
Scalable TCAM-based Regular Expression Matching
with Compressed Finite Automata

Kun Huang1, Linxuan Ding2, Gaogang Xie1, Dafang Zhang2, Alex X. Liu3, Kave Salamatian4

1Institute of Computing Technology, CAS
Beijing 100190, China

{huangkun09, xie}@ict.ac.cn

2Hunan University
Changsha 410082, China

{lxding, dfzhang}@hnu.edu.cn

3Michigan State University
East Lansing 48823, U.S.A

alexliu@cse.msu.edu

4Universite de Savoie
Annecy 74944, France

kave.salamatian@univ-savoie.fr

ABSTRACT
Regular expression (RegEx) matching is a core function of deep
packet inspection in modern network devices. Previous TCAM-
based RegEx matching algorithms a priori assume that a
deterministic finite automaton (DFA) can be built for a given set
of RegEx patterns. However, practical RegEx patterns contain
complex terms like wildcard closure and repeat character, and it
may be impossible to build a DFA with a reasonable number of
states. This results in prior work to being infeasible in practice.
Moreover, TCAM-based RegEx matching is required to scale to a
large-scale set of RegEx patterns. In this paper, we propose a
compressed finite automaton implementation called (CFA) for
scalable TCAM-based RegEx matching. CFA is designed to
reduce TCAM space by using three compression techniques:
transition, character, and state compressions. Experiments on
realistic RegEx pattern sets show CFA highly outperforms
previous solutions in terms of TCAM space, matching throughput,
and TCAM power consumption.

Categories and Subject Descriptors
C.2.5 [Computer Communication Networks]: Local and
Wide-Area Networks-Internet: C.2.6 [Computer
Communication Networks]: Internetworking-Routers

General Terms
Algorithms, Design, Performance, Security

Keywords
Intrusion detection, signature matching, regular expression,
compressed finite automaton

1. INTRODUCTION
Regular expression (RegEx) matching is a key function of
deep packet inspection in modern network devices on the
Internet ranging from firewall to network intrusion
detection and prevention systems (NIDPS). Due to their
powerful and flexible expressiveness, RegExes are
typically used to represent complex patterns such as
worm/virus signatures [1]. Several popular NIDPS such as
Snort [7], Bro [8], Tipping Point X505, and Cisco network

security appliances, have used RegEx matching algorithms
to detect security sensitive scenarios by comparing a
packet’s payload against a set of predefined rules expressed
as RegEx patterns. Application layer (layer 7) RegEx
matching based filters have also been implemented in the
Linux operating system.

To keep up with line speeds, RegEx patterns must be
matched in a single pass over the input. RegEx matching is
typically performed using either deterministic finite
automata (DFAs) or non-deterministic finite automata
(NFAs). DFAs require one state traversal per input
character, but their construction leads to an explosion of
the number of states in the state space. In contrast, NFAs
make brief representations of RegEx patterns with only a
few states, but require keeping track of multiple possible
active states for each input character, leading to higher
computation overhead. In other words, DFAs are time-
efficient but space-inefficient, while NFAs are space-
efficient but time-inefficient. Therefore, fast and scalable
RegEx matching is a challenging issue, and the key is to
implement a time/space-efficient finite automaton.

Recently, TCAM-based RegEx matching algorithms [2-5]
exploiting TCAM’s parallelism and wildcard search
abilities have been proposed as a promising approach to
achieve high speeds. These TCAM-based solutions use one
TCAM entry to encode each line of a state transition table
that is built from a set of RegEx pattern. Each TCAM entry
is composed of two parts: a TCAM part stores a source
state and an input character, and a companion SRAM part
is thereafter used to store a destination state. Each TCAM
part is encoded in ternary format, where each bit is either 0,
1 or * (don’t care). TCAM circuits compare in parallel a
given search key against all TCAM entries, and report the
position of the first-matching entry. Using TCAM, RegEx
matching algorithms work by iteratively searching the
combination of the current state of DFA representing
RegEx patterns and the input character to find the index of
the position in SRAM that contains the next state of DFA.

83978-1-4799-1640-5/13/$31.00 ©2013 IEEE

While TCAM chips facilitate high speeds and concise
representations, they are confronted for a large-scale set of
RegEx patterns, with scalability issues. As TCAM chips
are scarce and expensive, TCAM-based RegEx matching is
required to scale well in space, throughput, and power
consumption. The number of searched entries in a TCAM
dominates the matching throughput and power
consumption. Therefore it is critical to reduce TCAM space
needed to represent a set of RegEx patterns. This is
achieved by encoding multiple transitions in a single
TCAM entry, which in turn can improve RegEx matching
throughput and reduce TCAM power consumption.

Several TCAM-based DFA implementations [4, 5] have
been proposed for fast and scalable multi-pattern matching.
Unfortunately, RegEx patterns in practice contain complex
terms like wildcard closure “.*”, repeat character “{}”, etc.,
and it may be impossible to build a DFA with a reasonable
number of states. This results in these TCAM-based DFA
implementations to being inapplicable in general settings.

To eliminate state explosion, extended finite automata
(XFAs) have been proposed in the literature [9, 10]. XFA
extends the standard DFA with auxiliary variables and
simple instructions attached to states. However, while XFA
achieves significant reductions in state space, the TCAM-
based XFA implementation suffers from a transition-space
explosion problem. This is caused by a large number of
redundant transitions in XFA, which requires a large
amount of TCAM space. Furthermore, multi-stride XFA
leads to an exponential increase in transition space, which
exacerbates the space explosion problem.

