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Abstract – Sensor Networks are distributed networks made 
up of small sensing devices equipped with processors, 
memory, and short-range wireless communication.  They 
differ from conventional computer networks in that they 
have severe energy constraints, redundant low-rate data, and 
a plethora of information flows.  Many aspects of sensor 
networks such as routing, preservation of battery power, 
adaptive self-configuration, etc., have already been studied 
in previous papers [e.g., 1, 2, 3].  However, to the best 
knowledge of the authors, the area of sensor network Quality 
of Service (QoS) remains largely open.  This is a rich area 
because sensor deaths and sensor replenishments make it 
difficult to specify the optimum number of sensors that 
should be sending information at any given time.  In this 
paper we present an amalgamation of QoS feedback and 
sensor networks.  We use the idea of allowing the base 
station to communicate QoS information to each of the 
sensors using a broadcast channel and the mathematical 
paradigm of the Gur Game.  The result is a robust sensor 
network that allows the base station to dynamically adjust 
the resolution of QoS it is receiving from the sensors 
depending on varying circumstances.  
1 Introduction 
Sensor networks of the future are envisioned to consist of 
thousands or more of inexpensive wireless nodes.  Operating 
unattended, each of these sensors will be equipped with 
some computational power and sensing ability (e.g., sonar, 
radar, seismic, etc.).  They are intended for surveillance 
applications such as military, environmental, and deep space 
[4, 5, 6, 7].  The hardware technologies for these networks – 
low cost processors, miniature sensing and radio modules – 
are available today, with future improvements in cost and 
capabilities expected in this decade.  Wireless sensor 
networks improve sensing accuracy by providing distributed 
processing of vast quantities of sensing information.  When 
networked, sensors can aggregate such data to provide a 
more complete view of the environment.  Sensor networks 
can also focus their attention on “important events” detected 
by other sensors in the network (e.g., a person walking).  
Sensor networks are robust in that they can continue to 
provide information despite the failure of individual sensors 
as sensors are envisioned to be interchangeable and a 
significant amount of the data gathered will tend to be 
redundant [1]. 

Sensor networks are very different from conventional 
computer networks.  First, because sensors have a limited 
supply of energy, energy-conserving forms of 
communication and computation are essential to wireless 
sensor networks.  Second, as sensors have limited computing  
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power, they may not be able to run sophisticated network 
protocols.  Lastly, since the bandwidth of wireless links 
connecting sensor nodes is often limited, inter-sensor 
communication is further constrained [1]. 

Although the study of wireless sensor networks is still a 
burgeoning field, many aspects of sensor networks, such as 
routing, preservation of battery power, adaptive self-
configuration, etc., have already been studied in previous 
papers [e.g., 1, 2, 3].  In this paper, however, we explore the 
area of sensor network Quality of Service (QoS).  This is a 
rich area because sensor deaths (e.g., as a result of battery 
failure) and sensor replenishments (e.g., more sensors being 
dropped from an airplane or recharging of batteries) make it 
difficult to control the optimum number of sensors that 
should be sending information at any given time.   

In this paper we present an amalgamation of QoS feedback 
and sensor networks.  We use the idea of allowing the base 
station to communicate QoS information to each of the 
sensors using a broadcast channel and the mathematical 
paradigm of the Gur Game.  The result is a robust sensor 
network that allows the base station to dynamically adjust 
how many sensors are activated, thereby controlling the 
resolution of QoS it is receiving from the sensors depending 
on varying circumstances. 

