
Abstract-It is well known that with the availability of statistical
channel state information at the transmitter, the capacity-achiev-
ing transmission strategy is transmission on the long-term eigen-
modes of the transmit correlation matrix with adequate power
allocation. However, the optimum power allocation strategy is not
known in general. Using recent analytical results on mean mutual
information of MIMO channels with transmit as well as receive
correlation, in this paper we study the behavior of the capacity-
achieving power allocation strategy. To this end, we also make use
of asymptotical results for a large number of transmit or receive
antennas and the high as well as low SNR regime, which in certain
cases allows for a closed-form analysis. Furthermore, we investi-
gate two low complexity power allocation schemes, which are
based on certain upper bounds on mean mutual information.

I. INTRODUCTION

Based on a moment generating function approach, exact
closed-form expressions of ergodic MIMO capacity were
recently presented by the authors in [13][14]. The expressions
therein cover the case of fading correlation at transmitter as
well as receiver and base on the assumption of an uninformed
transmitter, i.e. there is no channel state information (CSI)
available at the transmitter and it applies a uniform power allo-
cation on the transmit antennas. In this paper, we extend these
results to cover the case of statistical CSI at the transmitter,
whereas the transmitter is assumed to be aware of the correla-
tion properties of the channel. It is well known that the trans-
mitter has to adapt the covariance matrix of the transmit signal
vector according to the CSI such that it essentially transmits
with a proper power allocation (PA) on the eigenmodes of the
fading correlation matrix at the transmitter side [1][2][3]. How-
ever, in contrast to the case of instantaneous TX CSI [4], to the
authors’ best knowledge, so far the optimum capacity-achiev-
ing statistical power allocation strategy is known only for the
special case of 2 transmit antennas and uncorrelated receive
antennas [5]. Based on the exact mean mutual information
(MMI) expressions given in [14], in this paper we fill this gap
and extend the results of [5] to an arbitrary number of transmit
antennas and arbitrary fading correlation at the receive antenna
array. To this end, we numerically optimize the transmit signal
covariance matrix using the novel exact MMI expressions. For
gaining further insights into the problem, we also study ergodic
capacity (EC) asymptotics and the corresponding power alloca-
tion strategies in the low and high SNR regime, whereas we
make use of asymptotical MMI expressions derived by the
authors in [16]. Similar studies are presented for the limit of a

large number of transmit as well as receive antennas, respec-
tively. Furthermore, we compare the results with some lower
complexity power allocation schemes based on certain bounds
on MMI [6][15]. Specifically, we demonstrate that a power
allocation based on the tight bound derived by the authors in
[15] is hardly distinguishable from the exact capacity-achiev-
ing strategy for arbitrary system parameters. On the other hand,
we show that a power allocation scheme based on a loose
bound on MMI introduced in [6] is asymptotically optimal for
a large number of receive antennas due to the so-called ‘chan-
nel hardening’ effect (see also [7]).

Various simulation results confirm the effectiveness of the
proposed power allocation strategies.

II. SIGNAL AND CHANNEL MODEL

We consider a flat fading MIMO link modeled by

, (1)

where s is the T×1 TX symbol vector, H is the R×T MIMO
channel matrix with correlated Rayleigh fading elements, n is
the R×1 noise vector, and y is the R×1 receive vector. By R we
denote the number of RX antennas and T is the number of TX
antennas. In the following we assume additive Gaussian noise,
where the noise covariance matrix is given by

. The signal covariance matrix is given by the
analogue expression .

In this paper,  denotes an n×n identity matrix (the index
can be omitted, if the size is clear from the context), 
denotes the trace of matrix ,  denotes the rank (i.e.
number of nonzero eigenvalues),  returns a diagonal
matrix of eigenvalues of ,   returns a diagonal matrix
of nonzero eigenvalues of ,  denotes Hermitian (conjugate
transpose), and  means ‘is statistically equivalent’.

