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Abstract 
 

In a service-oriented architecture, business processes are executed as composition of services, which 

can suffer from vulnerabilities. These vulnerabilities in services and the underlying software 

applications put at risk computer systems in general and business processes in particular. Current 

vulnerability analysis approaches involve several manual tasks and, hence, are error-prone and costly. 

Service-oriented architectures impose additional analysis complexity as they provide much flexibility 

and frequent changes within orchestrated processes and services. Therefore, it is inevitable to provide 

tools and mechanisms that enable efficient and effective management of vulnerabilities within these 

complex systems. Model-based security engineering is a promising approach that can help to fill the 

gap between vulnerabilities on the one hand, and concrete protection mechanisms on the other. 

 

We present an approach that integrates model-based engineering and vulnerability analysis in order to 

cope with the security challenges of a service-oriented architecture. 

 

Introduction 
 

Information systems consist of a plethora of different applications, services and components. The 

complex interplay between these system parts is one of the main challenges for the establishment of 

reliable and secure service oriented architectures (SOA). Among the prominent requirements for 

enterprise information systems is the ability to react to changes quickly and flexibly. To this end, a 

SOA is deployed in many different application scenarios. It allows the orchestration of services and 

the implementation of complex business processes without implementing the basic functions over and 

over again. 

 

Security concepts for SOA heavily rely on model-based technologies. This is due to two prominent 

reasons: (1) model-based mechanisms work reliably and fast even in complex industrial settings, and 

(2) SOA itself is a model-based architecture. The deployment and the execution of business processes 

in a SOA are based on executable business process models mostly written in BPEL. The description 

of atomic services and their composition to higher-order services is also done in BPEL-Models, 

together with a WSDL description of the implemented interfaces. 

 

To this end, we propose the integration of model-based security mechanisms for SOA. Current 

approaches (as explained in the next chapter) neglect the fact that vulnerabilities are major source for 

security incidents. In classical systems, vulnerability analysis and integration of appropriate counter-



mechanisms is a mainly manual task. This is possible because these systems are quite static: they are 

deployed once and used for longer period in time. In a SOA, systems are composed and re-composed 

frequently and it becomes infeasible to manually interact with specific instances of business processes 

or high-order services. For example, they might be part of a complex orchestration. While it might 

seem a strong assumption that processes and services are orchestrated for unique tasks, systems exist 

that allow for dynamic integration of additional steps into existing processes (Reichert et al., 2006): 

by integrating individually required steps, a unique process arises that is executed exactly once. 

 

These scenarios clearly show that security information and vulnerability information must be prepared 

for automated processing. If users can integrate additional process steps into existing business 

processes on the fly, it is inevitable to automatically evaluate the security implications. Several 

security properties of the resulting processes can be evaluated automatically. The following section 

will provide a motivation for and an overview of these mechanisms. Afterwards, we present a model-

based extension for UMLsec that allows for the automated evaluation of vulnerabilities and their 

effects in a SOA. 

Model-based Security Analysis 
 

Challenges for Computer Security 

 
Attacks against computer systems, on which the infrastructures of modern society and modern 

economies rely, cause substantial financial damage. Due to the increasing interconnection of systems, 

such attacks can be waged anonymously and from a safe distance. Thus networked computers need to 

be secure. The high-quality development of security-critical systems is difficult. Still, many systems 

are developed, deployed, and used over years that contain significant security weaknesses. Causes: 

While tracing requirements during software development is difficult enough, enforcing security 

requirements is intrinsically subtle, because one has to take into account the interaction of the system 

with motivated adversaries that act independently. Thus security mechanisms, such as security 

protocols, are notoriously hard to design correctly, even for experts. Also, a system is only as secure 

as its weakest part or aspect. Security is compromised most often not by breaking dedicated 

mechanisms such as encryption or security protocols, but by exploiting weaknesses in the way they 

are being used (Anderson & Long, 2001). Thus it is not enough to ensure correct functioning of 

security mechanisms used. They cannot be “blindly” inserted into a security-critical system, but the 

overall system development must take security aspects into account in a coherent way (Saltzer & 

Schroeder, 1975). In fact, according to (Schneider, 1998), 85% of Computer Emergency Response 

Team (CERT) security advisories could not have been prevented just by making use of cryptography. 

Building trustworthy components does not suffice, since the interconnections and interactions of 

components play a significant role in trustworthiness (Schneider, 1998). 

 

Figure 1: Model-based Security Engineering 

 



State of the Art in Model-Based Security 

 
In practice, the traditional strategy for security assurance has been “penetrate and patch”: It has been 

accepted that deployed systems contain vulnerabilities. Whenever a penetration of the system is 

noticed and the exploited weakness can be identified, the vulnerability is removed. Sometimes this is 

supported by employing friendly teams trained in penetrating computer systems, the so-called “tiger 

teams”. However, this approach is not ideal: Each penetration using a new vulnerability may already 

have caused significant damage, before the vulnerability can be removed. It would thus be preferable 

to consider security aspects more seriously in earlier phases of the system life-cycle, before a system 

is deployed, or even implemented, because late correction of requirements errors costs up to 200 

times as much as early correction (Boehm, 1981). Also, security concerns must be taken into account 

during every phase of software development, from requirements engineering to design, 

implementation, testing, and deployment. Academic approaches trying to improve security during 

development must be tightly integrated with software development approaches already used in 

industry (Devanbu & Stubblebine, 2000). Some other challenges for using sound engineering methods 

for secure systems development exist. For example, the boundaries of specified components with the 

rest of the system need to be carefully examined, for example with respect to implicit assumptions on 

the system context (Gollmann, 2000). Lastly, a more technical issue is that formalized security 

properties are not in all approaches preserved by refinement. Since an implementation is necessarily a 

refinement of its specification, an implementation of a secure specification may, in such a situation, 

not be secure, which is clearly undesirable. A truly secure software engineering approach thus needs 

to take both dimensions of the problem into account: 

 

• it needs to integrate the different system lifecycle phases, 

• it also needs to take into account the different architectural levels of abstraction of a security-

critical system in a demonstrably sound, trustworthy, and cohesive way.  

 

The approach in the second part of this chapter presents how we can cope with possible 

vulnerabilities arising from the refinement of the model into an actual application. 

 

Approaching Model-Based Security 

 
In this section, we give an overview on some approaches for secure software engineering, with an 

emphasis on model-based development using UML. Of course, there are also approaches for secure 

software engineering outside of or predating model-based development with UML (cf. for example 

(Anderson & Long, 2001; Devanbu & Stubblebine, 2000; Eckert & Marek, 1997; Saltzer & 

Schroeder, 1975; Schneider, 1998) for some examples and overviews), but because of space 

restrictions, we cannot consider those in detail here. 

 

Model-based Development 
 

Generally, when using model-based development (cf. Figure 1), the idea is that one first constructs a 

model of the system. Then, the implementation is derived from the model: either automatically using 

code generation, or manually, in which case one can generate test sequences from the model to 

establish conformance of the code regarding the model. The goal is to increase the quality of the 

software while keeping the implementation cost and the time-to-market bounded. For security-critical 

systems, this approach allows one to consider security requirements from early on in the development 

process, within the development context, and in a seamless way through the development cycle: can 

first check that the systems fulfils the relevant security requirements on the design level by analyzing 

the model and secondly that the code is in fact secure by generating test sequences from the model. 

However, one can also use the security analysis techniques and tools within a traditional software 

engineering context, or where one has to incorporate legacy systems that were not developed in a 

model-based way. Here, one starts out with the source code. One then extracts models from the source 

code, which can then again be analyzed against the security requirements. Using model-based 



development, one can also incorporate the configuration data (such as user permissions) in the 

analysis, which is very important for security but often neglected.  

 

For example, in the Model-based Security Engineering (MBSE) approach based on the UML 

extension UMLsec (Jürjens, 2002; Jürjens, 2005a; Jürjens, 2005b), recurring security requirements 

(such as secrecy, integrity, authenticity and others) and security assumptions on the system 

environment, can be specified either within a UML specification, or within the source code (Java or 

C) as annotations. This way we encapsulate knowledge on prudent security engineering as annotations 

in models or code and make it available to developers who may not be security experts. The UMLsec 

extension is given in form of a UML profile using the standard UML extension mechanisms. 