In this paper, we propose a compressed finite automaton
implementation called CFA for space-efficient TCAM-
based RegEx matching. CFA is a concise representation of
XFA in a small TCAM. To achieve CFA, we propose three
compression techniques: transition, character, and state
compressions. These techniques reduce TCAM space by
encoding multiple transitions in one TCAM entry. First,
transition compression uses transition grouping to combine
multiple transitions with the same input character and
destination state by encoding multiple source states in a
wildcard state. Second, character compression uses
character grouping and merging to combine multiple
transitions with the same source and destination state by
encoding multiple input characters in a ternary character.
Third, state compression uses masked state encoding to
combine multiple transitions with the same input character
and destination state by encoding multiple source states in a
ternary masked code. We greatly improve RegEx matching
throughput by generalizing to multi-stride CFA.

Experiments on realistic RegEx pattern sets show that CFA
dramatically outperforms previous solutions in terms of
space, matching throughput, and power consumption. In our
test, CFA reduces TCAM space as well as TCAM power
consumption by up to 83% and up to 95% compared to

optimized DFA [4] and XFA respectively. In addition, CFA
achieves RegEx matching throughput of up to 10.9Gbps due
to significant space reductions.

The main contributions of this paper are the following:

 We propose CFA, a space-efficient TCAM-based
implementation of RegEx matching. CFA targets a
large-scale set of RegEx patterns for which a DFA
cannot be built. To reduce TCAM space, we propose
three compression techniques on transition, character,
and state, respectively. We also generalize to multi-
stride CFA.

 We conduct experiments on realistic RegEx pattern
sets obtained from Snort and Bro. The results show
that CFA outperforms previous solutions in terms of
space, matching throughput, and power consumption.
CFA reduces TCAM space by up to 83% and up to
95% compared to optimized DFA [4] and XFA
respectively. CFA achieves faster RegEx matching
speeds as well as smaller TCAM power consumptions.

The rest of this paper is organized as follows. Section 2
discusses the related work. We describe CFA with three
compression techniques and extend to multi-stride CFA in
Section 3. Section 4 reports experimental results on real-
world RegEx pattern sets. Section 5 concludes the paper.

2. RELATED WORK
As it plays an important role in several network functions
such as intrusion detection and prevention, and application-
level traffic identification, RegEx matching has attracted
intensive research in recent years. Hardware-based RegEx
matching solutions have been proposed to handle high-
speed packets. These solutions fall into two categories:
FPGA/ ASIC-based [9-28] and TCAM-based [2-5].

To achieve high speeds, RegEx matching algorithms are
generally implemented in FPGA circuits or ASIC chips.
FPGAs are programmable with intrinsic reconfiguration
capability and parallelism. Many efforts have focused on the
implementations of FPGA-based NFAs [11-14] or parallel
DFAs [15], where each state is encoded in a flip-flop to
allow each character to be processed in constant time. While
FPGA-based solutions can achieve high throughput of about
10Gbps, they are limited by high deployment cost and
update overhead, and have slower clock speeds than ASIC
chips.

ASIC-based solutions implement a DFA in RAM. The main
issue is to use small SRAMs to represent a large-scale set of
patterns. Prior work on ASIC-based string matching [16-19]
and RegEx matching [20-28] has targeted reducing the
amount of memory needed to represent a DFA. In particular,
Kumar et al. [21, 22] have proposed D2FA to reduce DFA
memory requirements at the cost of longer matching times
by replacing multiple transitions between states with a
single default transition. But D2FA cannot overcome the

84

state-space explosion problem that comes along with DFA.
However, these ASIC-based solutions achieve space
efficiency at the cost of introducing overhead and
inefficiency in the matching process, limiting the throughput
of RegEx matching.

More recently, TCAM-based implementations have been
proposed as a promising approach to fast and scalable multi-
pattern matching. Early TCAM-based techniques [2, 3] are
based on the Aho-Corasick algorithm [6] and designed for
plain string matching. Yu et al. [2] have proposed a TCAM-
based multi-byte multiple-string matching algorithm with
limited support for wildcards. Alicherry et al. [3] have
proposed a state-encoding scheme for implementing an
efficient multi-character multiple-string matching algorithm
in small TCAMs.

However, these TCAM-based solutions above could not
efficiently handle a full set of RegEx patterns with specific
terms. Meiners et al. [4] have proposed the first TCAM-
based RegEx matching algorithm called optimized DFA. By
using the optimization methods such as transition sharing
and table consolidation, this scheme reduces TCAM space
and improves RegEx matching speeds. Peng et al. [5] have
proposed a chain-based DFA deflation method for a scalable
TCAM-based implementation by exploiting the structural
connection between NFA and DFA. These TCAM-based
RegEx matching solutions a priori assume that a DFA can
be built for a given set of RegEx patterns. Unfortunately,
RegEx patterns in practice contain complex terms like
wildcard closure “.*”, repeat character “{}”, etc., and it may
be impossible to build a DFA with a reasonable number of
states. Table 1 shows the size of resulting DFAs for five
RegEx pattern sets obtained from Snort [7] and Bro [8]. We
see that DFAs are too large to be built for two of five
pattern sets. Consequently, this results in prior TCAM-
based DFA implementations to being infeasible in general
settings.

