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Abstract

The usability of verification systems is becoming increasingly important, and the effective inte-
gration of ontologies of formal facts (definitions, propositions, and syntactic idioms) into machine
verification systems will likely play a role in improving the usability of such systems. The AARTI-
FACT lightweight verification system utilizes an ontology of formal propositions in order to support
lightweight verification of formal arguments that involve common mathematical concepts. The on-
tology is stored within a relational database, and can be assembled and extended using a simple web
interface by contributors who are domain experts. The database can be compiled into two separate
components of the AARTIFACT system: a verifier component that computes congruence closures of
expressions containing relations and predicates found in the ontology, and a JavaScript application
that interactively presents to users information about the constants, operators, relations, predicates,
syntactic constructs, and idioms found in the ontology (and, thus, supported by the verifier). In this
way, the database serves to improve both the verification system’s capacity to infer implicit applica-
tions of logical propositions within a user’s formal argument, and to inform users in a context-aware
and structured manner of the verification system’s capabilities and limitations.

1 Introduction

Machine verification of formal arguments can increase our confidence in the correctness of those argu-
ments, and can provide benefits ranging from unbound variable detection to easy dissemination of fully
certified formal proofs. However, the costs of employing machine verification still outweigh the benefits
for a variety of formal reasoning activities, so features that contribute significantly to various aspects of a
verification system’s usability are becoming increasingly important in the design of machine verification
tools [1].

One promising direction of work involves the integration of large databases (or ontologies) of ex-
isting formal facts (definitions, propositions, syntactic idioms) into machine verification systems. This
approach has been taken in some domain-specific contexts and is closely related to a wide variety of
existing work in finding ways to assemble and expose to the user libraries of formal results [2, 7, 11, 22].
This approach has several benefits. When a library of existing propositions and syntactic idioms is avail-
able, a machine verification system is more likely able to meet the expectations of users who are already
familiar with the formal constructs and manipulations they wish to employ in their arguments. Further-
more, it is easier for expert users to make a trade-off between flexibility and confidence in verification
by introducing their own high-level concepts and facts without having to represent them using low-level
logical constructs.

The AARTIFACT lightweight verification system1 is designed to support the authoring and validation
of formal arguments involving basic, ubiquitous mathematical concepts (e.g. numbers, sets, vectors,
graphs). The system serves as a prototype for investigating potential techniques for improving the us-
ability of formal verification systems. It is designed around a database of simple formal propositions that
deal with common mathematical concepts, properties, and relationships, as well as with syntactic idioms
that represent these. A web interface to browse the ontology is made available to the user (an approach

∗This material is based upon work partially supported by the National Science Foundation under Grant No. 0820138 and
Grant No. 0720604.

1Interactive demonstration available at http://www.aartifact.org.
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used by others in earlier related work [7]), but the ontology is also compiled into two important system
components that provide interactive aid in the authoring and verification of formal arguments.

This paper discusses the design, implementation, and utilization of the ontology underlying the AAR-
TIFACT system’s verification capabilities. Related papers discuss the underlying motivation and structure
of the overall verification system [16], as well as the design of its user interface [19]. The rest of this
paper is organized as follows. Section 2 describes at a high level the overall design and operation of
the AARTIFACT system; in particular, the role of the ontology and its relationship to other components
is described. Section 3 discusses the definition and implementation of the ontology. Section 4 illus-
trates through examples some benefits of an integrated ontology of common concepts in the AARTIFACT

verification system. Section 5 discusses related work and concludes.

2 Overview of System Components and Operation

Figure 1 illustrates the components of the AARTIFACT system. An expert-managed ontology of propo-
sitions is maintained within a relational database. These expert managers can add logical formulas to
the database that are of a very specific form (described in Section 3) which is amenable to the inference
capabilities of the system’s validation procedure [16]. The contents of the database are compiled into
two separate applications. One application is a server-side verification application that can be run when
requests are submitted to it. Using a web interface, the user can submit an argument for verification using
the click of a button and receive immediate validation feedback from the server. The other application is
a client-side JavaScript module that automatically informs the user, as they author a formal argument, of
syntactic idioms available in the ontology based on the text surrounding the location of the user’s cursor.

