each mapped configuration. This computa- 
tion is done in real-time, during the robot’s motion, so 
the potential field changes as new data is integrated 
into the grid. Sensorial integration is supported by a 
set of operations which allow incoming sensorial data 
to be mutually enhanced an validated. These oper- 
ations are described in the following sections. This 
structure is the base of a sensorial framework used to 
implement innovative sensing and control strategies, 
using the integrated sensorial information. These con- 
trol strategies are based on a connectionist network 
which! using the information from the occupancy grid, 
allows the planning of the robot’s motion in a reactive 
way. The motion is planned in the sense that the com- 
puted potential field can be used to search a path to 
the goal (or a local minimum), and is reactive since in- 
formation recently gathered will change the potential 
field and, consequently, the path [l: 9, 8, 71. 

A feed-forward artificial neural network is used to 
navigate the robot through its environment , avoiding 
restricted configurations corresponding to unexpected 
obstacles. 

All our experimental work is being done around a 
mobile platform, which provides the test-bed for our 
experiments. This mobile platform is also the support 
for the sensing devices described throughout the arti- 
cle. 
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discrete configuration space plays a central roll. 

e First level: Memory - The first level is a 
global occupation grid G (figure 2) of configura- 
tions. which slices the the robot’s C configuration 
space by discretization of Fw. This way. each 
configuration in G maps a square of the robot’s 
work space W .  To each configuration q is associ- 
ated an emptiness factor v(q). which indicates the 
probability of that configuration not being occu- 
pied by an obstacle. and an occupancy factor p ( q ) .  
indicating the probability of q being occupied by 
an obstacle. G is used as a long term memory for 
the robot. as it will be seen. 

e Second level: Agent’s Grid - The second level 
is a local grid of configurations L (figure 2 ) .  cen- 
tered on the robot’s referential FA. Each configu- 
ration in L also has ~ ( q )  and p ( q )  values attached 
to it. This values will be changed by incoming 
sensorial information and used to compute the oc- 
cupation state @ ( q )  of each configuration. @ ( q )  is 
calculated iteratively. with the use of a connec- 
tionist structure similar to a cellular automata. 
This is explained in more detail in section 4. The 
final result is similar to a potential field computed 
over L. which can be used to allow the robot to 
avoid obstacles by following the negative gradient 
of the field. 

The grid G is used as a long term memory. by 
updating it with the v(q) and p ( q )  values of the 
configurations of L as the robot moves. If odom- 
etry is used to keep track of the robot’s displace- 
ment. this operation is affected by odometry er- 
rors. which increase over time. To avoid these 
problems. a time mark is stored together with the 
values of .L ( q )  and p (  q )  . 

0 Third level: Sensor Grid - The last level 
is where sensor modeling and data integration is 
done. For each sensor S two functions are de- 
fined. P ( s .  q )  returns the occupancy value in con- 
figuration q belonging to  a subset of L where the 
readings of S are mapped. given a reading s from 
the sensor. V ( s .  q )  returns the emptiness value in 
configuration q belonging to a subset of L where 
the readings of S are mapped. given a reading s 
from the sensor. The values p ( q )  and v(q) are 
integrated in L by adding the new values to the 
current ones. In the following section we present 
examples for two sensorial modalities: range data 
from ultrasonic sensors and obstacle detection ob- 
tained by a binocular active vision system. 

The interaction between the three levels can be sum- 
marized as follows: as the robot moves new data is 
acquired by its sensors. This readings are mapped by 

Figure 1: The mobile platform with different sensors: 
active vision system: sonar sensors: odometry and in- 
ertial sensors. 

2 The framework to register and com- 
bine sensorial information 

Suppose a mobile I-obot (or agent) moving in a Eu- 
clidean 2D space W .  called the robot’s workspace. In- 
formation about the presence. position or form of any 
obstacles in the workplace is unknown to the agent. 

If we attach a fixed frame FW to the workspace W 
and introduce a robot centered frame FA, we can de- 
fine the robot configuration q’ as being the position 
(z.y) and the orieritation B of FA in relation to FW 
or q’ = (x .y .  0) .  17 is the set of all possible robot 
configurations and is called the configuration space. 
If we discretize the axes of any frame defined in C. 
we get a discrete set of configurations D. with each 
configuration q = (k,S,. IC&,. k&) with 6,. S, and 60 
representing each Exe discretization step and k,. k, 
and IC0 belonging to 2. 