Using a widely accepted channel model [8][9], the corre-
lated MIMO channel can be described by the matrix product

, (2)

where Hw is a R×T matrix of complex i . i.d. Gaussian vari-
ables of unity variance and

, (3)

where RRX and RTX is the long-term stable normalized

(4)
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receive and transmit correlation matrix, respectively. More-
over, in (3) we have introduced an eigenvalue decomposition
of the transmit correlation matrix with diagonal matrix of
eigenvalues , whereas the eigenvalues are assumed to be
arranged in decreasing order.

III. MIMO MUTUAL INFORMATION

In this section we present a unifying notation for mutual
information. Based on that, we give a closed-form expression
for mean mutual information (MMI) (i.e. mutual information
averaged over the channel statistics). Furthermore, we outline
asymptotical MMI formulas for the low and high SNR regime.

A. General derivation

It is well known [10] that the mutual information 
between input vector s and output y of the MIMO link accord-
ing to (1) is given by

(5)

with the standard mean SNR per transmit symbol definition
. Plugging the channel model (2) with Kronecker

product covariance structure in (5), we find

. (6)

In the following, we reduce (6) to a concise equivalent for-
mulation that allows for a unified analysis of correlated MIMO
systems. At this point, we emphasize that we assume full rank
channel correlation and signal and noise covariance matrices in
this paper. An extension is straightforward but would unneces-
sarily complicate notation, thus detracting from the main prob-
lems. By noticing that the distribution of the i.i.d. complex
Gaussian distributed R×T matrix Hw is invariant to left- or
right multiplications with unitary matrices U and V, i.e.

, (7)

assuming capacity-achieving transmission with channel dis-
tribution information at the transmitter (CDIT) on the eigen-
modes of RTX [1][2][3] according to (3), such that

 (8)

with diagonal T×T power allocation (PA) or alternatively
waterfilling (WF) matrix , we find after
some simplifications

 . (9)

 We let L denote the number of nonzero diagonal elements
of the PA matrix  (equivalently, in a practical system L is the
number of independent subchannels that is transmitted over the
MIMO link). In (9) we have introduced the R×L matrix of i.i.d.
complex Gaussian elements  and the R×R diagonal matrix
of eigenvalues associated to the receive side

, (10)

which comprises the effects of receive fading correlation and
colored additive Gaussian noise. Finally,  is a L×L diag-

onal matrix, which reads for the optimum transmission strategy
in (8)

, (11)

which takes into account PA via  (on the strongest L
eigenmodes) and fading correlation at the transmitter. Note that
we can alternatively formulate

. (12)

We rewrite (12) such that the matrix argument
 or , respectively, of the deter-

minant is of full rank, thereby simplifying the subsequent anal-
ysis. To this end, we define

, (13)

the µ×µ diagonal matrix

, (14)

the ν×ν diagonal matrix

, (15)

and the ν×µ matrix of i.i.d. complex Gaussian entries G.
With above definitions we can introduce a unifying expression
for MIMO mutual information, which will serve as a basis for
all following derivations

. (16)

B. Exact mean mutual information

The authors have calculated the exact mean mutual informa-
tion in [13] and [14] via a novel moment generating function
approach.

Theorem 1. The mean mutual information
 with  according to (16) of a

correlated MIMO system with transmit as well as receive cor-
relation is given by

(17)

with the µ×ν matrices (row index i runs from 1 to µ and col-
umn index j from 1 to ν)

(18)

and (ν−µ)×ν matrix  defined by (row index i’ runs
from 1 to ν−µ and column index j’ from 1 to ν)

. (19)
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We note that the  and  are implicitly a function of 
via (14) and (15). E1(z) is the exponential integral (see [11]),
Pochhammer’s symbol denotes

, (20)

 the definition

, (21)

and the Vandermonde determinant of a diagonal m×m
matrix  can be expressed as

. (22)

Proof: See [14].

C. High SNR asymptotics of mean mutual information

Via certain series expansions we can derive from Theor em1
the following asymptotical result

Theorem 2. The MMI asymptotics  of a channel with
correlation at TX and RX at high SNR with arbitrary number
of transmit and receive antennas are given by

. (23)

where  is Euler’s constant,  is an
auxiliary function depending on  (in the  determi-
nants, i and j run from 1 to )

(24)

and the auxiliary function

(25)

with

. (26)

Proof: See [16].