Figure 1: Overview of system components (left) and operation (right).

The representation of formal facts is an important consideration in the design of a formal ontology.
In particular, it is important to adopt representations that are amenable to translation and compilation
procedures that can convert the ontology’s contents into other useful representations. For example, the
contents of the ontology can be included in a JavaScript application that provides interactive hints for
supported syntactic constructs and idioms. It can also be used for constructing parsers, as well as for
constructing algorithms that perform closure computations. This suggests that there may be opportunities
for applying existing knowledge and experience from work in compiler design in the construction of
machine verification systems.

The ontology integrated into the AARTIFACT system supports two important capabilities that con-
tribute to usability: implicit reasoning and use of syntactic idioms.
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Implicit Reasoning with Common Mathematical Concepts. Even if one considers a small collection
of mathematical concepts, a practicing mathematician is familiar with a large number and a great variety
of propositions that describe relationships between the concepts in this collection. While engaging in
formal reasoning, a user can utilize this knowledge without much conscious effort. A formal reasoning
system will act as a hindrance if it requires that the user consciously recognize and explicitly state her
application of this knowledge. As the designers of the Tutch system posit, an “explicit reference [to an
inference rule] to [humans] interrupts rather than supports the flow of reasoning” [1]. The designers of
the Scunak system [5] refer to a system’s capability to recognize implicit application of such knowledge
as “[retrievability] ... by content rather than by name.”

The AARTIFACT verification system supports validation of implicit invocations within a formal argu-
ment of any of the propositions within the database. This is accomplished by maintaining a data structure
during the verification process that computes congruence closures [3] of expressions that contain any of
the relations found in the database. This data structure and the closure computation are described in a
relevant report [17].

Syntactic Idioms and Real-time Lookup. Syntax is a means of communication, and a simple and
natural formal syntax is advantageous to a verification system because it provides a method that can be
learned quickly for encoding formal arguments [1, 5, 27]. However, this simple syntax must then be used
to represent arguments that can contain references to a large library of operators, predicates, and even
syntactic idioms. It is necessary to maintain all these in a database in order to support conversion of these
idioms into some normal form, and to expose them to users without requiring that they spend time and
effort browsing the database. While an indexed database of syntactic idioms and logical propositions is
a natural starting point, real-time keyword-based lookup techniques for programming environments [20]
suggest a means for further improving usability. While using the AARTIFACT system, the user is able to
learn relevant constructs supported by the system (and any limitations that might exist) while authoring
arguments. This is accomplished by delivering the JavaScript application compiled from the database
to the user’s browser. As the user is typing, the application maps keywords to syntaxes and examples
derived from the contents of the database.

3 Ontology Design and Implementation

The AARTIFACT ontology is designed for maintaining a collection of propositions and definitions deal-
ing with common mathematical concepts (numbers, sets, vectors), properties they may have (the sums
of their elements, the subsets and subvectors they may have and their properties, etc.), and relationships
that may hold between them. The following proposition represents a very simple example:

“ for any x,y,z,
x ∈ ℝ, y ∈ ℝ, z ∈ ℝ, x < y, y < z

implies that
x < z”.

Propositions such as the above deal with definitions, properties, and relationships that govern concepts.
However, it is also possible to maintain propositions that state an equivalence between two forms of
notation or syntax. These can be viewed as establishing a normal form for representing certain concepts
or properties thereof. For example, the following proposition converts the typical notation for a sum of a
finite range of components in a vector, “vi + . . .+ v j”, into a predicate that is then used in other proposi-
tions about the properties of this concept:
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“ for any v, i, j,
v is a vector , v ∈ ℤ∣v∣, 0≤ i, i≤ j, j < ∣v∣,

implies that
vi + . . .+ v j is the sum of components in v in index range i to j”.

