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ABSTRACT 
Regular expression (RegEx) matching is a core function of deep 
packet inspection in modern network devices. Previous TCAM-
based RegEx matching algorithms a priori assume that a 
deterministic finite automaton (DFA) can be built for a given set 
of RegEx patterns. However, practical RegEx patterns contain 
complex terms like wildcard closure and repeat character, and it 
may be impossible to build a DFA with a reasonable number of 
states. This results in prior work to being infeasible in practice. 
Moreover, TCAM-based RegEx matching is required to scale to a 
large-scale set of RegEx patterns. In this paper, we propose a 
compressed finite automaton implementation called (CFA) for 
scalable TCAM-based RegEx matching. CFA is designed to 
reduce TCAM space by using three compression techniques: 
transition, character, and state compressions. Experiments on 
realistic RegEx pattern sets show CFA highly outperforms 
previous solutions in terms of TCAM space, matching throughput, 
and TCAM power consumption. 

Categories and Subject Descriptors 
C.2.5 [Computer Communication Networks]: Local and 
Wide-Area Networks-Internet: C.2.6 [Computer 
Communication Networks]: Internetworking-Routers 

General Terms 
Algorithms, Design, Performance, Security 

Keywords 
Intrusion detection, signature matching, regular expression, 
compressed finite automaton 

1. INTRODUCTION 
Regular expression (RegEx) matching is a key function of 
deep packet inspection in modern network devices on the 
Internet ranging from firewall to network intrusion 
detection and prevention systems (NIDPS). Due to their 
powerful and flexible expressiveness, RegExes are 
typically used to represent complex patterns such as 
worm/virus signatures [1]. Several popular NIDPS such as 
Snort [7], Bro [8], Tipping Point X505, and Cisco network 

security appliances, have used RegEx matching algorithms 
to detect security sensitive scenarios by comparing a 
packet’s payload against a set of predefined rules expressed 
as RegEx patterns. Application layer (layer 7) RegEx 
matching based filters have also been implemented in the 
Linux operating system. 

To keep up with line speeds, RegEx patterns must be 
matched in a single pass over the input. RegEx matching is 
typically performed using either deterministic finite 
automata (DFAs) or non-deterministic finite automata 
(NFAs). DFAs require one state traversal per input 
character, but their construction leads to an explosion of 
the number of states in the state space. In contrast, NFAs 
make brief representations of RegEx patterns with only a 
few states, but require keeping track of multiple possible 
active states for each input character, leading to higher 
computation overhead. In other words, DFAs are time-
efficient but space-inefficient, while NFAs are space-
efficient but time-inefficient. Therefore, fast and scalable 
RegEx matching is a challenging issue, and the key is to 
implement a time/space-efficient finite automaton. 

Recently, TCAM-based RegEx matching algorithms [2-5] 
exploiting TCAM’s parallelism and wildcard search 
abilities have been proposed as a promising approach to 
achieve high speeds. These TCAM-based solutions use one 
TCAM entry to encode each line of a state transition table 
that is built from a set of RegEx pattern. Each TCAM entry 
is composed of two parts: a TCAM part stores a source 
state and an input character, and a companion SRAM part 
is thereafter used to store a destination state. Each TCAM 
part is encoded in ternary format, where each bit is either 0, 
1 or * (don’t care). TCAM circuits compare in parallel a 
given search key against all TCAM entries, and report the 
position of the first-matching entry. Using TCAM, RegEx 
matching algorithms work by iteratively searching the 
combination of the current state of DFA representing 
RegEx patterns and the input character to find the index of 
the position in SRAM that contains the next state of DFA. 
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While TCAM chips facilitate high speeds and concise 
representations, they are confronted for a large-scale set of 
RegEx patterns, with scalability issues. As TCAM chips 
are scarce and expensive, TCAM-based RegEx matching is 
required to scale well in space, throughput, and power 
consumption. The number of searched entries in a TCAM 
dominates the matching throughput and power 
consumption. Therefore it is critical to reduce TCAM space 
needed to represent a set of RegEx patterns. This is 
achieved by encoding multiple transitions in a single 
TCAM entry, which in turn can improve RegEx matching 
throughput and reduce TCAM power consumption. 

Several TCAM-based DFA implementations [4, 5] have 
been proposed for fast and scalable multi-pattern matching. 
Unfortunately, RegEx patterns in practice contain complex 
terms like wildcard closure “.*”, repeat character “{}”, etc., 
and it may be impossible to build a DFA with a reasonable 
number of states. This results in these TCAM-based DFA 
implementations to being inapplicable in general settings. 