Stereotypes are used together with tags to formulate the security requirements and assumptions. 

Constraints give criteria that determine whether the requirements are met by the system design, by 

referring to a precise semantics of the used fragment of UML. The security-relevant information 

added using stereotypes includes security assumptions on the physical level of the system, security 

requirements related to the secure handling and communication of data, and security policies that 

system parts are supposed to obey. The semantics for the fragment of UML used for UMLsec is 

defined in (Jürjens, 2005a) using so-called UML Machines, which is a kind of state machine with 

input/output interfaces similar to Broy’s Focus model, whose behaviour can be specified in a notation 

similar to that of Abstract State Machines (ASMs), and which is equipped with UML-type 

communication mechanisms. On this basis, important security requirements such as secrecy, integrity, 

authenticity, and secure information flow are defined.  

 

After an early paper on the UML extension UMLsec for secure software development (Jürjens, 

2001b), a number of approaches have been developed each targeted at certain facets of model-based 

development of security-critical systems using UML, several of them initially presented at the 

workshop series CSDUML (Critical Systems Development using Modeling Languages). A general 

development process in this context was proposed in (Breu, R., Burger, K., Hafner, M., Jürjens, J., 

Popp, G., Wimmel, G. & Lotz, V., 2003; Popp, G., Jürjens, J., Wimmel, G. & Breu, R., 2003). 

 

Security requirements modelling: (Fernandez & Hawkins, 1997) proposes a method determining role-

based access rights. Use cases are extended with rights specifications and the rights of a role are 

derived from the use cases. The method thus enforces the design principle of least privilege. (Crook, 

Ince, Lin & Nuseibeh, 2002; Haley, Laney, Moffett & Nuseibeh, 2008) formulates a vision for the 

requirements engineering community towards providing a “bridge between the well-ordered world of 

the software project informed by conventional requirements and the unexpected world of anti-

requirements associated with the malicious user”. (Giorgini, Massacci, Mylopoulos & Zannone, 2005; 

Massacci, Mylopoulos & Zannone, 2007; Mylopoulos, Giorgini & Massacci, 2003) proposes an 

extension of the i*/Tropos requirements engineering framework to deal with security requirements. 

The Tropos Requirements Engineering methodology is also extended to cover security aspects in 

(Manson, Mouratidis & Giorgini, 2003). (Sindre & Opdahl, 2005) presents an approach to eliciting 

security requirements using use cases which extends traditional use cases to also cover misuse. (Fox, 

Mouratidis & Jürjens, 2006) uses a combination of UMLsec and Tropos to get a transition from the 

security requirements to the design phase. (Whittle, Wijesekera & Hartong, 2008) presents an 

executable misuse case modelling language, which allows modellers to specify misuse case scenarios 

in a formal yet intuitive way and to execute the misuse case model in tandem with a corresponding 

use case model. (Yskout, Scandariato, Win & Joosen, 2008) presents an approach for the 

transformation of security requirements to software architectures. (Arenas, Aziz, Bicarregui, 

Matthews & Yang, 2008) discuss the use of requirements-engineering techniques in capturing 

security requirements for a Grid-based operating system.  (Yu & Elahi, 2008) examines how 

conceptual modelling can provide support for analyzing security trade-offs, using an extension to the 

i* framework. (Flechais, Mascolo & Sasse, 2007) presents an approach that integrates security and 

usability into the requirements and design process, based on a development process and a UML meta-

model of the definition and the reasoning over the system’s assets.  

 



Security patterns: (Yoshioka, Honiden & Finkelstein, 2004) proposes a UML based method that 

enables developers to specify several candidate system behaviours that satisfy the security 

requirements, using patterns, and shows an application of the method to a real implemented system, 

the Environmentally Conscious Product (ECP) design support system. A methodology to build secure 

systems using patterns is presented in (Fernandez, Larrondo-Petrie, Sorgente & VanHilst, 2006). A 

main idea in the proposed methodology is that security principles should be applied at every stage of 

the software lifecycle and that each stage can be tested for compliance with those principles. Another 

basic idea is the use of patterns at each stage. A pattern is an encapsulated solution to a recurrent 

problem and their use can improve the reusability and quality of software. (Rosado, Fernandez-

Medina, Piattini & Gutierrez, 2006) compares several security patterns to be used when dealing with 

application security. The SERENITY approach is based on the notion of Security and Dependability 

Patterns (Maña et al., 2007). They include a functional description of the proposed security solution, a 

semantic description of the security requirements addressed by it, and descriptions of the assumptions 

on the context in which the pattern can be used.  

 

Automated security verification: So far only few of the UML based approaches for secure software 

development come with automated tools to formally verify the UML design for the relevant security 

requirements. One of these is again the UMLsec approach. The UMLsec tool-support can be used to 

check the constraints associated with UMLsec stereotypes mechanically, based on XMI output of the 

diagrams from the UML drawing tool in use (Jürjens, 2005b; Jürjens & Shabalin, 2007; Shabalin & 

Jürjens, 2004; UMLsec group, 2009). They generate logical formulas formalizing the execution 

semantics and the annotated security requirements. Automated theorem provers and model checkers 

automatically establish whether the security requirements hold. If not, a Prolog-based tool 

automatically generates an attack sequence violating the security requirement, which can be examined 

to determine and remove the weakness. Since the analysis that is performed is too sophisticated to be 

done manually, it is also valuable to security experts. There is also a framework for implementing 

verification routines for the constraints associated with the UMLsec stereotypes. Thus advanced users 

of the UMLsec approach can use this framework to implement verification routines for the constraints 

of self-defined stereotypes. Other approaches for verifying UML models for security properties 

emerge. For example, (Egea, Basin, Clavel & Doser, 2007) explains an approach in which queries 

about properties of an RBAC policy model are expressed as formulas in UML’s Object Constraint 

Language and evaluated over the metamodel of the security-design language, based on the rewriting 

logic Maude. Also, (Siveroni, Zisman & Spanoudakis, 2008) presents a tool for verifying UML class 

and state machine diagrams against linear temporal logic formulas using Spin, which is planned to be 

applied to security properties. 

 

Model construction and development: Having a formally based design notation allows one to 

precisely formulate and investigate non-trivial questions that need to be solved to enable trustworthy 

secure software development. For example, to support stepwise development, it has been shown that 

within UMLsec, secrecy, integrity, authenticity, and secure information flow are preserved under 

refinement and the composition of system components (under suitable assumptions) (Jürjens, 2005a). 

Similarly, it has been shown that layering of security services (such as layered security protocols) is 

sound, again only under certain assumptions. The same applies to the application of security design 

patterns, or the use of aspect-oriented modeling techniques. Related approaches have been reported in 

(Santen, 2006; Santen, Heisel & Pfitzmann, 2002).To support the Security and Dependability Patterns 

used in the project, the SERENITY approach also provides Security and Dependability Schemes 

which allow the users to combine existing security solutions to more complex ones (Maña et al., 

2007). Automated tools for classification, selection, and composition of security patterns support this.  

 

Aspect-Oriented Security Modeling: (Houmb, Georg, France, Bieman & Jürjens, 2005; Ray, France, 

Li & Georg, 2004) propose to use aspect-oriented modeling for addressing access control concerns. 

Functionality that addresses a pervasive access control concern is defined in an aspect. The remaining 

functionality is specified in a so-called primary model. Composing access control aspects with a 

primary model then gives a system model that addresses access control concerns. Model-based 

Security Risk Assessment: (Dimitrakos et al., 2002) uses UML for the risk assessment of an e-



commerce system within the CORAS framework for model-based risk assessment. This framework is 

characterized by an integration of aspects from partly complementary risk assessment methods. It 

incorporates guidelines and methodology for the use of UML to support and direct the risk assessment 

methodology as well as a risk management process based on standards such as AS/NZS 4360 and 

ISO/IEC 27002. It uses a risk documentation framework based on RM-ODP together with an 

integrated risk management and system development process based on UP and offers a platform for 

tool inclusion based on XML. In another approach (Baldwin, Beres, Shiu & Kearney, 2006; Kearney 

& Brügger, 2007) use UML for risk-driven security analysis that focuses on the assessment of risk 

and analysis of requirements for operational risk management. 