Database Maintenance. There exists a simple web form that allows a domain expert (or a group of
experts) to submit new entries or manage the existing entries within the ontology. It also allows users
to browse and search for formulas by the constants, operators, and predicates they contain using the
interactive, dynamically-generated HTML interface presented in Figure 2. While a formula is implicitly
associated with particular disciplines in part by the constants, operators, and predicates that it contains,
the database includes a simplistic tagging mechanism to better accommodate categorization of formulas.
In particular, it is possible to label a formula with the logical system(s) with respect to which the formula
is sound. While the consistency of the overall database is never checked or maintained, this capability
allows portions of the database that are consistent with a particular logic to be assembled and to be
employed exclusively by the validation procedure.

Figure 2: Screen capture of the interface for browsing propositions within the ontology.
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Integration with Verification. The AARTIFACT system’s inference algorithm relies on a collection of
inference rules corresponding to those found in a typical definition of higher-order logic [13] (i.e. those
governing conjunction, disjunction, negation, and quantification), and variants thereof found in common
sequent calculus formulations [9]. The logical inference rules of the system and its validation procedure
are presented in more detail in a relevant report [14]. The validation procedure verifies arguments with
respect to these inference rules as well as the entire database of propositions. It is similar to validation
procedures in related work, such as the proof checking algorithm of the Tutch system [1]. The distin-
guishing feature of our procedure is the more sophisticated assumption context, which incorporates the
entire ontology and computes closures against it. This is described in more detail in relevant papers and
reports [14, 16, 17].

The verification capabilities provided by the AARTIFACT system are “lightweight” in that it is not
essential that any guarantee be provided about the logical consistency or completeness of the validation
process (allowing a user to validate that, for example, the proper syntax is used, that all variables are
bound, or that only “intuitive” symbolic manipulations are employed). However, the soundness of the
validation process can be guaranteed if the system can use only a subset of the inference rules and
database propositions that is consistent with a particular logic. This capability has been demonstrated for
propositional and first-order logic.

Form and Representation of Ontology Propositions. All propositions within the database are of the
form

∀x,r1(u1)∧ . . .∧ rn(un)⇒ rn+1(un+1),

where x represents a list of variables, r1, . . . ,rn+1 are common relations (such as ≤ as well as English
predicate such as “X is a set”), and the entries u1, . . . ,un+1 are either constants (such as “2”, “ℝ”,
or “∞”) or variables drawn from the list x. The second example presented above cannot be represented
directly in this form, so a simple recursive compilation procedure is utilized to convert such formulas.
For example, given an expression of the form “x+ y > z”, it is possible to introduce a fresh variable v
and produce two new expressions: “v is the sum of x and y” and “v > z”. In this way, an expression
involving any nested combination of operators can be converted into the necessary form.

Database Schema and Management. When a designer or expert manager submits a formula using
the web form presented in Figure 2, the concrete syntax is parsed and converted into an abstract syntax
tree using the same parsing mechanism employed by the verifier’s user interface. The abstract syntax
tree consists of expression nodes, and a compilation process compiles this tree into a flat list of node
descriptions. Each description includes an identifying node index, the index of the node’s parent node (if
any), and the index range that includes all the indices of the children of the node. It also includes indices
and markers that can be used to determine the individual expression node’s syntactic role (which can
be used to produce a formatted user-friendly HTML string of the entire formal expression) or semantic
content (which can be used to, for example, index the entire formal expression using the constants found
within it). For example, a boolean marker denotes whether a node is necessary only for displaying a
user-friendly expression. This list of descriptions is then inserted into a flat table within the relational
database. This table has sufficient information to reconstruct any expression because each node de-
scription specifies the range of child indices, and the order of the indices of the child node descriptions
corresponds to the order of the child nodes within the abstract syntax tree.