The rest of this paper is organized as follows.  In section 2 
we present the problem description.  In section 3 we survey 
some of the previous work in wireless sensor networks.  In 
section 4 we present a description of the Gur Game 
paradigm.  In section 5 we present the network model that 
we use and the QoS control algorithm for sensor networks.  
In section 6 we show the results of simulation for the 
algorithm.  Finally section 7 concludes the paper. 
2 Problem Description 
Imagine a future where stimuli ranging the gamut from 
infantry moving across a battlefield to seismic information 
on the surface of Mars is collected by a host of small sensing 
devices.  Such information is as voluminous as it is diverse, 
and the protocols instrumenting these sensor networks of the 
near-future are already being developed today.  However, 
one area in this exciting vision remains rather unstudied.  
This is the area of sensor network QoS. 
What is sensor network QoS?  There are a variety of 
definitions possible, but for the purposes of this paper, we 
define it to mean sensor network resolution.  Specifically, 
depending on the different stimuli present in the sensor 
network, we define it as the optimum number of sensors 
sending information toward the information collecting sinks, 
typically base stations.   This is a very important problem 
because in any sensor network we want to accomplish two 
things:  (1)   maximize the lifetime of the sensor network by 
having sensors periodically power-down to conserve their 
battery energy, and (2) have enough sensors powered-up and 
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sending packets toward the information sinks so that enough 
data is being collected.  Note that the existence of a global 
optimum is guaranteed as the information sinks will need a 
certain amount of information gathered from the different 
sensors but sensors in close proximity to each other allow 
many of those sensors to be powered-down. 
What makes this problem hard?  Let us assume for the 
moment that we have a “naïve” sensor network up-and-
running and that there is one base station, with a broadcast 
channel to all the sensors, that knows the optimal number of 
sensors that should be powered-on and sending packets at 
any given time.  Then at time t, we could broadcast the 
probability p(t)* = (optimal number of sensors turned on at 
time t / total number of live sensors at time t) to all the 
sensors and have each sensor power-up with probability 
p(t)*.  One would think that this would get, on average, the 
optimum number of sensors powered-up at time t.  However, 
this requires us to know the total number of live sensors at 
any given time.  This is a very difficult number to calculate 
because sensor networks will likely consist of thousands of 
sensors randomly thrown about a geographic area.  Further, 
as time progresses, sensors will likely expire (e.g., due to 
battery failure, being blown up by tanks, etc.) and new 
sensors may well be redistributed (e.g., dropped by airplane, 
regenerate battery power via solar power, etc.) making the 
population highly dynamic. 
In this paper, we present an algorithm that addresses our 
goals (1) and (2), and at the same time, is robust enough to 
adapt to these changes in the network and is simple enough 
to be run on small, simple, possibly disposable, sensors. 
3 Previous Work 
We now briefly survey some of the previous work in the 
field: 

[1] presents a family of adaptive protocols called SPIN 
(Sensor Protocols for Information via Negotiation) that 
efficiently disseminate information among sensors in an 
energy-constrained wireless sensor network.  Nodes running 
a SPIN communication protocol name their data using high-
level data descriptors, called meta-data.  They use meta-data 
negotiations to eliminate the transmission of redundant data 
throughout the network.  However, there is no method for 
data sinks (base stations) to allow for QoS negotiations. 

[9] presents the paradigm of directed diffusion.  In this 
scheme, a sink requests data by sending interests for named 
data.  Data matching the interest is then drawn towards that 
node.  Intermediate nodes can cache, or transform data, and 
may direct interests based on previously cached data.  
However, once again, there is no provision made for actively 
regulating QoS. 

[7] puts forth the paradigm of data aggregation.  The idea is 
to combine the data coming from different sources enroute – 
eliminating redundancy, minimizing the number of 
transmissions, and thus saving energy.  This paradigm shifts 

the focus from the traditional address-centric approaches for 
networking (e.g., finding short routes between pairs of 
addressable end-nodes) to a more data-centric approach 
(finding routes from multiple sources to a single destination 
that allows in-network consolidation of redundant data).  
Again, however, no provisions are made for fine-tuning QoS 
at the information sinks. 

Perhaps [10] is the most relevant work to the present study 
as it actively probes the question of QoS that the base 
stations are receiving from the sensors.  However, it defines 
QoS as total coverage.  This is a rather limiting definition 
from our standpoint in that total coverage is static.  That is, it 
does not allow for a data sink to dynamically alter the QoS it 
is receiving from the sensors depending on varying 
circumstances, for example, troops marching across a 
battlefield.  The present work, on the other hand, defines 
QoS as sensor resolution.  This is a much more flexible 
definition in that it allows for the data sinks to dynamically 
tell the sensors whether they want more or less sensor 
resolution over time. 
4 The Gur Game 
Our algorithm, which we describe in the next section, 
utilizes the mathematical paradigm of the Gur Game.  We 
describe the basic idea of the Gur Game now:  

Let us introduce the Gur Game with a simple example [8].  
Imagine that we have many players, none of whom are 
aware of the others, and a referee.  Every second, the referee 
asks each player to vote yes or no, then counts up the yes and 
no answers.  A reward probability r = r(k) is generated as a 
function of the number k of players who voted yes.  We 
assume that 0 <= r(k) <= 1.  A typical function is shown in 
Figure 1.  Each player, regardless of how he or she voted, is 
then independently rewarded (with probability r) or 
penalized (with probability 1-r).  For instance, let us assume 
that at some point the number of players voting yes was k1.  
Then the reward probability would be r(k1).  Each player is 
then rewarded with probability r(k1).  Note that the 
maximum of the example occurs at k* = 35.  We can show 
the following:  no matter how many players there are, we 
can “construct” them in such a way that approximately k* of 
them (in this case, 35) vote yes after enough trials.  The 
property holds for almost any kind of function – whether or 
not it is discontinuous, multimodal, etc.  Note further that the 
individual automata know neither the number k nor the 
reward function r(k). 