We can define an occupation grid G in the configu- 
ration space C as a subspace of D. with every configu- 
ration q = (i.j). Every configuration in an occupation 
grid G has associated an occupation probability p ( q ) .  
A configuration with a p ( q )  above a certain threshold 
is said to be occupied. i.e. the robot cannot assume 
that configuration due to  the presence of an obstacle. 

To use several modalities of sensorial information in 
a cooperative way. a framework capable of enabling 
the effective integration of incoming sensorial flows in 
an unified represen1 ation. must be defined. 

Our approach to the development of such a frame- 
work is based on a three level grid based representation 
of the robot’s configuration space. In all of this lev- 
els. the notion of occupancy grid as a subspace of the 



Figure 2: Global and local configuration grids. 
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the third level occupancy functions in the relevant sub- 
sets of L .  and the new p ( q )  and v (q )  values are fused 
with existing ones. The values ofp(q) and v (q )  are also 
stored in G. for later use. if necessary. and labeled with 
a time stamp. 

The movement of the robot also makes some config- 
urations in the local grid L to loose their information. 
as if the obstacles had moved away. These configura- 
tions get their p ( q )  and v ( q )  (if they exist) from the 
nearest configuration in G. The time elapsed since the 
values were saved is used to simulate the decrease of 
confidence on the sensorial information. due to obsta- 
cle displacement or in result of odometry errors accu- 
mulat ion. 

3 Sensing modalities 
Besides odometry. two main sensing modalities are 
used in the process of environment mapping. Those 
are ultrasonic range data and information acquired 
through a binocular active vision system. 

3.1 Ultrasonic sensors range measurements 

The range measurements are obtained from a ring of 24 
ultrasonic sensors present in our mobile platform. This 
kind of sensors. being cheap and easy to use. frequently 
present erroneous data, caused by multiple reflections 
and sonar scattering. However. this information can 
be validated through the use of multiple readings [4]. 
or by integrating other modalities of sensorial infor- 
mation. 

For the ultrasonic sensors a simple model is used: 
a reading is represented by a pie-slice where the arc 
points have the same probability of belonging to an 
obstacle. being that probability inversely proportional 
to the distance measurement. This will give the values 
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Figure 3: Model for an ultrasonic sensor and equiva- 
lent grid representation for a set of readings. 

of P(q)  for the configurations intersected by the arc. 
P(q)  will be 0 in every other configuration. 

A point inside the pie-slice is considered to have a 
probability of not belonging to an obstacle, with that 
probability being the same in module as if a reading 
with its cone passing in the point had been obtained by 
the sensor in the same position. This will give the V(q)  
values for the configurations inside the pie-slice. V(q)  
will be 0 in every other configuration. An illustration 
of this model is summarized in figure 3. 

Using this model we can speed up the updating if 
this grid-based representation with very good experi- 
mental results and avoiding the usual gaussian repre- 
sentations - see figure 7. 

3.2  Obstacle detection by binocular disparity 

Vision (figure 4) is a powerful sensing modality which 
can be used, not only in low level tasks, like the ones of 
obstacle detection and avoidance presented here: but 
also in higher level problems, e.g. object identifica- 
tion and simulation of visual behaviors [2, 3: 51. In 
this article we describe a technique to  complement and 
validate range information obtained by ultrasonic sen- 
sors! by using stereoscopic vision data. To do this, we 
developed a simple algorithm for obstacle detection, 
using stereoscopic information. Its simplicity makes 
it useful for mobile robotics, where the need for real 
time implementation asks for algorithms with moder- 
ated computational demands. 

The solution found allows us to detect obstacles in 
the field of view of the stereoscopic setup, both above 
and below the robot’s motion plane. The algorithm is 
based on the assumption: the images from the ground 
in front of the robot, are from a plane parallel to  the 
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:ween matching points in the left and right 

Figure 4: Detailed view of the stereoscopic setup. 

robot's trajectory. Since each point on ground lies in 
the same plane, we can establish an affine transforma- 
tion which relates correspondent points between the 
two images. For any image pair with points not in the 
ground plane, the transformation will fail. This means 
that any obstacle in the field of view: above or bellow 
the ground plane, will result in a disparity region when 
the two images are matched using the transformation 
mentioned above. 'When the robot is moving, any rel- 
evant disparities between image pairs are identified as 
an obstacle. 