Whenever the executable component of the AARTIFACT system that performs verification of user
arguments is compiled, the database is converted into an initial instance of the dynamic context and
incorporated into the executable component. The definition, implementation, and performance of the
dynamic context and its associated closure operation are described in an earlier report [17].
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4 Benefits of Ontology-supported Lightweight Verification

We have utilized [18] the AARTIFACT system in defining and reasoning about a compositional formalism
for a typed domain-specific language [4]. The ontology propositions dealing with the algebra of sets were
essential in making this process manageable and in allowing the proofs to be legible. This exercise also
led to the discovery of a few minor errors and to the simplification of a few definitions. The system has
also been deployed within two undergraduate courses: an advanced undergraduate course on functional
programming (described in a related report) [15] and an introductory undergraduate course in linear
algebra (described in a related paper [19]). These experiences demonstrated the usability benefits of
meeting student expectations with the help of an ontology of relationships between common concepts.

Assume for any C,T , (C,T ) is a service-level agreement iff C ∈ ℕ, T ∈ ℕ, C ≥ 1, and T ≥ 1.

Assume for any v,C,T ,
v satisfies (C,T )

iff
(C,T ) is a service-level agreement,
v ∈ {0,1}∞, and for all m ∈ ℕ, vm + ...+ vm+(T−1) ≥C.

Assert for any v,C,T ,
if (C,T ) is a service-level agreement and v satisfies (C,T ) then

for all T ′ ∈ ℕ,
if T ′ ≥ T then

(C,T ′) is a service-level agreement, and
for all m ∈ ℕ,

vm + ...+ vm+(T−1) ≥C,
vm + ...+ vm+(T ′−1) ≥ vm + ...+ vm+(T−1),
vm + ...+ vm+(T ′−1) ≥C,

for all m ∈ ℕ, vm + ...+ vm+(T ′−1) ≥C,
v satisfies (C,T ′).

Figure 3: A verifiable formal argument about the safety of a simple service-level agreement transforma-
tion. The argument makes implicit use of properties of integers, indexed ranges of vectors, summations
thereof, and other concepts.

4.1 Reasoning with Common Mathematical Concepts

In this section, we consider a use case involving a particular scheduling formalism [12] for modelling safe
transformations on service-level agreements. In order to avoid introducing more sophisticated concepts
specific to the field of research dealing with scheduling, we express the examples in abstract terms that
deal only with concepts such as sums and vectors. However, it should be noted that the formal argument
in this abstract example is pertinent to the safety of scheduling algorithms that rely on the scheduling
formalism’s safety [12].

In the scheduling formalism we consider in this example, there are resources and there are tasks that
require resources. For example, a resource might be a processor and tasks might be operating system
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Figure 4: Screen capture of the user interface in “library” mode.

processes. Given a task, a resource is either allocated or not allocated to that task at each discrete time
step according to a schedule, which can be represented as an infinite vector (i.e. sequence) of binary
digits v ∈ {0,1}∞. If the nth entry in this vector is 1, this indicates that the resource is allocated to the
task at that time step. If it is 0, then the resource is not allocated at that time step. The total amount of
time a schedule v allocates a resource to a task over some span of time from time step i to time step j
is the sum of the vector components in that range, vi + . . .+ v j. A service-level agreement is a pair of
natural numbers (C,T ) that represents a requirement that a schedule might satisfy: that every span (i.e.
subvector) of T contiguous time steps has at least C time units allocated to the resource (that is, at least
C non-zero entries).

Theorems about this formalism require the application of intuitive facts about the relationships be-
tween the lengths and sums of subvectors of a vector v ∈ {0,1}∞. We consider the following example
of such a fact. Within in a vector v, if all subvectors of length at least n have sum at least k, then any
subvector of v having length n ⋅m must necessarily have a sum of at least k ⋅m. This intuitive result
requires little effort for the user to verify informally. An effective formal verification system should be
able to infer this fact about a vector given its stated properties.

In order to allow users to use this result implicitly in their arguments, the following proposition can
be introduced into an ontology meant to support reasoning about the formalism we are considering:
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“ for any u,v,w, i, j, i′, j′,s, t
u is a vector , i′ ≤ i, j ≤ j′,
v is a subvector of u in the index range i to j,
w is a subvector of u in the index range i′ to j′,
s is the sum of v,
t is the sum of w,

implies that
t ≥ s”.