To eliminate state explosion, extended finite automata 
(XFAs) have been proposed in the literature [9, 10]. XFA 
extends the standard DFA with auxiliary variables and 
simple instructions attached to states. However, while XFA 
achieves significant reductions in state space, the TCAM-
based XFA implementation suffers from a transition-space 
explosion problem. This is caused by a large number of 
redundant transitions in XFA, which requires a large 
amount of TCAM space. Furthermore, multi-stride XFA 
leads to an exponential increase in transition space, which 
exacerbates the space explosion problem. 

In this paper, we propose a compressed finite automaton 
implementation called CFA for space-efficient TCAM-
based RegEx matching. CFA is a concise representation of 
XFA in a small TCAM. To achieve CFA, we propose three 
compression techniques: transition, character, and state 
compressions. These techniques reduce TCAM space by 
encoding multiple transitions in one TCAM entry. First, 
transition compression uses transition grouping to combine 
multiple transitions with the same input character and 
destination state by encoding multiple source states in a 
wildcard state. Second, character compression uses 
character grouping and merging to combine multiple 
transitions with the same source and destination state by 
encoding multiple input characters in a ternary character. 
Third, state compression uses masked state encoding to 
combine multiple transitions with the same input character 
and destination state by encoding multiple source states in a 
ternary masked code. We greatly improve RegEx matching 
throughput by generalizing to multi-stride CFA. 

Experiments on realistic RegEx pattern sets show that CFA 
dramatically outperforms previous solutions in terms of 
space, matching throughput, and power consumption. In our 
test, CFA reduces TCAM space as well as TCAM power 
consumption by up to 83% and up to 95% compared to 

optimized DFA [4] and XFA respectively. In addition, CFA 
achieves RegEx matching throughput of up to 10.9Gbps due 
to significant space reductions. 

The main contributions of this paper are the following: 

 We propose CFA, a space-efficient TCAM-based 
implementation of RegEx matching. CFA targets a 
large-scale set of RegEx patterns for which a DFA 
cannot be built. To reduce TCAM space, we propose 
three compression techniques on transition, character, 
and state, respectively. We also generalize to multi-
stride CFA. 

 We conduct experiments on realistic RegEx pattern 
sets obtained from Snort and Bro. The results show 
that CFA outperforms previous solutions in terms of 
space, matching throughput, and power consumption. 
CFA reduces TCAM space by up to 83% and up to 
95% compared to optimized DFA [4] and XFA 
respectively. CFA achieves faster RegEx matching 
speeds as well as smaller TCAM power consumptions. 

The rest of this paper is organized as follows. Section 2 
discusses the related work. We describe CFA with three 
compression techniques and extend to multi-stride CFA in 
Section 3. Section 4 reports experimental results on real-
world RegEx pattern sets. Section 5 concludes the paper. 

2. RELATED WORK 
As it plays an important role in several network functions 
such as intrusion detection and prevention, and application-
level traffic identification, RegEx matching has attracted 
intensive research in recent years. Hardware-based RegEx 
matching solutions have been proposed to handle high-
speed packets. These solutions fall into two categories: 
FPGA/ ASIC-based [9-28] and TCAM-based [2-5]. 

To achieve high speeds, RegEx matching algorithms are 
generally implemented in FPGA circuits or ASIC chips. 
FPGAs are programmable with intrinsic reconfiguration 
capability and parallelism. Many efforts have focused on the 
implementations of FPGA-based NFAs [11-14] or parallel 
DFAs [15], where each state is encoded in a flip-flop to 
allow each character to be processed in constant time. While 
FPGA-based solutions can achieve high throughput of about 
10Gbps, they are limited by high deployment cost and 
update overhead, and have slower clock speeds than ASIC 
chips. 

ASIC-based solutions implement a DFA in RAM. The main 
issue is to use small SRAMs to represent a large-scale set of 
patterns. Prior work on ASIC-based string matching [16-19] 
and RegEx matching [20-28] has targeted reducing the 
amount of memory needed to represent a DFA. In particular, 
Kumar et al. [21, 22] have proposed D2FA to reduce DFA 
memory requirements at the cost of longer matching times 
by replacing multiple transitions between states with a 
single default transition. But D2FA cannot overcome the 
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state-space explosion problem that comes along with DFA. 
However, these ASIC-based solutions achieve space 
efficiency at the cost of introducing overhead and 
inefficiency in the matching process, limiting the throughput 
of RegEx matching. 