We now consider some special cases of Theorem 2.

Corollary 1. The MMI high SNR asymptotics of a MIMO sys-
tem with semi-correlated channel and  are given by

, (27)

where  is the Digamma function [11].

Proof: See [16].

D. Low SNR asymptotics of mean mutual information

In the low SNR regime the mean mutual information expres-
sion simplifies considerably and we get

Theorem 3. The MMI  of an arbitrarily correlated
MIMO channel in the low SNR region is given by

. (28)

Proof: See [16].

IV. ERGODIC CAPACITY WITH CDIT

Based on the mean mutual information expressions given in
the last section, we now study the behavior of the capacity
achieving power allocation strategy, whereas it turns out that
closed-form PA formulas can be given only for special cases.

A. General problem

The ergodic capacity  with channel distribution
information at the transmitter (CDIT) in a correlated Rayleigh
fading environment is given by (’s.t.’ stands for ’subject to’)

(29)

with transmit power constraint , i.e. we have to maximize
mean mutual information with respect to the power allocation
matrix. It is clear that due to the complexity of the MMI
expression in Theorem 1, a solution to the constrained optimi-
zation problem in (29) in general cannot be given in closed
form. Therefore, we have to resort to numerical optimization
algorithms and results of this optimization process will be pre-
sented in the numerical result section below.

B. High SNR regime

From the asymptotic formulas in Theorem 2 and
Corollary 1, one can notice that MMI is proportional to

 for high SNR. Therefore, in case of  the
transmit prefilter should exploit all spatial dimensions at the
transmitter side with L=T, such that  should be chosen to be
of full rank . With a full rank , from Theorem 2
together with the optimal transmission strategy (8) it is clear
that the ergodic capacity with CDIT in the high SNR regime
with  is given by

, (30)

with a constant , which is independent of . How-
ever, the determinant  is a Schur-concave function [12] of
the squared power allocation coefficients , such that in the
high SNR regime we have the optimal power allocation strat-
egy , i.e. essentially no waterfilling takes
place and therefore the absolute capacity gain  with
CDIT due to waterfilling is zero

, (31)
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where  is the capacity with uninformed transmit-
ter for  in the high SNR regime.

On the other hand, for T>R the slope of the high SNR
asymptotics in Theorem 2 are now determined by  if we
let , and in general we have to resort to numerical optimi-
zation for finding the optimal PA matrix  that achieves
capacity. Specifically, from Theorem 2 together with (11) it
can be seen that in the high SNR regime the optimum

 is given by

, (32)

with the definitions of the auxiliary functions 
and  in (24) and (25). The absolute gain due to statisti-
cal waterfilling with  follows from Theorem 2

. (33)

Again, optimization problem (32) is in general not solvable
in closed form and we therefore resort to numerical optimiza-
tion algorithms. Results of the optimization will be presented at
the end of this paper.

C. Low SNR regime

With the optimal transmission strategy in (8), from
Theorem 3 the ergodic capacity with channel state information
at the transmitter in the low SNR region is given by

. (34)

It is straightforward to see that  is Schur-con-
vex in the power allocation coefficients  and therefore the
optimal capacity-achieving transmission strategy in the low
SNR regime is beamforming, where all transmit power is put
on the strongest long-term eigenmode of the channel via

. With the normalization
 and the power constraint ,

the relative waterfilling gain  can now be calculated from
(34)

, (35)

where  is the maximum eigenvalue of the transmit
correlation matrix.

V. LOW COMPLEXITY PA SCHEMES

In this section, we study two PA schemes that are derived
from upper bounds on mean mutual information.

A. Power allocation based on tight bound

By exploiting Jensen’s inequality, it can be shown that mean
mutual information can be tightly upper bounded by

. (36)

The expected value in (36) can be calculated in closed form
by exploiting certain expected values with respect to the
Wishart distribution.