This ensures that implicit applications of this fact can be verified by the validation procedure of the veri-
fication system. Figure 3 illustrates a verifiable formal argument that implicitly applies the propositions
presented in this section. This argument defines explicitly the notion of a service-level agreement, as
well as what is means for a schedule to satisfy an agreement. Then, it provides a verifiable assertion that
for any schedule v and agreement (C,T ), if v satisfies (C,T ) then it also satisfies (C,T ′) for any T ′ ≥ T .
That is, widening the span of time steps in question preserves the conditions for satisfaction.

4.2 Interactive Lookup of Ontology Contents

Figure 4 illustrates the AARTIFACT system’s verification web interface from the user’s perspective. The
user submits a formal argument represented using concrete syntax. If the “library” or “syntax” tab is
selected, real-time hints for supported constants, relations, and syntax from the ontology are provided
interactively based on the text surrounding the cursor as the user types. This is accomplished by ac-
cumulating the constants, relations, and predicates found in the propositions in the ontology and then
converting them into a JavaScript array that contains each of these possible entries along with a collec-
tion of index keywords that correspond to it. These index keywords can also be added manually to the
ontology by domain experts.

This feature allows the user to interactively explore the contents of the ontology with little effort.
Because the ontology may contain a variety of predicates and constants whose exact forms might not be
familiar to the user, this feature is essential for making utilization of the ontology’s contents manageable.

5 Related and Future Work

One of the purposes of the ontology utilized by the AARTIFACT system is to support user-friendly syntac-
tic constructs and idioms. This capability is recognized as important within several efforts and projects
aiming to design and implement systems with similar usability characteristics [1, 5, 10, 21, 24, 25, 27].

More generally, our work is concerned with the assembly of an ontology of abstract knowledge about
a formal domain. There is a particular emphasis in our work on collecting high-level, common-sense
facts about formal concepts that are frequently utilized. In taking this approach, we are inspired by work
in knowledge assembly from subdisciplines of artificial intelligence. Examples include the Cyc Project
[23] and the Open Mind Common Sense project [26, 8]. The aim of these projects is to collect a large
database of commonsense propositions about the real world from users. However, the collected data
in these projects need not focus on particular formal domains. Work also exists in assembling indexed
databases of computational methods (algorithms) that can be utilized through an interface. One example
is the online search tool Hoogle, designed to allow users to explore the Haskell libraries [22]. Another
example with the same underlying motivation is the WolframAlpha “answer engine” (as opposed to
search engine) [28], which allows users to interact through a natural language interface with a collection
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of databases that contain both facts and algorithms. However, natural language is not necessarily an
effective interface for a database of propositions or computational methods if it does not provide a means
for specifying the context of a query. In particular, even a human capable of communicating in a natural
language cannot answer queries when the queries are posed out of context.

Matita [2] is a proof assistant the automation of which is heavily based on an integrated search
engine for an underlying library. While the approach in our work is similar, our work focuses more on
facilities for maintaining a “lightweight” library that includes propositions governing intuitive, high-level
relationships between concepts.

The dynamic context that allows utilization of the ontology and its corresponding closure operation
are very similar to the data structures and algorithms found in work on congruence closures [3]. The
contribution of this work is to apply this technique in conjunction with a database of purely symbolic
propositions involving constructs that can correspond to highly abstract but still common mathematical
concepts. That is, the congruence closure is computed with respect to a large collection of both low-level
(e.g. “<”) and high-level (e.g. “is a perfect matching”) relations.

Further extensions to the ontology can be considered. In particular, it should be possible to extend
support to slightly more complex propositions, such as those involving at least one existential quantifier,
or even those containing higher-order predicates. It may also be worthwhile to introduce input and
output support for standards such as MathML [6]. The interface for managing and exploring supported
propositions can be extended with additional analysis capabilities. In particular, it would be useful to be
able to analyze, or even visualize, relationships and dependencies between propositions. The ability to
search for formulas using structural similarity, as well as to automatically index relationships between
analogous formulas, would also be of value.
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