 

Secure business processes and Service-oriented architectures: A business process driven approach to 

security engineering using UML is presented in (Maña, Montenegro, Rudolph & Vivas, 2003). The 

idea is to use UML models in an approach centered on business processes to develop secure systems. 

A model-based security engineering approach for developing service-oriented architectures is 

proposed in (Deubler, Grünbauer, Jürjens & Wimmel, 2004). The approach is applied on a standard 

for service-oriented architectures from the Automotive domain (OSGi). Access control policies: 

(Basin, Doser & Lodderstedt, 2006; Wolff, Brucker & Doser, 2006) show how UML can be used to 

specify access control in an application and how one can then generate access control mechanisms 

from the specifications. The approach is based on role-based access control and gives additional 

support for specifying authorization constraints. (Koch & Parisi-Presicce, 2006; Pauls, Kolarczyk, 

Koch & Löhr, 2006) demonstrate how to deal with access control policies in UML. The specification 

of access control policies is integrated into UML. A graph-based formal semantics for the UML 

access control specification permits one to reason about the coherence of the access control 

specification. An aspect-oriented approach to specifying access control in UML is presented in 

(Zhang, Baumeister, Koch & Knapp, 2005). (Méry & Merz, 2007) presents an approach for the 

specification and refinement of access control rules, including proof rules for verifying that an access 

control policy is correctly implemented in a system, and preservation of access control by refinement 

of event systems. (Hafner, Memon & Alam, 2008) presents usage scenarios for access control in 

contemporary healthcare scenarios and shows how to unify them in a single security policy model. 

Based on this model, the SECTET (Alam, Breu & Hafner, 2007) framework for Model Driven 

Security is then specialized towards a domain-specific approach for healthcare scenarios, including 

the modelling of access control policies, a target architecture for their enforcement, and model-to-

code transformations. (Agreiter, Alam, Hafner, Seifert & Zhang, 2007) extends the SECTET 

approach to take into account operating system level and application level security mechanisms to 

realize security-critical application and services for healthcare scenarios.  

 

Health information systems: There have been several approaches using UML for security aspects in 

developing health-care systems. (Blobel, Nordberg, Davis & Pharow, 2006) presents an approach 

based on formal models where security services can be integrated into advanced systems architectures 

enabling semantic interoperability in the context of trustworthiness of communication and co-

operation to support application security challenges such as privilege management and access control. 

The approach covers domains, service delegation, claims control, policies, roles, authorisations, and 

access control. (Mathe et al., 2007) presents an approach based on model-based design techniques and 

high-level modelling abstractions which provides a framework to rapidly develop, simulate, and 

deploy clinical information system (CIS) prototypes. It includes a graphical design environment for 

developing formal system models and generating executable code for deployment.  

 

Secure database design: An approach to designing the content of a security critical database uses the 

Object Constraint Language (OCL) which is an optional part of the Unified Modeling Language 

(UML). More specifically, (Piattini & Fernández-Medina, 2004) presents the Object Security 

Constraint Language V.2. (OSCL2), which is based in OCL. This OCL extension can be used to 

incorporate security information and constraints in a Platform Independent Model (PIM) given as a 

UML class model. The information from the PIM is then translated into a Platform Specific Model 

(PSM) given as a multilevel relational model. This can then be implemented in a particular Database 



Management System (DBMS), such as Oracle9i Label Security. These transformations can be done 

automatically or semi-automatically using OSCL2 compilers.  

 

Smart-card based applications: (Haneberg, Reif & Stenzel, 2002; Moebius, Haneberg, Reif & 

Schellhorn, 2007) present a method for the development of secure smartcard applications which 

includes UML models enriched by algebraic specifications, and dynamic logic for JavaCard 

verification. The approach is implemented in the KIV specification and verification system.  

 

Secure information flow: (Hultin & Heldal, 2003) provides support for the use of UML with secrecy 

annotations so that the code produced from the UML models can be be validated by the Java 

information flow (Jif) language-based checker. (Seehusen & Stølen, 2006) provides an approach 

which can analyze secure information properties in UML sequence diagrams. 

 

Model-based Security Engineering with UMLsec 

 
We now explain the idea of model-based security engineering in more technical detail at the hand of 

one of the approaches mentioned in the previous section, namely the UMLsec approach. We describe 

a simplified fragment of UMLsec. For more details and a formal semantics cf. (Jürjens, 2002; Jürjens, 

2005a; Jürjens, 2005b). 

 

UML consists of diagram types describing different views on a system. 

 

Use case diagrams describe typical interactions between a user and a computer system (or between 

different components of a computer system). 

    

Activity diagrams can be used e.g. to model workflow and to explain use cases in more detail. 

 

Class diagrams define the static structure of the system: classes with attributes and operations/signals 

and relationships between classes. 

 

Interaction diagrams, which may be sequence diagrams or collaboration diagrams, describe 

interaction between objects via message exchange. Here we consider sequence diagrams; 

collaboration diagrams are very similar. 

 

Statechart diagrams give the dynamic behavior of an individual object: events may cause state in 

change or actions. 

 

Package diagrams can be used to group parts of a system together into higher-level units. 

 

Deployment diagrams describe the underlying physical layer; we use them to ensure that the 

physical layer meets security requirements on communication. 

 

UML offers rich extension mechanisms in form of labels. These can be either stereotypes (written in 

double angle brackets such as <<stereotype>>) or tag-value pairs (written in curly brackets such as 

{tag, value}). Using profiles or prefaces one can give a specific meaning to model elements marked 

with these labels. Here we give the extension UMLsec of UML making use of such labels to express 

security requirements. 

  

We stress that the aspects not mentioned here (such as association and generalization in the case of 

class diagrams) can and should be used in the context of UMLsec; they do not appear in our 

presentation simply because they are not needed to specify the considered security properties. 

 

Since we are using a formal fragment of UML, we may reason formally, showing e.g. that a given 

system is as secure as certain components of it. This way, we can reduce security of the system to the 

security of the employed security mechanisms (such as security protocols). For example, we can 



exhibit the conditions under which protocols can be used securely in the system context. Work on 

refining security properties aids in verification applied within the design process. 

 

Capturing Security Requirements with Use Case Diagrams 

 

Use case diagrams describe typical interactions between a user and a computer system (or between 

different components of a computer system). We use them to capture security requirements. 

 

To start with our example, Figure 2 gives the use case diagram describing the situation to be achieved: 

a customer buys a good from a business. The semantics of the stereotype <<fair exchange>> is, 

intuitively, that the actions "buys good" and "sells good" should be linked in the sense that if one of 

the two is executed then eventually the other one will be (where these actions are specified on the next 

more detailed level of specification). 

 

 
Figure 2: Exemplary use case diagram: “fair exchange” 

 

 

Secure Business Processes with Activity Diagrams 

 

Activity diagrams are especially useful to model workflow and to explain use cases in more detail. 

Following our example, Figure 3 explains the use case in Figure 2 in more detail. To demonstrate the 

connection between this diagram and the one in Figure 2, we give two possible diagrams. Both are 

separated in two swim-lanes describing activities of different parts of a system (here Customer and 

Business). Round boxes describe actions (such as Request Good) and rectangular boxes describe the 

object flow (such as Order[filled]). Horizontal bars (synchronisation bars) describe a required 

synchronisation between two different strands of activity. A diamond describes the merging of two 

strands of activities. The start state is marked by a full circle, the final state by a small full circle 

within a circle. In each diagram, two tag-value pairs {fair exchange, buys goods} and {fair exchange, 

sells goods} are used to mark certain actions. Now any such diagram fulfills the security requirement 

“fair exchange”, given in the diagram in Figure 2, if for both actions marked with these tag-value 

pairs it is the case that if one of the actions is executed, then eventually the other will be. As one can 

demonstrate on the level of the formal semantics, the left diagram does not fulfill this requirement 

because the Business may never Deliver Order. Also one can show that the right diagram does fulfill 

the requirement (intuitively, because the customer may reclaim the payment if the order is 

undelivered after the scheduled delivery date), assuming that the customer is able to prove having 

made the payment (indicated by the stereotype <<provable>>), e.g. by following a fair exchange 

protocol.  