Moreover, each player plays solely in a greedy fashion, each 
time voting the way that seems to give the player the best 
payoff.  This is somewhat unexpected.  Greed affects 
outcomes in an unpredictable manner.  An example of greed 
leading to significantly sub-optimal outcomes is the famous 
prisoner’s dilemma.  In this scenario, two entities (the 
prisoners) greedily optimize their own behavior, but together 
they produce a globally sub-optimal result.  This effect is 



 

common in greedy solutions.  However, we will see that the 
method used here does not have this property because the 
players do not attempt to predict the behavior of the other 
players.  Instead, each player performs by trial and error and 
simply preferentially repeats those actions that produce the 
best result for that player. 

The natural question then becomes “how do we construct 
players such that this remarkable property holds?”  The 
answer (as shown by Tsetlin in [13]) is to allow each player 
to have a memory of his previous trials.  Specifically, we 
associate with each player j, a finite discrete-time automaton 
Mj.  The finite state automaton represents the player’s  
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Figure 1:  Typical Gur Reward Function 

memory.  It is a single (nearest-neighbor) chain of 
consecutive states where the total size of the memory is 2N, 
for some arbitrary N.  Starting with the leftmost state, we 
number the states from –N to –1, then from 1 to N (see 
Figure 2).  Note that this partitions the chain into a left half 
(with negative numbered states) and a right half (with 
positive numbered states).  The player is allowed to be in 
only one state at any given time.  Transitions exist between 
states j and j+1 and j-1 (i.e., the player can transition only to 
adjacent states).  If j happens to be N, then the transitions 
allowed are only to state N-1 and N (i.e., a self-loop).  An 
analogous case exists when j happens to be –N.   

The player votes yes when he is in a positive numbered state, 
and no when he is in a negative numbered state.  When in a 
negative numbered state, he transitions leftward if he is 
rewarded by the referee and rightward when he is punished.  
Analogously, when in a positive numbered state, he 
transitions rightward when rewarded by the referee and 
leftward when he is punished.  In other words, “center 
seeking” behavior is for punishment, and “edge seeking” 
behavior is for reward. 

With this set-up, it has been proven [13] that the Gur game 
property holds. 
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Figure 2:  Gur Memory of Size N=2 
e network applications of the Gur Game were studied in 
.  We give a new application of the Gur Game in the 
ent work.  Also, in Section 6, we study parameters 
lving the Gur Game and networks not previously 

sidered.   
Network Model and Algorithm 
us assume that we have a collection of m sensors S1 
ugh Sm and one base station B.  Time is divided into 
rete intervals – each of one second duration.  Each 
or Si is a distance di from the base station B.  We 
rpret this to mean that a packet sent from Si to B takes di 
nds to reach B.  B, on the other hand, is assumed to have 
oadcast channel to all the sensors.  For the purposes of 
 paper, we assume that feedback given from B arrives 
antaneously to all the sensors. 
associate with each sensor Si a finite state automaton Mi.  
 finite automaton, of fixed size N, will be of the standard 
 Game form described in the previous section.  The 
or Si will power-up when it is in a positive numbered 
, and power-down when it is in a negative numbered 
.  We assume that in a power-down state, a sensor can 

 receive and react to low-level signals.  This is similar to 
sensor paging situation described in [14]. 
ach second, if a sensor is powered-up, it will send a data 
et containing sensor information toward the base 
on.  We assume a transparent routing protocol to do this.  
 sensor is powered-down, it simply “sleeps”.  Note that 
 type of sensor network assumes that the base station 
ts information from its sensors regardless of whether 
e are active stimuli or not.  An example of this situation 
ld be sensors deployed on the surface of Mars sending 
mic information toward the base station. 
 base station B desires optimal QoS from the sensor 
ork at each time t.  The tricky point here is what we 

sider to be optimal QoS.  In section 2 we defined optimal 
 to mean an optimal number of sensors powered on at 
 t.  However, in order to accomplish this, we needed to 

w the total number of alive sensors at time t.  This is 
-trivial, as was previously explained.  Instead of this, let 
ssume that the base station wants information uniformly 
ributed from all the sensors (like gathering information 
 a geographic region).  Then we can redefine optimal 
 at time t to mean receiving an optimal number of 
ets at time t.  Assuming a “well behaved” QoS protocol 