XFAs [9, 10] are proposed to eliminate state explosion.
XFA extends the standard DFA with auxiliary variables and
simple instructions attached to states for manipulating these
variables. Fig. 1 illustrates a simple example of XFA for
two RegEx patterns /.*[Aa]b.*cde/ and /.*ea.*[Bb]c/.
“[Aa]” and “[Bb]” use the class characters “[]”, indicating
that a class of characters, i.e., ‘A’ or ‘a’ for “[Aa]”, is
permissible. States 2 and 7 in XFA have an assignment
instruction that indicates that a sub-string (i.e., “[Aa]b” or
“ea”) has appeared in the input by setting a variable bit1 or
bit2 to 1. States 5 and 9 are accepting states associated with
a check instruction that checks the variable bit1 or bit2 to test
acceptance conditions. Fig. 1 also depicts the state transition
table of XFA with from state 0 to 9 and an alphabet set Σ =
{A, a, B, b, c, d, e}.

XFAs can be built directly from a set of RegEx patterns,
avoiding the state-space explosion of DFA construction.
Thus, XFA instead of DFA can be implemented in TCAMs
for fast and scalable RegEx matching. However, while
XFA achieves significant reductions in state space, the
TCAM-based XFA implementation has a transition-space
explosion problem. This is caused by the large number of
redundant transitions in XFA, which requires a large
amount of TCAM space. For instance, RegEx terms like
character classes (e.g., “[a-z]”) and negation (e.g., “[^0-9]”)
can be translated into a large number of transitions, each
one corresponding to one possible input character. In
addition, multi-stride XFA is typically used to improve
RegEx matching throughput by using multiple characters
per transition. However, this results in an exponential
increase in transition space, which can worsten the space
explosion problem, and require more TCAM space. Hence,
it is crucial to efficiently implement an XFA in a small
TCAM.

Table 1: Number of DFA states for RegEx pattern sets.

Figure 1: XFA for two RegEx patterns /.*[Aa]b.*cde/ and /.*ea.*[Bb]c/.

85

3. COMPRESSED FINITE AUTOMATA
In this section, we first present CFA, a TCAM-based
RegEx matching architecture that can efficiently implement
an XFA with each transition of its state transition table
encoded in a single TCAM entry. We then describe three
compression techniques to reduce the number of TCAM
entries needed for implementing a CFA. Finally, we extend
these techniques to multi-stride CFA.

3.1 TCAM-based Architecture
Let’s first describe a TCAM-based architecture for
implementing XFA-based RegEx matching. As shown in
Fig. 2, the architecture consists of a TCAM table and a logic
circuit associated with some registers. A TCAM entry is
used to encode a transition in XFA, i.e., the number of
TCAM entries is equal to the number of transitions. Each
TCAM entry is physically composed of a TCAM and a
SRAM part. The TCAM part stores a source state and an
input character that are matched against a search key. The
SRAM part stores the corresponding destination state and
attached instructions that are returned as the lookup result
when a match occurs in TCAM. The logic circuit executes
the instructions associated with the returned state, and the
registers store auxiliary variables. There are two instructions:
Set() is to set a variable (i.e., bit1 or bit2) to 0 or 1, and
Check() is to check a variable value.

The matching circuits concatenate the current state and a
character from the input stream to form a search key, and
then compare the key against all TCAM entries. If the
search key is matched, TCAM outputs the index of the first-
match entry, and then feeds the values at the same index in
SRAM, i.e., the destination state and the instructions, to the
logic circuits, updating the registers and the current state.

Next we will describe three compression techniques in CFA,
which can greatly reduce the number of needed entries in
TCAMs.

3.2 Transition Compression
We observe that transitions coming from different source
states transit to the same destination state on the same input
character. Transition compression is to combine multiple
transitions similar to be above into a single TCAM entry.
This is done in two steps: transition grouping and merging.
Transition grouping divides all the transitions on the same
input character into groups, each with the same destination
state. In the merging step, all the transitions in the largest
group are merged into a single transition with its source
state set to a wildcard “*” (don’t care) state, while the
transitions in other groups remain unchanged.

Transition compression is used to remove many original
transitions and replace them with few merged transitions.
This results in semantic ambiguity caused by several TCAM
entries matching a query. Our solution is to apply a most
specific first-match approach (similar to longest prefix
match in IP lookup). This is done by using a sorting method
that reorders the transitions in the TCAM table such that the

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1

7 7

1 1 1
Input: a

Src State

Dst State

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1

7 7

1 1 11 1

Source State Input Character Destination State Instruction

5 a 7 Set(bit2, 1)
6 a 7 Set(bit2, 1)
* a 1 NULL

TCAM SRAM

Figure 3: Transition grouping on input charatacter ‘a’.

Figure 4: TCAM table after transition compression.

Figure 2: TCAM-based architecture for implementing an

XFA

86

most specific entry is returned by the first-match operation
of TCAM search. This method works well by assigning
three levels of priority to all TCAM entries. All transitions
without a wildcard state are assigned the highest priority 2.
Merged transitions with wildcard “*” only in the source
state are assigned the middle priority 1. Other merged
transitions with wildcard in both the source state and the
input character are assigned the lowest priority 0. After that,
we sort the TCAM table in descending order of the priority.
The algorithm of transition compression is given in
Algorithm 1.