More recently, TCAM-based implementations have been 
proposed as a promising approach to fast and scalable multi-
pattern matching. Early TCAM-based techniques [2, 3] are 
based on the Aho-Corasick algorithm [6] and designed for 
plain string matching. Yu et al. [2] have proposed a TCAM-
based multi-byte multiple-string matching algorithm with 
limited support for wildcards. Alicherry et al. [3] have 
proposed a state-encoding scheme for implementing an 
efficient multi-character multiple-string matching algorithm 
in small TCAMs. 

However, these TCAM-based solutions above could not 
efficiently handle a full set of RegEx patterns with specific 
terms. Meiners et al. [4] have proposed the first TCAM-
based RegEx matching algorithm called optimized DFA. By 
using the optimization methods such as transition sharing 
and table consolidation, this scheme reduces TCAM space 
and improves RegEx matching speeds. Peng et al. [5] have 
proposed a chain-based DFA deflation method for a scalable 
TCAM-based implementation by exploiting the structural 
connection between NFA and DFA. These TCAM-based 
RegEx matching solutions a priori assume that a DFA can 
be built for a given set of RegEx patterns. Unfortunately, 
RegEx patterns in practice contain complex terms like 
wildcard closure “.*”, repeat character “{}”, etc., and it may 
be impossible to build a DFA with a reasonable number of 
states. Table 1 shows the size of resulting DFAs for five 
RegEx pattern sets obtained from Snort [7] and Bro [8]. We 
see that DFAs are too large to be built for two of five 
pattern sets. Consequently, this results in prior TCAM-
based DFA implementations to being infeasible in general 
settings. 

XFAs [9, 10] are proposed to eliminate state explosion. 
XFA extends the standard DFA with auxiliary variables and 
simple instructions attached to states for manipulating these 
variables. Fig. 1 illustrates a simple example of XFA for 
two RegEx patterns /.*[Aa]b.*cde/ and /.*ea.*[Bb]c/. 
“[Aa]” and “[Bb]” use the class characters “[]”, indicating 
that a class of characters, i.e., ‘A’ or ‘a’ for “[Aa]”, is 
permissible. States 2 and 7 in XFA have an assignment 
instruction that indicates that a sub-string (i.e., “[Aa]b” or 
“ea”) has appeared in the input by setting a variable bit1 or 
bit2 to 1. States 5 and 9 are accepting states associated with 
a check instruction that checks the variable bit1 or bit2 to test 
acceptance conditions. Fig. 1 also depicts the state transition 
table of XFA with from state 0 to 9 and an alphabet set Σ = 
{A, a, B, b, c, d, e}. 

XFAs can be built directly from a set of RegEx patterns, 
avoiding the state-space explosion of DFA construction. 
Thus, XFA instead of DFA can be implemented in TCAMs 
for fast and scalable RegEx matching. However, while 
XFA achieves significant reductions in state space, the 
TCAM-based XFA implementation has a transition-space 
explosion problem. This is caused by the large number of 
redundant transitions in XFA, which requires a large 
amount of TCAM space. For instance, RegEx terms like 
character classes (e.g., “[a-z]”) and negation (e.g., “[^0-9]”) 
can be translated into a large number of transitions, each 
one corresponding to one possible input character. In 
addition, multi-stride XFA is typically used to improve 
RegEx matching throughput by using multiple characters 
per transition. However, this results in an exponential 
increase in transition space, which can worsten the space 
explosion problem, and require more TCAM space. Hence, 
it is crucial to efficiently implement an XFA in a small 
TCAM. 

Table 1: Number of DFA states for RegEx pattern sets. 

 

 

       
Figure 1: XFA for two RegEx patterns /.*[Aa]b.*cde/ and /.*ea.*[Bb]c/. 
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3. COMPRESSED FINITE AUTOMATA 
In this section, we first present CFA, a TCAM-based 
RegEx matching architecture that can efficiently implement 
an XFA with each transition of its state transition table 
encoded in a single TCAM entry. We then describe three 
compression techniques to reduce the number of TCAM 
entries needed for implementing a CFA. Finally, we extend 
these techniques to multi-stride CFA. 

3.1 TCAM-based Architecture 
Let’s first describe a TCAM-based architecture for 
implementing XFA-based RegEx matching. As shown in 
Fig. 2, the architecture consists of a TCAM table and a logic 
circuit associated with some registers. A TCAM entry is 
used to encode a transition in XFA, i.e., the number of 
TCAM entries is equal to the number of transitions. Each 
TCAM entry is physically composed of a TCAM and a 
SRAM part. The TCAM part stores a source state and an 
input character that are matched against a search key. The 
SRAM part stores the corresponding destination state and 
attached instructions that are returned as the lookup result 
when a match occurs in TCAM. The logic circuit executes 
the instructions associated with the returned state, and the 
registers store auxiliary variables. There are two instructions: 
Set() is to set a variable (i.e., bit1 or bit2) to 0 or 1, and 
Check() is to check a variable value. 