 
Figure 3: Activity diagram for “fair exchange” 

 

Preservation of Sensitivity Levels with Class Diagrams 

 

Class diagrams define the static structure of a system. As an example, Figure 4 gives a class-level 

description of a key generator (such as possibly used in the above business application example). The 

key generator offers the method newkey() which returns a Key for which it guarantees confidentiality 

and integrity.
1
 On the other hand, it calls methods random() supposed to return a random number that 

is required to fulfill integrity and confidentiality (as specified in the model element stereotyped 

<<outgoing actions>> added in UMLsec). Here, this requirement is however not met by the random 

generator. As an example, consider the Homebanking-Computer-Interface (HBCI) specifications 

which in an early version (in the case of the RDH procedure) required the client system to perform 

key generation without specifying security requirements for the used random number generators. 

Omissions such as this one can be detected using our modelling approach. 

 

                                                        
1
 Here we use the convention that where the values are supposed to be boolean values, they need not be written 

(then presence of the label denotes the value true, and absence denotes false). 



 
Figure 4: Class diagram for key generator 

 

Here we assume that the attributes are fully encapsulated by the operations, i. e. an attribute of a class 

can be read and updated only by the class operations. 

    

Security-Critical Message Exchange with Sequence Diagrams 

 

In practice, the way security mechanisms (such as protocols) are employed in the system context 

offers more vulnerabilities than the mechanisms themselves. Also one sometimes has to adjust 

protocols to specific situations, e.g. for resource-bounded applications. 

 

 

 
Figure 5: Sequence diagram for CEPS purchase transaction 

 

In our UML-based approach, security protocols can be specified using message sequence charts. An 

example is given in Figure 5. Assumptions on the underlying physical layer (such as physical security 

of communication links) can be expressed in implementation diagrams (cf. below), and the behavior 

of the system context surrounding the protocol can be stated using state charts and reasoned about as 

indicated below. In Figure 5, two objects in the system (a card C and a purchase security application 

module (PSAM) M) exchange messages that involve cryptographic operations such as public-key 

encryption and signing. The encryption of the value d (or verification of signature) with the public 

key K is denoted by {d}K, the decryption (or signing) with the private key K
-1

 by {d}K-1 (for simplicity 

we assume use of RSA type encryption). Thus M starts by sending to C the message Init with 

argument a value SKPS (the session key created by the PSAM) signed with M's private key and 

encrypted with C's public key. C decrypts the received message with its private key and verifies the 

signature with M's public key. C uses the resulting session key to encrypt a secret S which is then sent 

back as an argument of the message Resp M decrypts the received message using the session key and 

sends back the message OK. 

 

Again one can make use of a formal semantics and automated tools to reason about such protocol 

descriptions. 

 

Secure State Change with Statechart Diagrams 

 



Statechart diagrams give the dynamic behaviour of an individual object: events may cause state in 

change or actions. We demonstrate how this kind of diagram can be used in the context of UMLsec 

with an example involving guards (such as used in Java security) in Figure 6. Statechart diagrams 

consist of states (written as boxes) and transitions between them. The initial state is marked with a 

transition leading out from a full circle. Transitions between states can be labelled with events, 

conditions (in square brackets) and actions (preceded by a backslash). An event can be a method of 

the specified object called by another object (e.g. the transition labelled checkGuard in Figure 6), and 

the interpretation is that the transition labelled with an event is fired if the event occurs while the 

object is in the state from which the transition goes out. If a transition is labelled by a condition 

(formulated in the UML-associated object constraint language (OCL) or otherwise) then it is only 

fired if the condition is true at the respective moment. If a transition is labelled with an action (which 

can be to call a method of another object or to assign a value to a local variable), then this action is 

executed whenever the transition is fired. 

 
 

Figure 6: State chart for guard object 

 

Suppose that a certain micropayment signature key may only be used by applets originating at and 

signed by the site Finance (e.g. to purchase stock rate information on behalf of the user), but this 

access should only be granted five times a week. 

 

The Java 2 security architecture allows the use of guard objects for this purpose which regulate access 

to an object. In our example, the guard object can be specified as in Figure 6 (where ThisWeek counts 

the number of accesses in a given week and weeklimit is true if the limit has not been reached yet). 

One can then demonstrate using a formal semantics that certain access control requirements are 

enforced by the guards. 

 

 

Assumptions on the Physical Layer with Deployment Diagrams 

 

Deployment diagrams describe the underlying physical layer; we use them to ensure that security 

requirements on communication are met by the physical layer. For example, Figure 7 describes the 

physical situation underlying a system including a client system and a webserver communicating over 

the Internet. The two boxes labeled Client and Webserver denote nodes in the system (i. e. physical 

entities). The two rectangles labeled browser and access control represent system components 

residing on the respective nodes. The component browser has an interface offering the method get 

password. The component access control calls this method over the Internet via remote method 

invocation. The system specification requires the data exchanged in this invocation to be guaranteed 

confidentiality and integrity. However, these requirements are not met by the underlying 

communication link (as usual, this would be treated by using encryption). 

 



 
 

Figure 7: UMLsec deployment diagram  

 

 

 

Code-level Assurance against High-level Security Requirements 

 
Even if specifications exist for the implemented system, and even if these are formally analyzed, there 

is usually no guarantee that the implementation actually conforms to the specification. To deal with 

this problem, we can use the following approach: After specifying the system in the given notation 

(such as UMLsec) and verifying the model against the given security goals, we make sure that the 

implementation correctly implements the specification with techniques such as those explained below. 

Note that in addition it is often necessary to use dedicated tools to detect specialized weaknesses (such 

as buffer overflows), although this is not in scope of the current overview.  

 

Run-time Security Monitoring: A simple and effective alternative is to insert security checks 

generated from the specification that remain in the code while in use, for example using the assertion 

statement that is part of the Java language (Bauer & Jürjens, 2008). These assertions then throw 

security exceptions when violated at run-time. In a similar way, this can also be done for C code. The 

SERENITY approach provides dynamic runtime verification mechanisms that can monitor various 

security properties dynamically based on event calculus (Maña et al., 2007). For example, they can 

monitor whether the assumptions made by a given security pattern is satisfied at the execution of the 

system. To achieve this, (Spanoudakis, Kloukinas & Androutsopoulos, 2007) proposes to use formal 

patterns that formalize frequently recurring system requirements as security monitoring patterns. 

Also, evolution tools record the operational data relevant for the Security and Dependability Patterns 

to obtain feedback that can help improving the patterns.  

 

Model-based Test Generation: For performance-intensive applications, it may be preferable not to 

leave the assertions active in the code. This can be done by making sure by extensive testing that the 

assertions are always satisfied, for example by generating the test sequences automatically from the 

specifications. Since complete test coverage is often infeasible, an approach that automatically selects 

those test cases that are particularly sensitive to the specified security requirements is sketched in 

(Jürjens, 2009; Jürjens & Wimmel, 2002) (with respect to the formal semantics underlying UMLsec). 

Other work on testing crypto-protocols includes (Gürgens & Peralta, 2000). 

 

Formally verifying cryptoprotocol implementations: For highly non-deterministic systems such as 

those using cryptography, testing can only provide assurance up to a certain degree. For higher levels 

of trustworthiness, it may therefore be desirable to establish that the code does enforce the security 

properties by a formal verification of the source code. There have recently been some approaches 

towards formally verifying implementations of crypto-protocols against high-level security 

requirements such as secrecy, for example (Bhargavan, Fournet, Gordon & Tse, 2006; Goubault-

Larrecq & Parrennes, 2005; Jürjens, 2006; Jürjens & Yampolskiy, 2005). These works so far have 

aimed to verify implementations which were constructed with verification in mind (and in particular 



fulfill significant expectations on the way they are programmed) (Bhargavan et al., 2006; Goubault-

Larrecq & Parrennes, 2005), or deal only with simplified versions of legacy implementations (Jürjens, 

2006; Jürjens & Yampolskiy, 2005). In related work, (Pironti & Sisto, 2008) investigates under which 

conditions it is sound to abstract from marshalling and unmarshalling operations on transmitted 

messages when verifying protocol specifications. 