Fig. 3 illustrates an example of transition grouping on input
character ‘a’. We observe that on input character ‘a’ all the
states in XFA (see Fig. 1) transit to state 1 or 7. So these
transitions are divided into two groups: one group with eight
transitions to state 1, and a second with two transitions to
state 7. Using transition grouping we combine the eight
transitions in the first group into a merged transition with
wildcard source state “*”, and assign it a lower priority 1.
Other two transitions remain unchanged. Consequently,
eight transitions are removed from the TCAM table, and
replaced by a single merged transition added at the tail of
the table.

Fig. 4 shows the complete TCAM table after transition
compression. XFA in Fig. 1 requires initially a total of 10×
8=80 entries. Using transition compression we reduce the
number of entries to 16 in the TCAM table as seen in Fig. 4.
The first nine transitions remain unchanged with a priority 2,
the next eight merged transitions are added with a priority 1,
and the last is a wildcard transition with a priority 0. In this
example transition compression achieves a reduction in the
number of TCAM entries by a factor of five.

3.3 Character Compression
We also observe that many transitions have the same source
and destination state but happen with different input
characters. Character compression uses the idea of grouping
input characters into a ternary character and merging the
related transitions into a single one. Character compression
consists of two steps: character grouping and merging.
Character grouping divides the transitions with the same
source state into groups, each with the same destination
state. All the transitions in the largest group are combined
into a merged transition with wildcard character “*” (don’t
care), and assigned a priority 1. These original transitions
are removed, and the merged transition is added into the
TCAM table in descending order of the priority.

Character merging is the second step that combines the
transitions in the groups besides the largest one by encoding
potential multiple input characters in ternary format. This
step is applied to the transitions that share the same source
and destination state and differ only in some bits of their
input characters. For instance, as shown in Fig. 5, the first
two transitions are from the same source state s1 to the same
destination state s2 but on different input binary characters
“000” and “001”. We therefore merge the two transitions
into a single one with ternary character “00*”. However, we
must adopt a fast way of detecting these characters that can
be merged and represented jointly by ternary characters.

We propose a heuristic approach to character merging. This
is done by iteratively encoding two input characters in a
ternary string. The merging procedure works as follows. For
a group of transitions with the same source and destination
state, we construct a character relationship graph (CRG),
where each vertex denotes a character, and each edge
denotes a prefix distance between characters (the size of
common bit prefixes between characters). Each edge value
is essentially calculated as the hamming distance between
characters only if the edit distance between them is one.

Figure 5: TCAM table using heuritic character merging.

Algorithm 1: Transition compression

87

Thereafter, we iteratively partition the CRG into disjoint
sub-graphs according to the edge value, i.e., the edge with
the smallest value is preferentially chosen to partition all the
vertexes into groups. We then merge all the characters in
each sub-graph into a ternary string, and continue to
compute the prefix distance between any pair of sub-graphs.
This process is repeated until no more partitions are possible.

Fig. 5 illustrates a simple example of heuristic character
merging. Before character merging, the TCAM table had six
transitions from source state s1 to destination state s2 on
input binary characters “000”, “001”, “010”, “011”, “100”,
and “110” respectively. We construct a CRG for these
transitions as shown in Fig. 5. As the smallest edge value is
1, the CRG is divided into three sub-graphs. We see that
vertexes 0 and 1 are merged into ternary codes“00*”,
vertexes 2 and 3 are merged in “01*”, and vertexes 4 and 6
are merged in “1*0”. We continue to compute the prefix
distance between all sub-graphs, and iteratively merge sub-
graphs into a single sub-graph, i.e., “00*” and “01*” are
merged into “0**”, while “1*0” remains unchanged. Using
character merging, the TCAM table has only two remaining
entries with input characters “0**” and “1*0”. The
algorithm of character compression and heuristic merging is
shown in Algorithm 2.

Fig. 6 shows the complete TCAM table after character
compression. Before character compression, there are 16
entries in the table, among which two transitions are on
input upper-case characters (i.e., ‘A’ or ‘B’), and another
two transitions are on lower-case input characters (i.e., ‘a’
or ‘b’). We use character compression to encode input
upper-case and lower-case characters in ternary codes.
Consequently, as seen in Fig. 6, four original transitions are
combined in two merged transitions, and the table remains
only 14 entries.

3.4 State Compression
Even though we use transition compression to settle the
status of transitions with the same input character and
destination state, further compression can be achieved by
using masked state encoding. It is what we target to achieve
state compression by encoding multiple source states in
ternary codes. This is based on the observation that a state
ID in XFA is chosen arbitrarily without specific meaning,
which provides an opportunity for state encoding. Using
masked state encoding, we would be possible to combine
multiple transitions into a single TCAM entry.

We assign to each state in XFA two codes that replace its
ID: transition code and masked code. Transition code is a
unique code consisting of 0 and 1 that is used to indicate a
destination state. Masked code is a ternary code consisting
of 0, 1, or * that is used to indicate multiple source states.
The algorithm of state compression is shown in Algorithm
3. Masked state encoding consists of five steps:

CompressState (TCAMresult)

1: Tforward=BuildForwardTree(XFA);
//directed edges from a state of depth i to a state of depth i+1.
2: Build Forward Transitions ;
// a directed edge from a state of depth i to a state of depth j (j<i).
3: Tree = BuildTree(Forward Transitions);
4: CalculateCodeLength(Tree) {
5: if (TreeNode.childCount = 0) then
6: codeLength = 0;
7: else
8: codeLength = log2(1+∑i(Pow(2, codeLengthi)));

//Compute Code Length for each state in a
bottom-up manner.