The matching circuits concatenate the current state and a 
character from the input stream to form a search key, and 
then compare the key against all TCAM entries. If the 
search key is matched, TCAM outputs the index of the first-
match entry, and then feeds the values at the same index in 
SRAM, i.e., the destination state and the instructions, to the 
logic circuits, updating the registers and the current state.  

Next we will describe three compression techniques in CFA, 
which can greatly reduce the number of needed entries in 
TCAMs. 

3.2 Transition Compression 
We observe that transitions coming from different source 
states transit to the same destination state on the same input 
character. Transition compression is to combine multiple 
transitions similar to be above into a single TCAM entry. 
This is done in two steps: transition grouping and merging. 
Transition grouping divides all the transitions on the same 
input character into groups, each with the same destination 
state. In the merging step, all the transitions in the largest 
group are merged into a single transition with its source 
state set to a wildcard “*” (don’t care) state, while the 
transitions in other groups remain unchanged. 

Transition compression is used to remove many original 
transitions and replace them with few merged transitions. 
This results in semantic ambiguity caused by several TCAM 
entries matching a query. Our solution is to apply a most 
specific first-match approach (similar to longest prefix 
match in IP lookup). This is done by using a sorting method 
that reorders the transitions in the TCAM table such that the 

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1

7 7

1 1 1
Input: a

Src State

Dst State

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1

7 7

1 1 11 1

Source State Input Character Destination State Instruction

5 a 7 Set(bit2, 1)
6 a 7 Set(bit2, 1)
* a 1 NULL

TCAM SRAM

Figure 3: Transition grouping on input charatacter ‘a’. 

 

 
Figure 4: TCAM table after transition compression. 

 
Figure 2: TCAM-based architecture for implementing an 

XFA 

86



most specific entry is returned by the first-match operation 
of TCAM search. This method works well by assigning 
three levels of priority to all TCAM entries. All transitions 
without a wildcard state are assigned the highest priority 2. 
Merged transitions with wildcard “*” only in the source 
state are assigned the middle priority 1. Other merged 
transitions with wildcard in both the source state and the 
input character are assigned the lowest priority 0. After that, 
we sort the TCAM table in descending order of the priority. 
The algorithm of transition compression is given in 
Algorithm 1. 

Fig. 3 illustrates an example of transition grouping on input 
character ‘a’. We observe that on input character ‘a’ all the 
states in XFA (see Fig. 1) transit to state 1 or 7. So these 
transitions are divided into two groups: one group with eight 
transitions to state 1, and a second with two transitions to 
state 7. Using transition grouping we combine the eight 
transitions in the first group into a merged transition with 
wildcard source state “*”, and assign it a lower priority 1. 
Other two transitions remain unchanged. Consequently, 
eight transitions are removed from the TCAM table, and 
replaced by a single merged transition added at the tail of 
the table. 

Fig. 4 shows the complete TCAM table after transition 
compression. XFA in Fig. 1 requires initially a total of 10×
8=80 entries. Using transition compression we reduce the 
number of entries to 16 in the TCAM table as seen in Fig. 4. 
The first nine transitions remain unchanged with a priority 2, 
the next eight merged transitions are added with a priority 1, 
and the last is a wildcard transition with a priority 0. In this 
example transition compression achieves a reduction in the 
number of TCAM entries by a factor of five. 

3.3 Character Compression 
We also observe that many transitions have the same source 
and destination state but happen with different input 
characters. Character compression uses the idea of grouping 
input characters into a ternary character and merging the 
related transitions into a single one. Character compression 
consists of two steps: character grouping and merging. 
Character grouping divides the transitions with the same 
source state into groups, each with the same destination 
state. All the transitions in the largest group are combined 
into a merged transition with wildcard character “*” (don’t 
care), and assigned a priority 1. These original transitions 
are removed, and the merged transition is added into the 
TCAM table in descending order of the priority. 

Character merging is the second step that combines the 
transitions in the groups besides the largest one by encoding 
potential multiple input characters in ternary format. This 
step is applied to the transitions that share the same source 
and destination state and differ only in some bits of their 
input characters. For instance, as shown in Fig. 5, the first 
two transitions are from the same source state s1 to the same 
destination state s2 but on different input binary characters 
“000” and “001”. We therefore merge the two transitions 
into a single one with ternary character “00*”. However, we 
must adopt a fast way of detecting these characters that can 
be merged and represented jointly by ternary characters. 