 

Analyzing Security Configurations 

 
There have also been some first steps towards linking model-based security engineering approaches 

with the automated analysis of security-critical configuration data. For example, a tool that 

automatically checks SAP R/3 user permissions for security policy rules formulated as UML 

specifications is presented in (Höhn & Jürjens, 2008). Because of its modular architecture and its 

standardized interfaces, the tool can be adapted to check security constraints in other kinds of 

application software, such as firewalls or other access control configurations. 

 

Application Examples 

 
An overview on industrial applications of model-based security engineering can be found in (Apvrille 

& Pourzandi, 2005). We list some examples below.  

 

German Health Card architecture: Ongoing work for the German health telematics platform using a 

model-driven architectural framework and a security infrastructure based on Electronic Health 

Records and multifunctional Electronic Health Cards is presented in (Blobel & Pharow, 2007). A 

security analysis of the German Health Card Architecture using UMLsec is reported in (Jürjens & 

Rumm, 2008).  

 

Electronic purses: UMLsec was applied to a security analysis of the Common Electronic Purse 

Specifications (CEPS), a candidate for a globally interoperable electronic purse standard supported by 

organizations representing 90 % of the world’s electronic purse cards (including Visa International). 

Three significant security weaknesses were found in the purchase and load transaction protocols, 

improvements to the specifications were proposed, and it was shown that these are secure (Jürjens & 

Wimmel, 2001). There was also a security analysis of a prototypical Java Card implementation of 

CEPS. A method for the development of secure smartcard applications which includes UML models 

and is implemented in the KIV specification and verification system (Haneberg et al., 2002; Moebius 

et al., 2007) was applied to the specification of the Mondex electronic purse.  

 

Intranet information systems: An application of UMLsec to information systems in an intranet at 

BMW is reported in (Best, Jürjens & Nuseibeh, 2007). There, the use of single-sign-on mechanisms 

was central, so the application of UMLsec was targeted to demonstrating that it was used correctly 

within the system context.  

 

Biometric authentication: For a project with an industrial partner, UMLsec was chosen to support the 

development of a biometric authentication system at the specification level, where three significant 

security flaws were found (Jürjens, 2005b). It was also applied to the source-code level for a 

prototypical implementation constructed from the specification.  

 

Web-based banking application: In a project with a German bank, model-based security engineering 

was applied to a web-based banking application to be used by customers to fill out and sign digital 

order forms (Jürjens, 2005a). The personal data in the forms must be kept confidential, and orders 

securely authenticated. The system uses a proprietary client authentication protocol layered over an 

SSL connection supposed to provide confidentiality and server authentication. Using the MBSE 



approach, the system architecture and the protocol were specified and verified with regard to the 

relevant security requirements. 

 

Remaining Challenges in Model-Based Security 

 
Given the current unsatisfactory state of computer security in practice, model-based security 

engineering seems a promising approach, since it enables developers who are not experts in security 

to make use of security engineering knowledge encapsulated in a widely used design notation. Since 

there are many highly subtle security requirements, which can hardly be verified with the “naked 

eye”, even security experts may profit from this approach. Thus one can avoid mistakes that are 

difficult to find by testing alone, such as breaches of subtle security requirements, as well as the 

disadvantages of the “penetrate-and-patch” approach. Since preventing security flaws early in the 

system life cycle can significantly reduce costs, this gives a potential for developing securer systems 

in a cost-efficient way. Model-based security engineering has been successfully applied in various 

industrial projects. The approach has been generalized to other application domains such as real-time 

and dependability. Experiences show that the approach is adequate for use in practice, after relatively 

little training. As a consequence, model-based security engineering is now also considered an 

important emerging technology by industrial think-tanks. Due to space restriction, the current 

overview can only provide very limited detail or completeness. More comprehensive overviews on 

model-based security engineering and secure software engineering include (Jayaram & Mathur, 2005; 

Redwine, 2007). Some examples for open problems that remain:  

 

Tracing security requirements: From a practical point of view, the construction of trustworthy 

security-critical systems would be significantly facilitated if one would have a practically feasible 

approach for tracing security requirements through the system lifecycle phases. A first step in that 

direction is presented in (Yu, Jürjens & Mylopoulos, 2008).  

 

Preservation of security properties: Despite some early advances into this question (Jürjens, 2000; 

Jürjens, 2001a) there is so far relatively little known about the preservation of security properties 

when using design and analysis techniques such as the modular composition or decomposition, 

refinement or abstraction, or horizontal respectively vertical layering of system parts.  

 

Security verification of legacy systems: A major open problem is to verify complex legacy 

implementations against high-level security properties in a practically feasible way. Again, some steps 

in that direction were reported above.  

 

Security vs. other non-functional requirements / feature interaction: Another open problem is how to 

reconcile security requirements with other non-functional requirements, which may be orthogonal or 

even in conflict. First examples regarding performance properties can be found in (Maidl, Gilmore, 

Haenel & Kloul, 2005; Montangero, Buchholtz, Gilmore & Haenel, 2005; Woodside et al., 2009). 

 

 

Model-based Identification of Vulnerabilities 
Although software, requirements, and security engineering all offer methods for improved software 

development, today’s software still contains vulnerabilities. These vulnerabilities, once exploited, can 

have various effects, ranging from subtle, maybe even more theoretical ones to practically devastating 

consequences. In a SOA, which implements business processes on top of web services, which again 

build upon software, it is evident that vulnerabilities jeopardize business processes. For that reason, 

this section shows how vulnerabilities can be identified. A brief introduction of the basic terms and 

concepts is followed by a discussion of the available approaches. 

 



Vulnerabilities are flaws in information systems that can be abused to violate the security policy. The 

actual abuse is called an exploit. Vulnerability analysis aims to support avoiding, finding, fixing, and 

monitoring vulnerabilities (Bishop, 2005). These vulnerability management tasks typically require 

patterns, for example, to perform static or dynamic analysis of source code. Livshits (Livshits, 2006) 

presents an example of a practical method that uses such vulnerability patterns, specified as PQL 

queries (Martin, Livshits & Lam, 2005), to analyze Java programs for taint-style (i.e., use of 

unchecked input) vulnerabilities. 

 

The SOA we refer to follows the OASIS SOA reference model and architecture  (OASIS, 2006). The 

Business Process Execution Language (BPEL) is used to describe and execute the business processes. 

Processes in Business Process Modelling Notation (BPMN) can be translated to BPEL, e.g., through 

an Eclipse Plug-in developed by Google (http://code.google.com/p/bpmn2bpel/) Messages are 

exchanged through SOAP, and web service interfaces are defined in Web Service Description 

Language (WSDL). However, these standards and the WS Security standards family do not 

necessarily prevent software vulnerabilities from putting services at risk. We therefore refrain from a 

discussion of these standards and instead focus on software vulnerabilities and their model-based 

identification. Figure 8 shows our view on SOA layers, following, amongst others, Krafzig et al. 

(Krafzig, Banke & Slama, 2004) and IBM's reference architecture (Arsanjani, Zhang, Allam & 

Channabasavaiah, 2007). The bold arrows indicate the analysis focus: identifying vulnerabilities on 

the service level which result from software vulnerabilities.  

 

 

Figure 8: SOA Layers and Vulnerabilities 

 

The presentation layer and the hardware layer will be using the same technology as before, so we do 

not analyze them any further. The software layer will increasingly be implemented using managed 

code, meaning a decrease of buffer overflows and similar vulnerabilities. Nevertheless, previous 

vulnerabilities might still be present in legacy software, so we share the view and classification of Yu 

et al. (Yu, Aravind & Supthaweesuk, 2006) for both the software and service layer. We differentiate 

between the service and the software layer by defining a service as a self-contained function which 

has a WSDL description and communicates through SOAP.  

 

Business processes are executed as workflows, i.e., a set of activities performed in a certain order. 

The orchestration layer contains the workflow logic, typically implemented as an execution engine 

calling specific services in the order and with the parameters specified in a BPEL document. While 

before, the business process logic often was interwoven in PHP or ASP scripts of web applications, it 

is now separately defined in BPEL. Also, business process activities are no longer mere sections of 

code in a web application script, but specific services with a WSDL description and a SOAP interface. 