9: end if }
10:CalculateMaskAndTransition(Tree) {
11: CreateBinaryTree(Depth= Max(codeLength));
12: Traverse(Tree top-down);
13: Sort(States, Code Length Desc);
14: MaskedCode = the larger value not yet assigned;
15: TransitionCode= the lower value not yet assigned; }
16:SRC ID = MaskedCode;
17:DST ID = TransitionCode;
18:return TCAMresult;

Algorithm 3: State compression.

CompressCharacters(TCAMresult)

1: CharactersGrouping();
//Divides all transitions having the same source and destination
state into groups.
2: for (δ in the largest group) do
3: δ. Priority = 1;
4: Merging transitions with *;
5: end for
6: CalculateDistance(δi, δj) {
7: Computing prefix distance;
8: Construct CRG; }
9: HeuristicMerging(CRG) {
10: Sort(edges, Edge.value Desc);
11: Build Sub-graphs according to the edge value;
12: Repeated until no more partitions;
13: Merging edges with *; }
14: return TCAMresult;

Algorithm 2: Character compression.

5 01100001 7 Set(bit2, 1)
6 01100001 7 Set(bit2, 1)
1 01100010 2 Set(bit1, 1)
7 01100010 2 Set(bit1, 1)
2 01100100 9 Check(bit2, 1)
8 01100100 9 Check(bit2, 1)
3 01100100 4 NULL
9 01100100 4 NULL
4 01100101 5 Check(bit1, 1)
* 01*00001 1 NULL
* 01*00010 8 NULL
* 01100011 3 NULL
* 01100101 6 NULL
* ******** 0 NULL

TCAM SRAM
Source State Input Character InstructionDestination State

Figure 6: TCAM table after character compression.

88

1) Using XFA, we construct a forward tree that contains
forward transitions, i.e., directed edges from a state of
depth i to a state of depth i+1. Each forward
transitions is essentially a basic transition of XFA.

2) Based on the forward tree, we construct a backward
tree that consists of backward transitions. Each
backward transition is a directed edge from a state of
depth i to a state of depth j<i, representing a default
transition between two states in XFA. The default
transition is used to replace multiple transitions to the
same destination state on the same input character. In
particular, for each transition with a priority 1, we
produce a backward transition from its destination
state to the start state.

3) We compute a masked code length for each state in a
bottom-up manner. The code length of state j indicates
the number of its descendent states. The code length
of each leaf state is set to 0 in the backward tree, and
then the code length of each ancestor state is
recursively computed as follows:

2log (1 2)ic
j

i

c
 

  
 



where jc is the code length of state j, and ic is the code

length of j’s child state i.

4) We assign both the transition code and the masked
code to each state starting from the root in a top-down
manner. Starting from the top of the backward tree,
we propose an upper- and lower-bound assignment
method to recursively assign codes to each state at
each level. We first sort all the states at each level in
descending order of the code length (assigned in Step
3). For each state, the masked code is then assigned
from upper codes in the range covered by the code of
its parent, and the transition code uses a lower code in
the range covered by its masked code.

5) We combine multiple transitions into one TCAM
entry by encoding their source states in ternary codes.
For each state in the TCAM table, we use the masking
code as its source state, and use the transition code as
its desintation state. Thus, all the transtions to the
same destination state on the same input character are

combined into a single TCAM entry by using the
masked code of a state to cover other source states.

Fig. 7 illustrates an example of masked state encoding. As
seen in Fig. 7(a), we construct a forward tree from XFA in
Fig. 1, where forward transitions are depicted by real lines
from a state of depth i to a state of depth i+1, i.e., a
transition from state 1 to 2 on input character ‘b’. Using
this forward tree, we then construct a backward tree, where
backward transitions are depicted by dotted lines, i.e., a
transition from state 2 to 8. For each transition with a
wildcard source state and a priority 1 (see in Fig. 6), the
corresponding backward transition is produced from its
destination state (i.e., states 1, 8, 3, and 6) to the start state
(i.e., state 0). Next, we use a bottom-up approach to
recursively compute the code length of each state. As seen
in Fig. 7(b), leaf states 7, 9, 5, 2, and 3 have the code
length of 0, non-leaf states 1, 3, 6, and 8 have the code
length of 1, and the start state 0 has the code length of 4.
Using the upper- and lower-bound assignment method, we
recursively assign both a masking code and a transition
code to each state in a top-down approach as seen in Fig.
7(c). For instance, due to the code length of 1, the masked
code of state 1 is assigned to 111* from upper codes in the
range [0000, 1111] covered by state 0, and the transition
code is assigned to 1110 by using a lower code in the range
[1110, 1111] covered by its masked code 111*.

Fig. 8 illustrates the complete TCAM table after state
compression. Before state compression, there are 14 entries
in the TCAM table as seen in Fig. 6. We observe that there
are multiple transitions to the same destination state on the
same input character, e.g., the first two transitions from
states 5 and 6 to 7 on input binary character “01100001”.
Using masked state encoding, we assign both a masked

0

1

7

3

9

6

5

8

2

4

0 0 0 0

1 1 1 1 0

4
Code

Length

(a) Backward tree construction. (b) Code length computation. (c) Codes assignment.