We propose a heuristic approach to character merging. This 
is done by iteratively encoding two input characters in a 
ternary string. The merging procedure works as follows. For 
a group of transitions with the same source and destination 
state, we construct a character relationship graph (CRG), 
where each vertex denotes a character, and each edge 
denotes a prefix distance between characters (the size of 
common bit prefixes between characters). Each edge value 
is essentially calculated as the hamming distance between 
characters only if the edit distance between them is one. 

 
Figure 5: TCAM table using heuritic character merging.

Algorithm 1: Transition compression 
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Thereafter, we iteratively partition the CRG into disjoint 
sub-graphs according to the edge value, i.e., the edge with 
the smallest value is preferentially chosen to partition all the 
vertexes into groups. We then merge all the characters in 
each sub-graph into a ternary string, and continue to 
compute the prefix distance between any pair of sub-graphs. 
This process is repeated until no more partitions are possible. 

Fig. 5 illustrates a simple example of heuristic character 
merging. Before character merging, the TCAM table had six 
transitions from source state s1 to destination state s2 on 
input binary characters “000”, “001”, “010”, “011”, “100”, 
and “110” respectively. We construct a CRG for these 
transitions as shown in Fig. 5. As the smallest edge value is 
1, the CRG is divided into three sub-graphs. We see that 
vertexes 0 and 1 are merged into ternary codes“00*”, 
vertexes 2 and 3 are merged in “01*”, and vertexes 4 and 6 
are merged in “1*0”. We continue to compute the prefix 
distance between all sub-graphs, and iteratively merge sub-
graphs into a single sub-graph, i.e., “00*” and “01*” are 
merged into “0**”, while “1*0” remains unchanged. Using 
character merging, the TCAM table has only two remaining 
entries with input characters “0**” and “1*0”. The 
algorithm of character compression and heuristic merging is 
shown in Algorithm 2. 

Fig. 6 shows the complete TCAM table after character 
compression. Before character compression, there are 16 
entries in the table, among which two transitions are on 
input upper-case characters (i.e., ‘A’ or ‘B’), and another 
two transitions are on lower-case input characters (i.e., ‘a’ 
or ‘b’). We use character compression to encode input 
upper-case and lower-case characters in ternary codes. 
Consequently, as seen in Fig. 6, four original transitions are 
combined in two merged transitions, and the table remains 
only 14 entries. 

3.4 State Compression 
Even though we use transition compression to settle the 
status of transitions with the same input character and 
destination state, further compression can be achieved by 
using masked state encoding. It is what we target to achieve 
state compression by encoding multiple source states in 
ternary codes. This is based on the observation that a state 
ID in XFA is chosen arbitrarily without specific meaning, 
which provides an opportunity for state encoding. Using 
masked state encoding, we would be possible to combine 
multiple transitions into a single TCAM entry. 

We assign to each state in XFA two codes that replace its 
ID: transition code and masked code. Transition code is a 
unique code consisting of 0 and 1 that is used to indicate a 
destination state. Masked code is a ternary code consisting 
of 0, 1, or * that is used to indicate multiple source states. 
The algorithm of state compression is shown in Algorithm 
3. Masked state encoding consists of five steps: 

CompressState (TCAMresult)

1: Tforward=BuildForwardTree(XFA);
//directed edges from a state of depth i to a state of  depth i+1.
2: Build Forward Transitions ;
// a directed edge from a state of depth i to a state of depth j (j<i).  
3: Tree = BuildTree(Forward Transitions);
4: CalculateCodeLength(Tree) {
5:   if (TreeNode.childCount = 0) then
6: codeLength = 0;
7: else
8: codeLength = log2(1+∑i(Pow(2, codeLengthi)));

//Compute Code Length  for each state in a 
bottom-up manner.

9: end if }
10:CalculateMaskAndTransition(Tree) {
11: CreateBinaryTree(Depth= Max(codeLength));
12:  Traverse(Tree top-down);
13:  Sort(States, Code Length Desc);
14:  MaskedCode = the larger value not yet assigned;
15:  TransitionCode= the lower value not yet assigned; }
16:SRC ID = MaskedCode;
17:DST ID = TransitionCode;
18:return TCAMresult;

 
Algorithm 3: State compression. 