This creates new vulnerabilities in addition to the ones this section focuses on, the ones based in 

software applications.  (Jensen, Gruschka, Herkenhöner & Luttenberger, 2007) lists some prominent 

examples with a description of counter measures. Regarding the services which implement the 

business process, two general options are available: top-down, generating services moving from the 



business process orchestration to the software layer, and bottom-up, wrapping existing software to be 

used in the service, and, consequently, in the orchestration. Given that initial SOA projects typically 

start by wrapping existing software, in the following we focus on the latter. 

 

We employ the OASIS threat model (OASIS, 2006), comprising both internal and external attackers 

and the threats message alteration, message interception, man in the middle, spoofing, denial of 

service (DoS), replay, and false repudiation. Microsoft's STRIDE (Swiderski & Snyder, 2004) with its 

threats spoofing, tampering with data, repudiation, information disclosure, DoS, and elevation of 

privilege, is covered with that model because tampering with data, information disclosure, and 

elevation of privilege can be achieved through, e.g., message alteration and interception. 

 

While in theory it might seem possible to come up with a complete list of vulnerabilities, in practice 

this is next to impossible even for simple components. In both cases, the precondition is that a certain 

task or attack goal is specified. Without a task that could be disturbed or an attack that is to be 

prevented, the most important search parameter for the vulnerability search would be missing 

(Anderson & Long, 2001). However, even if a method could determine all vulnerabilities regarding a 

certain task or attack, this list of tasks and attacks would have to be complete. Considering the fact 

that for the attacker it is enough to find a single attack the defenders did not think of (Anderson & 

Long, 2001), the initial idea of “simply” creating a complete list of vulnerabilities in an IT system 

turns out to be inapplicable. Zero-day vulnerabilities continue to be found (see (Turner, 2008) for 

current trends in zero-day vulnerabilities), which further indicates that complete vulnerability lists are 

a rather unrealistic assumption. The approach presented here is not based on the notion of such a 

complete list of vulnerabilities but on the notion of analyzing only known vulnerabilities the existence 

of which has been verified. Before discussing sources of such vulnerability information in the 

following, a brief description of the required information is given. 

 

The main and mandatory detail about a vulnerability is where it is located, i.e., the name and version 

of the software it can be found in. Then, depending on the type of analysis, more or less information is 

required describing how the vulnerability can be exploited (e.g., remotely through a certain network 

protocol), what the direct effects are (e.g., elevation of privileges), and a severity rating (e.g., easily 

exploitable, severe effects on availability). The Common Vulnerability Scoring System (CVSS) 

(Mell, Scarfone & Romanosky, 2007) offers a widely accepted format for such descriptions (see 

Table 1). 

 

CVSS Base Score: 0 (Low) to 10 (High) (Impact Subscore 0 to 10, Exploitability Subscore 0 to 10) 

CVSS Temporal Score: 0 (Low) to 10 (High)  CVSS v2 Vector: (AV:N/AC:L/Au:N/C:C/I:C/A:C) 

Published: mm/dd/yyyy 

CVSS metric group CVSS metric CVSS values 

Base Score Metrics   

Access Vector local, adjacent network, network 

Access Complexity low, medium, high 

Exploitability Metrics 

Authentication none, single, multiple 

Confidentiality Impact none, partial, complete 

Integrity Impact none, partial, complete 

Impact Metrics 

Availability Impact none, partial, complete 

Exploitability unproven, proof-of-concept, functional, high, not defined 

Remediation Level official fix, temporary fix, workaround, unavailable, not defined 

Temporal Score Metrics 

Report Confidence unconfirmed, uncorroborated, confirmed, not defined 

Table 1: Common Vulnerability Scoring System 

Sources of Vulnerability Information 
 



In order to determine the effects an attacker could cause by exploiting vulnerabilities, a list of known 

vulnerabilities that are or could be present in the IT system at hand must be obtained. Penetration 

testing, source code analysis, and vulnerability databases allow compiling such a list of vulnerabilities 

and will now be discussed regarding their SOA applicability. 

 

Penetration Testing 

 

Also known as “red team testing”, penetration testing (Bishop, 2005; Thompson, 2005) is a hands-on 

approach to security analysis. Given a specific IT system, sometimes including configuration details, 

a team of security experts tries to attack the system and break the system’s security policy by, e.g., 

creating attack trees and then applying tools to check that the devised vulnerabilities actually are 

exploitable. Regarding attack trees, tools such as (Ou, Boyer & McQueen, 2006) can support the 

creation of graphs, however, care should be taken to not restrict the team’s focus to automatically 

generated graphs as attackers might come up with new ideas not covered by the graphs. Often, tools 

such as vulnerability scanners (see (Lyon, 2006) for a valuable list; Nessus and Microsoft’s Baseline 

Security Analyzer mark beginning and end of the top ten) and fuzzers are separately used to scan for 

vulnerabilities and to check how the system reacts to various inputs. The test result is a list of attacks 

the team was able to perform, along with detailed information on how the attacks were carried out. 

Besides configuration weaknesses and other information such as improper privilege settings, a very 

detailed description of vulnerabilities can be obtained.  

 

With more and more exploit toolkits (e.g., Metasploit
i
) and other tools becoming available, 

penetration testing no longer is the tedious, purely manual task it used to be. Also, because the test is 

run on the actual IT system, the results are perfectly tailored to the specific setting. This is especially 

beneficial when a vulnerability has to be analyzed regarding its effect on the business process. 

  

On the other hand, this advantage is a big drawback from a different point of view. Testing the real 

system does not only provide precise data on vulnerabilities and exploits, it can also damage the 

system. This is why penetration testing is not applicable in scenarios where, e.g., IT services may not 

be disturbed under any circumstances. In this case, a more theoretical approach can be used to analyze 

a model of the system. 

 

Another drawback is that employing a team of security experts is expensive, sometimes prohibitively. 

This fact links to the additional drawback that because it is so expensive, most companies cannot 

afford continuous penetration tests. Therefore, it is not suitable to maintain an up-to-date list of 

vulnerabilities. Penetration testing still is very valuable in terms of the highly detailed and relevant 

vulnerability data it creates. 

 

Source Code Analysis 

 

Besides manual code inspection, elaborate algorithms and tools are able to find vulnerabilities in 

source code. Tool support started with rather simple lexical scanners (Chess & McGraw, 2004), 

which, for example, point out the use of printf function calls in C so that a human analyst can (and has 

to) decide whether there is a buffer overflow vulnerability or not. Far more sophisticated approaches 

use model-checking to show that, e.g., there is no path in the code an input string could reach a certain 

part of the code without being sanitized. (Livshits, 2006) presents such an approach for Java web 

applications. It offers a sound solution which includes pointer and reflection analysis, meaning that a 

call graph is constructed which allows tracing input data along functions calls including, to some 

extent, code or libraries which are not statically linked. 

 

Source code analysis does not touch the actual system and thus, unlike penetration testing, will not 

interrupt any services. For the same reason it produces results of a slightly different quality, because 



the code will never run alone but always in combination with other software. To illustrate what this 

means, consider a web service with an input vulnerability which will crash the service as soon as an 

overly long input is received. If XML schema validation is in place (see (Jensen et al., 2007) for an 

overview of attacks that schema validation can defend against), dropping the SOAP message with the 

dangerous XML input, source code analysis of the web service would report a vulnerability, while 

penetration testing would not show it (except if XML schema validation had been disabled through an 

earlier attack during testing). 

 

In general and from a practical point of view, source code analysis is more likely to yield false 

positives than penetration testing. This must be kept in mind when assessing the vulnerability effects 

as described below in the evaluation section. The forensic approach based on logging will filter the 

more theoretical vulnerabilities source code analysis reports. Achieving the same filtering with the 

model-based approach is possible yet imposes additional complexity on the model as more 

components must be incorporated. 