Figure 7: Masked state encoding.

Figure 8: TCAM entry table after state compression.

89

code and a transition code to each state, and use them to
merge the source states. For instance, states 5 and 6 are
encoded in ternary source state 101*, and then two
transitions from the source state are combined into a single
transition from state 101* to state 1111 on character
“01100001”. The resulting TCAM table has now only 10
entries.

3.5 Multi-Stride CFAs
Multi-stride RegEx matching is widely used to improve
inspection throughput. A k-stride XFA processes k
characters per transition, achieving RegEx matching speed-
up by up to k times. However, multi-stride XFA has a
transition-space explosion problem. Each state in a k-stride
XFA has up to 256k potential transitions, resulting in a
prohibitive amount of TCAM space. In order to eliminate
transition explosion, we generalize to multi-stride CFA by
extending these above compression techniques.

Transition Compression: Similarly to a single stride,
transition grouping divides all the transitions with the same
input sub-string of characters into multiple groups. We then
merge the largest group into a single transition with
wildcard source state “*”, and assign it a priority 1. The
transitions from wildcard state to the start state are
combined into a wildcard transition and assigned a priority
0. Finally, we reconstruct a smaller TCAM table by sorting
all transitions in descending order of the priority.

Character Compression: Character grouping and merging
is also extended to encode multiple input sub-strings of
characters in a single ternary sub-string. Character
grouping is used to merge the most frequent transitions

with the same source and destination state into a single
transition with wildcard input character “*” and assign it a
priority 1. Similarly, we use heuristic character merging to
combine other transitions by iteratively merging the input
sub-strings in ternary sub-strings.

State Compression: Masked state encoding is also used to
encode multiple source states in a ternary code. First, we
construct a backward tree from a multi-stride XFA, where a
backward transition is used as a default transition to replace
multiple transitions to a specific state. Second, we compute
the code length of each state in a bottom-up manner, and
assign it a transition code and masked code in a top-down
manner. Finally, we combine multiple transitions with the
same input sub-string and destination state in one TCAM
entry by using a ternary masked code of their source states.

4. EXPERIMENTAL EVALUATION
In this section, we conduct experiments on realistic RegEx
pattern sets to evaluate CFA in comparison with optimized
DFA [4] and XFA. We have implemented XFA and CFA
directly from the RegEx patterns, and developed their
associated TCAM tables. To estimate the RegEx matching
throughput, the power consumption, and the latency of a
single TCAM lookup in TCAM-based solutions, we use the
TCAM power and delay model [29] assuming that each
TCAM chip is manufactured with a 0.18um process. For
our test, we mainly measure three performance metrics:
TCAM space, matching throughput, and TCAM power
consumption.

We have obtained five RegEx pattern sets from Snort and
Bro: Snort1, Snort2, Bro1, Bro2, and Bro3. As shown in

Table 2: Results for optimized DFA and CFA on RegEx pattern sets.

Table 3: Results for XFA and CFA on RegEx pattern sets.

90

Table 1, Snort1, Bro2, and Bro3 contain a full set of RegEx
patterns all with wildcard closures “.*”, while Snort2
has 15 out of 40 patterns containing wildcard closures “.*”,
and Bro1 has 18 out of 217 such patterns. We can build
DFAs from Snort1 (49,128 states), Snort2 (39,502 states),
and Bro2 (3,644 states), but could not build DFAs from
Bro1 and Bro3 due to state explosion.

4.1 Results on 1-Stride Finite Automata
We conducted experiments to evaluate the performance of
1-stride finite automata using TCAMs. For Snort1, Snort2,
and Bro2, DFAs can be built, and Table 2 shows the results
for 1-stride optimized DFA and 1-stride CFA on these
three sets. We see that CFA outperforms optimized DFA in
terms of TCAM space, matching throughput, and TCAM
power consumption. For TCAM space, CFA requires 83%,
38%, and 75% less the number of TCAM entries than
optimized DFA on Snort1, Snort2, and Bro2, respectively.
In addition, CFA also requires fewer bits per TCAM entry
than optimized DFA. For instance, optimized DFA on
Snort1 requires 25 bits per TCAM entry, while CFA
requires only 20 bits per TCAM entry. However as the
minimal width of TCAM entry is 36 bits, both CFA and
optimized DFA have to choose TCAM width 36, and use
the same space for each entry. For matching throughput,
CFA achieves a TCAM throughput of up to 10.9Gbps
using 0.03Mb TCAM space, and doubles the throughput of
optimized DFA. The main component of TCAM power
consumption is proportional to the number of searched
entries. Thus, the TCAM power consumption of CFA is
reduced by 83%, 38%, and 60% compared to optimized
DFA respectively. Table 2 demonstrates that CFA achieves
significant improvements in space, throughput, and power
compared to optimized DFA.

For these RegEx patterns where DFAs cannot be built, one
can construct XFAs and use CFAs to implement TCAM-
based RegEx matching. Table 3 compares the performance
of 1-stride XFA and CFA on Bro1 and Bro3. From the

table, we see that CFA dramatically reduces the TCAM
space requirements over XFA. In particular, CFA requires
92% and 95% less the number of TCAM entries on Bro1
and Bro3 respectively. In return, CFA requires two times
more instructions per TCAM entry than XFA. As these
simple instructions can be efficiently operated by TCAM
logic circuits, the operation cost is small and even
negligible. We also see that CFA increases matching
throughput by 1.5-1.7 times. Therefore, Table 3 validates
that CFA outperforms XFA in terms of TCAM space,
matching throughput, and TCM power consumption.