Theorem 4. A tight upper bound on MMI can be given in
terms of the elementary symmetric functions

, (37)

where  denotes the kth order elementary symmetric
function in the eigenvalues of the matrix X [12].

Proof: See [15].
Based on the tight bound on MMI given in Theorem 4, a

reduced-complexity PA scheme can be found, where the PA
matrix is analogously to (29) defined by the constrained opti-
mization problem

. (38)

We first shall restrict ourselves to the 2×R antenna case to
allow for a concise analytical solution of (38). Omitting details,
the diagonal elements of  obtained from a Lagrange opti-
mization process are

, (39)

where we have to assure that φB,1/2>0, otherwise the coeffi-
cient φB,2 is set to 0 and all available transmit power is given to

. Note that in agreement with results stated e.g. in
[169], the total transmit power is equally distributed on both
subchannels, i.e. , if no transmit correla-
tion is present, i.e. RTX=I, no matter what receive correlation is
prevailing. This result also holds for the general case with an
arbitrary number of transmit antennas. To this end, note that
for the case of receive correlation only we find from (38) the
optimization problem in terms of the elementary symmetric
functions

. (40)

The objective function in (40) can be shown to be Schur-
concave in the  with . The optimal
power allocation strategy is thus uniform. This is in accordance
with known results in literature [10] and intuition: if there is no
transmit correlation present, there are no prominent directions
and the transmitter equally distributes power.

For the general case of arbitrary array sizes and arbitrary
transmit and receive correlation, a closed form solution of the
problem in (38) can not be given. Numerical methods have to
be applied to find the optimal PA coefficients. The results of
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such numerical optimization processes will be shown in the
simulations below.

B. Power allocation based on two loose bounds

In this paragraph, we study two approximate low-complex-
ity PA schemes based on other bounds on MMI that can also be
derived via Jensen’s inequality and the concavity of the log det
function. The first loose bound takes into account only the
transmit correlation matrix RTX and reads [76]

, (41)

which can be written as

. (42)

Based on this loose bound, again a low-complexity PA
scheme can be derived

. (43)

In contrast to the statistical power allocation schemes pre-
sented above, problem (43) can be solved in closed form by the
standard waterfilling algorithm (e.g. [4]) for an arbitrary num-
ber of transmit and receive antenna elements. We emphasize
that the effects of the receive correlation matrix RRX are basi-
cally not captured by this approximate scheme and numerical
results underpin this observation. However, the bound in (41)
is exact for a large number of antenna elements R due to the
channel hardening effect [7], which means that the stochastic
matrix  approaches its expected value by the law
of large numbers.

On the other hand, paralleling (41), a second loose bound on
MMI is given by

, (44)

which can be written as

. (45)

Similar to the optimization problem in (34), it is clear that
the optimum PA scheme in the sense of maximizing the loose
MMI bound , namely

, (46)

is again given by a beamforming solution
. The bound on MMI in (45)

becomes tight and the corresponding PA policy becomes exact
by the channel hardening effect for a large number of transmit
antennas T.

VI. NUMERICAL RESULTS

A. Simulation setup

Without loss of generality, we study systems with white
input signals of power Es and additive white Gaussian noise of
variance N0 (other signal and noise covariances can easily be
absorbed in an equivalent channel), i.e.

. (47)

Furthermore, in the following, we consider exponential cor-
relation matrices at the receiver and the transmitter with

, (48)

i.e.  is the correlation coefficient between two neighbor-
ing receive antennas and  models the correlation between
two transmit antennas. We note that with the given channel
model, the correlation between two antennas decreases expo-
nentially with their distance. Finally, the SNR in dB is defined
by

, (49)

whereas the transmit power constraint is set to .

B. Exact ergodic capacity with CDIT

Plots of the ergodic capacity (EC) for a system with T=4
transmit and R=6 receive antennas are given in Fig. 1. The
channel exhibits strong fading correlation at the transmitter
with rTX=0.97, while the fading at the receiver is only weakly
correlated with rRX=0.3. 