 

Vulnerability Databases 

 

Querying vulnerability databases to benefit from the security community’s vulnerability search efforts 

is an approach that should always be applied. Even if a company has enough resources to perform its 

own penetration testing and source code analysis, it makes little sense to ignore the vulnerabilities 

others have found and published. Because the results of a company-internal vulnerability search can 

be entered into a database as well, the vulnerability identification suggested here does not specifically 

build upon penetration testing or source code analysis, but relies on vulnerability databases as the 

more general solution. So, besides company-internal databases, which vulnerability databases are 

available? We briefly describe some sources of vulnerability information which we did not consider, 

and then describe the more suitable ones. 

 

While most databases list vulnerabilities independent of the software vendor, Microsoft’s 

vulnerability database
ii
 only lists vulnerabilities in Microsoft software. However, the descriptions 

contain all the standard entries discussed below. SecWatch
iii

 can be considered a meta search engine, 

it does not provide its own description scheme. In a similar manner, the SANS Newsletter
iv

 offers a 

brief vulnerability overview and refers to other databases for the details. The Open Web Application 

Security Project (OWASP)
v
 does not list vulnerability instances but vulnerability types. It might serve 

as a guide for a penetration test or source code analysis, but it does not contain vulnerabilities in 

actual products, services, or web applications. Milw0rm
vi

 does not offer its vulnerability descriptions 

in a standardized format, therefore it was excluded from the comparison. The same holds true for the 

SecuriTeam database
vii

, which in addition draws many descriptions from the other databases. 

 

The following free online databases will be compared below (in alphabetical order): French Security 

Incident Response Team (FRSIRT)
viii

, Internet Security Systems (ISS) X-Force
ix
, National 

Vulnerability Database (NVD)
x
 with Common Vulnerabilities and Exposures (CVE)

xi
 entries, Open 

Source Vulnerability Database (OSVDB)
xii

, SecurityFocus
xiii

 (including Buqtraq), and 

SecurityTracker
xiv

. 

 

Comparing the above-mentioned databases, it shows that the majority has a big overlap between their 

description schemes. All databases offer their own and unique name or id for each vulnerability, a 

disclosure date, and a textual vulnerability description. In addition, they all list the vulnerable 

software including version numbers, credits or pointers to the information source, references to 

related reports and descriptions in other databases, references to the affected software’s vendor, and 

protection hints or links to such. 

 

CVE names are included in all description schemes, thus CVE and the corresponding CVSS data can 

easily be obtained. FRSIRT and SecurityFocus explicitly describe the access vector in their 



descriptions (“remote/local” with “yes/no” values each), perhaps in order to not depend on the 

completeness of CVSS data. OSVDB, Secunia, and SecurityFocus each use their own vulnerability 

classification (see Table 2 for an example). These specific classifications can in some cases aid in 

determining the effect a vulnerability’s exploit could have, however, they require a customized 

analysis and should be considered volatile as they do not follow a widely-accepted standard such as 

CVSS. 

 

 

Table 2: OSVDB's Vulnerability Classification 

 

In terms of vulnerability effect determination, ISS X-Force’s database is particularly interesting as it 

contains adjusted CVSS data (CVSS temporal values filled in by the ISS team) and a “business 

impact” field, containing a textual description of the business impact. To give an example, CVE-

2008-3466 business impact according to ISS reads: “Compromise of networks and machines using 

affected versions of Microsoft Host Integration Server may lead to exposure of confidential 

information, loss of productivity, and further network compromise. An attacker does not need to 

entice any kind of user interaction to trigger this vulnerability. Successful exploitation would grant an 

attacker the privileges of the SNA RPC service.” Even though the description of effects such as loss 

of confidentiality also are part of CVSS data, the brief information in this field allows a quick 

assessment of the vulnerability and represents a promising, business-oriented extension of the 

description scheme. 

 

Identifying Vulnerabilities in Services 
 

Vulnerable software can lead to vulnerable services, which again can lead to vulnerable business 

processes as, in a SOA, these are implemented as composition of services. Having obtained a list of 

vulnerabilities as described above, this information must now be mapped to services and, ultimately, 

the business process. In the following, the focus lies on mapping between software and services, as 

the mapping between services and business processes is directly contained in BPMN or BPEL 

documents. 

 

The vulnerability databases mentioned above contain a large number of vulnerability descriptions that 

refer to web related vulnerabilities. Nevertheless, there are very few entries on vulnerabilities in actual 

web services. While there will be more such entries as more web services become available, the 

software currently deployed will still be used and wrapped in web services. Therefore, given the 

description of a software vulnerability, the question is which services build upon that software and, 

thus, could be affected by an exploit of the vulnerability. To answer that question, we extract the 

required information from vulnerability descriptions and include it in the UMLsec model of the 

system under analysis. This allows a model-based vulnerability identification, as Figure 9 shows. 



 

 

 

Figure 9: UML deployment diagram with software-service mapping 

 

 

Vulnerability descriptions always include the target software, i.e. the software the vulnerability was 

found in. To avoid false positives during the analysis, a preliminary check should be run regarding the 

current IT environment: If the software has been patched already or a newer version has been installed 

which does not contain the vulnerability, the vulnerability should be excluded from the list before 

being mapped to services. The Open Vulnerability and Assessment Language (OVAL) (MITRE, 

2007) can be used to obtain the information necessary to run such a check. Table 3 shows an 

exemplary OVAL definition. 

 

 

Table 3: Exemplary OVAL definition 

 

Once the list of actual vulnerabilities in a specific IT system has been created, and all vulnerabilities 

that have been patched or removed in other ways have been excluded, the services that run on top of 

the affected software must be identified. This identification step can be done before, at, or after 

runtime, and each of these options will be discussed below.  

 

Identification Before Runtime 

 

During service design time, it is apparent which other services and software a certain service involves. 

A simple approach is entering these mappings into a database. Then, each time a vulnerable service or 

software is to be checked for connected services, this database can be queried. However, a clear 

drawback of this simple approach is that it highly depends on the designer to enter each and every 

mapping. This can be remedied by integrating the mapping into the implementation phase. When 

implementing a service, the supporting services and underlying applications must be specified. In 

integrated development environments (IDE) such as JDeveloper 
xv

, every time such a connection is 

created the target can be selected from a constantly updated list of available services. Also, the 

programmer can select databases and other software the service will connect to. Keeping track of 

these assignments allows to map between vulnerable software (and services) and the services which 

involve those vulnerable components. 

 

Regardless of a purely manual or partly automated approach of mapping before runtime, both the 

mapping between software and services and the mapping between services is covered. The manual 



approach will impose little additional effort during SOA creation; however, it is too cumbersome to 

be applied when an existing SOA is frequently changed. IDE support for service mapping is already 

implemented today (e.g., in JDeveloper), support for software to service mapping so far is 

rudimentary but, in IDEs such as Eclipse
xvi

, can be added through plugins. 

 

Having obtained the mapping between software and services, these links can be included in the 

UMLsec model. Then, each time a new vulnerability is announced, the model can be automatically 

analysed, resulting in an identification of the affected services. Because in a SOA, service 

compositions are the BPMN or BPEL equivalent of a business process, this model-based approach 

provides pre-runtime vulnerability identification for SOA-based business processes. 

 

Identification At Runtime 

 

Web Services communicate with each other through SOAP messages. A network monitor observing 

these messages can gather information on the hosts and ports the services are running on. The 

problem here is that while sometimes this information is sufficient to automatically construct a 

mapping table (compare Figure 10a), in other cases the network traffic only allows ambiguous 

conclusions (cf. Figure 10b).  

 

 

Figure 10: Identification of the software that a service uses 

 

Imagine a network in which each host either supports exactly one service or software. Seeing a 

communication between a service host and a software host, the monitor can deduce that the service 

depends on the software (cf. Figure 10a). Now imagine a network with only two hosts, one running all 

the services, and one running all the software. Unless analyzing the protocols in use allows a precise 

service and software identification, the monitor can only guess which service uses which software (cf. 

Figure 10b). So if the monitor sees traffic from different services going to a host with multiple 

software applications, it cannot always automatically map between services and software applications. 