We also evaluate the effectiveness of each one of the three
compression techniques proposed in this paper. Fig. 9
shows the number of TCAM entries after applying each
compression technique. In the figure, we use TC, CC, and
SC to indicate transition compression, character
compression, and state compression. We see that each
technique proposed in CFA is very effective in reducing
the number of TCAM entries, and has an important effect
against different RegEx pattern sets. For instance, as seen
in Fig .9, using TC on Snort1 and Snort2 only reduces the
number of TCAM entries by 20% and 12% respectively,
while using TC+SC reduces the number of TCAM entries
by 82% and 86%. In contrast, using TC on Bro2 and Bro3
reduces the number of TCAM entries by 92% and 86%
respectively. Yet, using TC+SC further reduces the number
of TCAM entries by 3% and 2% respectively. This can be
explained by the fact that transition redundancy has
different distributions in these RegEx pattern sets.
Nevertheless, the application of the three techniques, i.e.,
TC+CC+SC, can achieve together a significant reduction
of the number of TCAM entries by 91% and 96%.

4.2 Results on 2-Stride Finite Automata
We also conducted experiments to compare 2-stride XFA
to 2-stride CFA. Fig. 10 shows the results for 2-stride XFA
and CFA. As seen in Fig. 10, CFA has even higher
reduction performance on 2 strides than on 1 stride. This is

2
.2

8
E

+
05

1.
3

0E
+

0
6

1.
8

2E
+

0
5

1.
2

4E
+

0
6

4.
0

3E
+

0
4

2.
1

9E
+

0
5

9.
7

2E
+

0
3 1.

3
5E

+
0

5

Snort1 Snort2
102

103

104

105

106

107

108

109

N
u

m
b

e
r

o
f

T
C

A
M

 E
n

tr
ie

s
 XFA
 TC
 TC+CC
 TC+CC+SC

7
.2

2E
+

0
5

2
.2

5E
+

04

5.
89

E
+

05

3.
85

E
+

05

1
.8

2E
+

0
3

8.
0

6E
+

0
4

2.
00

E
+

05

1.
09

E
+

03

7
.1

2E
+

0
4

5.
56

E
+

04

92
5

2
.7

0E
+

0
4

Bro1 Bro2 Bro3
102

103

104

105

106

107

108

109

N
u

m
b

er
 o

f
T

C
A

M
 E

n
tr

ie
s

 XFA
 TC
 TC+CC
 TC+CC+SC

(a) Snort pattern sets. (b) Bro pattern sets

Figure 9: Number of TCAM entries after different compression techniques

91

due to the fact that there are more redundancies in multi-
stride XFA. For instance, 2-stride XFA on Bro3 requires
2121.95Mb, while 2-stride CFA requires only 3.1Mb. As a
consequence, 2-stride CFA achieves significant
improvements in matching throughput and power
consumption. Fig. 10(b) shows that 2-stride CFA increases
matching throughput by 1.5-3.3 times compared to XFA.
As see in Fig. 10(c), 2-stride CFA decreases TCAM power
consumption by 98-99%. Fig. 10 validates the fact that
CFA dramatically outperforms XFA in case of multiple
strides.

5. CONCLUSION
In this paper, we propose CFA, a space-efficient finite
automaton implementation for scalable TCAM-based
RegEx matching. CFA is designed by using three novel
compression techniques: transition, character, and state
compressions. CFA reduces the memory requirements of
implementing an XFA in a small TCAM. CFA achieves
significant reductions in TCAM space by leveraging the

transitions, characters, and states redundancies for
combining multiple transitions into a single TCAM entry.
We also generalize these techniques to multi-stride CFA.

Experiments on realistic RegEx pattern sets show that CFA
dramatically outperforms previous solutions in terms of
space, throughput, and power. When a DFA can be built
for a set of RegEx patterns, CFA reduces TCAM space and
power consumption by up to 83% compared to optimized
DFA, and achieves matching throughput of up to 10.9Gbps,
twice that of optimized DFA. When DFA cannot be built,
CFA reduces TCAM space as well as TCAM power
consumption by up to 95%, and increases matching
throughput by up to 1.7 times. Our results also show that 2-
stride CFA achieves even higher reduction performance
than 2-stride XFA.

6. ACKNOWLEDGMENTS
This work was supported in part by the National High-Tech
R&D Program of China under Grant No.2013AA013501,
the National Science and Technology Major Project of

581.28

1730.66
2752.51

47.91

2121.95

8.89

28.33
42.63

0.08

3.1

Snort1 Snort2 Bro1 Bro2 Bro3
10-2

10-1

100

101

102

103

104

105

T

C
A

M
 S

p
ac

e
 S

iz
e

(M
b

it
s)

 2-stride XFA
 2-stride CFA

2.56 2.42 2.29

3.35

2.42

4.36

3.63 3.35

10.9

4.84

Snort1 Snort2 Bro1 Bro2 Bro3
0

2

4

6

8

10

12

T
C

A
M

 T
h

ro
u

g
h

p
u

t
(G

b
p

s)

 2-stride XFA
 2-stride CFA

(a) TCAM space. (b) Matching throughput.