CompressCharacters(TCAMresult)

1: CharactersGrouping();
//Divides all transitions having the same  source and destination
state into groups. 
2: for (δ in the largest group) do
3:  δ. Priority = 1;
4:  Merging transitions with *; 
5: end for
6: CalculateDistance(δi, δj) {
7:  Computing prefix distance;
8:  Construct CRG; }
9: HeuristicMerging(CRG) {
10:  Sort(edges, Edge.value Desc);
11:  Build Sub-graphs according to the edge value;
12:  Repeated until no more partitions;
13:  Merging edges with *; }
14: return TCAMresult;

Algorithm 2: Character compression. 

5 01100001 7 Set(bit2, 1)
6 01100001 7 Set(bit2, 1)
1 01100010 2 Set(bit1, 1)
7 01100010 2 Set(bit1, 1)
2 01100100 9 Check(bit2, 1)
8 01100100 9 Check(bit2, 1)
3 01100100 4 NULL
9 01100100 4 NULL
4 01100101 5 Check(bit1, 1)
* 01*00001 1 NULL
* 01*00010 8 NULL
* 01100011 3 NULL
* 01100101 6 NULL
* ******** 0 NULL

TCAM SRAM
Source State Input Character InstructionDestination State

 
Figure 6: TCAM table after character compression. 
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1) Using XFA, we construct a forward tree that contains 
forward transitions, i.e., directed edges from a state of 
depth i to a state of depth i+1. Each forward 
transitions is essentially a basic transition of XFA. 

2) Based on the forward tree, we construct a backward 
tree that consists of backward transitions. Each 
backward transition is a directed edge from a state of 
depth i to a state of depth j<i, representing a default 
transition between two states in XFA. The default 
transition is used to replace multiple transitions to the 
same destination state on the same input character. In 
particular, for each transition with a priority 1, we 
produce a backward transition from its destination 
state to the start state. 

3) We compute a masked code length for each state in a 
bottom-up manner. The code length of state j indicates 
the number of its descendent states. The code length 
of each leaf state is set to 0 in the backward tree, and 
then the code length of each ancestor state is 
recursively computed as follows: 

2log (1 2 )ic
j

i

c
 

  
 

  

where jc is the code length of state j, and ic is the code 

length of j’s child state i. 

4) We assign both the transition code and the masked 
code to each state starting from the root in a top-down 
manner. Starting from the top of the backward tree, 
we propose an upper- and lower-bound assignment 
method to recursively assign codes to each state at 
each level. We first sort all the states at each level in 
descending order of the code length (assigned in Step 
3). For each state, the masked code is then assigned 
from upper codes in the range covered by the code of 
its parent, and the transition code uses a lower code in 
the range covered by its masked code. 

5) We combine multiple transitions into one TCAM 
entry by encoding their source states in ternary codes. 
For each state in the TCAM table, we use the masking 
code as its source state, and use the transition code as 
its desintation state. Thus, all the transtions to the 
same destination state on the same input character are 

combined into a single TCAM entry by using the 
masked code of a state to cover other source states. 

Fig. 7 illustrates an example of masked state encoding. As 
seen in Fig. 7(a), we construct a forward tree from XFA in 
Fig. 1, where forward transitions are depicted by real lines 
from a state of depth i to a state of depth i+1, i.e., a 
transition from state 1 to 2 on input character ‘b’. Using 
this forward tree, we then construct a backward tree, where 
backward transitions are depicted by dotted lines, i.e., a 
transition from state 2 to 8. For each transition with a 
wildcard source state and a priority 1 (see in Fig. 6), the 
corresponding backward transition is produced from its 
destination state (i.e., states 1, 8, 3, and 6) to the start state 
(i.e., state 0). Next, we use a bottom-up approach to 
recursively compute the code length of each state. As seen 
in Fig. 7(b), leaf states 7, 9, 5, 2, and 3 have the code 
length of 0, non-leaf states 1, 3, 6, and 8 have the code 
length of 1, and the start state 0 has the code length of 4. 
Using the upper- and lower-bound assignment method, we 
recursively assign both a masking code and a transition 
code to each state in a top-down approach as seen in Fig. 
7(c). For instance, due to the code length of 1, the masked 
code of state 1 is assigned to 111* from upper codes in the 
range [0000, 1111] covered by state 0, and the transition 
code is assigned to 1110 by using a lower code in the range 
[1110, 1111] covered by its masked code 111*. 

Fig. 8 illustrates the complete TCAM table after state 
compression. Before state compression, there are 14 entries 
in the TCAM table as seen in Fig. 6. We observe that there 
are multiple transitions to the same destination state on the 
same input character, e.g., the first two transitions from 
states 5 and 6 to 7 on input binary character “01100001”. 
Using masked state encoding, we assign both a masked 

0

1

7

3

9

6

5

8

2

4

0 0 0 0

1 1 1 1 0

4
Code 

Length

 
(a) Backward tree construction.     (b) Code length computation.                      (c) Codes assignment. 