The mathematics underlying this principle are very 
simple. A real world point with (X, Y, 2) coordinates 
is related to its image representation, with coordinates 
( U ,  G), by a 3 x 4 transformation matrix A'as expressed 
by: 

From our particular setup we have that 2 = y: since 
we want all points to lie in the ground plane. Expres- 
sion 1 can be simplified into 2: 

Ground plane calibration - Relation 4 defines, 
up to a scale factor, the relation between points in the 
left and right image. To obtain this relation, given by 
matrix F, we must do a calibration step which we call 
ground plane calibration. If make 0 3 , 3  = 1 in equa- 
tion 4 and manipulate the equations we can obtain 5: 

(5) 

This relation is a set of linear equations relating the 
parameters Q, with the coordinates of correspondent 
points in the left and right images. Since we have more 
unknowns than equations. we need a set of correspon- 
dent point pairs. at least 8. in order to make possible 
the computation of all 0, j .  

To obtain better results. it is advisable the use of a 
larger set of points and a minimization criterion. such 
as the least-squares criterion. Equation 5 can then be 
solved by using the Single Value Decomposition (SVD) 
method. 

Results obtained using the described method are 

Obstacle registration - To make the obtained 
results useful for integration with the ultrasonic read- 

(2) presented in figure 5. 

- 
ings. a further step must be taken: a simple calibra- 
tion is done in the 2 = y plane: relating points with 
image coordinates ( U .  v) with points with (X, Y. y) co- 
ordinates in the real world. Again SVD is used to 

Since we have two images from the same scene. one 
from the right camera and another from the left cam- 
era. we can establish the relation between the two: 



Figure 5: From stereo images to range informatic 
the 2 = y plane. 
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guarantee the calibration robustness. After this cal- 
ibration step, we can compute the distance from the 
robot to a detected obstacle by finding the coordinates 
in the 2 = y plane of image points where disparity 
starts to be significant. All the process of going from 
stereo images to range information, including dispar- 
ity images: is illustrated in figure 5. The first image 
pair is a simple stereoscopic view of the ground plane 
in front of the robot. An obstacle (box) can be seen 
in both pictures. The left picture in the second pair 
shows the discrepancy between both images obtained 
through image trandormation after ground plane cal- 
ibration. Points not in the ground plane are shown in 
white and there is also some noise present. In the last 
image pair it can be seen. in the left picture. the ob- 
stacle ground boundaries after the noise was removed: 
and. in the right picture the boundaries are registered 
in a cellular grid, using the calibration information ob- 
tained in the obstacle registration phase. 

P(q)  and V ( q )  for this kind of sensor are defined 
with base on the image’s number of pixels. We can 
make P(q)  proportional to the riumber of pixels with 
high disparity in the area of the observation window 
mapped by q.  Configurations where no significant dis- 
parity was found have P(q)  = 0.  V ( q )  is constant 
(with a value representing our belief in the sensor) in 
configurations with no significant disparity and is 0 in 
any configuration where any pixel with high disparity 
is found. 

‘\ I / 

/ I \  

Aij  - Cell at position (ij) in  the cellular automata. 

Wp,q ~ Weight of thc connection from cell A i j  to cell Ai+pj+q. 

Figure 6: Connections between cells in our cellular 
aut omat a. 