Fig. 1: EC with PA, T=4, R=6, rTX=0.97, rRX=0.3

We compare three different transmission strategies. Without
channel state information (CSI) at the transmitter, the optimal
transmission strategy is to transmit without a special power
allocation (i.e. power is distributed uniformly over the transmit
antennas), which yields the lowest capacity. With the availabil-
ity of CDIT, the transmitter can apply long-term (LT) statisti-
cal power allocation (PA) according to optimization problem in
(29), which can be solved numerically. For this heavily corre-
lated scenario, one can observe a significant increase in ergodic
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capacity (EC) due to CDIT especially in the lower SNR region.
Finally, with the availability of instantaneous CSI at the trans-
mitter we can apply optimum short-term (ST) power allocation
(waterfilling) [35], which as expected achieves the highest
ergodic capacity. However, we note that for this highly corre-
lated MIMO channel, the difference between ST PA and LT
PA is only minor due to the fact that only a small number (in
the limit only one) of eigenmodes can be effectively used for
data transmission in the low SNR regime. We note that in the
high SNR regime all transmission schemes in general yield the
same ergodic capacities. Furthermore, in Fig. 1 a close agree-
ment between theoretical curves according to Theorem 1 and
Monte-Carlo simulation results can be observed.

With less fading correlation (rTX=0.7) at the transmitter, the
ergodic capacity increase due to adequate power allocation at
the transmitter is reduced (Fig. 2). Moreover, it can be seen that
the SNR range, where CSI at the transmitter is beneficial, is
limited to lower SNR values. At the same time, there is now a
noticeable difference between the case of ST CSI and CDIT.
Due to the reduced correlation, it is now obviously more likely
that a higher number of channel eigenmodes is used for data
transmission and this can be exploited, if the transmitter is
aware of the instantaneous channel state.

Fig. 2: EC with PA, T=4, R=6, rTX=0.7, rRX=0.3

C. Low complexity approximate power allocation

The effectiveness of the various statistical PA strategies that
were presented above is studied in Fig. 3 for a system with
T=R=4. On the transmitter side, we assume strong fading cor-
relation with rTX=0.9 and the receiver side is correlated with
rRX=0.7.

For validating our theoretical results, we have plotted
Monte-Carlo simulation results and theoretical curves accord-
ing to the analysis presented in Theorem 1. Again, there is a
perfect agreement between theory and simulation. As expected,
again the PA schema based on short-term CSI performs best,
while the performance of the long-term PA schemes with
CDIT comes close to the optimum at low SNR. Furthermore,
we can observe that LT PA based on the exact EC analysis
according to (29) is superior than the scheme based on the

loose MMI bound according to (43) in the medium SNR range
from 10 to 20 dB. We emphasize that the EC curve for the PA
scheme based on the tight bound in (40) cannot be distin-
guished from the exact CDIT based LT PA scheme and we
have therefore removed it from Fig. 3 for clarity.

Fig. 3: EC with PA, T=R=4, rRX=0.7, rTX=0.9

More insight can be obtained by looking at the power alloca-
tion coefficients of the matrix , which
are depicted in Fig. 4. Obviously, the PA coefficients resulting
from the PA allocation algorithm based on the loose bound in
(43) deviate significantly from the other two schemes, which
are very close together. Specifically, additional eigenmodes are
activated already at lower SNR, thus leading to a degradation
of mean mutual information. 

Fig. 4: PA coefficients, T=R=4, rRX=0.7, rTX=0.9

At high SNR, however, all three schemes lead to a uniform
power allocation, which has been predicted in the derivation of
(31), such that all eigenmodes are equally used for transmis-
sion and thus the statistical waterfilling gain vanishes at higher
SNR. Equivalently, in the sense of maximizing EC, CDIT is
useless in the high SNR regime for this particular system,
where T=R=4. However, in contrast to that, we note that below
we present results for a system with T>R, where a capacity
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gain can be achieved even in the high SNR region (see also
(33)).