9373.74

27906.33
44382.36

773.2

34215.28

143.95

457.55
688.16

1.79

50.57

Snort1 Snort2 Bro1 Bro2 Bro3
100

101

102

103

104

105

106

T
C

A
M

 P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
n

J)

 2-stride XFA
 2-stride CFA

(c) TCAM power consumption.

Figure 10: Results for 2-stride XFA and 2-stride CFA.

92

China under Grant No.2012ZX03002016, the Instrument
Developing Project of CAS under Grant No.YZ201229, the
National Science Foundation of China under Grant No.
61100171, No.61173167, No.61061130562, No.61272546,
and No.61370226, and the National Science Foundation
under Grant Numbers CNS-1017598, CNS-1017588, CNS-
0845513, CNS-0916044, and CCF-1347953.

7. REFERENCES
[1] R. Sommer and V. Paxson. Enhancing byte-level

network intrusion detection signatures with context. In
Proc. ACM CCS, 2003.

[2] F. Yu, R. H. Katz, and T. V. Lakshman. Gigabit rate
packet pattern-matching using tcam. In Proc. IEEE
ICNP, 2004.

[3] M. Alicherry, M. Muthuprasanna, and V. Kumar. High
speed pattern matching for network ids/ips. In Proc.
IEEE ICNP, 2006.

[4] C. R. Meinters, J. Patel, E. Norige, E. Torng, and A. X.
Liu. Fast regular expression matching using small
tcams for network intrusion detection and prevention.
In Proc. USENIX Security, 2010.

[5] K. Peng, S. Tang, M. Chen, and Q. Dong. Chain-based
dfa deflation for fast and scalable regular expression
matching using tcam. In Proc. ACM/IEEE ANCS,
2011.

[6] A. V. Aho and M. J. Corasick. Efficient string
matching: an aid to bibliographic search.
Communications of the ACM, vol.18, no.6, pp.333-
340, 1975.

[7] Snort. http://www.snort.org/.

[8] Bro. http: //www.bro-ids.org/.

[9] R. Smith, C. Estan, and S. Jha. XFA: faster signature
matching with extended automata. In Proc. IEEE
Symposium on Security and Privacy (S & P), 2008.

[10] R. Smith, C. Estan, S. Jha, and S. Kong. Deflating the
big bang: fast and scalable deep packet inspection. In
Proc. ACM SIGCOMM, 2008.

[11] S. Sidhu and V. K. Prasanna. Fast regular expression
matching using fpgas. In Proc. FCCM, 2001.

[12] C. R. Clark and D. E. Schimmel. Efficient
reconfigurable logic circuits for matching complex
network intrusion detection patterns. In Proc. FPL,
2003.

[13] C. R. Clark and D. E. Schimmel. Scalable pattern
matching for high speed networks. In Proc. FCCM,
2004.

[14] I. Sourdis and D. Pnevmatikatos. Pre-decoded cams
for efficient and high-speed nids pattern matching. In
Proc. FCCM, 2004.

[15] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos.
Implementation of a content-scanning module for an
internet firewall. In Proc. FCCM, 2003.

[16] N. Tuck, T. Sherwood, B. Calder, and G. Varghese.
Deterministic memory-efficient string matching
algorithms for intrusion detection. In Proc. IEEE
INFOCOM, 2004.

[17] L. Tan and T. Sherwood. A high throughput string
matching architecture for intrusion detection and
prevention. In Proc. ISCA, 2005.

[18] J. van Lunteren. High-performance pattern-matching
for intrusion detection. In Proc. IEEE INFOCOM,
2006.

[19] A. Bremler-Bar, D. Hay, and Y. Koral. CompactDFA:
generic state machine compression for scalable pattern
matching. In Proc. IEEE INFOCOM, 2010.

[20] B. Brodie, R. Cytron, and D. Taylor. A scalable
architecture for high-throughput regular-expression
pattern matching. In Proc. ISCA, 2006.

[21] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J.
Turner. Algorithms to accelerate multiple regular
expressions matching for deep packet inspection. In
Proc. ACM SIGCOMM, 2006.

[22] S. Kumar, J. Turner, and J. Williams. Advanced
algorithms for fast and scalable deep packet inspection.
In Proc. ACM/IEEE ANCS, 2006.

[23] M. Becchi and S. Cadami. Memory-efficient regular
expression search using state merging. In Proc. IEEE
INFOCOM, 2007.

[24] M. Becchi and P. Crowley. A hybrid finite automaton
for practical deep packet inspection. In Proc. ACM
CoNEXT, 2007.

[25] M. Becchi and P. Crowley. An improved algorithm to
accelerate regular expression evaluation. In Proc.
ACM/IEEE ANCS, 2008.

[26] M. Becchi and P. Crowley. Extending finite automata
to efficiently match perl-compatible regular
expressions. In Proc. ACM CoNEXT, 2008.

[27] M. Becchi, C. Wiseman, and P. Crowley. Evaluating
regular expression matching engines on network and
general purpose processors. In Proc. ACM/IEEE
ANCS, 2009.

[28] J. van Lunteren and A. Guanella. Hardware-
accelerated regular expression matching at multiple
tens of gb/s. In Proc. IEEE INFOCOM, 2012.

[29] B. Agrawal and T. Sherwood. Ternary cam power and
delay model: extensions and uses. IEEE Transactions
on VLSI, vol.16, no.5, pp.554-564, 2008.

93