Figure 7: Masked state encoding. 

 
Figure 8: TCAM entry table after state compression. 
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code and a transition code to each state, and use them to 
merge the source states. For instance, states 5 and 6 are 
encoded in ternary source state 101*, and then two 
transitions from the source state are combined into a single 
transition from state 101* to state 1111 on character 
“01100001”. The resulting TCAM table has now only 10 
entries. 

3.5 Multi-Stride CFAs 
Multi-stride RegEx matching is widely used to improve 
inspection throughput. A k-stride XFA processes k 
characters per transition, achieving RegEx matching speed-
up by up to k times. However, multi-stride XFA has a 
transition-space explosion problem. Each state in a k-stride 
XFA has up to 256k potential transitions, resulting in a 
prohibitive amount of TCAM space. In order to eliminate 
transition explosion, we generalize to multi-stride CFA by 
extending these above compression techniques. 

Transition Compression: Similarly to a single stride, 
transition grouping divides all the transitions with the same 
input sub-string of characters into multiple groups. We then 
merge the largest group into a single transition with 
wildcard source state “*”, and assign it a priority 1. The 
transitions from wildcard state to the start state are 
combined into a wildcard transition and assigned a priority 
0. Finally, we reconstruct a smaller TCAM table by sorting 
all transitions in descending order of the priority. 

Character Compression: Character grouping and merging 
is also extended to encode multiple input sub-strings of 
characters in a single ternary sub-string. Character 
grouping is used to merge the most frequent transitions 

with the same source and destination state into a single 
transition with wildcard input character “*” and assign it a 
priority 1. Similarly, we use heuristic character merging to 
combine other transitions by iteratively merging the input 
sub-strings in ternary sub-strings. 

State Compression: Masked state encoding is also used to 
encode multiple source states in a ternary code. First, we 
construct a backward tree from a multi-stride XFA, where a 
backward transition is used as a default transition to replace 
multiple transitions to a specific state. Second, we compute 
the code length of each state in a bottom-up manner, and 
assign it a transition code and masked code in a top-down 
manner. Finally, we combine multiple transitions with the 
same input sub-string and destination state in one TCAM 
entry by using a ternary masked code of their source states. 

4. EXPERIMENTAL EVALUATION 
In this section, we conduct experiments on realistic RegEx 
pattern sets to evaluate CFA in comparison with optimized 
DFA [4] and XFA. We have implemented XFA and CFA 
directly from the RegEx patterns, and developed their 
associated TCAM tables. To estimate the RegEx matching 
throughput, the power consumption, and the latency of a 
single TCAM lookup in TCAM-based solutions, we use the 
TCAM power and delay model [29] assuming that each 
TCAM chip is manufactured with a 0.18um process. For 
our test, we mainly measure three performance metrics: 
TCAM space, matching throughput, and TCAM power 
consumption. 

We have obtained five RegEx pattern sets from Snort and 
Bro: Snort1, Snort2, Bro1, Bro2, and Bro3. As shown in 

Table 2: Results for optimized DFA and CFA on RegEx pattern sets. 

 
Table 3: Results for XFA and CFA on RegEx pattern sets. 
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Table 1, Snort1, Bro2, and Bro3 contain a full set of RegEx 
patterns all with wildcard closures “.*”, while Snort2 
has 15 out of 40 patterns containing wildcard closures “.*”, 
and Bro1 has 18 out of 217 such patterns. We can build 
DFAs from Snort1 (49,128 states), Snort2 (39,502 states), 
and Bro2 (3,644 states), but could not build DFAs from 
Bro1 and Bro3 due to state explosion. 

4.1 Results on 1-Stride Finite Automata 
We conducted experiments to evaluate the performance of 
1-stride finite automata using TCAMs. For Snort1, Snort2, 
and Bro2, DFAs can be built, and Table 2 shows the results 
for 1-stride optimized DFA and 1-stride CFA on these 
three sets. We see that CFA outperforms optimized DFA in 
terms of TCAM space, matching throughput, and TCAM 
power consumption. For TCAM space, CFA requires 83%, 
38%, and 75% less the number of TCAM entries than 
optimized DFA on Snort1, Snort2, and Bro2, respectively. 
In addition, CFA also requires fewer bits per TCAM entry 
than optimized DFA. For instance, optimized DFA on 
Snort1 requires 25 bits per TCAM entry, while CFA 
requires only 20 bits per TCAM entry. However as the 
minimal width of TCAM entry is 36 bits, both CFA and 
optimized DFA have to choose TCAM width 36, and use 
the same space for each entry. For matching throughput, 
CFA achieves a TCAM throughput of up to 10.9Gbps 
using 0.03Mb TCAM space, and doubles the throughput of 
optimized DFA. The main component of TCAM power 
consumption is proportional to the number of searched 
entries. Thus, the TCAM power consumption of CFA is 
reduced by 83%, 38%, and 60% compared to optimized 
DFA respectively. Table 2 demonstrates that CFA achieves 
significant improvements in space, throughput, and power 
compared to optimized DFA. 