 4

that has been running for sufficiently long, we can assume 
that receiving k packets at time t means that approximately k 
sensors, distributed over the total geographic area, are 
powered-on at time t.  It is a subtle point in redefining QoS 
in this way, but it does relieve us from the burden of trying 
to calculate the total number of live sensors at time t. 
Obviously the base station will not necessarily receive the 
optimum number of desired packets at each time t.  The 
question  is then what to do about it.  This is where our 
algorithm comes in.  We associate with the base station a 
Gur reward function r(k).  At each time t, the base station 
counts the number of packets kt it has received from the 
sensors.  It then calculates the Gur reward probability r(kt).  
Finally, it broadcasts this probability to all the sensors.  Each 
sensor, in turn, independently rewards itself with probability 
r(kt) and punishes itself with probability 1-r(kt).  This 
corresponds to playing the Gur Game with the sensor 
network where a yes vote by the sensors means being 
powered-on and sending a packet, and a no vote by the 
sensors means being powered-off.  The base station simply 
counts the number of yes votes in terms of the number of 
packets it has received and independently rewards or 
punishes the sensors accordingly. 
6 Simulation 
We begin with a simple example.  We assume that the 
memory size N is equal to 1 and that we have 100 sensors in 
the network with no sensor failures or renewals.  Each 
sensor picks a random state as its initial state.  We assume 
that the base station desires a rate of 35 packets received at 
each time t (it was noted in simulations that obtaining a rate 
of 50 packets per second was relatively easy– undoubtedly 
because when the voting is skewed one way or the other, 
even a small possibility of punishment rebalances the votes 
by shifting votes from the majority to the minority– so we 
choose a desired optimal sufficiently far from 50, in this 
case, 35).   The reward function used by the base station is 
0.2 + 0.8 ev where v = -0.002 (kt – 35)2 and kt = the number 
of packets received at time t – this was the plot we showed 
in Figure 1.  With regard to the –0.002 scaling parameter, we 
have discovered that it is “loosely” correlated with the 
number of live sensors at time t.  However, we plan to show 
ways of getting around this in a subsequent paper.  In Figure 
3 we show a trace of the number of packets received versus 
time for a sample run of 2000 seconds for this control case 
based on the parameters above. 
As one can see, the number of packets received by the base 
station fluctuates in the beginning but quickly converges to 
the optimal.  Once there, it locks on as each sensor is 
rewarded with probability 1 and feedback is instantaneous.  
From the control case, we next study a realistic network 
situation.  The result is shown in Figure 4.  All the 
parameters are the same as before except that we now 
assume that di is distributed uniformly from 0 to 5 seconds 
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Figure 3:  Active Sensors for the Simple Case 
and we now allow the birth and death of sensors.  
Specifically, we start off with an initial population of 100 
sensors, but new sensors are born into the system with 
exponentially distributed times between births with mean 
100 seconds and each sensor remains alive for an 
exponentially distributed time with mean 101 seconds.  This 
model corresponds to a population of sensors that die, say, 
because of battery failure, and having sensors revive after 
they reenergize with solar energy.  The simulation was run 
for 10, 000 seconds.  
As one can readily see, packet delay, sensor births and 
sensor deaths cause network fluctuations despite the optimal 
being obtained numerous times.  It was noted in other 
simulations (that could not be included in this paper due to 
space limitations) that: (i) packet delay alone (no births or 
deaths) would cause fluctuations until the optimal was 
locked on for a time greater than max(di) from which point it 
locked on to the optimum (as we saw in Figure 3);  (ii) 
sensor births and deaths alone (no packet delays) would 
contain long streaks of being locked on to the optimal (with 
a duration on the order of a small multiple of the birth and 
death interarrival times) until a birth or death perturbed the 
population; (iii) both together (delays plus births and deaths) 
would cause the occurrence of an occasional birth or death 
effect to be dramatically amplified by the packet delays,  
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Figure 4:  Active Sensors for a More Realistic Case 

which is the behavior shown in Figure 4.    However, the 
algorithm is relatively robust and continually drives to the 
optimum number, 35, despite these problems. 
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The last thing we study is the way memory size N affects 
these fluctuations; specifically, we measure the standard 
deviation from the optimal.  All the parameters are the same 
as in the last case except for the varying size of N.  The 
simulation was run for 10, 000 seconds and each point 
averages five runs.  We observe that a minimal value for the 
standard deviation is obtained for a relatively small size of 
N.  Since sensors only have modest memory capacities, our 
algorithm is well-suited for such networks. 
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Figure 5:  Effect of Varying Memory Size 
7 Conclusion 
Sensor networks are an exciting area with very real 
applications in the near future.  Although many aspects of 
sensor networks have been studied before, Quality of 
Service (QoS) for sensor networks remains largely open.  As 
was seen, it is a non-trivial problem to specify the optimum 
number of sensors that should be sending information at any 
given time.  In this paper we presented an algorithm utilizing 
the Gur Game paradigm that allowed the base station to 
specify the optimal number of sensors from which it wanted 
information in the face of delays, births and deaths; thus it 
was able to adjust the QoS it desired from the sensors.  The 
algorithm appears to be robust and is able to tolerate delay 
and sensor births and deaths quite handily.  In this paper we 
have reported the results of a study over a very small portion 
of the design space, and much future work remains in the 
area. 
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