D. High and low SNR regime

A more detailed view on the relative gain of statistical water-
filling (compared to a system without CSI at the transmitter) is
given in Fig. 5 for a T=R=4 system with correlation at the
receiver rRX=0.7 and varying correlation at the transmitter
rTX={0.5, 0.7, 0.9, 0.97}.

Fig. 5: Relative WF gain, T=R=4, rRX=0.7, rTX={0.5, 0.7, 0.9, 0.97}

A close agreement between the WF scheme based on the
exact MMI analysis according to (29) and the WF scheme
based on the tight MMI bound according to (40) can be
observed. Furthermore, in the low SNR regime the theoretical
result in (35) is confirmed, i.e. statistical waterfilling achieves
a relative gain equal to the largest eigenvalue of the transmit
correlation matrix RTX. With increasing transmit correlation
(increasing rTX), the largest eigenvalue of the transmit correla-
tion matrix increases and thus the relative WF gain increases.
The maximum eigenvalues of the transmit correlation matrix
for the different correlation coefficients are

 . (50)

 At high SNR, we note that the relative capacity gain con-
verges to 1, which agrees with (31). A closer look on the per-
formance of a WF scheme based on the loose capacity bound
according to (43) is taken in Fig. 6 for the same system param-
eters as in Fig. 5. While the asymptotical performance in the
low and high SNR regime is the same as for the WF scheme
based on the exact MMI analysis, it is obviously inferior in the
medium SNR region. The loss in capacity is in the range of 3 to
4 percent for the given scenario. We note that this loss is higher
for strong fading correlation at the receiver, as the loose capac-
ity bound in (42) does not take into account correlation at the
receive antenna array.

Fig. 6: Relative WF gain, T=R=4, rRX=0.7, rTX={0.5, 0.7, 0.9, 0.97}

The absolute gain in bit per channel use due to statistical
waterfilling based on the exact MMI analysis in the high SNR
regime (see also (3.116)) is depicted in Fig. 7 for a system with
R=2 receive antennas and rRX=0.7 (we compare the ergodic
capacity with a system with uninformed transmitter). As
expected, the gain increases with a higher number of transmit
antennas and with stronger correlation at the transmit side.
Basically, in the presence of CDIT, the transmitter can make
use of the beamforming capabilities of the transmit antenna
array for improving the capacity of the link. 

Fig. 7: Absolute WF gain, high SNR, T={4, 6, 8}, R=2, rRX=0.7

In Fig. 8, the squared PA coefficients are depicted for a sys-
tem with T=8 transmit and R=2 receive antenna elements for
rRX=0.7 in the high SNR regime. 
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Fig. 8: PA coefficients, high SNR, T=8, R=2, rRX=0.7, various rTX

While for vanishing transmit correlation (rTX≈0) power is

equally distributed on all 8 transmit eigenmodes of the MIMO
channel, with strong fading correlation at the transmitter
( ) the overall transmit power  is assigned to a

decreasing number of the strongest eigenmodes.

E. Large number of receive antennas

Due to the channel hardening effect, for a large number of
receive antennas  the MMI bound in (42) becomes exact
and MMI essentially becomes independent of fading correla-
tion at the receive antenna array. However, this means that also
the power allocation coefficients become independent of corre-
lation at the receiver. This is confirmed by the numerical
results in Fig. 9, where we depict the power allocation coeffi-
cient  for a system with T=2 transmit antennas and a vary-
ing number of receive antennas resulting from a waterfilling
strategy based on the exact EC analysis according to (29). We
note that the second coefficient is implicitly given by

 due to the power constraint
. While there is a significant discrepancy of the PA

coefficient  for R=8 and R=12 receive antennas for a
receive correlation coefficient of rRX=0.7 and rRX=0.9, the sta-
tistical PA algorithm essentially yields the same PA coeffi-
cients for R=20 receive antenna elements, independent of the
receive fading correlation. Moreover, it can be seen that for a
large number of receive antennas, a uniform PA is optimal for
a wide range of transmit correlation values rTX, i.e. CDIT has
basically no effect on ergodic capacity.

Fig. 9: Squared PA coefficients, T=2, SNR=0 dB, rRX={0.7,0.9}
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