For these RegEx patterns where DFAs cannot be built, one 
can construct XFAs and use CFAs to implement TCAM-
based RegEx matching. Table 3 compares the performance 
of 1-stride XFA and CFA on Bro1 and Bro3. From the 

table, we see that CFA dramatically reduces the TCAM 
space requirements over XFA. In particular, CFA requires 
92% and 95% less the number of TCAM entries on Bro1 
and Bro3 respectively. In return, CFA requires two times 
more instructions per TCAM entry than XFA. As these 
simple instructions can be efficiently operated by TCAM 
logic circuits, the operation cost is small and even 
negligible. We also see that CFA increases matching 
throughput by 1.5-1.7 times. Therefore, Table 3 validates 
that CFA outperforms XFA in terms of TCAM space, 
matching throughput, and TCM power consumption. 

We also evaluate the effectiveness of each one of the three 
compression techniques proposed in this paper. Fig. 9 
shows the number of TCAM entries after applying each 
compression technique. In the figure, we use TC, CC, and 
SC to indicate transition compression, character 
compression, and state compression. We see that each 
technique proposed in CFA is very effective in reducing 
the number of TCAM entries, and has an important effect 
against different RegEx pattern sets. For instance, as seen 
in Fig .9, using TC on Snort1 and Snort2 only reduces the 
number of TCAM entries by 20% and 12% respectively, 
while using TC+SC reduces the number of TCAM entries 
by 82% and 86%. In contrast, using TC on Bro2 and Bro3 
reduces the number of TCAM entries by 92% and 86% 
respectively. Yet, using TC+SC further reduces the number 
of TCAM entries by 3% and 2% respectively. This can be 
explained by the fact that transition redundancy has 
different distributions in these RegEx pattern sets. 
Nevertheless, the application of the three techniques, i.e., 
TC+CC+SC, can achieve together a significant reduction 
of the number of TCAM entries by 91% and 96%. 

4.2 Results on 2-Stride Finite Automata 
We also conducted experiments to compare 2-stride XFA 
to 2-stride CFA. Fig. 10 shows the results for 2-stride XFA 
and CFA. As seen in Fig. 10, CFA has even higher 
reduction performance on 2 strides than on 1 stride. This is 
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due to the fact that there are more redundancies in multi-
stride XFA. For instance, 2-stride XFA on Bro3 requires 
2121.95Mb, while 2-stride CFA requires only 3.1Mb. As a 
consequence, 2-stride CFA achieves significant 
improvements in matching throughput and power 
consumption. Fig. 10(b) shows that 2-stride CFA increases 
matching throughput by 1.5-3.3 times compared to XFA. 
As see in Fig. 10(c), 2-stride CFA decreases TCAM power 
consumption by 98-99%. Fig. 10 validates the fact that 
CFA dramatically outperforms XFA in case of multiple 
strides. 

5. CONCLUSION 
In this paper, we propose CFA, a space-efficient finite 
automaton implementation for scalable TCAM-based 
RegEx matching. CFA is designed by using three novel 
compression techniques: transition, character, and state 
compressions. CFA reduces the memory requirements of 
implementing an XFA in a small TCAM. CFA achieves 
significant reductions in TCAM space by leveraging the 

transitions, characters, and states redundancies for 
combining multiple transitions into a single TCAM entry. 
We also generalize these techniques to multi-stride CFA. 

Experiments on realistic RegEx pattern sets show that CFA 
dramatically outperforms previous solutions in terms of 
space, throughput, and power. When a DFA can be built 
for a set of RegEx patterns, CFA reduces TCAM space and 
power consumption by up to 83% compared to optimized 
DFA, and achieves matching throughput of up to 10.9Gbps, 
twice that of optimized DFA. When DFA cannot be built, 
CFA reduces TCAM space as well as TCAM power 
consumption by up to 95%, and increases matching 
throughput by up to 1.7 times. Our results also show that 2-
stride CFA achieves even higher reduction performance 
than 2-stride XFA. 
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