For example, automated mapping is possible when a service queries a MySQL database with a 

constant, unique username. It is impossible when several services use the same username for their 

queries. Note that SQL injection vulnerabilities can easily be a source of false positives when 

analyzing a SOA: If the service correctly filters its input before sending it to the database, the 

vulnerability is not exploitable through the service. However, assuming that SQL injections cannot be 

executed just because software is wrapped into a service is a fallacy. 

 

Ambiguous communication only exists when software is involved. Services communicating with each 

other can be identified through their unique name in SOAP messages. This means that the runtime 

approach can automatically identify service-to-service mappings. For software to service mappings, 

sometimes a human will have to resolve ambiguities. In restricted cases an automated identification 

will be possible, yet, in the general case, mapping at runtime might require manual intervention. 

 

Again, as in the pre-runtime case, once the mapping of software to services is captured, it serves as 

input to the UMLsec model and thusly enables model-based identification of vulnerabilities in a SOA-

based business process. The drawback is that here, runtime behaviour must be observed before the 

analysis can begin, which opens a window of opportunity for attackers. Nevertheless, the runtime 



approach is valuable when the previous approach is not applicable, and it can also serve to confirm 

the findings of the pre-runtime mapping. 

 

Identification After Runtime 

 

Log files offer an additional opportunity of identifying the links between services and the software 

they use. Depending on the network setup and the level of detail found in the logs, correlating log 

entries to map from services to software can be straightforward or prove rather difficult. Therefore, 

the applicability of this approach is high when the logs already offer detailed information, or the 

logging mechanisms can easily be extended to include details on services and software being invoked. 

In a highly complex setting, where customized logging cannot be implemented, and the logfiles at 

hand offer too low a level of detail, mapping after runtime requires manual involvement. Such manual 

resolution of mapping ambiguities might seem acceptable in a scenario with static links. However, 

one of the main notions behind web services is flexibility, so that the assumption of static links will 

rarely hold in practice. 

 

The model-based identification of vulnerabilities after runtime can be performed through an audit of 

log files. To this end, one must first ensure that system records are written and stored in a secure way. 

Here, we assume that the storage provides confidentiality and tamper-evidence. Confidentiality means 

that entries stored in the log file cannot be read by unauthorized subjects and is necessary to avoid the 

replication and the replay of entries. Tamper-evidence means that if logfiles are manipulated, then 

these manipulations, e.g. deletion of entries or entry modification, are evident to a verifier. 

Technically, tamper-evidence is broken down into three subordinated properties: all the entries must 

be authentic, i.e. they are stored, as they have been transmitted from the logging device to the logging 

system. The entries must be encrypted in a forward secure way, i.e. knowledge of the key to decrypt 

one of the entries may not put an attacker in a position where he can decrypt all – in particular the 

previous – the entries. And the entries must be complete, i.e. deletion of one or more entries must be 

detected by the system. 

 

These properties are achieved by secure logging protocols. Current state of the art can be 

distinguished into those protocols adding confidentiality and tamper-evidence to the traditional syslog 

and those designed for providing these functionalities from the outset based on the Schneier-Kelsey 

secure logging protocol scheme (Schneier & Kelsey, 1999). Thorough threat analysis has 

demonstrated that these protocols fail to provide the necessary guarantees, so that attackers can still 

manipulate with log data (Accorsi, 2008). 

 

To our knowledge, the only secure logging protocol providing for all the necessary security properties 

is that proposed in (Accorsi, 2006). In this protocol suite, confidentiality is achieved using an 

evolving encryption scheme (Franklin, 2006): the current encryption key is newly calculated for every 

entry using a one-way function. An attacker that can get hold of the encryption key for one entry n is 

not able to calculate the key for the previous entries n-1, n-2,…. Clearly, it is possible to calculate the 

keys for the log entries n+1, n+2,…. This property is not overly important though, as a logging-

system that has been corrupted cannot write secure and reliable log messages anyway. With regard to 

tamper evidence, entries are digitally signed and, therefore, cannot be modified without knowing the 

private key used to generate these digital signatures. In addition to this, a hash chain that connects all 

the entries with each other guarantees the completeness of the entries. (See (Lamport & Schneider, 

1984) for details on hash-chains.) This hash chain is calculated for an entry by applying some 

cryptographic hash functions to the previous entry. Only if the chain is correct from the first to the last 

entry one can be sure that the log file has not been tampered: a broken chain indicates that tampering 

has taken place. 

 

One aspect that if often overlooked when applying hash-chains in this setting is that one must check 

whether the number of entries is correct. The proposed scheme is not able to detect truncation attacks 



where an attacker removes entries from the tail of the hash-chain. This can easily be calculated, by 

comparing the current cryptographic key (which is calculated by applying n-times the evolution 

function, with n being the total number of entries in the file) with the actual length of the log file. 

 

Such secure logging mechanisms provide a sound basis for the evaluation of vulnerability effects. The 

actual evaluation takes place by means of an audit, whose goal is to correlate suspicious events 

recorded in the log file and check whether the emerging patterns matches to one (or more) in the 

vulnerability database. Such an audit can efficiently be implemented using, e.g., a pruning algorithm 

based on the structure of the log files (Accorsi & Stocker, 2008). Together with a normalization step, 

which merely correlates events, the algorithm runs in linear time and, hence, can cope with log files of 

industrial size. An alternative approach is proposed in (Accorsi, 2008). 

 

In order to carry out such an automated audit, one needs a formalization of the effects of the 

vulnerabilities. In (Accorsi & Stocker, 2008), a Domain Specific Language based on XML is 

employed when expressing the effects. Specifically, this language was designed to capture the 

different preconditions for and postconditions arising from successful exploits. These conditions can 

be derived from vulnerability descriptions, so that an automated audit becomes possible. For example, 

CVSS entries describe the access vector to a vulnerability, which represents a precondition, and the 

confidentiality/integrity/availability impact, which represent postconditions. Given the log files and 

the pre- and postconditions, pattern matching on the log data can pinpoint vulnerable services and 

indicate the effects an exploit of a certain vulnerability might induce on the services and their 

composition. Because this composition represents the implementation of a business process, the 

analysis result is a list of those parts of the business process that are put at risk by vulnerabilities. 

 

Obviously, this “after the fact” approach opens the biggest window of opportunity for attackers. 

However, log-based audits are necessary to verify that the system works as expected. And even if this 

approach does not prevent a specific vulnerability from being exploited, the identification after 

runtime points that vulnerability out so that it can be fixed. This clearly provides better security than 

leaving the services and their composition vulnerable.  

 

Discussion 
 

The current state of vulnerability analysis tools clearly shows that identification of existing 

vulnerabilities is crucial for every systematic approach. Although we have presented an approach that 

can cope with the impact of distinct vulnerabilities, still no systematic way of identifying unknown 

vulnerabilities exists. Furthermore, it is important to realize that WS-Security and similar standards 

will not reduce the number of vulnerabilities in a complex business infrastructure. Because they cause 

additional complexity, they much rather introduce new vulnerabilities into the computer systems. 

 

The exact determination of the effects a vulnerability exploit can have still is an open issue. Certainly, 

a viable solution is to use forensic information as a reliable source of information. But it is necessary 

to consider the attackers’ intelligence and knowledge, which might cause new, unforeseen effects. 

Attackers can find completely new attack paths in the system, which the system providers did not 

think of, let alone protect. To this end, it is necessary to closely investigate the different effects of 

vulnerabilities and their categorization. Such a categorization will allow for systematic verification of 

the absence of certain attack paths. 

 

Even with such verified absence of certain attack paths, what is still missing is a mechanism to protect 

systems from zero day exploits. The simple reason is the fact that it is impossible to verify a given 

computer system regarding unknown properties. If the zero day exploit falls into one of the well-

known categories and it is proven that vulnerabilities within this category cannot cause any damage, 

then the new zero day exploit will not cause any damage. Newly discovered vulnerabilities that fall 

into a different category still impose a threat. 



 

Another tricky aspect of the methodology proposed in this chapter is the area of conflict between 

generic evaluation of processes (or process patterns) and the specific effects that are observed in a 

specific instance of a business process. In many cases, it is hardly possible to predict the effects of 

exploited vulnerabilities without taking into account the specific business goals. Further analysis is 

required regarding the degree to which the effects of exploiting a given vulnerability depend on the 

business process under consideration. 
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