4 Computing the occupation state 
We now have p ( q )  and G ( q )  values for each configura- 
tion in L: being constantly updated with the readings 
coming from the sensors. How can we use this values 
to compute an occupation state for each configuration: 
true enough to allow safe obstacle avoidance? This is 
done with the computation of a potential field over 
L. A connectionist structure, similar to a cellular au- 
tomata. is defined, with each cell representing a con- 
figuration in L .  This structure can be pictured as a 
cellular lattice: where each cell is connected to its mar- 
est neighbors (figure 6) and has an oulput value Q ( q :  t )  
which represents the occupation state of Q at instant t .  
The cells’ values are updated iteratively, and depend 
only on the values p ( q )  and c(q)  of each cell (configu- 
ration) and its neighbors, and the connections between 
them, accordingly with the automata dynamic rules: 

m = MAX 

with 0 being a parameter chosen to control the obsta- 
cles’ radius of influence and @ ( q p l j ;  t )  the occupancy 
value of cell Ai!g: which maps configuration q z , j :  at 
time instant t .  As p ( q i , j )  and ~ ( q i , j )  are modified by 
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incoming sensorial information, @(qi. j  , t )  will depend 
not only on its neighbors values but also on the infor- 
mation about the environment provided by the sensing 
devices. 

Taking it across all the area mapped in L ,  this is 
equivalent to the result of an on-line computation of 
the repulsive part of a potential field [6, 91, rising in the 
vicinity of obstacles and decreasing away from them. 
Besides the repulsive field induced by obstacle pres- 
ence, the potential field is also affected by the pres- 
ence of a attractive field generated by the existence of 
a predefined goal ccnfiguration. The potential field U 
at robot's configuration q at time t is then 

or 

U ( q , t )  = cP(q,t) + cdist(q,g) (9) 
with dist(q,g) the 'euclidean distance between q and 
goal configuration g and E a weighting factor. 

Avoiding locations where the representation 
presents high occupancy values, the robot will avoid 
colliding with obstacles. Descending the potential 
field gradient the robot will head towards the goal. 
The result is a very flexible structure, that enables us 
to integrate in the iiame 2-D low level representation, 
information obt ain1.d from various sensing devices. 
The dynamics of the structure itself performs data 
validation between different' sources and accumulated 
readings. Figure 7 presents @ ( q )  results for a room 
used during experiments, with two boxes in the 
middle. 

5 Controlling; the robot 
Two main approaches were used to  control the robot. 
In the first one: as mggested above, gradient descend- 
ing of the potential field U was simulated: in order to  
navigate the robot !o its goal. 

In the second approach a three layer feed-forward 
artificial neural network was trained to navigate the 
robot, as information about the environment is being 
gathered and processed in the grid, using that infor- 
mation to safely avoid obstacles and arrive at preseted 
goals [I]. 

This neural network type has been often used [8, 9, 
71 in mobile robotics to enable the robots to repro- 
duce simple, but intelligent, behaviors. We used it to 
teach the robot simple heuristics, enabling it to nav- 
igate through its eiivironment avoiding the obstacles 
in its way. It only used the cP(q )  information and had 
the present configuration q and the goal configuration 
g fed to its inputs. 

In figure 8 we can see the environmental model in 
construction while i-he robot is being navigated by the 
neural controller. 

Figure 7: Mapping an experimental room. 

Figure 8: Navigating th robot in a real room. 
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6 Conclusions and future work 
One major conclusion of our work is that different 
sources of sensorial information can be intcgrated in a 
common structure to allow the robust modeling of the 
environment in autonomous robot navigation. Exper- 
iments with an isolated source of information shown 
us that the majority of problems can be overcome by 
the inclusion of more sensing devices. 

In our particular setup it was easy to conclude that, 
including vision, robustness and flexibility were added, 
while validation between different sources of informa- 
tion became possible. In the  other hand, ultrasonic in- 
formation is very fast to acquire, while image process- 
ing is always problematic to implement in real time. 
This way, with the use of ultrasonic sensors together 
with binocular active vision: we can be less demanding 
in processing power to deal with stereo image pairs. 

But to allow successful integration of different sen- 
sorial flows a flexible framework must be developed. 
We believe that our grid based framework is a suitable 
approach to this task. 

At this stage our prospects of future work are mainly 
focused on the exploration of the richness of possibili- 
ties given by the use of binocular active vision in mo- 
bile robotics [2, 3, 51. Our initial setup only gives low 
level. obstacle detection information, but we hope to 
expand the range of information obtained from stereo 
image pairs (e.g. 3D information). 

In the near future we propose to extend the 2-D 
model to a 3-D one, again using the possibilities of 
stereo vision. Acquiring higher level information than 
simple obstacle presence from the model (e.g. obstacle 
structure) is another issue being considered. 
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